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1 Introduction  
Alternative splicing fosters transcriptome diversity in eukaryotes through 
the processing of pre-mRNAs from the same gene into distinct tran-
scripts that may encode for proteins with different functions (Kelemen et 

al., 2013; Paronetto et al., 2016). Alternative splicing is involved in 
multiple cellular processes, such as apoptosis and autophagy regulation 
(Kelemen et al., 2013; Paronetto et al., 2016), and is especially prevalent 
in humans, where approximately 93% of genes display alternatively 
spliced transcripts whose regulation may differ across tissues and devel-

opmental stages (Wang et al., 2008; Barbosa-Morais et al., 2012; Paron-
etto et al., 2016). Consistently, alternative splicing dysregulation has 
been linked with cancer, neurodegeneration and other diseases (Oltean 
and Bates, 2014; Paronetto et al., 2016; Gallego-Paez et al., 2017). For 
instance, splicing alterations mediated by the key regulator SRSF1 may 

impact multiple hallmarks of cancer, such as resistance to apoptosis and 
tissue invasion (Oltean and Bates, 2014). 

The relevance of alternative splicing changes in physiological and dis-
ease conditions, along with the increasing economic feasibility of next-
generation RNA sequencing (RNA-seq), has progressively driven tran-

scriptome-wide alternative splicing studies (Tsai et al., 2015; Danan-
Gotthold et al., 2015; Wang et al., 2008; Chhibber et al., 2017; Cli-
mente-Gonzalez et al., 2017) and promoted large consortium efforts to 
assemble publicly accessible splicing data. Such consortia include The 
Cancer Genome Atlas (TCGA), that catalogues clinical and molecular 
profiling data from multiple human tumours (Tomczak et al., 2015), and 
the Genotype-Tissue Expression (GTEx) project, that focuses on profil-
ing normal human multi-tissue data (The GTEx Consortium, 2013). 
Among the openly available processed data from these projects, counts 

of RNA-seq reads aligned to exon-exon junctions may be exploited for 
alternative splicing quantification and further analysis. Indeed, the ability 
to couple proper differential splicing analysis with, for instance, gene 
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expression, protein domain annotation, clinical information or literature-
based evidence enables researchers to extract, from those comprehensive 
public datasets, valuable insights into the role of alternative splicing in 
physiological and pathological contexts, as well as putative splicing-
associated prognostic factors and therapeutic targets (Tsai et al., 2015; 

Danan-Gotthold et al., 2015; Anczuków et al., 2015; Chhibber et al., 
2017; Climente-Gonzalez et al., 2017). 

Several tools are currently available to quantify, analyse and visualise 
alternative splicing data, including AltAnalyze (Emig et al., 2010), 
MISO (Katz et al., 2010), SpliceSeq (Ryan et al., 2012), FineSplice 
(Gatto et al., 2014), spliceR (Vitting-Seerup et al., 2014), VAST-
TOOLS (Irimia et al., 2014), rMATS (Shen et al., 2014), SUPPA (Ala-
mancos et al., 2015), jSplice (Christinat et al., 2016), JunctionSeq (Hart-
ley and Mullikin, 2016) and Whippet (Sterne-Weiler et al., 2017). How-

ever, each of such tools suffers from at least one of the following short-
comings: 

− Lack of support for imputing pre-processed data, leading to redun-
dant, time-consuming RNA-seq read alignment and exon-exon 
junction detection, preceding alternative splicing quantification 
when exon-exon junction quantification is already available (e.g. 
when analysing TCGA or GTEx data). 

− Limited set of statistical options for differential splicing analysis, 
mostly relying on median-based non-parametric tests and restricted 

to pairwise comparisons. 
− No incorporation of molecular or clinical information enabling 

analyses that reflect factorial designs or test linear models, for ex-
ample. This is particularly limiting in the exploration of clinical 
datasets where, for instance, survival analyses permit assessing the 
potential prognostic value of alternative splicing events. 

− No support for transcriptome-wide filtering and sub-setting of 
events, based on common features or the outcome of statistical 
analyses, for interactive exploration of individual events of interest.  

− No user-friendly interactive graphical interface neither support for 
customisable statistical plots. 

Moreover, to our knowledge, none of those tools currently incorpo-
rates support for survival analysis, exploratory and differential analyses 
of gene expression, or tests for association between gene expression 
levels and/or alternative splicing quantifications changes. 

To offer a comprehensive pipeline that integrates all the aforemen-
tioned features through both a command-line and an easy-to-use graphi-
cal interface, we have developed psichomics, an R package to quantify, 

analyse and visualise alternative splicing and gene expression data using 
TCGA, GTEx and/or user-provided data. Our tool interactively performs 
dimensionality reduction, differential splicing and gene expression and 
survival analyses with direct incorporation of molecular and clinical 
features. We successfully employed psichomics to analyse stage I breast 
cancer TCGA data and identified alternative splicing events with puta-
tive prognostic value. 

2 Methods, data and implementation 
psichomics was developed as an R package with a modular design, 
allowing to easily modify and extend its components. These include 
support for multiple file formats and automatic data retrieval from exter-
nal sources (e.g. TCGA and GTEx), parsing and standardisation of 
alternative splicing event identifiers from different programs and annota-
tions and the implementation of a variety of data analysis methodologies. 

The program’s workflow for alternative splicing analysis begins with 
the loading of splice junction read count data from the user’s computer 
or external sources, followed by the quantification of alternative splicing 

(in case no pre-computed quantification is loaded) and subsequent 
analyses. Alternative splicing quantification is based on RNA-seq reads 
that align to splice junctions and the genomic coordinates (annotation) of 
alternative splicing events. The proportion of reads aligned to junctions 
that support the inclusion isoform, known as the Percent Spliced-In or 

PSI (Wang et al., 2008), was the chosen quantification metric. 

2.1 Exon-exon junction quantification, gene expression and 
sample-associated data retrieval 

Exon-exon junction and gene expression quantifications (obtained from 

pre-processed RNA-seq data) and clinical data are accessible through 
FireBrowse’s web application program interface (API) for TCGA data 
retrieval (http://firebrowse.org/api-docs). The FireBrowse API is used in 
psichomics to automatically download TCGA data according to the user-
selected tumour type(s) as tab-delimited files within compressed folders, 
whose contents are subsequently loaded with minimal user interaction. 

Contrastingly, GTEx does not currently provide any public API for 
automatic data retrieval, thus requiring the user to manually download 
exon-exon junction quantification, gene expression and clinical data 

from the GTEx website (http://gtexportal.org), for instance. 
User-owned files may also be loaded in appropriate formats, as in-

structed when using psichomics, allowing for subsequent alternative 
splicing analysis from customised data. 

2.2 Gene expression pre-processing 

Gene expression quantifications can be filtered based on user-provided 
parameters (for instance, to account solely for genes supported by 10 or 
more reads in 10 or more samples, as performed by default) and normal-
ised by raw library size scaling using function calcNormFactors from R 

package edgeR (Robinson et al., 2010). Afterwards, counts per million 
reads (CPM) are computed and log2-transformed (if desired) using the 
function cpm from edgeR. Log2-transformation is performed by default. 

2.3 Alternative splicing annotation 

Annotations of alternative splicing events are available on-demand in 
psichomics for the Human hg19 (default) and hg38 genome assemblies. 
Custom annotation files can also be created by following the appropriate 
tutorial available at the package’s landing page in Bioconductor. 

The hg19 annotation of human alternative splicing events was based 

on files used as input by MISO (Katz et al., 2010), VAST-TOOLS 
(Irimia et al., 2014), rMATS (Shen et al., 2014), and SUPPA (Alaman-
cos et al., 2015). Annotation files from MISO and VAST-TOOLS are 
provided in their respective websites, whereas rMATS and SUPPA 
identify alternative splicing events and generate such annotation files 
based on a given isoform-centred transcript annotation. As such, the 
human transcript annotation was retrieved from the UCSC Table 
Browser (Karolchik et al., 2004) in GTF and TXT formats, so that gene 
identifiers in the GTF file (misleadingly identical to transcript identifi-

ers) were replaced with proper ones from the TXT version. 
The collected hg19 annotation files were non-redundantly merged ac-

cording to the genomic coordinates and orientation of each alternative 
splicing event and contain the following event types: skipped exon (SE), 
mutually exclusive exons (MXE), alternative first exon (AFE), alterna-
tive last exon (ALE), alternative 5´ splice site (A5SS), alternative 3´ 
splice site (A3SS), alternative 5´ UTR length (A5UTR), alternative 3´ 
UTR length (A3UTR), and intron retention (IR). The resulting hg19 
annotation is available as an R annotation package in Bioconductor at 
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http://bioconductor.org/packages/alternativeSplicingEvents.hg19, 
whereas the hg38 annotation (whose coordinates were converted from 
those of the hg19 annotation through function liftOver from package 
rtracklayer (Lawrence et al., 2009), based on the hg19 to hg38 chain file 
from UCSC) is also available as an R annotation package in Bioconduc-
tor at http://bioconductor.org/packages/alternativeSplicingEvents.hg38. 

2.4 Alternative splicing quantification 

For each alternative splicing event in a given sample, its PSI value is 

estimated by the proportion of exon-exon junction read counts support-
ing the inclusion isoform therein (Wang et al., 2008). The junction reads 
required for alternative splicing quantification depend on the type of 
event (Figure 1). Alternative splicing events involving a sum of junction 
read counts supporting inclusion and exclusion of the alternative se-
quence below a user-defined threshold (10 by default) are discarded to 
avoid imprecise quantifications based on insufficient evidence. 

Alternative splicing quantification in psichomics is currently based on 
exon-exon junction read counts, yet intron retention events require 

intron-exon junction read counts for their quantification (Braunschweig 
et al., 2014), whereas alternative 5´- and 3´-UTR require exon body read 
counts. psichomics does not currently quantify those types of alternative 
splicing events. 

By default, psichomics quantifies all skipped exon events. However, 
the user can select to measure other types of alternative splicing events 
(Figure 1) and may hand in the list of genes whose alternative splicing 
events are to be specifically quantified. Furthermore, the step of alterna-
tive splicing quantification may be avoided if previously performed. 

psichomics allows the user to save the quantification of alternative 
splicing in a file to be loaded in a future session. 

2.5 Data grouping 

psichomics allows to group subjects and their samples or genes and their 
alternative splicing events for subsequent analysis. Subject and sample 
grouping can be performed based on available phenotypic (e.g. tissue 
type and histology) and clinical (e.g. disease stage, smoking history and 
ethnicity) features. Gene and splicing event grouping relies on respective 
user-provided identifiers. Moreover, the association between sub-

ject/sample groups specified by the user and those defined by the out-
come of gene expression and alternative splicing analyses or by other 
clinical categorical variables can be statistically tested with Fisher’s 
exact tests, implemented through function fisher.test from stats (R Core 
Team, 2016). 

2.6 Dimensionality reduction 

Dimensionality reduction techniques can be performed on alternative 
splicing and gene expression quantifications after centring and/or scaling 
the respective distributions (by default, they are only centred). 

Principal component analysis (PCA) identifies the combinations of 
variables that contribute the most to data variance (Ringnér, 2008) and it 
is implemented through the singular value decomposition (SVD) algo-
rithm provided by the prcomp function from R package stats (R Core 

Team, 2016). The total contribution of each variable (splicing event or 
gene) towards data variance along selected principal components is 
measured based on the implementation of fviz_contrib from factoextra 
(Kassambara and Mundt, 2016).  

Independent component analysis (ICA), a method used for decompos-
ing data into statistically independent components (Hyvärinen and Oja, 
2000), can also be performed through the fastICA function from the 
eponymous R package (Marchini et al., 2017), preceded by data centring 
and/or scaling with the scale function (R Core Team, 2016). 

As many of the aforementioned functions cannot handle missing data, 
a user-defined threshold for the accepted number of missing values per 
alternative splicing event or gene (5%, by default) is used to discard 
variables before performing dimensionality reduction, whereas the 
remaining missing values are imputed for each variable as the median 
from non-missing data samples. 

Moreover, samples can be clustered using k-means, partitioning 
around medoids (PAM) or clustering large applications (CLARA) meth-
ods, with the latter being optimised for large datasets and thus preferred 

by default. The implementation of these methods is based on the kmeans 
function from stats (R Core Team, 2016) and pam and clara functions 
from cluster (Maechler et al., 2017), respectively. 

2.7 Survival analysis 

Kaplan-Meier estimators (and illustrating curves) (Rich et al., 2010) and 
proportional hazard (PH) models (Spruance et al., 2004) may be applied 
to groups of patients defined by the user based on clinical features de-
rived, for instance, from TCGA and user-owned data (GTEx features no 
survival data), with survival distributions being compared using the log-

rank test. Survival analyses are implemented in psichomics using func-
tions Surv, survfit, survdiff and coxph from R package survival 
(Therneau and Grambsch, 2000). 

To evaluate the prognostic value of a given alternative splicing event, 
survival analysis can be performed on groups of patients separated based 

Figure 1. Splice junctions required to quantify alternative splicing based on event type. C1A and AC2 represent read counts supporting junctions between a constitutive (C1 or C2, 

respectively) and an alternative (A) exon and therefore alternative exon A inclusion, while C1C2 represents read counts supporting the junction between the two constitutive exons and 

therefore alternative exon A exclusion. A1* and A2* represent the sum of read counts supporting junctions spanning the alternative first (A1) and second (A2) exon, respectively. Legend: 

skipped exon (SE), mutually exclusive exons (MXE), alternative 5´ splice site (A5SS), alternative 3´ splice site (A3SS), alternative first exon (AFE) and alternative last exon (ALE). 
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on a given alternative splicing quantification (i.e. PSI) cut-off. Patients 
with multiple samples are assigned the average PSI value of their respec-
tive samples after sample filtering (e.g. when using TCGA data, only 
tumour samples are used for survival analysis by default). psichomics 
suggests an optimal cut-off that minimises the p-value of the log-rank 

test used to compare survival distributions. That optimisation employs 
the Brent method available in the optim function from the stats package 
(R Core Team, 2016). Survival analysis can also be performed on groups 
defined by an expression cut-off for a selected gene. 

2.8 Differential splicing and gene expression analyses 

In psichomics, analysis of differential splicing between user-defined 
groups of samples can be performed on all or selected alternative splic-
ing events. Given the non-normal distribution of PSI values (Kakaradov 
et al., 2012; Jia et al., 2015), median- and variance-based non-parametric 

tests, such as the Wilcoxon rank-sum (also known as Mann-Whitney U), 
Kruskal-Wallis rank-sum and Fligner-Killeen tests, are available and 
recommended (Caravela, 2015). Levene’s and unpaired t-tests can 
nonetheless be performed as well. All these tests are available through 
the stats package (R Core Team, 2016) with their default settings, except 
for Levene’s test that was implemented based on the leveneTest.default 

function from the car package (Fox and Weisberg, 2011). 
To correct for multiple testing where applicable, p-value adjustment 

methods for the family-wise error rate (Bonferroni, Holm, Hochberg and 

Hommel corrections) and the false discovery rate (Benjamini-Hochberg 
and Benjamini-Yekutieli methods) are available through function 
p.adjust from package stats (R Core Team, 2016). By default, multiple 
testing correction is performed using the Benjamini-Hochberg method. 

Although the aforementioned statistical tests are also available to ana-
lyse the expression of single genes, genome-wide differential gene 
expression analysis is implemented based on gene-wise linear model 
fitting (using lmFit from R package limma (Ritchie et al., 2015)) for two 
selected groups, followed by moderated t-tests and the calculation of log-

odds of differential expression, using empirical Bayes moderation of 
standard errors (function eBayes from limma) and gene-wise variance 
modelling (limma-trend). 

Statistical results can be subsequently explored through density and 
volcano plots with customisable axes to assist in the identification of the 
most significant changes when analysing distributions across single or 
multiple events, respectively. A corresponding table with the results of 
all statistical analyses is also available and can be retrieved as a tab-
delimited plain text file. 

2.9 Correlation between gene expression and alternative 
splicing quantifications 

The Pearson product-moment correlation coefficient, Spearman’s rho 
(default) and Kendall’s tau, all available with cor.test from stats (R Core 

Team, 2016), can be used to correlate gene expression levels with alter-
native splicing quantifications. Such analyses allow, for instance, to test 
the association between the expression levels of RNA-binding proteins 
(RBPs) and PSI levels of interesting splicing events to identify which of 
these may undergo RBP-mediated regulation. As such, a list of RBPs is 
provided in-app (Sebestyén et al., 2016), but the user can also define 
their own group of genes of interest for the test. 

2.10 Gene, transcript and protein annotation and literature 
support 

The representational state transfer (REST) web services provided by 
Ensembl (Yates et al., 2015), UniProt (C. H. Wu et al., 2006), the Pro-
teins API (Nightingale et al., 2017) and PubMed (Roberts, 2001) are 
used in order to annotate genes of interest with relevant biomolecular 
information (e.g. genomic location, associated transcript isoforms and 
protein domains, etc.) and related research articles. psichomics also 
provides the direct link to the cognate entries of relevant external data-

bases, namely Ensembl (Cunningham et al., 2015), GeneCards 
(Fishilevich et al., 2016), the Human Protein Atlas (Uhlén et al., 2015), 
the UCSC Genome Browser (Goldman et al., 2015), UniProt (C. H. Wu 
et al., 2006) and VAST-DB (Tapial et al., 2017). 

2.11 Performance benchmarking 

To measure the time taken by psichomics to load data, normalise gene 
expression, quantify PSIs for skipped exon events and perform global 
differential expression and splicing analyses between pairs of GTEx 
tissues and between normal and primary solid tumour samples from 

multiple TCGA cohorts, the program was run 10 times with the same 
settings for different combinations of normal human tissues and tumour 
types in a machine running OS X 10.13.1 with 4 cores and 8GB of 
RAM, using Safari 11.0.1, RStudio Desktop 1.1.383 and R 3.4.1. The 
median duration of the 10 runs was used as the performance indicator.  

To determine the approximate time complexity of the aforementioned 
steps in psichomics, gene expression and exon-exon junction 
quantification datasets were prepared based on approximate distributions 
obtained from the respective TCGA datasets: negative binomial 

distributions with a dispersion parameter of 0.25 and 0.2 reads and a 
mean parameter of 2000 and 100 reads for raw gene expression and 
exon-exon junction quantification, respectively. Each run was performed 
on datasets with numbers of samples ranging from 100 to 2500 in 
intervals of 100 (i.e. 100, 200, 300, …, 2500) and 20000 genes or 
200000 splice junctions (gene expression or exon-exon junction 
quantification, respectively). Splice junction identifiers (required for 
alternative splicing quantification) were randomly retrieved from the 
TCGA reference annotation. Based on their respective read counts, 

around 9000 alternative splicing events (i.e. those for which all involved 
inclusion and exclusion junctions were retrieved) were quantified across 
selected samples per run. For differential gene expression and splicing 
analyses, samples were randomly divided into two groups based on the 
emitted values of a Bernoulli distribution with a probability of success of 
50%. 

Polynomials of orders 1 to 6 were fitted to the relation between 
running time and the number of samples. As the running time is assumed 
to always increase with an increasing number of analysed samples, fitted 

polynomials were constrained to be monotone for 0 or more samples, 
using function monpol from R package MonoPoly (Murray et al., 2016). 
The best polynomial fits (Figure 3) were selected based on analyses of 
variance (ANOVA) between fitted polynomials of consecutive orders, 
starting with the comparison between polynomials of orders 1 and 2. A 
polynomial with higher order is only selected if exhibiting a significantly 
better fit (p-value < 0.05). 

3 Results 
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psichomics offers both a graphical and a command-line interface. Al-

though most features are common to both interfaces, we recommend less 
experienced users to opt for the graphical interface based on the shiny 
package, a web application framework available for R (Chang et al., 
2015). To start the graphical interface, the user is required to load the 
psichomics package in R and run function psichomics(), resulting in the 
automatic launch of the user’s default web browser and of the program’s 
graphical interface as a local web app. 

3.1 Case study: exploration of clinically-relevant, differen-
tially spliced events in breast cancer 

Breast cancer is the cancer type with the highest incidence and mortality 
in women (Torre et al., 2015) and multiple studies have suggested that 
transcriptome-wide analyses of alternative splicing changes in breast 
tumours are able to uncover tumour-specific biomarkers (Tsai et al., 

2015; Danan-Gotthold et al., 2015; Anczuków et al., 2015). Given the 
relevance of early detection of breast cancer to patient survival, we used 
psichomics to identify novel tumour stage-I-specific molecular signa-
tures based on differentially spliced events. 

For the purposes of this case study, default psichomics settings wer

used unless otherwise stated. The analysis steps summarised below ar
easily reproducible by following the tutorials in the Bioconductor land
ing page for psichomics. 

Alternative splicing quantification of the most recent TCGA breas
cancer processed RNA-seq data available (2016-01-28) was performed
by psichomics for skipped exons, mutually exclusive exons, alternativ
5´ and 3´ splice sites and alternative first and last exons. 

PCA was performed on alternative splicing and gene expression quan
tifications. A tumour-stage-independent separation between tumour an

normal samples based on alternative splicing is particularly eviden
(Figure S1A-C) and consistent with previous studies (Tsai et al., 2015
Danan-Gotthold et al., 2015). Some of the events reported as signif
cantly altered by those studies overlap those highlighted in our analysi
(Figure S1B), including RPS24 alternative exon 6, more excluded i
multiple cancer types (Danan-Gotthold et al., 2015) and considered 
potential driver of hepatocellular carcinoma (Zhang et al., 2015). 

Nonetheless, this strong tumour-stage-independent separation may b
undermining splicing alterations that discriminate the initial stages o

tumour progression, i.e. changes that contribute specifically to the sepa
ration between normal and tumour stage I samples. Therefore, PCA wa
performed on the alternative splicing quantification and gene expression

Figure 2. Alternative splicing analyses on tumour stage I and normal breast cancer samples from TCGA. A,B - PCA on PSI levels from tumour stage I and normal breast cancer samp

score (A) and loading (B) plots. The loading plot depicts the projection of splicing events on the two first principal components, with selected events labelled with their cognate gene sym

The bubble size in panel B represents the relative contribution of each alternative splicing event to the selected principal components. C - Volcano plot of differential splicing analysis perfor

between tumour stage I and normal breast cancer samples using the Wilcoxon rank-sum test with Benjamini-Hochberg (FDR) adjustment for multiple testing. Significantly differentially spl

events (|Δ median PSI| ≥ 0.1 and FDR ≤ 0.01) are highlighted in orange, with selected events with putative prognostic value depicted in purple. D - One such event is an UHRF2 skipped e

whose PSI distributions in tumour stage I and normal samples are depicted in the density plot (left), whereas its prognostic value is illustrated by the Kaplan-Meier survival curves (r

patients separated by a PSI cut-off of 0.09). E - Protein domain disrupted by UHRF2 exon inclusion. UHRF2 transcripts in blue, UHRF2 exon 10 in green and UniProt domains in red.

images were retrieved from psichomics as is, with the exception of the gene symbol overlay in B and C, the arrow highlighting the PSI cut-off in D and panel E. 
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data from the 181 tumour stage I and 112 normal breast samples (Figure 
2A,B and S1D, respectively). Principal component 1, the most explana-
tory of data variance, separates these two groups for both PCA on alter-
native splicing quantification and gene expression. Several alternative 
splicing events contribute for that separation, including those in genes 

LRRFIP2, MCM7, NUMB, SLK, SMARCC2 and SLMAP (Figure 2B), 
which also separate between all tumour stages and normal samples 
(Figure S1A,B and Tables S1,S2). 

SLMAP, for instance, is a membrane protein suggested to be a media-
tor of phagocytic signalling of macrophages and a putative biomarker in 
drug-resistant cancer cells (Chen et al., 2013).  SLMAP exon 23 encodes 
the protein’s tail anchor and thus its splicing, which our analyses find 
altered in breast stage I tumours, determines its subcellular localisation 
(Byers et al., 2009).  

We also detected alterations in the splicing of exon 12 in NUMB, 
whose protein is crucial for cell differentiation as a key regulator of the 
Notch pathway. Of note, the RNA-binding protein QKI has been shown 
to repress NUMB exon 12 inclusion in lung cancer cells by competing 
with core splicing factor SF1 for binding to the branchpoint sequence, 
thereby repressing the Notch signalling pathway, which results in de-
creased cancer cell proliferation (Zong et al., 2014). Consistently, when 
analysing all TCGA breast normal and tumour samples, we show NUMB 
exon 12 inclusion is increased in cancer and negatively correlated with 

QKI expression (Spearman’s rho = -0.549, p-value < 0.01; Figure S2). 
Complementary analyses deemed 1285 events to be differentially 

spliced between tumour stage I and normal samples (|Δ median PSI| > 
0.1 and FDR ≤ 0.01, Benjamini-Hochberg adjustment to Wilcoxon rank-
sum test; Figure 2C and Table S5) and therefore potential biomarkers for 
early breast cancer diagnosis. Some of the identified events (for instance, 
in FBLN2 and AP2B1), have already been described as oncogenic drivers 
following experimental validation (Danan-Gotthold et al., 2015). 

Next, several alternative splicing events potentially associated with 

prognosis were identified in UHRF2, MAPK10, RIF1, MFF, TPM1, 
ITGA6 and NFASC, based on overall survival analyses stratified by their 
respective optimal PSI cut-offs (labelled in Figure 2C; survival curves in 
Figures 2D and S3).  

Detected alterations in alternative splicing may simply be a reflection 
of changes in gene expression levels. Therefore, to disentangle these two 
effects, differential expression analysis between tumour stage I and 
normal samples was also performed (Figure S4). Alternative splicing 

changes seem to be independent from alterations in the expression of 
cognate genes for 4 of the 7 prognosis-associated splicing events (la-
belled points in Figure S4). 

One of such events is the alternative splicing of UHRF2 exon 10. 
Cell-cycle regulator UHRF2 promotes cell proliferation and inhibits the 

expression of tumour suppressors in breast cancer (J. Wu et al., 2012). 
psichomics reveals that higher inclusion of UHRF2 exon 10 is associated 
with normal samples and better prognosis (Figure 2D), and potentially 
disrupts UHRF2’s SRA-YDG protein domain, related to the binding 
affinity to epigenetic marks (Figure 2E). Hence, exon 10 inclusion may 
supress UHRF2’s oncogenic role in breast cancer by impairing its activ-
ity through the induction of a truncated protein or a non-coding isoform 
(Figure 2E). Moreover, this hypothesis is independent from gene expres-
sion changes, as UHRF2 is not differentially expressed between tumour 

stage I and normal samples (|log2(fold-change)| < 1; Figures S4 and S5A) 
and there is no significant difference in survival between patient groups 
stratified by its expression in tumour samples (log-rank p-value = 0.52; 
Figure S5B). 

To our knowledge, the putative prognostic value of UHRF2 exon 10 
has never been described and, together with the finding of both novel 
and previously validated cancer-specific alternative splicing alterations, 
demonstrates the potential of psichomics in uncovering alternative 
splicing-related molecular mechanisms underlying disease and physio-

logical conditions.  

3.2 Performance benchmark 

The time required to load, quantify and analyse data from different 
TCGA and GTEx cohorts was benchmarked. The breast cancer cohort 
contains the highest number of RNA-seq samples available in TCGA, 
thus being that for which it takes more time to load, quantify and analyse 
alternative splicing and gene expression data. Contrastingly, processed 
data from GTEx come bundled in files containing all tissues. Although 
only data from specified tissues are loaded, scanning though the large 

GTEx file still delays data loading. Tissues from GTEx were loaded in 
pairs for subsequent differential splicing analyses (Figure 3A). 

Synthetic datasets for gene expression and exon-exon junction quanti-
fication of multiple sample sizes were generated, based on TCGA data 
distributions, to determine the time complexity of each step in 
psichomics as a function of the number of input samples s (Figure 3B). 

Figure 3. Performance benchmark for alternative splicing analysis using RNA-seq data from multiple TCGA and GTEx sample types. A - Median times of 10 runs of data 

loading, gene expression (GE) normalisation, skipped exon (SE) event quantification and differential expression and splicing analysis (normal versus tumour for TCGA data or pairwise 

tissue comparison for GTEx data) using psichomics. The default settings were used during the runs. B - Estimation of the time complexity of each of the aforementioned steps in 

psichomics. Randomly generated synthetic datasets of different sample size s were used as input. Equations and coefficient of determination (R2) for the best fits are displayed. 
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psichomics 

Assuming a constant number of genes (20000 in the benchmark) or 
exon-exon junctions (200000), the time taken to load data grows quad-
ratically with s. Gene expression normalisation and differential expres-
sion are based on commonly-used, time-efficient bioinformatics tools 
and the times taken for each also grow quadratically with s. Alternative 

splicing quantification is associated with element-wise operations on 
matrices of dimensions s by the number of alternative splicing events 
and takes a runtime approximately proportional to the square of s, for a 
given number of alternative splicing events (around 9000 for each 
benchmarked run). Finally, differential splicing is based on multiple, 
distinct statistical analyses of alternative splicing quantification data and 
grows linearly with s. 

4 Discussion 
Alternative splicing is a regulated molecular mechanism involved in 
multiple cellular processes and its dysregulation has been associated with 
diverse pathologies (Kelemen et al., 2013; Paronetto et al., 2016; Wang 
et al., 2008; Oltean and Bates, 2014). The advent of next-generation 
sequencing technologies has allowed the investigation of transcriptomes 
of human biological samples to be expanded to alternative splicing. 

RNA-seq data, like those yielded by the GTEx and TCGA projects, are 
indeed playing crucial role in the improvement of our insights into the 
role of alternative splicing in both physiological and pathological con-
texts (Tsai et al., 2015; Danan-Gotthold et al., 2015; Wang et al., 2008; 
Paronetto et al., 2016; Gallego-Paez et al., 2017). 

However, the most commonly used tools for alternative splicing 
analyses currently do not allow researchers to fully benefit from the 
wealth of pre-processed RNA-seq data made publicly available by the 
aforementioned projects. For instance, they lack support for estimating 

PSIs based on splice junction read counts. Such functionality would 
allow users to overcome the difficulties caused by the raw RNA-seq data 
from GTEx and TCGA being under controlled access and, more impor-
tantly, their processing requiring computational resources inaccessible to 
the majority of research labs. psichomics thus exploits pre-processed 
alternative splicing annotation and exon-exon junction read count data 
from public datasets, allowing researchers to hasten alternative splicing 
quantification and subsequent analyses by avoiding the time-consuming 
alignment of RNA-seq data to a genome or transcriptome of reference 

followed by splice junction detection. 
Together with support for the integration of molecular and sample-

associated clinical information, the group creation functionalities fea-
tured in psichomics ensure full customisability of data grouping for 
downstream analyses. Interesting groups to compare in TCGA, for 
instance, may range from the simple contrast between reformed and 
current smokers in lung cancer to complex combinations of gender, race, 
age, country and other subject attributes across multiple cancers. When 
survival data are available, survival analyses can be performed on sam-

ples by PSI or gene expression levels, thereby assessing the putative 
prognostic value of a respective molecular feature. 

The integrative analysis of publicly available TCGA data by 
psichomics allowed us to identify multiple exons differentially spliced 
between breast tumour stage I and normal samples, therefore deeming 
them potential diagnostic biomarkers, and to assess their putative prog-
nostic value. The output of psichomics is validated by identified alterna-
tive splicing alterations that have been previously linked to the disease, 
including events in RPS24, NUMB, FBLN2 and AP2B1. Previously 

understudied, yet intriguing, events were also identified, such as the 
skipping of SLMAP exon 23 and UHRF2 exon 10. These may provide 

novel insights into the early stages of breast cancer development. Indeed, 
it is of utmost importance to foster alternative splicing analyses of clini-
cal samples as a crucial complement to more conventional research 
focused on total gene expression. 

Notwithstanding its merits, a current limitation of psichomics is the 

current support only for events quantified based on exon-exon junction 
read counts, as not all types of alternative splicing events can be profiled 
using splice junction reads alone. For instance, exon-intron junction, 
exon body and intron body quantifications are vital to confirm intron 
retention and alternative 5´ and 3´ UTR events over further transcrip-
tional variations (Dvinge and Bradley, 2015; Braunschweig et al., 2014). 
However, although GTEx (but not TCGA) readily provides intron and 
exon body read quantification for retrieval, neither TCGA nor GTEx 
provide exon-intron junction quantification. As input data may also be 

user-provided, we are developing support for the missing types of events 
to be included in a future update. 

Further developments of psichomics are in progress, including align-
ment of raw RNA-seq data preceding alternative splicing quantification 
and automatic data retrieval and processing from additional public 
sources, such as recount2, an online resource containing processed data 
(including splice junction quantifications) for 2041 RNA-seq studies 
(Collado-Torres et al., 2017). 

5 Conclusion 
The psichomics package is able to perform transcriptome-wide alterna-
tive splicing quantification from pre-processed RNA-seq data, followed 
by integrative data exploration based on dimensionality reduction tech-
niques, differential splicing and gene expression estimation and survival 
analyses. Moreover, the integration of molecular and clinical information 

and convenient data grouping functionalities enable flexibility in the 
definition of sample types to be contrasted. In addition, retrieval of exon-
exon junction read count data from TCGA and GTEx allows the prompt 
quantification of alternative splicing and subsequent analyses (Figure 3) 
for two of the richest sources of molecular information on human tissues 
in physiological and pathological conditions. 

To ensure researchers with different skills can take the most out of 
psichomics, users lacking a computational background may feel more 
comfortable using the intuitive and more accessible graphical interface, 

whereas advanced users may opt for the command-line view. 
Using psichomics, we are able not only to identify novel exons differ-

entially spliced between tumour stage I and normal breast samples but 
also to pinpoint potentially clinically relevant splicing events by embrac-
ing clinical data and evaluating their prognostic value. We expect that 
fellow researchers and clinicians will be able to intuitively employ 
psichomics to assist them in uncovering novel splicing-associated prog-
nostic factors and therapeutic targets, as well as in advancing our under-
standing of how alternative splicing is regulated in physiological and 

disease contexts. 
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