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Summary 

Sensorimotor computations can be flexibly adjusted according to internal states and contextual inputs. The              

mechanisms supporting this flexibility are not understood. Here, we tested the utility of a dynamical system                

perspective to approach this problem. In a dynamical system whose state is determined by interactions among                

neurons, computations can be rapidly and flexibly reconfigured by controlling the system’s inputs and initial               

conditions. To investigate whether the brain employs such control strategies, we recorded from the              

dorsomedial frontal cortex (DMFC) of monkeys trained to measure time intervals and subsequently produce              

timed motor responses according to multiple context-specific stimulus-response rules. Analysis of the            

geometry of neural states revealed a control mechanism that relied on the system’s inputs and initial                

conditions. A tonic input specified by the behavioral context adjusted firing rates throughout each trial, while the                 

dynamics in the measurement epoch allowed the system to establish initial conditions for the ensuing               

production epoch. This initial condition in turn set the speed of neural dynamics in the production epoch                 

allowing the animal to aim for the target interval. These results provide evidence that the language of                 

dynamical   systems   can   be   used   to   parsimoniously   link   brain   activity   to   sensorimotor   computations. 
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Introduction 

Humans and nonhuman primates are capable of generating a vast array of behaviors, a feat dependent on the                  

brain’s ability to produce a vast repertoire of neural activity patterns. However, identifying the mechanisms by                

which the brain flexibly selects neural activity patterns across a multitude of contexts remains a fundamental                

and   outstanding   problem   in   systems   neuroscience. 

Here, we aimed to answer this question using a dynamical systems approach. Work in the motor system has                  

provided support for a hypothesis that movement-related activity in motor cortex can be described at the level                 

of neural populations and viewed as low dimensional neural trajectories of a dynamical system  (Churchland et                

al. 2010; Churchland et al. 2012; Seely et al. 2016; Fetz 1992; Michaels et al. 2016) . More recently, a                   

dynamical systems view has been used to provide explanations for neural trajectories in premotor and               

prefrontal cortical areas in various cognitive tasks  (Mante et al. 2013; Rigotti et al. 2010; Carnevale et al. 2015;                   

Hennequin et al. 2014; Rajan et al. 2016) . This line of investigation has been complemented by efforts in                  

developing, training, and analyzing recurrent neural network models that can emulate a range of motor and                

cognitive behaviors, leading to novel insights into the underlying latent dynamics  (Mante et al. 2013;               

Hennequin et al. 2014; Sussillo et al. 2015; Chaisangmongkon et al. 2017; Wang et al. 2017) . These early                  

successes hold promise for the development of a more ambitious “computation-through-dynamics” (CTD) as a              

general framework for understanding how activity patterns in the brain support flexible behaviorally-relevant             

computations. 

The behavior of a dynamical system can be described in terms of three components: (1) the interaction                 

between state variables that characterize the system's latent dynamics, (2) the system’s initial state, and (3)                

the external inputs to the system. Accordingly, the hope for using the mathematics of dynamical systems to                 

understand flexible generation of neural activity patterns and behavior depends on our ability to understand the                

co-evolution of behavioral and neural states in terms of these three components. Assuming that synaptic               

couplings between neurons and other biophysical properties are approximately constant on short timescales             

(i.e. trial to trial), we asked whether behavioral flexibility can be understood in terms of adjustments to initial                  

state   and   external   inputs. 

There is evidence that certain aspects of behavioral flexibility can be understood through these mechanisms.               

For example, it has been proposed that preparatory activity prior to movement initializes the system such that                 

ensuing movement-related activity follows the appropriate trajectory  (Churchland et al. 2010) . Similarly, the             

presence of a context input can enable a recurrent neural network to perform flexible rule-  (Mante et al. 2013;                   

Song et al. 2016) and category-based decisions  (Chaisangmongkon et al. 2017) . However, whether these              

initial insights would apply more broadly and generalize when both inputs and initial conditions change is an                 

important   outstanding   question. 
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For many behaviors, distinguishing the effects of the synaptic coupling, inputs and initial conditions in neural                

activity patterns is challenging. For example, neural activity during a reaching movement is likely governed by                

both local recurrent interactions and distal inputs from time-varying and condition-dependent reafferent signals             

(Todorov & Jordan 2002; Scott 2004; Pruszynski et al. 2011) . Similarly, in many perceptual decision making                

tasks, it is not straightforward to disambiguate the sensory drive from recurrent activity representing the               

formation of a decision and the subsequent motor plan  (Mante et al. 2013; Meister et al. 2013; Thura & Cisek                    

2014) . This makes it difficult to tease apart the contribution of recurrent dynamics governed by initial conditions                 

from the contribution of dynamic inputs  (Sussillo et al. 2016) . To address this challenge, we designed a                 

sensorimotor task for nonhuman primates in which animals had to measure and produce time intervals using                

internally-generated patterns of neural activity in the absence of potentially confounding time varying sensory              

and reafferent inputs. Using a novel analysis of the geometry and dynamics of  in-vivo  activity in the dorsal                  

medial frontal cortex (DMFC) and  in-silico activity in recurrent neural network models trained to perform the                

same task, we found that behavioral flexibility is mediated by the complementary action of inputs and initial                 

conditions   controlling   the   structural   organization   of   neural   trajectories. 
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Results 

Ready,   Set,   Go   (RSG)   task 

Our aim was to ask whether flexible control of internally-generated dynamics could be understood in terms of                 

systematic adjustments made to initial conditions and external inputs of a dynamical system. We designed a                

“Ready, Set, Go” (RSG) timing task to directly investigate the role of these two factors. The basic sensory and                   

motor events in the task were as follows: following fixation of a central spot, monkeys viewed two peripheral                  

visual flashes (“Ready” followed by “Set”) separated by a sample interval,  t s , and produced an interval,  t p , after                  

Set by making a saccade to a visual target that was presented throughout the trial. In order to obtain juice                    

reward, animals had to generate  t p as close as possible to a target interval,  t t ( Figure 1B ), which was equal to                     

t s times a “gain factor”,  g ( t t = gt s ). The demand for flexibility was imposed in two ways ( Figure 1C ). First,  t s                    

varied between 0.5 and 1 sec on a trial-by-trial basis (drawn from a discrete uniform “prior” distribution).                 

Second,  g switched between 1 ( g =1 context) and 1.5 ( g =1.5 context) across blocks of trials ( Figure 1D,  mean                  

block   length   =   101,   std   =   49   trials). 

 

To verify that animals learned the task ( Figure 1E ), we used regression analyses to assess the dependence of                  

t p  on  t s and  g . First, we analyzed the relationship between  t s and  t p within each context ( t p = 𝛽 0 +𝛽 1 t s ). Results                     

indicated that  t p increased monotonically with  t s for both contexts (𝛽 1 > 0, p << 0.001 for all sessions). Next, we                     

assessed the influence of gain on  t p in several complementary analyses. First, we compared regression slopes                

relating  t p to  t s within each context. The slopes were significantly higher in the  g =1.5 compared to  g =1 context                   

(mean 𝛽 1 = 0.84 vs. 1.2; signed-rank test p = 0.002, n = 10 sessions;  Figure 1E, inset ). Second, we fit a                     

regression model to behavior across both gains that included additional regressors for gain and its interaction                

with  t s ( t p = 𝛽 0 +𝛽 1 t s +𝛽 2 g +𝛽 3 gt s ). Results indicated a significant positive interaction between  t s and  g (mean 𝛽 3  =                  

0.73; 𝛽 3 > 0, p < 0.0001 in each session). Finally, we fit a regression model relating  t p , z-scored for each  t s , to                       

the number of trials following a context switch to determine how fast monkeys adjusted their behavior. There                 

was no evidence for a slow adaptation of  t p as a function of number of trials after switch (one-tailed test for 𝛽 1 in                       

first 25 trials after switch, p > 0.25), indicating that the switching was rapid. Together, these results confirmed                  

that animals used an estimate of  t s to compute  t p and flexibly adjusted their responses according to the gain                   

information. 

 

For both gains, responses were variable, and average responses exhibited a regression to the mean (mean 𝛽 1                 

< 1, p = 0.005 for  g =1, and mean 𝛽 1 < 1.5, p = 0.0001 for  g =1.5, one-sided signed-rank test). As with previous                       

work  (Jazayeri & Shadlen 2015; Acerbi et al. 2012; Miyazaki et al. 2005; Jazayeri & Shadlen 2010) , behavior                  

was accurately captured by a Bayesian model ( Figure 1E , Methods) indicating that animals integrated their               

knowledge   about   the   prior   distribution,   the   sample   interval   and   the   gain   to   optimize   their   behavior.  
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Figure 1 . The RSG task and behavior. ( A ) RSG task. On each trial, three rectangular stimuli termed “Ready,” “Set,” and “Go” were                      

shown on the screen arranged in a semi-circle. Following fixation, Ready and Set were extinguished. After a random delay, first Ready                     

and then Set stimuli were flashed (small lines around the rectangles signify flashed stimuli). The time interval between Ready and Set                     

demarcated a sample interval,  t s . The monkey’s task was to generate a saccade (“Go”) to a visual target such that the interval between                       

Set and Go (produced interval,  t p ) was equal to a target interval,  t t , of  t s multiplied by a gain factor,  g . The animal had to perform the task                            

in two behavioral contexts, one in which  t t was equal to  t s ( g =1 context), and one in which  t t was 50% longer than  t s ( g =1.5 context). The                           

context was cued by the color of fixation and the position of a context stimulus (small white square below the fixation) throughout the                       

trial. ( B ) Animals received juice reward when the error between  t p and  t t was small, and the reward magnitude decreased with the the                       

size of error (see Methods for details). On rewarded trials, the saccadic target turned green (panel A). ( C ) For both contexts,  t s was                       

drawn from a discrete uniform distribution with seven values equally spaced from 0.5 to 1 sec (left). The values of  t s were chosen such                        

that the corresponding values of  t t across the two contexts were different but partially overlapping (right). ( D ) The context changed                    

across blocks of trials. The number of trials in a block was varied pseudorandomly (mean and std shown). ( E )  t p as a function of  t s for                          

each context across all recording sessions. Circles indicate mean  t p across all sessions, shaded regions indicate +/- one standard                   

deviation from the mean, dashed lines indicate  t t , and solid lines are the fits of a Bayesian observer model to behavior. Inset: Slope of                        

the regression line (𝛽 1 ) relating  t p to  t s in the two contexts. Regression slopes were larger in the  g =1.5 context, with a significant                       

interaction between  t s and  g (p < 0.0001) for all sessions (see text; ** indicates p < 0.002 for signed-rank test). In all panels, different                         

shades   of   gray   and   red   are   associated   with    g =1   and    g =1.5,   respectively.  
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Neural   activity   in   the   RSG   task 

To assess the neural computations in RSG, we focused on the dorsal region of the medial frontal cortex                  

(DMFC) comprising supplementary eye fields, supplementary motor area and presupplementary motor area.            

DMFC is a natural candidate for our task because it plays a crucial role in timing as shown by numerous                    

studies in humans  (Halsband et al. 1993; Rao et al. 2001; Coull et al. 2004; Pfeuty et al. 2005; Macar et al.                      

2006; Cui et al. 2009) , monkeys  (Okano & Tanji 1987; Merchant et al. 2013; Kunimatsu & Tanaka 2012; Isoda                   

& Tanji 2003; Romo & Schultz 1992; Merchant et al. 2011; Mita et al. 2009; Ohmae et al. 2008; Kurata & Wise                      

1988) , and rodents  (Matell et al. 2003; Kim et al. 2009; Smith et al. 2010; Kim et al. 2013; Xu et al. 2014;                       

Murakami et al. 2014) , and because it is involved in context-specific control of actions  (Isoda & Hikosaka 2007;                  

Ray & Heinen 2015; Yang & Heinen 2014; Shima et al. 1996; Matsuzaka & Tanji 1996; Brass & von Cramon                    

2002) . 

We recorded from 326 units (127 from monkey C and 199 from monkey J) in DMFC. Between 11 and 82 units                     

were recorded simultaneously in a given session, however in this study, we combined data across all units                 

irrespective of whether they were recorded simultaneously. Firing patterns were heterogeneous and varied             

across units, task epochs, and experimental contexts. In the Ready-Set epoch, responses were modulated by               

both gain and elapsed time (e.g. units #1, 3, and 5,  Figure 2A ). For many units, firing rate modulations                   

underwent a salient change at the earliest expected time of Set (0.5 sec). For example, responses of some                  

units   increased   monotonically   in   the   first   0.5   sec   but   decreased   afterwards   ( Figure   2A,    units   #1,   3).  

Following Set, firing rates were characterized by a mixture of 1) transient changes after Set (unit #1 and 3), 2)                    

sustained modulations during the Set-Go epoch (units #1 and 5), and 3) monotonic changes in anticipation of                 

the saccade (units #1, 2 and 4). These characteristics were not purely sensory or motor and varied                 

systematically with  t s and gain. For example, the amplitude of the early transient response (unit #1) depended                 

on both  t s and gain, indicating that it was not a visually-triggered response to Set. The same was true for the                     

sustained   modulations   after   Set   and   activity   modulations   prior   to   saccade   initiation. 

We also examined the representation of  t s and gain across the population by projecting the data on dimensions                  

along which activity was strongly modulated by context and interval in state-space (i.e. the space spanned by                 

the firing rates of all 326 units; see Methods). Similar to individual units, population activity was modulated by                  

both elapsed time and gain during both the Ready-Set ( Figure 2B ) and Set-Go ( Figure 2C ) epochs. We used                  

this rich dataset to investigate whether the flexible adjustment of intrinsic dynamics across the population with                

respect   to    t s    and   gain   could   be   understood   using   the   language   of   dynamical   systems.  
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Figure 2. Neural responses in dorsomedial frontal cortex (DMFC) during the RSG task. ( A ) Firing rates of 5 example units during                     

the various phases of the task aligned to Ready (left column), Set (middle) and Go (right). Responses aligned to Ready and Set were                       

sorted by  t s . Responses aligned to Go were sorted into 5 bins, each with the same number of trials, ordered by  t p . Gray and red lines                          

correspond to activity during the  g =1 and  g =1.5 contexts, respectively, with darker lines corresponding to longer intervals. ( B )                  

Visualization of population activity in the Ready-Set epoch sorted by  t s . The “gain axis” corresponds to the axis along which responses                     

were maximally separated with respect to context. The other two dimensions (“PC 1 & PC 2”) correspond to the first two principal                      

components of the data after removing the context dimension. ( C ) Visualization of population activity in the Set-Go epoch sorted into 5                     

bins, each with the same number of trials, ordered by  t p . Top: Activity plotted in 2 dimensions spanned by PC 1 and the dimension of                         

maximum variance with respect to  t p within each context (“Interval axis”). Bottom: Same as Top rotated 90 degree (circular arrow) to                     

visualize activity in the plane spanned by the context axis (“Gain axis”) and PC 1. In both panels, PC1 was computed after removing the                        

variance explained along the Interval axis and Gain axis dimensions. Squares, circles, and crosses in the state space plots represent                    

Ready,   Set,   and   Go,   respectively.  

  

8 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

https://doi.org/10.1101/261214


 

Flexible   neural   computations:   a   dynamical   systems   perspective 

We pursued the idea that neural computations responsible for flexible control of saccade initiation time can be                 

understood in terms of the behavior of a dynamical system established by interactions among neurons. To                

formulate a rigorous hypothesis for how a dynamical system could confer such flexibility, we considered the                

goal of the task and worked backwards logically. The goal of the animal is to flexibly control the saccade                   

initiation time to a fixed target. Previous motor timing studies proposed that saccade initiation is triggered when                 

the activity of a subpopulation of neurons with monotonically increasing firing rates (i.e., “ramping”) reaches a                

threshold  (Mita et al. 2009; Kunimatsu & Tanaka 2012; Romo & Schultz 1987; Roitman & Shadlen 2002;                 

Hanes & Schall 1996; Tanaka 2005; Maimon & Assad 2006) . For these neurons, flexibility requires that the                 

slope of the ramping activity be adjusted  (Jazayeri & Shadlen 2015) . More recently, it was found that actions                  

are initiated when the collective activity of neurons with both ramping and more complex activity patterns reach                 

an action-triggering state  (Churchland et al. 2006; Wang et al. 2017) , and that flexible control of initiation time                  

can be understood in terms of the speed with which neural activity evolves toward that terminal state  (Wang et                   

al.   2017) . 

In a dynamical system, the speed with which activity evolves over time is determined by the derivative of the                   

state. If we denote the state of the system by  , the derivative is usually specified by two factors, a function                     

of   the   current   state,    ,   and   an   external   input,    ,   that   may   be   constant   or   context-   and/or   time-dependent: 

  

When analyzing the collective activity of a specific population of neurons, this formulation has a straightforward                

interpretation. The state represents the collective firing rate of neurons under investigation, accounts for               

the interactions among those neurons, and corresponds to external input from another population of               

neurons, possibly controlled by an external sensory drive. The only additional information needed to determine               

the behavior of this system is its initial condition,  , which specifies the initial neural state prior to generating                   

a   desired   dynamic   pattern   of   activity. 

To assess the utility of the dynamical systems perspective for understanding behavioral flexibility, we assumed               

that (i.e., synaptic coupling in DMFC) is fixed across trials. This leaves inputs and initial conditions as                  

the only “dials” for achieving flexibility ( Figure 3 ). To formalize a set of concrete hypotheses for the potential                  

role of inputs and initial conditions, we first focused on behavioral flexibility with respect to  t s for each gain                   

context. How can a dynamical system adjust the speed at which activity during Set-Go evolves in a                 

t s -dependent manner? In RSG, within each context, there are no sensory inputs (exafferent or reafferent) that                

could serve as a  t s -dependent input drive. Therefore, we hypothesized that the  t s -dependent adjustment of               
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speed in the Set-Go epoch results from a parametric control of initial conditions at the time of Set. The corollary                    

to this hypothesis is that the time-varying activity during the Ready-Set epoch is responsible for adjusting this                 

initial   condition   based   on   the   desired   speed   during   the   ensuing   Set-Go   epoch    (Wang   et   al.   2017) . 

Second, we asked how speed might be controlled across the two gain contexts. One possibility is to establish                  

initial conditions that generalize across the two contexts ( Figure 3A ). To do so, initial conditions must vary with                  

speed requirements associated with producing  t t = gt s , which has implicit information about both gain and  t s (i.e.,                

). If both gain and  t s are encoded by initial conditions, we would expect neural trajectories to form a                   

single organized structure with respect to the target time ( t t = gt s ). In the extreme case, neural trajectories                

associated with the same value of  gt s across the two contexts (e.g, 1.5x0.5 and 1.0x0.75) should terminate in                  

the same state at the time of Set and should evolve along identical trajectories during the Set-Go epoch. We                   

refer   to   this   solution   as    A 1    ( Figure   3A ).  

Alternatively, DMFC responses may rely on a persistent gain-dependent input to adjust speed across the two                

gain contexts ( Figure 3B ). As exemplified by recurrent neural network models, in dynamical systems, a               

persistent input can rapidly reconfigure computations by driving the system to different regions of the state                

space  (Mante et al. 2013; Sussillo et al. 2015; Hennequin et al. 2014; Chaisangmongkon et al. 2017; Song et                   

al. 2016) . This solution, which we refer to as  A 2 , predicts a qualitatively different geometrical organization of                 

neural trajectories compared to  A 1 , with two key features. First, there should be a gain-dependent organization                

forming two sets of neural trajectories in two different regions of the state space. Second, neural trajectories                 

should be organized with respect to  t s and  t p (i.e., within each context) but not necessarily with respect to  t t (i.e.,                     

across contexts). Because the context information in RSG was provided as an external visual input (fixation                

cue), and was available throughout the trial, we predict that this solution offers the more plausible prediction for                  

how   the   brain   might   solve   the   task.  

Therefore, the dynamical systems perspective in RSG leads us to the following specific hypotheses: 1) the                

evolution of activity in the Ready-Set epoch parametrizes the initial conditions needed to control the speed of                 

dynamics in the production epoch for each context, and 2) the context cue acts as a persistent external input                   

leading the system to establish structurally similar yet distinct sets of neural trajectories associated with the two                 

gains,   and   no    t p -related   structure   across   contexts,   consistent   with    A 2 . 

Visualization of neural trajectories from Set to Go in state space ( Figure 3C , same as in  Figure 2C ) provided                   

qualitative support for these hypotheses. First, within each context, neural trajectories for different  t p bins were                

clearly associated with different initial conditions and remained separate and ordered throughout the Set-Go              

epoch. Second, context information seemed to displace the entire group of neural trajectories to a different                

region of neural state space without altering their relative organization as a function of  t p . Third, indexing time                  

along nearby trajectories suggested that the speed with which responses evolved along each trajectory was               

systematically related to the desired  t t ; i.e, slower for longer  t t . To validate these observations quantitatively, we                 
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developed an analysis technique which we termed “ ki nematic analysis of  ne ural  t rajectories” (KiNeT) that              

helped   us   measure   the   relative   speed   and   position   of   multiple,   possibly   curved   ( Figure   S1 ),   neural   trajectories. 

11 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

https://doi.org/10.1101/261214


 

 

Figure 3.  Dynamical systems predictions for the RSG task.  ( A,B ) Schematic illustrations for dynamical systems solutions to                 

generalize RSG across contexts through manipulation of initial conditions or external inputs. ( A ) Gain-control by initial condition ( A 1 ).                  

Top: The target interval  t t = gt s ( g , gain,  t s , sample interval) is encoded by the initial conditions ( X 0 ( gt s )) generated during the Ready-Set                     

epoch (not shown). Middle: After the Set cue (open circles), activity evolves towards an action-triggering state (crosses) with a speed                    

(colored arrows) fully determined by position along the initial condition subspace (ordinate). Activity across contexts is organized                 

according to  t t = gt s . Bottom: same trajectories, rotated to show an oblique view. Trajectories are separated only along the initial condition                    

axis across both contexts such that trajectory structure reflects  t t explicitly. There is no separation along the Input axis. ( B ). Gain-control                     

by external input ( A 2 ). Top:  t s is encoded by initial conditions ( X 0 ( t s )), and a persistent context-dependent input encodes the gain (red                     

and gray arrow for the two gains). Middle: within each context, trajectories associated with the same  t s evolve along the same position                      

on the initial condition axis at different speeds due to the context-dependent input. Activity is organized according to  t s and not  t t .                      

Bottom: oblique view. A context-dependent external input creates two sets of neural trajectories in the state space for the two contexts                     

in the Set-Go epoch. This input controls speed in conjunction with  t s -dependent initial conditions, generating a structure which reflects  t s                    

and  g explicitly, but not  t t . In both  A 1 and  A 2 , responses would be initiated when activity projected onto the time axis reaches a threshold.                         

( C ) DMFC data. Top: unknown mechanism of RSG control in DMFC. Middle, bottom: 3-dimensional projection of DMFC activity in the                    

Set-Go epoch (from  Figure 2C ). Middle: qualitative assessment indicated that neural trajectories within each context for different  t p bins                   

were associated with different initial conditions and remained separate and ordered through the response. Bottom: Across the two                  

contexts, neural trajectories formed two separated sets of neural trajectories without altering their relative organization as a function of                   

t p . Both of these features were consistent with  A 2 . Filled circles depict states along each trajectory at a constant fraction of the trajectory                       

length,   illustrating   speed   differences   across   trajectories. 
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Control   of   neural   trajectories   by   initial   condition   within   contexts 

We first employed KiNeT to validate that animals’ behavior was predicted by the speed with which neural                 

trajectories evolved over time. We reasoned that neural states evolving faster will reach the same destination                

on the trajectory in a shorter amount of time. Therefore, we estimated relative speed across the trajectories by                  

performing a time alignment to identify the times when neural activity reached nearby points on each trajectory                 

( Figure 4A ). We then used this approach to analyze the geometrical structure of trajectories through the                

Set-Go   epoch. 

 

To perform KiNeT, we binned trials from each gain and recording session into five groups according to  t p .                  

Neural responses from these trials were averaged, then PCA was applied to generate five neural trajectories                

within the state space spanned by the first 10 PCs that explained 89% of variance. We denote each trajectory                   

by (or for shorthand; a table with definitions of all symbols is provided in Methods) where                   

indexes the trajectory and  represents elapsed time since Set. We estimated speed and position along each                 

relative to the trajectory associated with the middle (third) bin, which we refer to as the reference                  

trajectory  . We denoted neural states on the reference trajectory by  , where indexes states                

through time along  . We used curly brackets to refer to a collection of indices. For example,                  

refers to all states on  , and corresponds to the time points on associated with those                  

states. 

 

For each  , we found the nearest point on all non-reference trajectories (  ) as measured by                

Euclidean distance. We denoted the collection of the nearest states on by  , and the                

corresponding time points by  . The corresponding time points along different trajectories provided the              

means for comparing speed: if were systematically greater than  , we could conclude that               

evolves at a slower speed compared to ( Figure 4A ). This relationship can be readily inferred from                  

the slope of the line that relates to  . While a unity slope indicates that the speeds are the                    

same, higher and lower values would indicate slower and faster speeds of compared to  ,                

respectively. 

 

Applying KiNeT to neural trajectories in the Set-Go epoch indicated that evolved at similar speeds                

immediately following the Set cue (unity slope). Later, speed profiles diverged such that neural trajectories               

associated with longer intervals slowed down and and trajectories associated with shorter intervals sped up for                
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both gain contexts ( Figure 4B ). This is consistent with previous work that the key variable predicting  t p is the                   

speed with which neural trajectories evolve  (Wang et al. 2017) . One common concern in this type of analysis is                   

that averaging firing rates across trials of slightly different duration could lead to a biased estimate of neural                  

trajectory. To ensure that our estimates of average speed were robust, we applied KiNeT to neural trajectories                 

while aligning trials to Go instead of Set. Results remained unchanged and confirmed that the speed of neural                  

trajectories   predicted    t p    across   trials   ( Figure   S2 ). 

Having validated speed as the key variable for predicting  t p , we focused on our first hypothesis that the                  

evolution of activity in the Ready-Set epoch parametrizes the initial conditions needed to control the speed of                 

dynamics in the production epoch for each context. Because speed is a scalar variable and has an orderly                  

relationship to  t p , this hypothesis predicts that the neural trajectories (and their initial conditions) should also                

have an orderly organizational structure with respect to  t p . In other words, there should be a systematic                 

relationship between the vectors connecting nearest points across neural trajectories and the  t p to which they                

correspond. We tested this prediction in two complementary ways. First, we performed an  analysis of direction                

testing whether the vectors connecting nearby trajectories were more aligned than expected by chance.              

Second, we performed an  analysis of distance asking whether the distance between the reference trajectory               

and   the   other   trajectories   respected   the   distance   between   the   corresponding   speeds. 

Analysis of direction .  We used KiNeT to measure the angle between vectors connecting nearest points               

(Euclidean distance) across consecutive trajectories ordered by  t p . Let us use to denote the               

difference vector (  ) connecting nearest points across trajectories (subscript  ) between and             

. According to our hypothesis, the direction of should be similar to              

connecting to  . To test this, we measured the angle between these two difference               

vectors, denoted by  . The null hypothesis of unordered trajectories predicts that and              

should be unaligned on average ( = 90 degrees; bar signifies mean of the angles over                 

the index in curly brackets). Results indicated that was substantially smaller than 90 degrees for                 

both contexts ( Figure 4C ). This provides the first line of quantitative evidence for an orderly organization of                 

neural   trajectories   with   respect   to    t p . 

Analysis of distance. We used KiNeT to measure the length of the vectors connecting nearest points on                  

and  , denoted by  , at different time points (  ). This analysis revealed that trajectories evolving                

faster than and those evolving slower than were located on the opposite sides of  , and                  

that the magnitude of increased progressively for larger speed differences ( Figure 4D ). This analysis               
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provided clear evidence that, for each context, the relative position of neural trajectories and their initial                

conditions   in   the   state   space   were   predictive   of    t p . 

To further substantiate the link between the geometry of neural trajectories and behavior, we asked whether                

trial-by-trial fluctuations of  t p for each  t s could be explained in terms of systematic fluctuations of speed and                  

location of neural trajectories in the state space. We reasoned that fluctuations of  t p partially reflect animals’                 

misestimation of  t s . This predicts that larger values of  t p for the same  t s result from slower neural trajectories                   

whose location in state space are biased toward longer values of  t s . We tested this prediction by using KiNet to                    

examine the relative geometrical organization of neural trajectories associated with larger and smaller values              

of  t p for the same  t s . Results indicated that neural trajectories that correspond to larger values of  t p evolved at                    

slower speeds and were shifted in state space toward larger values of  t s  ( Figure S3 ). This analysis extends the                   

correspondence between behavior and the organization of neural trajectories to include animals’ trial-by-trial             

variability. Together, these results provide strong evidence for our first hypothesis: that activity during              

Ready-Set epoch parametrically adjusts the system’s initial condition (i.e., neural state at the time of Set),                

which   in   turn   controls   the   speed   of   neural   trajectory   in   the   Set-Go   epoch   and   the   consequent    t p . 
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Figure 4. Kinematic analysis of neural trajectories (KiNeT).  ( A ) Illustration of KiNeT. Top: a collection of trajectories originate                   

from Set, organized by initial condition, and terminate at Go. Tick marks on the trajectories indicate unit time. Darker trajectories evolve                     

at a lower speed as demonstrated by the distance between tick marks and the dashed line connecting tick marks. KiNeT quantifies the                      

position of trajectories and the speed with which states evolve along them relative to a reference trajectory (middle trajectory,  ).                   

To do so, it finds a collection of states on each that are closest to through time. Trajectories which evolve at a                         

slower speed require more time to reach those states leading to larger values of  . KiNet quantifies relative position by a distance                      

measure, (distance between and at  ) that is signed (blue arrows) and is considered positive when                   

corresponds to larger values of  t p (slower trajectories). Middle: trajectories rotated such that the time axis is normal to the plane                      

of illustration, denoted by a circle with an inscribed cross. Filled circles represent the states aligned to for a                     

particular  . Vectors connect states on trajectories of shorter to longer  t p . Angles between successive                 

provide a measure of  t p -related structure. Bottom: equations defining the relevant variables. ( B ). Speed of neural                 

trajectories compared to computed for each context separately. Shortly after Set, all trajectories evolved with similar speed                  

(unity slope). Afterwards, associated with shorter  t s evolved faster than as indicated by a slope of less than unity (i.e.,                      

smaller than ), associated with longer  t s evolved slower than  . Filled circles on the unity line                   
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indicate values for which was significantly correlated with (bootstrap test, r > 0, p < 0.05, n = 100). ( C ). Relative                        

position of adjacent neural trajectories computed for each context separately. (bar signifies average across trajectories)                

were significantly smaller than 90 degrees (filled circle) for the majority of the Set-Go epoch (bootstrap test, < 90, p < 0.05,                       

n = 100) indicating that were similar across  . ( D ) Distance of neural trajectories to computed for each                    

context separately. Distance measures (  ) indicated that had the same ordering as  . Significance tested using                 

bootstrap   samples   for   each       (p   <   0.05,   n   =   100). 
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Control   of   neural   trajectories   across   contexts   by   external   input 

To identify the mechanism by which flexible speed control might be generalized across contexts, we first tested                 

whether both gain and  t s are encoded by initial conditions ( A 1 ). According to this alternative, neural trajectories                 

should follow the organization of  t p across both contexts ( Figure 3A ), in addition to within each context ( Figure                  
4C ). To test  A 1 , we sorted neural trajectories across the two contexts according to  t p ( Figure 5A, top ), and                   

asked whether the angle between vectors connecting nearest points (  ) was significantly less than 90               

degrees ( Figure 5A, bottom ). Unlike the within-context results ( Figure 4C ), when neural trajectories from both               

contexts were combined, the angle between nearby neural trajectories was significantly larger than 90 degrees               

(p < 0.05 for all  ;  Figure 5B ). This indicates that trajectories across contexts do not have a orderly                   

relationship to  t t ( A 1 : less than 90 deg) even though they exhibit a structural organization that deviates from                  

randomness   (90   deg). 

 

Next, we investigated the hypothesis that the context cue acts as a persistent external input ( A 2 ;  Figure 3B ),                  

leading the system to establish structurally similar but distinct collections of neural trajectories across contexts               

( Figure 6A,B ). This hypothesis can be broken down to a set of specific geometrical constraints in the Set-Go                  

epoch. We determined whether the data met these constraints by testing whether the converse of each could                 

be rejected, as illustrated in  Figure 6C-F . If we denote the collection of neural trajectories in the two contexts                   

by       and    ,   these   constraints   and   tests   can   be   formalized   as   follows: 

 

1. and should evolve in the same direction as a function of time with different average                  

speeds (i.e. slower for  ). If the converse were true (i.e., trajectories evolving in different directions,                

Figure 6C, left ), we would expect no systematic relationship between time points across the two contexts.                

Results from KiNeT across contexts (see Methods) revealed a monotonically increasing relationship between             

and  , confirming that Set-Go trajectories across contexts evolved in the same             

direction ( Figure 6C, right ). Moreover, had a higher rate of change than              

indicating that average speeds were slower in the g=1.5 condition. This suggests that speed control played a                 

consistent   role   across   contexts      ( Figure   6A ). 
 

2. and should be organized similarly with respect to  t p . In other words, the vector that                  

connects nearby points in should be aligned to its counterpart that connect nearby points in                

. To evaluate this constraint, we used the angle between pairs of vectors that connect nearby points                 

within each context. We use an example to illustrate the procedure ( Figure 6B ). Consider one vector                

connecting nearby points in two successive neural trajectories in the gain of 1 (e.g. and  ),                 
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and another vector connecting the corresponding points in the gain of 1.5 (e.g., and  ). A                 

similar orientation between the two groups of trajectories ( Figure 6A ) would cause the angle between these                

vectors (  ) to be significantly smaller than 90 degrees. If instead, and were               

oriented differently ( Figure 6D, left ) or had no consistent relationship, these vectors would be on average                

orthogonal. Using KiNeT, we found that this angle (  ) was consistently smaller than 90 degrees               

throughout the Set-Go epoch, providing quantitative evidence that the collection of neural trajectories             

associated   with   the   two   gains   were   structurally   similar   ( Figure   6A ). 
 

3. If context information is provided as a tonic input, and should be separated in state                  

space along a context axis throughout the Set-Go epoch. To verify this constraint, we assumed that neural                 

trajectories for each context were embedded in distinct manifolds and compared the minimum distance              

between the two manifolds (  ) to an analogous distance metric within each manifold ( Figure 6B; see                

Methods). These distance measures should be the same if the groups of trajectories associated with the two                 

contexts overlap in state space ( Figure 6E, left ). However, we found distances to be substantially larger                

across contexts compared to within contexts ( Figure 6E, right ). This confirms that the groups of trajectories                

associated   with   the   two   contexts   were   separated   in   state   space   ( Figure   6A ). 
 

4. The results so far reject a number of alternative hypotheses ( Figure 6C,D,E ) and leave out two possibilities:                  

either and are separated along the same dimension that separates trajectories within              

each context ( Figure 6F, left ), or they are separated along a distinct input axis in accordance with  A 2 ( Figure                   
6A ). To distinguish between these two, we asked whether the vector associated with the minimum distance                

(  ) was aligned to vectors connecting nearby states within each context (  ). Analysis of               

the angle between these vectors (  ) indicated that the two were orthogonal for almost all ( Figure 6F,                  
right ). This ruled out the remaining possibility that trajectories across contexts were separated along the same                

dimension   as   within-context   ( Figure   6F,   left ). 
 

Having validated these constraints quantitatively, we concluded that population activity across gains formed             

two groups of isomorphic speed-dependent neural trajectories ( Figure 6A ). These results support our primary              

hypothesis that flexible control of speed based on gain context was established by a context-dependent               

persistent   external   input   ( Figure   3B ).  
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Figure 5 .  Neural trajectories across contexts do not form a single structure reflecting  t p . ( A ) A schematic illustrating neural                   

trajectories across the two contexts after Set. Top: The expected geometrical structure under  A 1 . Neural trajectories for the gain of 1                     

(gray) and 1.5 (red) are organized along a single initial condition axis and ordered with respect to  t p . Bottom: A rotation of the top                        

showing neural trajectories with the time axis normal to the plane of illustration. If the neural trajectories were organized as such, then                      

the angle between vectors connecting nearby points (e.g.,  ) would be less than 90 ( A 1 ,  Figure 3A ). ( B ) Left: orientation of                     

vectors connecting adjacent neural trajectories combined across the two contexts. Right: possible geometrical structures, including  A 1                

(bottom),  A 2 (top), and unorganized (middle). was larger 90 degrees for all in the Set-Go interval, consistent with  A 2 .                     

Shaded   regions   represent   90%   bootstrap   confidence   intervals. 
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Figure 6. Neural trajectories comprise distinct but similar structures across gains. ( A ) A schematic showing the organization of                  

neural trajectories in a subspace spanned by Input, Initial condition and Time if context were controlled by persistent external input. If                     

DMFC were to receive a gain-dependent input, we would expect neural trajectories from Set to Go to be separated along an input                      

subspace, generating two similar but separated  t p -related structures for each context ( A 2 ,  Figure 3B ). We verified this geometrical                  

structure by excluding alternative structures (interdictory circles indicate rejected alternatives). ( B ) An illustration of neural trajectories                

for g=1 (gray filled circle) and g=1.5 (red filled circle) with the time axis normal to the plane of illustration. Gray and red arrows show                         

vectors connecting nearby points in each context independently ( and  ). When the neural trajectories associated with                 

the two gains are structured similarly, these vectors are aligned and the angle between them (  ) is less than 90 deg. We used KiNeT                        

to test this possibility (see Methods). ( C ) Left: Schematic illustrating a condition in which the time axis for trajectories in the two contexts                       

(gray and red) are not aligned. Right: increased monotonically with indicating that the time axes                 

across contexts were aligned. Values of above the unity line indicate that activity evolved at a slower speed in the                     

g=1.5 context. The dashed gray line represents unity and the dashed red line represent expected values for if                   

speeds were scaled perfectly by a factor of 1.5. ( D ) Left: Schematic illustrating an example configuration in which and                    

do not share the same  t p -related structure. Right: was significantly less than 90 degrees for all indicating                    

that the tp-structure was similar across the two contexts. ( E ). Left: Schematic illustrating a condition in which and                   
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are overlapping. Right: The minimum distance across contexts (black line) was substantially larger than that found                  

between subsets of trajectories within contexts (red and gray lines, see Methods) indicating the two sets of trajectories were not                    

overlapping. ( F ) Left: Schematic illustrating a condition in which and are separated along the same direction                  

that neural trajectories within each context were separated. Right: was orthogonal to representing  t p -related                

structure within each context (gray and red lines). In ( C-E ), shaded regions represent 90% bootstrap confidence intervals, and circles                   

represent   statistical   significance   (p   <   0.05,   bootstrap   test,   n   =   100). 
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RNN   models   recapitulate   the   predictions   of   inputs   and   initial   conditions 

The geometry and dynamics of DMFC responses were consistent with the hypothesis that behavioral flexibility               

in the RSG task relies on systematic adjustments of initial conditions and external inputs of a dynamical                 

system. Motivated by recent advances in the use of recurrent neural networks (RNNs) as a tool for testing                  

hypotheses about cortical dynamics  (Mante et al. 2013; Hennequin et al. 2014; Sussillo et al. 2015;                

Chaisangmongkon et al. 2017; Wang et al. 2017) , we investigated whether RNNs trained to perform the RSG                 

task   would   establish   similar   geometrical   structures   and   dynamics.  

 

We focused on a generic class of RNNs comprised of synaptically coupled nonlinear units that receive                

nonspecific background activity (see Methods). First, we tested whether RNNs could perform the RSG task in a                 

single gain context ( g =1 or  g =1.5 only). To do so, we created RNNs that received an additional input encoding                   

Ready and Set as two brief pulses separated by  t s . We trained these RNNs to generate a linear output function                    

after Set that reached a threshold (Go) at at the desired production interval,  t t =  gt s . Analysis of successfully                   

trained RNNs revealed that they, like DMFC, controlled  t p by adjusting the speed of neural trajectories within a                  

low-dimensional   geometrical   structure   parameterized   by   initial   conditions   ( Figure   S4 ). 
 

Next, we investigated RNNs trained to perform the RSG task across multiple gain values. Our primary aim was                  

to verify the importance of a persistent gain-dependent input in establishing isomorphic geometrical structures              

similar to DMFC ( Figures 3, 6 ). To do so, we created RNNs with two different architectures, one in which the                    

gain information was provided by the level of a persistent input, and another in which the gain information was                   

provided by a transient pulse before the Ready cue. We refer to these networks as tonic-input RNNs and                  

transient-input RNNs, respectively ( Figure 7A ). We used the tonic-input RNN as a direct test of whether a                 

gain-dependent persistent input could emulate the geometrical structure of responses in DMFC, and the              

transient-input   RNN   to   test   whether   such   persistence   was   necessary. 

 

Using PCA and KiNeT, we found that neural trajectories in the two networks were structured differently. In the                  

tonic-input RNN, trajectories formed two isomorphic structures separated along the dimension associated with             

the gain-dependent persistent input ( Figure 7B ). In contrast, trajectories generated by the transient-input RNN              

were better described as coalescing towards a single structure parameterized by initial condition ( Figure 7C ).               

To verify these observations quantitatively, we evaluated the geometry of neural trajectories in the two RNN                

variants using the same analyses we performed on DMFC activity. In particular, we sorted trajectories with                

respect to  t p across the two gain contexts ( g =1 and  g =1.5) and quantified the angle between vectors                 

connecting nearest points (  ). As noted in the analysis of DMFC, this angle is expected to be acute if                   

trajectories form a single structure ( A 1 : < 90 deg), and obtuse if trajectories form two gain-dependent                 
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structures ( A 2 : 90 deg). As predicted, the tonic-input solved the task by forming two isomorphic                 

structures ( A 2 ) indicating that when a persistent gain-dependent input is present, RNNs rely on a solution with                 

separate gain-dependent geometrical structures ( Figure 7E ). In contrast, in the transient-input RNNs, angles             

between consecutive trajectories were acute ( A 1 ). This result strengthens the conclusion about the importance              

of   a   persistent   gain-dependent   input   in   establishing   separate   isomorphic   structures   ( Figure   7D ). 
 

We also compared the two RNNs in terms of the distance between trajectories across the two contexts using                  

the same metric (  ) we used previously used for the analysis of DMFC (Figure 6E). The minimum distance                  

between and at the time of Set was consistently smaller in the transient-input RNN                

compared to tonic-input RNN ( Figure 7F,G ). In some of the successfully trained transient networks, was                

larger at the time of Set, but this distance consistently decayed from Set to Go. In contrast, in the tonic-input                    

RNN, remained large throughout the production epoch. We compared the two types of RNN quantitatively                

but comparing values of in each RNN normalized by the distance between the trajectories that correspond                 

to the shortest and longest  t p bin for the  g =1 context in the same RNN. In the tonic networks, the minimum                     

normalized distance ranged between 0.4 and 1.6, which was nearly 10 times larger than the that observed in                  

the transient networks (0.003 to 0.04). Additionally, trajectories in all transient networks gradually established a               

t t -related structure consistent with  A 1 . In contrast, trajectories in the tonic networks, like the DMFC data, were                 

characterized by two separate  t p -related structures, one for each gain context.  These results provide an               

important theoretical confirmation of our original dynamical systems hypothesis that when gain information is              

provided as persistent input, the system establishes distinct and isomorphic gain-dependent sets of neural              

trajectories. 
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Figure 7.  RNNs with tonic but not transient input captured the structure of activity in DMFC.  ( A ) Schematic illustration of the                     

recurrent neural networks (RNNs). The networks are provided with brief Ready and Set pulses separated in time by  t s , after which the                      

activity projected onto the output space by weighting function z must generate a ramp to a threshold (dashed line) at the                     

context-dependent  t t . Additionally, each network is provided with a context-dependent “input” which either terminates prior to Ready                 

(“Transient input,” top), or persists throughout the trial (“Tonic input,” bottom) ( B ) Top: state-space projections of tonic-input RNN activity                   

in the Set-Go epoch within the plane spanned by Initial condition (ordinate) and Time (abscissa). Within this plane of view, neural                     

trajectories within each context are separated based on  t p but overlap with respect to gain. Bottom: Same neural trajectories shown in                     

the top panel viewed within the plane spanned by Input (ordinate) and Time (abscissa). In this view, neural trajectories are separated by                      

gain  but overlap with respect to  t p within each gain. Results are shown with the same format as  Figure 3 . ( C ) Same as panel B for the                           

transient-input RNN. Top: Trajectories, when viewed within the plane of Initial condition and Time, are organized with respect  t p  across                    

both gains. Bottom: when viewed within the plane of Input and Time, trajectories are highly overlapping irrespective of gain. ( D )                    
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Analysis of direction in the tonic-input RNN with the same format as  Figure 5B . was larger than 90 deg for the entire the                        

Set-Go epoch. This is consistent with a geometry in which the two gains form two separate sets of isomorphic neural trajectories (inset).                      

( E ) Same as panel D for the transient-input network for which was consistently less than 90 deg. This is consistent with a                       

geometry in which neural trajectories are organized with respect to  t p regardless of the gain context (inset). ( F,G ) Trajectory separation                    

across contexts for the tonic-input ( F ) and transient-input ( G ) networks with the same format as  Figure 6E . was substantially larger                     

through the Set-Go epoch in the tonic-input network ( F ). In ( D-G ), shaded regions represent 90% bootstrap confidence intervals, and                   

circles   represent   statistical   significance   (p   <   0.05,   bootstrap   test,   n   =   100). 
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Discussion 

Linking behavioral computations to neural mechanisms requires that the space of models we consider suitably               

match the computational demands of the behavior. In this study, we focused on the computations that enable                 

the brain to exert precise and flexible control over movement initiation time  (Wang et al. 2017) . Because such                  

temporal control depends on intrinsically dynamic patterns of neural activity, we employed a dynamical              

systems perspective to understand the underlying computational logic. An important feature of the dynamical              

systems view is that it obviates the need for the system to harbor an explicit representation of experimentally                  

defined task-relevant variables ( t s ,  g , and  t t ). Instead, neural signals that control behavior may be more                

appropriately characterized in terms of constraints imposed by latent dynamics that hold an implicit              

representation of task-relevant variables to control behavior. This viewpoint has a strong basis in current               

theories of motor control that posit an implicit representation of kinematic information in motor cortical activity                

during movements  (Churchland et al. 2010; Churchland et al. 2012; Chaisangmongkon et al. 2017; Fetz 1992;                

Shenoy et al. 2013; Michaels et al. 2016) . These theories cast movement control in terms of the function of an                    

inverse model  (Wolpert & Kawato 1998; Todorov & Jordan 2002; Sabes 2000) that inverts a desired endpoint                 

to suitable control mechanisms during movement. We built upon this framework by evaluating the utility of                

dynamical systems theory in characterizing the control mechanisms the brain uses to produce a desired               

interval   ( t t )   jointly   specified   by   gain   and    t s    ( t t    =    gt s ). 

 

Results indicated that flexible control of behavior could be parsed in terms of systematic adjustments to initial                 

conditions and external inputs of a dynamical system. Activity structure within each gain context indicated that                

the system’s initial conditions controlled  t p by parameterizing the speed of neural trajectories  (Jazayeri &               

Shadlen 2015; Wang et al. 2017) . The displacement of neural trajectories in the state space as a function of                   

gain, and the lack of structural representation of  t p across both gains suggested that DMFC received the gain                  

information as a context-dependent tonic input. Following recent advances in using RNNs to generate and test                

hypotheses about dynamical systems  (Mante et al. 2013; Rigotti et al. 2010; Hennequin et al. 2014; Rajan et                  

al. 2016; Sussillo et al. 2015; Chaisangmongkon et al. 2017) , we verified this interpretation by analyzing the                 

behavior of different RNN models trained to perform the RSG task with either tonic or transient                

context-dependent inputs. Although both networks used initial conditions to set the speed of neural trajectories,               

only the tonic-input RNNs reliably established separate structures of neural trajectories across gains, similar to               

what   we   found   in   DMFC. 

 

Although we do not know the constraints that led the brain to establish separate geometrical structures, we                 

speculate about potential computational advantages associated with this particular solution. First and foremost,             

this may be a particularly robust solution; as the gain information was provided by a persistent visual cue, the                   

brain could use this input as a reliable signal to modulate neural dynamics in RSG. This solution may also                   
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reflects animals’ learning strategy. We trained monkeys to perform the RSG tasks with two gain contexts. On                 

the one extreme, animals could have treated these as completely different tasks leading to completely               

unrelated response structures for the two gains. On the other extreme, animals could have established a single                 

parametric solution that would enable the animal to perform the two contexts as part of a single continuum                  

(e.g., represent  t t ). DMFC responses, however, did not match either extreme. Instead, the system established               

what might be viewed as a modular solution comprised of two separate isomorphic structures. We take this as                  

evidence that the brain sought similar solutions for the two contexts, but it did so while keeping the solutions                   

separated in the state space. This strategy preserves a separable, unambiguous representation of gain and  t s                

at the population level  (Machens et al. 2010; Mante et al. 2013; Kobak et al. 2016) and provides the additional                    

flexibility of parametric adjustments to the two parameters independently. Future extensions of our             

experimental paradigm to cases where context information is not present throughout the trial (e.g., internally               

inferred   rules)   might   provide   a   more   direct   test   of   these   possibilities. 

 

Regardless of the learning strategies and constraints that shaped DMFC responses, our results highlight an               

important computational role for inputs that deviate from traditional views. We found that changing the level of                 

a static input can be used to generalize an arbitrary stimulus response mapping in the RSG task to a new                    

context. Similar inferences can be made from other recent studies that have evaluated the computational utility                

of inputs that encode task rules and behavioral contexts  (Mante et al. 2013; Song et al. 2016;                 

Chaisangmongkon et al. 2017) . Extending this idea, it may be possible for the system to use multiple                 

orthogonal input vectors to flexibly and rapidly switch between sensorimotor mappings along different             

dimensions. Together, these findings suggest that a key function of cortical inputs may be to flexibly                

reconfigure the intrinsic dynamics of cortical circuits by driving the system to different regions of the state                 

space. This allows the same group of neurons to access a reservoir of latent dynamics needed to perform                  

different   task-relevant   computations. 

 

Our results raise a number of additional important questions. First, future work should identify the               

neurobiological substrate of the putative context-dependent input to DMFC in the RSG task, which may be                

among various cortical and subcortical areas  (Lu et al. 1994; Bates & Goldman-Rakic 1993; Wang et al. 2005;                  

Akkal et al. 2007; Wallis et al. 2001) . The nature of the input is also unknown. In our RNN models, context                     

information was provided by external drive, and was indistinguishable from recurrent inputs from the              

perspective of individual units. In cortex, reconfiguration of circuit dynamics may be achieved by either an                

external drive similar to the function of thalamic relay signals, or through targeted modulation of neural activity                 

(Harris & Thiele 2011; Nadim & Bucher 2014) . Second, while the signals recorded in this study were consistent                  

with a prominent role for DMFC in RSG, other brain areas, such as the thalamus  (Guo et al. 2017; Schmitt et                     

al. 2017) and prefrontal cortex  (Miller & Cohen 2001) are also likely to help maintain the observed dynamics.                  

Third, although we assumed that recurrent interactions were fixed during our experiment, it is almost certain                
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that synaptic plasticity plays a key role as the network learns to incorporate context-dependent inputs  (Kleim et                 

al. 1998; Pascual-Leone et al. 1995; Yang et al. 2014; Xu et al. 2009) . Finally, the persistent separation of                   

neural trajectories observed in DMFC allowed for a dynamical account which did not require invocation of                

“hidden” network states to explain timing behavior  (Buonomano & Merzenich 1995; Karmarkar & Buonomano              

2007; Murray & Escola 2017) or contextual control  (Stokes et al. 2013) . However, it is possible that factors not                   

measured by extracellular recording (e.g., short-term synaptic plasticity) contribute to both contextual control             

and timing behavior in RSG and similar tasks. These open questions aside, our results provide a novel way to                   

bridge   the   divide   between   neural   activity   and   behavior   by   using   the   language   of   dynamical   systems.  

29 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

https://paperpile.com/c/whpApy/RIUL+uF35+MMuD+Kkni
https://paperpile.com/c/whpApy/RIUL+uF35+MMuD+Kkni
https://paperpile.com/c/whpApy/qifX+RnV0+jo8A
https://paperpile.com/c/whpApy/qifX+RnV0+jo8A
https://paperpile.com/c/whpApy/BB0r
https://doi.org/10.1101/261214


 

References 

Acerbi,   L.,   Wolpert,   D.M.   &   Vijayakumar,   S.,   2012.   Internal   representations   of   temporal   statistics   and   feedback 
calibrate   motor-sensory   interval   timing.    PLoS   computational   biology ,   8(11),   p.e1002771. 

Afshar,   A.   et   al.,   2011.   Single-trial   neural   correlates   of   arm   movement   preparation.    Neuron ,   71(3),   pp.555–564. 

Akkal,   D.,   Dum,   R.P.   &   Strick,   P.L.,   2007.   Supplementary   motor   area   and   presupplementary   motor   area:   targets 
of   basal   ganglia   and   cerebellar   output.    The   Journal   of   neuroscience:   the   official   journal   of   the   Society   for 
Neuroscience ,   27(40),   pp.10659–10673. 

Bates,   J.F.   &   Goldman-Rakic,   P.S.,   1993.   Prefrontal   connections   of   medial   motor   areas   in   the   rhesus   monkey. 
The   Journal   of   comparative   neurology ,   336(2),   pp.211–228. 

Brass,   M.   &   von   Cramon,   D.Y.,   2002.   The   role   of   the   frontal   cortex   in   task   preparation.    Cerebral   cortex    ,   12(9), 
pp.908–914. 

Buonomano,   D.V.   &   Merzenich,   M.M.,   1995.   Temporal   information   transformed   into   a   spatial   code   by   a   neural 
network   with   realistic   properties.    Science ,   267(5200),   pp.1028–1030. 

Carnevale,   F.   et   al.,   2015.   Dynamic   Control   of   Response   Criterion   in   Premotor   Cortex   during   Perceptual 
Detection   under   Temporal   Uncertainty.    Neuron .   Available   at: 
http://dx.doi.org/10.1016/j.neuron.2015.04.014 . 

Chaisangmongkon,   W.   et   al.,   2017.   Computing   by   Robust   Transience:   How   the   Fronto-Parietal   Network 
Performs   Sequential,   Category-Based   Decisions.    Neuron ,   93(6),   pp.1504–1517.e4. 

Churchland,   M.M.   et   al.,   2010.   Cortical   preparatory   activity:   representation   of   movement   or   first   cog   in   a 
dynamical   machine?    Neuron ,   68(3),   pp.387–400. 

Churchland,   M.M.   et   al.,   2012.   Neural   population   dynamics   during   reaching.    Nature ,   487(7405),   pp.51–56. 

Churchland,   M.M.,   Afshar,   A.   &   Shenoy,   K.V.,   2006.   A   central   source   of   movement   variability.    Neuron ,   52(6), 
pp.1085–1096. 

Coull,   J.T.   et   al.,   2004.   Functional   anatomy   of   the   attentional   modulation   of   time   estimation.    Science , 
303(5663),   pp.1506–1508. 

Cui,   X.   et   al.,   2009.   Ready...go:   Amplitude   of   the   FMRI   signal   encodes   expectation   of   cue   arrival   time.    PLoS 
biology ,   7(8),   p.e1000167. 

Fetz,   E.E.,   1992.   Are   movement   parameters   recognizably   coded   in   the   activity   of   single   neurons?    The 
Behavioral   and   brain   sciences .   Available   at:    http://journals.cambridge.org/abstract_S0140525X00072599 . 

Garcia,   C.,   2012.   A   simple   procedure   for   the   comparison   of   covariance   matrices.    BMC   evolutionary   biology ,   12, 
p.222. 

Guo,   Z.V.   et   al.,   2017.   Maintenance   of   persistent   activity   in   a   frontal   thalamocortical   loop.    Nature ,   545(7653), 
pp.181–186. 

Halsband,   U.   et   al.,   1993.   The   role   of   premotor   cortex   and   the   supplementary   motor   area   in   the   temporal 
control   of   movement   in   man.    Brain:   a   journal   of   neurology ,   116   (   Pt   1),   pp.243–266. 

Hanes,   D.P.   &   Schall,   J.D.,   1996.   Neural   control   of   voluntary   movement   initiation.    Science ,   274(5286), 

30 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

http://paperpile.com/b/whpApy/7DGE
http://paperpile.com/b/whpApy/7DGE
http://paperpile.com/b/whpApy/7DGE
http://paperpile.com/b/whpApy/7DGE
http://paperpile.com/b/whpApy/OCqd
http://paperpile.com/b/whpApy/OCqd
http://paperpile.com/b/whpApy/OCqd
http://paperpile.com/b/whpApy/cgNV
http://paperpile.com/b/whpApy/cgNV
http://paperpile.com/b/whpApy/cgNV
http://paperpile.com/b/whpApy/cgNV
http://paperpile.com/b/whpApy/cgNV
http://paperpile.com/b/whpApy/L5Yk
http://paperpile.com/b/whpApy/L5Yk
http://paperpile.com/b/whpApy/L5Yk
http://paperpile.com/b/whpApy/RGQL
http://paperpile.com/b/whpApy/RGQL
http://paperpile.com/b/whpApy/RGQL
http://paperpile.com/b/whpApy/RGQL
http://paperpile.com/b/whpApy/qifX
http://paperpile.com/b/whpApy/qifX
http://paperpile.com/b/whpApy/qifX
http://paperpile.com/b/whpApy/qifX
http://paperpile.com/b/whpApy/in5K
http://paperpile.com/b/whpApy/in5K
http://paperpile.com/b/whpApy/in5K
http://paperpile.com/b/whpApy/in5K
http://dx.doi.org/10.1016/j.neuron.2015.04.014
http://paperpile.com/b/whpApy/in5K
http://paperpile.com/b/whpApy/a3nH
http://paperpile.com/b/whpApy/a3nH
http://paperpile.com/b/whpApy/a3nH
http://paperpile.com/b/whpApy/a3nH
http://paperpile.com/b/whpApy/FQBU
http://paperpile.com/b/whpApy/FQBU
http://paperpile.com/b/whpApy/FQBU
http://paperpile.com/b/whpApy/FQBU
http://paperpile.com/b/whpApy/U5dx
http://paperpile.com/b/whpApy/U5dx
http://paperpile.com/b/whpApy/U5dx
http://paperpile.com/b/whpApy/DXqW
http://paperpile.com/b/whpApy/DXqW
http://paperpile.com/b/whpApy/DXqW
http://paperpile.com/b/whpApy/DXqW
http://paperpile.com/b/whpApy/2LDz
http://paperpile.com/b/whpApy/2LDz
http://paperpile.com/b/whpApy/2LDz
http://paperpile.com/b/whpApy/2LDz
http://paperpile.com/b/whpApy/ZcZq
http://paperpile.com/b/whpApy/ZcZq
http://paperpile.com/b/whpApy/ZcZq
http://paperpile.com/b/whpApy/ZcZq
http://paperpile.com/b/whpApy/BBP3
http://paperpile.com/b/whpApy/BBP3
http://paperpile.com/b/whpApy/BBP3
http://paperpile.com/b/whpApy/BBP3
http://journals.cambridge.org/abstract_S0140525X00072599
http://paperpile.com/b/whpApy/BBP3
http://paperpile.com/b/whpApy/G88v
http://paperpile.com/b/whpApy/G88v
http://paperpile.com/b/whpApy/G88v
http://paperpile.com/b/whpApy/G88v
http://paperpile.com/b/whpApy/O0ZZ
http://paperpile.com/b/whpApy/O0ZZ
http://paperpile.com/b/whpApy/O0ZZ
http://paperpile.com/b/whpApy/O0ZZ
http://paperpile.com/b/whpApy/LFSh
http://paperpile.com/b/whpApy/LFSh
http://paperpile.com/b/whpApy/LFSh
http://paperpile.com/b/whpApy/LFSh
http://paperpile.com/b/whpApy/sqM2
http://paperpile.com/b/whpApy/sqM2
http://paperpile.com/b/whpApy/sqM2
https://doi.org/10.1101/261214


 

pp.427–430. 

Harris,   K.D.   &   Thiele,   A.,   2011.   Cortical   state   and   attention.    Nature   reviews.   Neuroscience ,   12(9),   pp.509–523. 

Hennequin,   G.,   Vogels,   T.P.   &   Gerstner,   W.,   2014.   Optimal   Control   of   Transient   Dynamics   in   Balanced 
Networks   Supports   Generation   of   Complex   Movements.    Neuron ,   82(6),   pp.1394–1406. 

Isoda,   M.   &   Hikosaka,   O.,   2007.   Switching   from   automatic   to   controlled   action   by   monkey   medial   frontal   cortex. 
Nature   neuroscience ,   10(2),   pp.240–248. 

Isoda,   M.   &   Tanji,   J.,   2003.   Contrasting   neuronal   activity   in   the   supplementary   and   frontal   eye   fields   during 
temporal   organization   of   multiple   saccades.    Journal   of   neurophysiology ,   90(5),   pp.3054–3065. 

Jazayeri,   M.   &   Shadlen,   M.N.,   2015.   A   Neural   Mechanism   for   Sensing   and   Reproducing   a   Time   Interval. 
Current   biology:   CB .   Available   at:    http://dx.doi.org/10.1016/j.cub.2015.08.038 . 

Jazayeri,   M.   &   Shadlen,   M.N.,   2010.   Temporal   context   calibrates   interval   timing.    Nature   neuroscience ,   13(8), 
pp.1020–1026. 

Karmarkar,   U.R.   &   Buonomano,   D.V.,   2007.   Timing   in   the   absence   of   clocks:   encoding   time   in   neural   network 
states.    Neuron ,   53(3),   pp.427–438. 

Kim,   J.   et   al.,   2009.   Inactivation   of   medial   prefrontal   cortex   impairs   time   interval   discrimination   in   rats.    Frontiers 
in   behavioral   neuroscience ,   3,   p.38. 

Kim,   J.   et   al.,   2013.   Neural   correlates   of   interval   timing   in   rodent   prefrontal   cortex.    The   Journal   of   neuroscience: 
the   official   journal   of   the   Society   for   Neuroscience ,   33(34),   pp.13834–13847. 

Kleim,   J.A.,   Barbay,   S.   &   Nudo,   R.J.,   1998.   Functional   reorganization   of   the   rat   motor   cortex   following   motor 
skill   learning.    Journal   of   neurophysiology ,   80(6),   pp.3321–3325. 

Kobak,   D.   et   al.,   2016.   Demixed   principal   component   analysis   of   neural   population   data.    eLife ,   5.   Available   at: 
http://dx.doi.org/10.7554/eLife.10989 . 

Kunimatsu,   J.   &   Tanaka,   M.,   2012.   Alteration   of   the   timing   of   self-initiated   but   not   reactive   saccades   by 
electrical   stimulation   in   the   supplementary   eye   field.    The   European   journal   of   neuroscience ,   36(9), 
pp.3258–3268. 

Kurata,   K.   &   Wise,   S.P.,   1988.   Premotor   and   supplementary   motor   cortex   in   rhesus   monkeys:   neuronal   activity 
during   externally-   and   internally-instructed   motor   tasks.    Experimental   brain   research.   Experimentelle 
Hirnforschung.   Experimentation   cerebrale ,   72(2),   pp.237–248. 

Lu,   M.T.,   Preston,   J.B.   &   Strick,   P.L.,   1994.   Interconnections   between   the   prefrontal   cortex   and   the   premotor 
areas   in   the   frontal   lobe.    The   Journal   of   comparative   neurology ,   341(3),   pp.375–392. 

Macar,   F.,   Coull,   J.   &   Vidal,   F.,   2006.   The   supplementary   motor   area   in   motor   and   perceptual   time   processing: 
fMRI   studies.    Cognitive   processing ,   7(2),   pp.89–94. 

Machens,   C.K.,   Romo,   R.   &   Brody,   C.D.,   2010.   Functional,   But   Not   Anatomical,   Separation   of   “What”   and 
“When”   in   Prefrontal   Cortex.    The   Journal   of   neuroscience:   the   official   journal   of   the   Society   for 
Neuroscience ,   30(1),   pp.350–360. 

Maimon,   G.   &   Assad,   J.A.,   2006.   A   cognitive   signal   for   the   proactive   timing   of   action   in   macaque   LIP.    Nature 
neuroscience ,   9(7),   pp.948–955. 

Mante,   V.   et   al.,   2013.   Context-dependent   computation   by   recurrent   dynamics   in   prefrontal   cortex.    Nature , 

31 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

http://paperpile.com/b/whpApy/sqM2
http://paperpile.com/b/whpApy/xhlX
http://paperpile.com/b/whpApy/xhlX
http://paperpile.com/b/whpApy/xhlX
http://paperpile.com/b/whpApy/lb8Z
http://paperpile.com/b/whpApy/lb8Z
http://paperpile.com/b/whpApy/lb8Z
http://paperpile.com/b/whpApy/lb8Z
http://paperpile.com/b/whpApy/D1xs
http://paperpile.com/b/whpApy/D1xs
http://paperpile.com/b/whpApy/D1xs
http://paperpile.com/b/whpApy/ASgP
http://paperpile.com/b/whpApy/ASgP
http://paperpile.com/b/whpApy/ASgP
http://paperpile.com/b/whpApy/ASgP
http://paperpile.com/b/whpApy/DoD6
http://paperpile.com/b/whpApy/DoD6
http://paperpile.com/b/whpApy/DoD6
http://dx.doi.org/10.1016/j.cub.2015.08.038
http://paperpile.com/b/whpApy/DoD6
http://paperpile.com/b/whpApy/Bmhc
http://paperpile.com/b/whpApy/Bmhc
http://paperpile.com/b/whpApy/Bmhc
http://paperpile.com/b/whpApy/Bmhc
http://paperpile.com/b/whpApy/RnV0
http://paperpile.com/b/whpApy/RnV0
http://paperpile.com/b/whpApy/RnV0
http://paperpile.com/b/whpApy/RnV0
http://paperpile.com/b/whpApy/RPyd
http://paperpile.com/b/whpApy/RPyd
http://paperpile.com/b/whpApy/RPyd
http://paperpile.com/b/whpApy/RPyd
http://paperpile.com/b/whpApy/TrOW
http://paperpile.com/b/whpApy/TrOW
http://paperpile.com/b/whpApy/TrOW
http://paperpile.com/b/whpApy/TrOW
http://paperpile.com/b/whpApy/RIUL
http://paperpile.com/b/whpApy/RIUL
http://paperpile.com/b/whpApy/RIUL
http://paperpile.com/b/whpApy/RIUL
http://paperpile.com/b/whpApy/takt
http://paperpile.com/b/whpApy/takt
http://paperpile.com/b/whpApy/takt
http://dx.doi.org/10.7554/eLife.10989
http://paperpile.com/b/whpApy/takt
http://paperpile.com/b/whpApy/Eckv
http://paperpile.com/b/whpApy/Eckv
http://paperpile.com/b/whpApy/Eckv
http://paperpile.com/b/whpApy/Eckv
http://paperpile.com/b/whpApy/Eckv
http://paperpile.com/b/whpApy/7GXb
http://paperpile.com/b/whpApy/7GXb
http://paperpile.com/b/whpApy/7GXb
http://paperpile.com/b/whpApy/7GXb
http://paperpile.com/b/whpApy/7GXb
http://paperpile.com/b/whpApy/XRNY
http://paperpile.com/b/whpApy/XRNY
http://paperpile.com/b/whpApy/XRNY
http://paperpile.com/b/whpApy/XRNY
http://paperpile.com/b/whpApy/yssj
http://paperpile.com/b/whpApy/yssj
http://paperpile.com/b/whpApy/yssj
http://paperpile.com/b/whpApy/yssj
http://paperpile.com/b/whpApy/ZGHl
http://paperpile.com/b/whpApy/ZGHl
http://paperpile.com/b/whpApy/ZGHl
http://paperpile.com/b/whpApy/ZGHl
http://paperpile.com/b/whpApy/ZGHl
http://paperpile.com/b/whpApy/A2uI
http://paperpile.com/b/whpApy/A2uI
http://paperpile.com/b/whpApy/A2uI
http://paperpile.com/b/whpApy/A2uI
http://paperpile.com/b/whpApy/fI2C
http://paperpile.com/b/whpApy/fI2C
http://paperpile.com/b/whpApy/fI2C
https://doi.org/10.1101/261214


 

503(7474),   pp.78–84. 

Matell,   M.S.,   Meck,   W.H.   &   Nicolelis,   M.A.L.,   2003.   Interval   timing   and   the   encoding   of   signal   duration   by 
ensembles   of   cortical   and   striatal   neurons.    Behavioral   neuroscience ,   117(4),   pp.760–773. 

Matsuzaka,   Y.   &   Tanji,   J.,   1996.   Changing   directions   of   forthcoming   arm   movements:   neuronal   activity   in   the 
presupplementary   and   supplementary   motor   area   of   monkey   cerebral   cortex.    Journal   of   neurophysiology , 
76(4),   pp.2327–2342. 

Meister,   M.L.R.,   Hennig,   J.A.   &   Huk,   A.C.,   2013.   Signal   multiplexing   and   single-neuron   computations   in   lateral 
intraparietal   area   during   decision-making.    The   Journal   of   neuroscience:   the   official   journal   of   the   Society 
for   Neuroscience ,   33(6),   pp.2254–2267. 

Merchant,   H.   et   al.,   2013.   Interval   Tuning   in   the   Primate   Medial   Premotor   Cortex   as   a   General   Timing 
Mechanism.    Journal   of   Neuroscience ,   33(21),   pp.9082–9096. 

Merchant,   H.   et   al.,   2011.   Measuring   time   with   different   neural   chronometers   during   a 
synchronization-continuation   task.    Proceedings   of   the   National   Academy   of   Sciences   of   the   United   States 
of   America ,   108(49),   pp.19784–19789. 

Michaels,   J.A.   et   al.,   2015.   Predicting   Reaction   Time   from   the   Neural   State   Space   of   the   Premotor   and   Parietal 
Grasping   Network.    The   Journal   of   neuroscience:   the   official   journal   of   the   Society   for   Neuroscience , 
35(32),   pp.11415–11432. 

Michaels,   J.A.,   Dann,   B.   &   Scherberger,   H.,   2016.   Neural   Population   Dynamics   during   Reaching   Are   Better 
Explained   by   a   Dynamical   System   than   Representational   Tuning.    PLoS   computational   biology ,   12(11), 
p.e1005175. 

Miller,   E.K.   &   Cohen,   J.D.,   2001.   An   integrative   theory   of   prefrontal   cortex   function.    Annual   review   of 
neuroscience ,   24,   pp.167–202. 

Mita,   A.   et   al.,   2009.   Interval   time   coding   by   neurons   in   the   presupplementary   and   supplementary   motor   areas. 
Nature   neuroscience ,   12(4),   pp.502–507. 

Miyazaki,   M.,   Nozaki,   D.   &   Nakajima,   Y.,   2005.   Testing   Bayesian   models   of   human   coincidence   timing.    Journal 
of   neurophysiology ,   94(1),   pp.395–399. 

Murakami,   M.   et   al.,   2014.   Neural   antecedents   of   self-initiated   actions   in   secondary   motor   cortex.    Nature 
neuroscience ,   17(11),   pp.1574–1582. 

Murray,   J.M.   &   Escola,   G.S.,   2017.   Learning   multiple   variable-speed   sequences   in   striatum   via   cortical   tutoring. 
eLife ,   6.   Available   at:    http://dx.doi.org/10.7554/eLife.26084 . 

Nadim,   F.   &   Bucher,   D.,   2014.   Neuromodulation   of   neurons   and   synapses.    Current   opinion   in   neurobiology ,   29, 
pp.48–56. 

Ohmae,   S.   et   al.,   2008.   Neuronal   activity   related   to   anticipated   and   elapsed   time   in   macaque   supplementary 
eye   field.    Experimental   brain   research.   Experimentelle   Hirnforschung.   Experimentation   cerebrale ,   184(4), 
pp.593–598. 

Okano,   K.   &   Tanji,   J.,   1987.   Neuronal   activities   in   the   primate   motor   fields   of   the   agranular   frontal   cortex 
preceding   visually   triggered   and   self-paced   movement.    Experimental   brain   research.   Experimentelle 
Hirnforschung.   Experimentation   cerebrale ,   66(1),   pp.155–166. 

Pachitariu,   M.   et   al.,   2016.   Kilosort:   realtime   spike-sorting   for   extracellular   electrophysiology   with   hundreds   of 
channels.    bioRxiv ,   p.061481.   Available   at:    http://www.biorxiv.org/content/early/2016/06/30/061481 

32 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

http://paperpile.com/b/whpApy/fI2C
http://paperpile.com/b/whpApy/WMuC
http://paperpile.com/b/whpApy/WMuC
http://paperpile.com/b/whpApy/WMuC
http://paperpile.com/b/whpApy/WMuC
http://paperpile.com/b/whpApy/DsQR
http://paperpile.com/b/whpApy/DsQR
http://paperpile.com/b/whpApy/DsQR
http://paperpile.com/b/whpApy/DsQR
http://paperpile.com/b/whpApy/DsQR
http://paperpile.com/b/whpApy/3mi5
http://paperpile.com/b/whpApy/3mi5
http://paperpile.com/b/whpApy/3mi5
http://paperpile.com/b/whpApy/3mi5
http://paperpile.com/b/whpApy/3mi5
http://paperpile.com/b/whpApy/z1G0
http://paperpile.com/b/whpApy/z1G0
http://paperpile.com/b/whpApy/z1G0
http://paperpile.com/b/whpApy/z1G0
http://paperpile.com/b/whpApy/CfJC
http://paperpile.com/b/whpApy/CfJC
http://paperpile.com/b/whpApy/CfJC
http://paperpile.com/b/whpApy/CfJC
http://paperpile.com/b/whpApy/CfJC
http://paperpile.com/b/whpApy/UC9h
http://paperpile.com/b/whpApy/UC9h
http://paperpile.com/b/whpApy/UC9h
http://paperpile.com/b/whpApy/UC9h
http://paperpile.com/b/whpApy/UC9h
http://paperpile.com/b/whpApy/DaEe
http://paperpile.com/b/whpApy/DaEe
http://paperpile.com/b/whpApy/DaEe
http://paperpile.com/b/whpApy/DaEe
http://paperpile.com/b/whpApy/DaEe
http://paperpile.com/b/whpApy/awxL
http://paperpile.com/b/whpApy/awxL
http://paperpile.com/b/whpApy/awxL
http://paperpile.com/b/whpApy/awxL
http://paperpile.com/b/whpApy/DEkx
http://paperpile.com/b/whpApy/DEkx
http://paperpile.com/b/whpApy/DEkx
http://paperpile.com/b/whpApy/hCuX
http://paperpile.com/b/whpApy/hCuX
http://paperpile.com/b/whpApy/hCuX
http://paperpile.com/b/whpApy/hCuX
http://paperpile.com/b/whpApy/ejAK
http://paperpile.com/b/whpApy/ejAK
http://paperpile.com/b/whpApy/ejAK
http://paperpile.com/b/whpApy/ejAK
http://paperpile.com/b/whpApy/jo8A
http://paperpile.com/b/whpApy/jo8A
http://paperpile.com/b/whpApy/jo8A
http://dx.doi.org/10.7554/eLife.26084
http://paperpile.com/b/whpApy/jo8A
http://paperpile.com/b/whpApy/taxG
http://paperpile.com/b/whpApy/taxG
http://paperpile.com/b/whpApy/taxG
http://paperpile.com/b/whpApy/taxG
http://paperpile.com/b/whpApy/eskV
http://paperpile.com/b/whpApy/eskV
http://paperpile.com/b/whpApy/eskV
http://paperpile.com/b/whpApy/eskV
http://paperpile.com/b/whpApy/eskV
http://paperpile.com/b/whpApy/Zntj
http://paperpile.com/b/whpApy/Zntj
http://paperpile.com/b/whpApy/Zntj
http://paperpile.com/b/whpApy/Zntj
http://paperpile.com/b/whpApy/Zntj
http://paperpile.com/b/whpApy/mycD
http://paperpile.com/b/whpApy/mycD
http://paperpile.com/b/whpApy/mycD
http://paperpile.com/b/whpApy/mycD
http://www.biorxiv.org/content/early/2016/06/30/061481
http://paperpile.com/b/whpApy/mycD
https://doi.org/10.1101/261214


 

[Accessed   September   11,   2017]. 

Pascual-Leone,   A.   et   al.,   1995.   Modulation   of   muscle   responses   evoked   by   transcranial   magnetic   stimulation 
during   the   acquisition   of   new   fine   motor   skills.    Journal   of   neurophysiology ,   74(3),   pp.1037–1045. 

Pfeuty,   M.,   Ragot,   R.   &   Pouthas,   V.,   2005.   Relationship   between   CNV   and   timing   of   an   upcoming   event. 
Neuroscience   letters ,   382(1-2),   pp.106–111. 

Pruszynski,   J.A.   et   al.,   2011.   Primary   motor   cortex   underlies   multi-joint   integration   for   fast   feedback   control. 
Nature ,   478(7369),   pp.387–390. 

Rajan,   K.   &   Abbott,   L.F.,   2006.   Eigenvalue   spectra   of   random   matrices   for   neural   networks.    Physical   review 
letters ,   97(18),   p.188104. 

Rajan,   K.,   Harvey,   C.D.   &   Tank,   D.W.,   2016.   Recurrent   Network   Models   of   Sequence   Generation   and   Memory. 
Neuron ,   90(1),   pp.128–142. 

Rakitin,   B.C.   et   al.,   1998.   Scalar   expectancy   theory   and   peak-interval   timing   in   humans.    Journal   of 
experimental   psychology.   Animal   behavior   processes ,   24(1),   pp.15–33. 

Rao,   S.M.,   Mayer,   A.R.   &   Harrington,   D.L.,   2001.   The   evolution   of   brain   activation   during   temporal   processing. 
Nature   neuroscience ,   4(3),   pp.317–323. 

Ray,   S.   &   Heinen,   S.J.,   2015.   A   mechanism   for   decision   rule   discrimination   by   supplementary   eye   field 
neurons.    Experimental   brain   research.   Experimentelle   Hirnforschung.   Experimentation   cerebrale ,   233(2), 
pp.459–476. 

Remington,   E.   &   Jazayeri,   M.,   2017.   Late   Bayesian   inference   in   sensorimotor   behavior.    bioRxiv ,   p.130062. 
Available   at:    http://biorxiv.org/content/early/2017/04/24/130062    [Accessed   April   24,   2017]. 

Rigotti,   M.   et   al.,   2010.   Internal   representation   of   task   rules   by   recurrent   dynamics:   the   importance   of   the 
diversity   of   neural   responses.    Frontiers   in   computational   neuroscience ,   4,   p.24. 

Roitman,   J.D.   &   Shadlen,   M.N.,   2002.   Response   of   neurons   in   the   lateral   intraparietal   area   during   a   combined 
visual   discrimination   reaction   time   task.    The   Journal   of   neuroscience:   the   official   journal   of   the   Society   for 
Neuroscience ,   22(21),   pp.9475–9489. 

Romo,   R.   &   Schultz,   W.,   1987.   Neuronal   activity   preceding   self-initiated   or   externally   timed   arm   movements   in 
area   6   of   monkey   cortex.    Experimental   brain   research.   Experimentelle   Hirnforschung.   Experimentation 
cerebrale ,   67(3),   pp.656–662. 

Romo,   R.   &   Schultz,   W.,   1992.   Role   of   primate   basal   ganglia   and   frontal   cortex   in   the   internal   generation   of 
movements.   III.   Neuronal   activity   in   the   supplementary   motor   area.    Experimental   brain   research. 
Experimentelle   Hirnforschung.   Experimentation   cerebrale ,   91(3),   pp.396–407. 

Rossant,   C.   et   al.,   2016.   Spike   sorting   for   large,   dense   electrode   arrays.    Nature   neuroscience ,   19(4), 
pp.634–641. 

Sabes,   P.N.,   2000.   The   planning   and   control   of   reaching   movements.    Current   opinion   in   neurobiology ,   10(6), 
pp.740–746. 

Schmitt,   L.I.   et   al.,   2017.   Thalamic   amplification   of   cortical   connectivity   sustains   attentional   control.    Nature , 
545(7653),   pp.219–223. 

Scott,   S.H.,   2004.   Optimal   feedback   control   and   the   neural   basis   of   volitional   motor   control.    Nature   reviews. 
Neuroscience ,   5(7),   pp.532–546. 

33 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

http://paperpile.com/b/whpApy/mycD
http://paperpile.com/b/whpApy/uF35
http://paperpile.com/b/whpApy/uF35
http://paperpile.com/b/whpApy/uF35
http://paperpile.com/b/whpApy/uF35
http://paperpile.com/b/whpApy/638j
http://paperpile.com/b/whpApy/638j
http://paperpile.com/b/whpApy/638j
http://paperpile.com/b/whpApy/W9b3
http://paperpile.com/b/whpApy/W9b3
http://paperpile.com/b/whpApy/W9b3
http://paperpile.com/b/whpApy/6KS3
http://paperpile.com/b/whpApy/6KS3
http://paperpile.com/b/whpApy/6KS3
http://paperpile.com/b/whpApy/6KS3
http://paperpile.com/b/whpApy/0RIr
http://paperpile.com/b/whpApy/0RIr
http://paperpile.com/b/whpApy/0RIr
http://paperpile.com/b/whpApy/Q24H
http://paperpile.com/b/whpApy/Q24H
http://paperpile.com/b/whpApy/Q24H
http://paperpile.com/b/whpApy/Q24H
http://paperpile.com/b/whpApy/rbKZ
http://paperpile.com/b/whpApy/rbKZ
http://paperpile.com/b/whpApy/rbKZ
http://paperpile.com/b/whpApy/U3ge
http://paperpile.com/b/whpApy/U3ge
http://paperpile.com/b/whpApy/U3ge
http://paperpile.com/b/whpApy/U3ge
http://paperpile.com/b/whpApy/U3ge
http://paperpile.com/b/whpApy/J2n2
http://paperpile.com/b/whpApy/J2n2
http://paperpile.com/b/whpApy/J2n2
http://paperpile.com/b/whpApy/J2n2
http://biorxiv.org/content/early/2017/04/24/130062
http://paperpile.com/b/whpApy/J2n2
http://paperpile.com/b/whpApy/3meB
http://paperpile.com/b/whpApy/3meB
http://paperpile.com/b/whpApy/3meB
http://paperpile.com/b/whpApy/3meB
http://paperpile.com/b/whpApy/pD1M
http://paperpile.com/b/whpApy/pD1M
http://paperpile.com/b/whpApy/pD1M
http://paperpile.com/b/whpApy/pD1M
http://paperpile.com/b/whpApy/pD1M
http://paperpile.com/b/whpApy/CeH7
http://paperpile.com/b/whpApy/CeH7
http://paperpile.com/b/whpApy/CeH7
http://paperpile.com/b/whpApy/CeH7
http://paperpile.com/b/whpApy/CeH7
http://paperpile.com/b/whpApy/Cfd1
http://paperpile.com/b/whpApy/Cfd1
http://paperpile.com/b/whpApy/Cfd1
http://paperpile.com/b/whpApy/Cfd1
http://paperpile.com/b/whpApy/Cfd1
http://paperpile.com/b/whpApy/YCw3
http://paperpile.com/b/whpApy/YCw3
http://paperpile.com/b/whpApy/YCw3
http://paperpile.com/b/whpApy/YCw3
http://paperpile.com/b/whpApy/vsj4
http://paperpile.com/b/whpApy/vsj4
http://paperpile.com/b/whpApy/vsj4
http://paperpile.com/b/whpApy/vsj4
http://paperpile.com/b/whpApy/m3w7
http://paperpile.com/b/whpApy/m3w7
http://paperpile.com/b/whpApy/m3w7
http://paperpile.com/b/whpApy/m3w7
http://paperpile.com/b/whpApy/9kzc
http://paperpile.com/b/whpApy/9kzc
http://paperpile.com/b/whpApy/9kzc
http://paperpile.com/b/whpApy/9kzc
https://doi.org/10.1101/261214


 

Seely,   J.S.   et   al.,   2016.   Tensor   Analysis   Reveals   Distinct   Population   Structure   that   Parallels   the   Different 
Computational   Roles   of   Areas   M1   and   V1.    PLoS   computational   biology ,   12(11),   p.e1005164. 

Shenoy,   K.V.,   Sahani,   M.   &   Churchland,   M.M.,   2013.   Cortical   control   of   arm   movements:   a   dynamical   systems 
perspective.    Annual   review   of   neuroscience ,   36,   pp.337–359. 

Shima,   K.   et   al.,   1996.   Role   for   cells   in   the   presupplementary   motor   area   in   updating   motor   plans.    Proceedings 
of   the   National   Academy   of   Sciences   of   the   United   States   of   America ,   93(16),   pp.8694–8698. 

Smith,   N.J.   et   al.,   2010.   Reversible   Inactivation   of   Rat   Premotor   Cortex   Impairs   Temporal   Preparation,   but   not 
Inhibitory   Control,   During   Simple   Reaction-Time   Performance.    Frontiers   in   integrative   neuroscience ,   4, 
p.124. 

Song,   H.F.,   Yang,   G.R.   &   Wang,   X.-J.,   2016.   Training   Excitatory-Inhibitory   Recurrent   Neural   Networks   for 
Cognitive   Tasks:   A   Simple   and   Flexible   Framework.    PLoS   computational   biology ,   12(2),   p.e1004792. 

Stokes,   M.G.   et   al.,   2013.   Dynamic   coding   for   cognitive   control   in   prefrontal   cortex.    Neuron ,   78(2),   pp.364–375. 

Sussillo,   D.   et   al.,   2015.   A   neural   network   that   finds   a   naturalistic   solution   for   the   production   of   muscle   activity. 
Nature   neuroscience ,   18(7),   pp.1025–1033. 

Sussillo,   D.   et   al.,   2016.   LFADS   -   Latent   Factor   Analysis   via   Dynamical   Systems.    arXiv   [cs.LG] .   Available   at: 
http://arxiv.org/abs/1608.06315 . 

Tanaka,   M.,   2005.   Involvement   of   the   central   thalamus   in   the   control   of   smooth   pursuit   eye   movements.    The 
Journal   of   neuroscience:   the   official   journal   of   the   Society   for   Neuroscience ,   25(25),   pp.5866–5876. 

Thura,   D.   &   Cisek,   P.,   2014.   Deliberation   and   commitment   in   the   premotor   and   primary   motor   cortex   during 
dynamic   decision   making.    Neuron ,   81(6),   pp.1401–1416. 

Todorov,   E.   &   Jordan,   M.I.,   2002.   Optimal   feedback   control   as   a   theory   of   motor   coordination.    Nature 
neuroscience ,   5(11),   pp.1226–1235. 

Wallis,   J.D.,   Anderson,   K.C.   &   Miller,   E.K.,   2001.   Single   neurons   in   prefrontal   cortex   encode   abstract   rules. 
Nature ,   411(6840),   pp.953–956. 

Wang,   J.   et   al.,   2017.   Flexible   timing   by   temporal   scaling   of   cortical   responses.    Nature   neuroscience .   Available 
at:    http://dx.doi.org/10.1038/s41593-017-0028-6 . 

Wang,   Y.   et   al.,   2005.   Prefrontal   cortical   cells   projecting   to   the   supplementary   eye   field   and   presupplementary 
motor   area   in   the   monkey.    Neuroscience   research ,   53(1),   pp.1–7. 

Werbos,   P.J.,   1990.   Backpropagation   through   time:   what   it   does   and   how   to   do   it.    Proceedings   of   the   IEEE , 
78(10),   pp.1550–1560. 

Wolpert,   D.M.   &   Kawato,   M.,   1998.   Multiple   paired   forward   and   inverse   models   for   motor   control.    Neural 
networks:   the   official   journal   of   the   International   Neural   Network   Society ,   11(7-8),   pp.1317–1329. 

Xu,   M.   et   al.,   2014.   Representation   of   interval   timing   by   temporally   scalable   firing   patterns   in   rat   prefrontal 
cortex.    Proceedings   of   the   National   Academy   of   Sciences   of   the   United   States   of   America ,   111(1), 
pp.480–485. 

Xu,   T.   et   al.,   2009.   Rapid   formation   and   selective   stabilization   of   synapses   for   enduring   motor   memories. 
Nature ,   462(7275),   pp.915–919. 

Yang,   G.   et   al.,   2014.   Sleep   promotes   branch-specific   formation   of   dendritic   spines   after   learning.    Science , 

34 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

http://paperpile.com/b/whpApy/yaCp
http://paperpile.com/b/whpApy/yaCp
http://paperpile.com/b/whpApy/yaCp
http://paperpile.com/b/whpApy/yaCp
http://paperpile.com/b/whpApy/jECQ
http://paperpile.com/b/whpApy/jECQ
http://paperpile.com/b/whpApy/jECQ
http://paperpile.com/b/whpApy/jECQ
http://paperpile.com/b/whpApy/26bF
http://paperpile.com/b/whpApy/26bF
http://paperpile.com/b/whpApy/26bF
http://paperpile.com/b/whpApy/26bF
http://paperpile.com/b/whpApy/MEvz
http://paperpile.com/b/whpApy/MEvz
http://paperpile.com/b/whpApy/MEvz
http://paperpile.com/b/whpApy/MEvz
http://paperpile.com/b/whpApy/MEvz
http://paperpile.com/b/whpApy/QjyD
http://paperpile.com/b/whpApy/QjyD
http://paperpile.com/b/whpApy/QjyD
http://paperpile.com/b/whpApy/QjyD
http://paperpile.com/b/whpApy/BB0r
http://paperpile.com/b/whpApy/BB0r
http://paperpile.com/b/whpApy/BB0r
http://paperpile.com/b/whpApy/EPAj
http://paperpile.com/b/whpApy/EPAj
http://paperpile.com/b/whpApy/EPAj
http://paperpile.com/b/whpApy/WPji
http://paperpile.com/b/whpApy/WPji
http://paperpile.com/b/whpApy/WPji
http://arxiv.org/abs/1608.06315
http://paperpile.com/b/whpApy/WPji
http://paperpile.com/b/whpApy/ybxS
http://paperpile.com/b/whpApy/ybxS
http://paperpile.com/b/whpApy/ybxS
http://paperpile.com/b/whpApy/ybxS
http://paperpile.com/b/whpApy/UL95
http://paperpile.com/b/whpApy/UL95
http://paperpile.com/b/whpApy/UL95
http://paperpile.com/b/whpApy/UL95
http://paperpile.com/b/whpApy/y6iR
http://paperpile.com/b/whpApy/y6iR
http://paperpile.com/b/whpApy/y6iR
http://paperpile.com/b/whpApy/y6iR
http://paperpile.com/b/whpApy/js8f
http://paperpile.com/b/whpApy/js8f
http://paperpile.com/b/whpApy/js8f
http://paperpile.com/b/whpApy/83C7
http://paperpile.com/b/whpApy/83C7
http://paperpile.com/b/whpApy/83C7
http://paperpile.com/b/whpApy/83C7
http://dx.doi.org/10.1038/s41593-017-0028-6
http://paperpile.com/b/whpApy/83C7
http://paperpile.com/b/whpApy/m8vW
http://paperpile.com/b/whpApy/m8vW
http://paperpile.com/b/whpApy/m8vW
http://paperpile.com/b/whpApy/m8vW
http://paperpile.com/b/whpApy/JZT1
http://paperpile.com/b/whpApy/JZT1
http://paperpile.com/b/whpApy/JZT1
http://paperpile.com/b/whpApy/JZT1
http://paperpile.com/b/whpApy/1RwF
http://paperpile.com/b/whpApy/1RwF
http://paperpile.com/b/whpApy/1RwF
http://paperpile.com/b/whpApy/1RwF
http://paperpile.com/b/whpApy/4Ktx
http://paperpile.com/b/whpApy/4Ktx
http://paperpile.com/b/whpApy/4Ktx
http://paperpile.com/b/whpApy/4Ktx
http://paperpile.com/b/whpApy/4Ktx
http://paperpile.com/b/whpApy/Kkni
http://paperpile.com/b/whpApy/Kkni
http://paperpile.com/b/whpApy/Kkni
http://paperpile.com/b/whpApy/MMuD
http://paperpile.com/b/whpApy/MMuD
http://paperpile.com/b/whpApy/MMuD
https://doi.org/10.1101/261214


 

344(6188),   pp.1173–1178. 

Yang,   S.-N.   &   Heinen,   S.,   2014.   Contrasting   the   roles   of   the   supplementary   and   frontal   eye   fields   in   ocular 
decision   making.    Journal   of   neurophysiology ,   111(12),   pp.2644–2655. 

  

35 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

http://paperpile.com/b/whpApy/MMuD
http://paperpile.com/b/whpApy/8Tr3
http://paperpile.com/b/whpApy/8Tr3
http://paperpile.com/b/whpApy/8Tr3
http://paperpile.com/b/whpApy/8Tr3
https://doi.org/10.1101/261214


 

Methods 

All experimental procedures conformed to the guidelines of the National Institutes of Health and were approved                

by the Committee of Animal Care at the Massachusetts Institute of Technology. Two monkeys ( Macaca               

mulatta ), one female (C) and one male (J), were trained to perform the Ready, Set, Go (RSG) behavioral task.                   

Monkeys were seated comfortably in a dark and quiet room. Stimuli and behavioral contingencies were               

controlled using MWorks ( https://mworks.github.io/ ) on a 2012 Mac Pro computer. Visual stimuli were             

presented on a frontoparallel 23-inch Acer H236HL monitor at a resolution of 1920x1080 at a refresh rate of 60                   

Hz, and auditory stimuli were played from the computer’s internal speaker. Eye positions were tracked with an                 

infrared   camera   (Eyelink   1000;   SR   Research   Ltd,   Ontario,   Canada)   and   sampled   at   1   kHz.  

RSG   Task 

Task contingencies. Monkeys had to measure a sample interval,  t s , and subsequently produce a target interval                

t t whose relationship  to  t s was specified by a context-dependent gain parameter (  ) which was               

set to either 1 (g=1 context) or 1.5 (g=1.5 context). On each trial,  t s was drawn from a discrete uniform prior                     

distribution (7 values, minimum = 500 ms, maximum = 1000 ms), and  gain ( g ) was switched across blocks of                   

trials   (101   +/-   49   trials   (mean   +/-   std)).  

 

Trial structure. Each trial began with the presentation of a central fixation point (FP, circular, 0.5 deg diameter),                  

a secondary context cue (CC, square, 0.5 deg width, 3-5 deg below FP), an open circle centered at FP (OC,                    

radius 8-10 deg, line width 0.05 deg, gray) and three rectangular stimuli (2.0x0.5 deg, gray) placed 90 deg                  

apart over the perimeter of OC with their long side oriented radially. FP was red for the g=1 context and purple                     

for the g=1.5 context. CC was placed directly below FP in the g=1 context, and was shifted 0.5 deg rightward in                     

the g=1.5 context. Two of the rectangular stimuli were presented only briefly and served as placeholders for the                  

subsequent ‘Ready’ and ‘Set’ flashes. The third rectangle served as the saccadic target (‘Go’), which together                

with FP, CC, and OC remained visible throughout the trial. Ready was always positioned to the right or left of                    

FP (3 o’clock or 9 o’clock position). Set was positioned 90 deg clockwise with respect to Ready and the                   

saccadic   target   was   placed   opposite   to   Ready   ( Figure   1A ). 
 

Monkeys had to maintain their gaze within an electronic window around FP (2.5 and 5.5 deg window for C and                    

J, respectively) or the trial was aborted. After a random delay (uniform hazard), first the Ready and then the                   

Set cues were flashed (83 ms, white). The two flashes were accompanied by a short auditory cue (the “pop”                   

system sound), and were separated by  t s . The produced interval  t p was defined as the interval between the                  

onset of the Set cue and the time the eye position entered a 5-deg electronic window around the saccadic                   

target. Following saccade, the response was deemed a “hit” if the error was smaller than a                 
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t t - dependent threshold where was between 0.2 and 0.25, and was 25 ms. The exact                 

choice of these parameters were not critical for performing the task or for the observed behavior; instead, they                  

were chosen to maintain the animals motivated and willing to work for more trials per session. On hit trials, the                    

target, animals received juice reward and FP turned green. The reward amount, as a fraction of maximum                 

possible reward, decreased with increasing error according to  , with a minimum            

fraction 0.1 ( Figure 1B ). Trials in which  t p was more than 3.5 times the median absolute deviation (MAD) away                   

from   the   mean   were   considered   outliers   and   were   excluded   from   further   analyses. 

 

As an initial analysis of whether monkeys learned the RSG task across gains, we fit linear regression models to                   

the   behavior   separately   for   each   gain: 

 

(1)    

 

To quantify the difference in slopes between the two contexts. We also fit models with an interaction term                  

across   both   contexts: 

 

(2)    

 

If   the   animals   successfully   learned   to   apply   the   gain,       should   be   positive. 

 

We further applied a Bayesian observer model  (Jazayeri & Shadlen 2015; Acerbi et al. 2012; Miyazaki et al.                  

2005; Jazayeri & Shadlen 2010) , which captured the behavior in both contexts ( Figure 1E ). Full details of the                  

model can be found in previous work  (Jazayeri & Shadlen 2010; Jazayeri & Shadlen 2015) . Briefly, we                 

assumed that both measurement and production of time intervals are noisy. Measurement and production              

noise were modeled as zero-mean Gaussian with standard deviation proportional to the base interval  (Rakitin               

et al. 1998) , with constant of proportionality of of  w m and  w p , respectively. A Bayesian model observer produced                  

t p after deriving an optimal estimate of  t t from the mean of the posterior. To account for the possibility that the                     

mental operation of mapping  t s to  t t according to the gain factor might be noisier in the g=1.5 context than in                     

the   g=1   context    (Remington   &   Jazayeri   2017) ,   we   allowed    w m    and    w p    to   vary   across   contexts. 

Recording 

We recorded neural activity in dorsomedial frontal cortex (DMFC) with 24-channel linear probes (Plexon, inc.).               

Recording locations were selected according to stereotaxic coordinates and the existence of task-relevant             

modulation of neural activity. In monkey C, recordings were made between 3.5 mm to 7 mm lateral of the                   

midline and 1.5 mm posterior to 4.5 mm anterior of the genu of the arcuate sulcus. In monkey J, we recorded                     
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from between 3 mm to 4.5 mm lateral of the midline and 0.75 mm to 5 mm anterior of the genu of the arcuate                        

sulcus. Data were recorded and stored using a Cerebus Neural Signal Processor (NSP; Blackrock              

Microsystems). Preliminary spike sorting was performed online using the Blackrock NSP, followed by offline              

sorting using the Phy spike sorting software package using the spikedetekt, klusta, and kilosort algorithms               

(Rossant et al. 2016; Pachitariu et al. 2016) . Sorted spikes were then analyzed using custom code in MATLAB                  

(The   MathWorks   Inc.).  

Analysis   of   DMFC   data 

Average firing rates of individual neurons were estimated using a 150 ms smoothing filter applied to spike                 

counts in 1 ms time bins. We used PCA to visualize and analyze activity patterns across the population of                   

neurons across animals. PCA was applied after a soft normalization: spike counts measured in 10 ms bins                 

were divided by the square root of the maximum spike count across all bins and conditions. The normalization                  

was   implemented   to   minimize   the   possibility   high   firing   rate   neurons   dominating   the   analysis.  

 

When binning data according to increasing values of  t p , we ensured that all bins had equal number of trials,                   

independently for each session. To average firing rates across trials within a group, we truncated trials to the                  

median  t p , and averaged firing rates with attrition. Analyses of neural data were applied to all 10 sessions                  

across both monkeys. For analyses, we included neurons for which at least 15 trials were recorded in each                  

condition and which had a minimum unsmoothed modulation depth of 15 spikes per second. We did not                 

separately analyze trials immediately following context switches due to the low number of context switches per                

session   (mean   =   6.8   switches). 

 

For visualization of neural trajectories in state space, we identified dimensions along which responses were               

maximally separated with respect to context (“gain axis,”  Figure 2B,C , “initial condition,”  Figure 3C ) and  t p                

(“interval axis,”  Figure 2B,C , and “initial condition,”  Figure 3C ). We first calculated the context component by                

projecting data onto the vector defined by the difference between neural activity averaged over time and  t p for                  

each context. This component of the activity was then subtracted away from the full activity. For the Ready-Set                  

epoch, we then performed PCA (PCs 1 and 2,  Figure 2B ) on the data with the context component removed.                   

For the Set-Go epoch, we calculated the  t p component by projecting data onto the vector defined by the                  

difference between the activity associated with longest and shortest values  t p , averaged across time and               

context. We then performed PCA (PC 1,  Figures 2C and  3C ) on the data with the context and  t p components                    

removed. 
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Kinematic   analysis   of   neural   trajectories   (KiNeT) 

We developed KiNeT to compare the geometry, relative speed and relative position along a group of neural                 

trajectories that have an orderly organization and change smoothly with time. To describe KiNeT rigorously, we                

developed the following symbolic notations. Square and curly brackets refer to individual items and groups of                

items,   respectively.  

 

The algorithm for applying KiNeT can be broken down into the following steps: 1) Choose a Euclidean                 

coordinate system to analyze the neural trajectories. We chose the first 10 PCs in the Set-Go epoch, which                  

captured 89% of the variance in the data. 2) Designate one trajectory as reference,  . We used the                  

trajectory associated with the middle  t p bin as reference. 3) On each of the non-reference trajectories (                 

), find with minimum Euclidean distance to and their associated times              

according   to   the   following   equations: 

 

(3)    

(4)       

 

Organization of trajectories in state space:  The distances were used to characterize positions in               

neural state space of each relative to  . The magnitude of was defined as the norm of the                    

vector connecting to  , which we refer to as  . The sign of was defined as                  

follows: for the trajectory associated with the shortest  t s or  t p , and associated with the longest,                  

was defined to be negative and positive, respectively. For all other trajectories, was positive if                 

the angle between and  was smaller than the angle between and  ,               

and   negative   otherwise. 

 

Analysis of neural trajectories across contexts:  We analyzed the geometry across gains in three ways.               

First, we analyzed the relationships between the two sets of trajectories. This required aligning the activity                

between the two contexts in time. To do this, we started with the aligned times found within each                   

context, and using successive groups of neural states in the g=1 context indexed by  , found the                 

reference time in the g=1.5 context for which the mean distances between neural states in                

paired trajectories (i.e. the first  t p bins of both gains, second  t p bins, etc.) were smallest. This resulted in an                    
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array of times from  , indexed by  , such that the trajectories across gains were               

aligned in time for subsequent analyses ( Figure 6C ). The second way that we analyzed geometry across gains                 

was to collect trajectories across both gains, order according to trajectory duration, and run the standard KiNeT                 

procedure. Finally, we measured the distance between the structures using the across-context time              

alignment. For successive  , we measured the minimum distance between line segments connecting             

consecutive trajectories within each context. For five  t p bins, this meant four line segments for each context,                 

and 4 2 =16 distances. We chose the minimum of these distance values as the value of between the two                   

structures. As a point of comparison, we generated set of “null” distances by splitting trajectories from each                 

context into odd- and even- numbered trajectories and calculating the minimum distance between the sets of                

connecting   line   segments   ( Figure   6E ). 
 

 

Symbol Description 

 The   i-th   neural   trajectory 

 The   state   on   the   i-th   trajectory   at   time   t,    ,   where   N   is   the   number   of   trajectories 

 A   collection   of   neural   trajectories 

 “Reference”   neural   trajectory 

 The   trajectory   of   shortest   duration 

 The   trajectory   of   longest   duration 

 Elapsed   time   for   j-th   time   bin   on    

 Neural   state   on       at    

 Neural   state   on       with   minimum   distance   to    

     across   all   time   bins 

     on   all   trajectories   at   j-th   time   bin 

 Elapsed   time   on       at    
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 Elapsed   time   on       across   all   time   bins 

 Elapsed   time   on   all   trajectories   at   j-th   time   bin 

 Euclidean   distance   between       and    

 Array   of   euclidean   distances   between       and    

 Vector   travelling   from       to       at   the   j-th   time   bin,    

 Vector   traveling   from       to    ,    

 Angle   between       and    ,    

 Average   of       across       for   the   j-th   time   bin 

 Angle   between       and    ,    

 
Vector connecting the nearest points on line segments connecting and           

 

 Magnitude   (length)   of    

 Angle   between       and   the   mean   of       over    . 

 

Statistics:  Confidence intervals for KiNeT performed on trajectories binned according to  t p were computed by               

a bootstrapping procedure, randomly selecting trials with replacement 100 times. To test for statistical              

significance of metrics generated through the KiNeT procedure, we used bootstrap tests, where p was the                

fraction of bootstrap iterations for which the metric was consistent with the null hypothesis. Unless otherwise                

stated, significance of a measure for individual time points was set to p < 0.05. The results of KiNeT applied to                     

neural data from individual monkeys produced similar results, and were similar for different methods of data                

smoothing. 

 

 

 

41 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261214doi: bioRxiv preprint 

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dt%5Bi%5D%5C%7Bj%5C%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5COmega%5Bi%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dt%5C%7Bi%5C%7D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DD%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Ds%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Ds%5B%5Ctext%7Bref%7D%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DD%5Bi%5D%5C%7Bj%5C%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Ds%5C%7Bi%5C%7D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Ds%5B%5Ctext%7Bref%7D%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_%7B%5Ctext%7Bref%7D%7D%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5COmega%5B%5Ctext%7Bref%7D%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5COmega%5Bi%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Di%20%5Cneq%20ref
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_%5COmega%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Ds%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Ds%5Bi%2B1%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D1%20%5Cle%20i%20%5Cle%20N-1
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Ctheta_%5COmega%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_%5COmega%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_%5COmega%5Bi%2B1%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D1%20%5Cle%20i%20%5Cle%20N-2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cbar%7B%5Ctheta%7D_%5COmega%5C%7Bi%5C%7D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Ctheta_%5COmega%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Di
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Ctheta_g%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_%7B%5COmega%2Cg%3D1%7D%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_%7B%5COmega%2Cg%3D1.5%7D%5Bi%5D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D1%20%5Cle%20i%20%5Cle%20N-1
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_g%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Ds_%7Bg%3D1%7D%5C%7Bi%5C%7D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Ds_%7Bg%3D1.5%7D%5C%7Bi%5C%7D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DD_g%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_g%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Ctheta_%7Bg%2C%5COmega%7D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_g%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Cvec%7B%5CDelta%7D_%5COmega%5C%7Bi%5C%7D%5Bj%5D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Di
https://doi.org/10.1101/261214


 

Recurrent   neural   network 

We constructed a firing rate recurrent neural network (RNN) model with  N = 200 nonlinear units. The network                  

dynamics   were   governed   by   the   following   differential   equation: 

 

 

is a vector containing the activity of all units. and represents the firing rates of those units by                    

transforming through a nonlinearity. Time was sampled every millisecond for a duration of = 3300                   

ms. The time constant of decay for each unit was set to  . The unit activations also contain an offset                    

 and white noise at each time step with standard deviation in the range [0.01-0.015]. The matrix                   

represents recurrent connections in the network. The network received multi-dimensional input through             

synaptic weights  . The input was comprised of a gain-dependent context cue and an input                 

that provided Ready and Set pulses. In Ready and Set were encoded as 20 ms pulses with a                    

magnitude   of   0.4   that   were   separated   by   time    . 

Two classes of networks were trained to perform the RSG task with multiple gains. In the tonic-input RNNs, the                   

gain-dependent input was set to a fixed offset for the entire duration of the trial. In contrast, in the                    

transient-input RNNs, was active transiently for 440 ms and was terminated 50-130 ms before the onset                 

of the Ready pulse. The amplitude of was set to 0.3 for g=1 and 0.4 for g=1.5. The transient network                     

received an additional gain-independent persistent input of magnitude 0.4, similar to the tonic networks. Both               

types of networks produced a one-dimensional output through summation of units with weights and a                 

bias   term     .  

 

Network   Training 

Prior to training, model parameters (  ), which comprised  ,  ,  , and were initialized. Initial values                  

of matrix were drawn from a normal distribution with zero mean and variance 1/ N , following previous work                  

(Rajan & Abbott 2006) . Synaptic weights and the initial state vector and unit biases were                  

initialized to random values drawn from a uniform distribution with range [-1,1]. The output weights, and                 

bias  , were initialized to zero. During training, model parameters were optimized by truncated Newton               
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methods using backpropagation-through-time  (Werbos 1990) by minimizing a squared loss function between            

the   network   output        and   a   target   function     ,   as   defined   by: 

Here indexes different trials in a training set ( = different gains (  ) x intervals (  ) x repetitions (  )). The                     

target function was only defined in the Set-Go epoch (the output of the network was not constrained                 

during the Ready-Set epoch). The value of was zero during the Set pulse. After Set, the target function                   

was governed by two parameters that could be adjusted to make nonlinear, scaling, non-scaling or               

approximately-linear: 

For the networks reported, was an approximately-linear ramp function parametrized by = 3 and =                  

2.8. Variable represents the transformed interval for a given and gain  . Solutions were robust with                  

respect to the parametric variations of the target function (e.g., nonlinear and non-scaling target functions). In                

trained networks, the production time,  t p was defined as the time between the Set pulse and when the output                   

ramped   to   a   fixed   threshold   (  ). 

During training, we employed two strategies to obtain robust solutions. First, we trained the networks to flexibly                 

switch between three gain contexts, the two original values ( g =1 and  g =1.5) and an additional intermediate                

value of  g =1.25 for which the amplitude of was set to 0.35. However, the behavior of networks trained                   

with the two original gains were qualitatively similar. Second, we set to zero, and instead, the                

context-dependent   input,      received   white   noise   with   standard   deviation   of   0.005,   per   unit   time   (  ). 
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Supplement 

Go-aligned   KiNeT 

Figure S1 . “Go”-aligned KiNeT, related to  Figure 4 . Applying KiNeT to neural trajectories aligned to the Set                 

cue resulted in which diverged from to scale with trajectory length in a manner consistent with                  

neural speed control as a means to produce different  t p . To rule out the possibility that this temporal scaling of                    

trajectories was an artifact of temporal smearing of PSTHs near the time of Go caused by averaging trials of                   

different lengths, we applied KiNeT to data aligned to Go (saccade). ( A ). Aligned times (speed) across both                 

contexts. As in the Set-aligned analysis, for shorter diverged to shorter values, while for                 

longer diverged towards longer values as (here time before Go) increased. In contrast to the lack of                   

temporal scaling proximal to the Set cue, were ordered according to  t p leading all the way up to the Go                     

cue. Circles on the line indicate for which the ordering of was significantly correlated with the  t p                    

bin (bootstrap test, r > 0.1, p < 0.05, n = 100). ( B,C )  t p -related structure of ( B ). Analysis of direction. As                      
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in the Set-aligned KiNeT, (bar signifies mean over the index in curly brackets) was significantly                 

smaller than 90 degrees for the majority of the Set-Go interval (bootstrap test, < 90, p < 0.05, n =                     

100) indicating that were similar, across  . ( C ) Analysis of distance. Euclidean distance to               

. Trajectories were ordered in neural space according to  , where with  t p  with more similar to the                   

middle  t p bin to being located closer to  . Significance tested by counting the number of times in which                   

   was   not   ordered   according   to    t p    bin   in   bootstrap   samples   for   each       (p   <   0.05,   n   =   100). 
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Rotation   of   trajectories   through   time 

Figure S2 . Rotation of trajectories through time, related to  Figure 4 . We estimated the degree to which the                  

principal axes (PC directions) associated with nearest states along the five trajectories ,  , changed with                

time relative to t  = 0 using two metrics: a similarity index (  ) that measures the variance explained by                   

PCs at time t and t = 0 (see below for full description), and a rotation index (  ) measuring the angle                     

of the first PC ( PC 1 ) in the state space at time t compared to t = 0. ( A )  . This index varies between 0                        

and 1 with 1 signifying matching PCs and 0 signifying orthogonal PCs. The gradual change in away                  

from 1 and toward 0 indicated that gradually changed orientation with time. Shaded area represents                

90% bootstrap confidence intervals (n = 100). Dashed lines represent the 90% confidence intervals for the                

similarity of two sets of drawn randomly from a multivariate Gaussian distribution with covariance              

matched to the data. captures the extent to which the orientation of in state space changes                  

with time and is therefore sensitive to both rotations and scaling transformations. ( B )  . The gradual                

change in away from 0 toward 90 deg indicates that trajectories underwent rotations through state                

space from Set to Go. Unlike that is sensitive to both rotations and scaling transformations,               

is only sensitive to rotations. These data-driven observations motivated the use of KiNeT for               

analyzing   neural   trajectories   throughout   the   paper.  
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Similarity Index:  The similarity index, adapted from  (Garcia 2012) , was calculated using the following              

procedure: 1) Select two datasets, one for neural activity patterns at the time of Set ( t=0 ), denoted by  , and                    

one at time  t after Set, denoted by  . 2) Calculate the principal component coefficients for each dataset. 3)                   

Project the points of each dataset onto their own and the others’ principal coefficients, creating four sets of                  

principal component scores. 4) Calculate the fraction of variance explained by each principal component in               

each of the four sets of scores. is the fraction of variance in explained by principal component  i of  ,                      

is the fraction of variance of explained by principal component  i of  , is the fraction of variance                     

in explained by principal component  i of  , and is the fraction of variance in explained by principal                     

component  i of  . 5) For each component of each dataset, calculate the difference between (1) the fraction of                   

variance explained by that component for its own dataset (e.g.  ) and (2) the fraction explained by that                  

same component for the other dataset (e.g.  ). 6). Sum and normalize the calculated differences. This can                 

be   written   as   follows: 

 

 

The similarity index is 0 when the associated covariance matrix of one dataset lies in the nullspace of the other,                    

and   1   when   the   covariance   matrices   are   identical. 

 

In order to interpret the values of similarity index in the DMFC dataset, we compared similarity index for two                   

surrogate datasets that matched the statistics of DMFC activity. Each dataset was constructed by drawing five                

samples (the number of  t p bins) from a ten-dimensional Gaussian distribution (the number of principal               

components) with a diagonal covariance matrix constructed using the eigenvalues of the covariance matrix of               

the DMFC data. We calculated the similarity index for 1000 pairs of surrogate data (i.e., null distribution), and                  

used the 5th and 95th percentiles to generate 90% confidence intervals. With this procedure, a similarity index                 

above the 90% confidence interval was considered more “similar” than expected by chance, whereas a               

similarity   index   below   the   90%   confidence   interval   was   considered   dissimilar.  
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Variability   in   neural   trajectories   systematically   predicted   behavioral   variability 

 

 

Figure S3. Relating neural variability to behavioral variability, related to  Figure 4 . ( A ). Schematic showing               

three neural trajectories between Set (circle) and Go (cross) associated with three different  t s values. Neural                

states,  , are indexed by trajectory (  ), which is specified by initial condition, and elapsed time (  ). Noise                  

may cause neural states to deviate from mean trajectories. We reasoned that deviations across and along                

trajectories may cause systematic biases in  t p . (light star) shows an example in which noise moves                 

the state in the direction of shorter  t s (toward  ) and in the direction of the Go state (  ) by                    

vectors and  , respectively. Both deviations should lead to shorter  t p . ( B ) Prediction 1 ( P 1 ): deviations                  

off of one trajectory toward a trajectory associated with larger  t s should lead to larger  t p , and vice versa. To test                     

P 1 , we divided trials for each  t s into two bins. One bin contained all trials in which  t p was shorter than median  t p                       
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and the other, all trials in which  t p was longer than median  t p . We computed neural trajectories for the short and                     

long  t p bins, and denoted the corresponding states by and (dark star), respectively. If                

P 1 is correct, then the geometric relationship between and should be similar to that                

between (shorter  t s ) and (longer  t s ). Therefore the vector pointing from to               

(  , dashed arrow) and the vector pointing from to (  , blue              

arrow) should be aligned, and the angle between them, denoted by  , should be acute. See below                 

description for calculation of for shortest and longest  t s .( C ) Prediction 2 ( P 2 ): deviations along                

trajectories should influence the time it takes for activity to reach the Go state and should therefore influence  t p                   

(Afshar et al. 2011; Michaels et al. 2015) . If  P 2 is correct, then should be ahead of  .                   

Therefore, should point backwards in time, and the angle between and that               

connects to  , denoted by should be obtuse. See below description for              

calculation   of       for   first   and   last   time   points. 

( D,E ) Testing  P 1 and  P 2 for the  g =1 ( D ) and  g =1.5 ( E ) contexts. Consistent with  P  1   , average (                  

, blue), were less than 90 deg from Set to Go indicating that  t p was larger (smaller) when neural                   

states deviated toward a trajectory associated with a larger (smaller)  t s . Importantly, the systematic relationship               

between  t p and neural activity was already present at the time of the Set, indicating that  t p was influenced by                    

variability during the Ready-Set measurement epoch. Consistent with  P 2  , (green) was greater than              

90 deg, indicating that  t p was larger (smaller) when speed along the neural trajectory was slower (faster). The                  

angle between and was initially close to 90 deg consistent with the observation that                

trajectories   evolved   at   similar   speeds   early   in   the   Set-Go   epoch   ( Figure   4B ).  

We also measured the angle between and  , denoted by (yellow). This angle               

was not significantly different than expected by chance (90 deg) for most time points. We determined when (at                  

what  ) an angle was significantly different from 90 deg (p < 0.05) by comparing angles to the corresponding                   

null distribution derived from 100 random shuffles with respect to  t p . Angles that were significantly different from                 

90 deg are shown by darker circles. Because the comparison of  t s - vs.  t p -related structure ( Figure S3 ) required                  

grouping trials into substantially more bins than the other analyses (14 vs. 7 or 5), we reduced the minimum                   

number of trials required to 10 for this analysis (273 units; 95 from monkey C and 178 from monkey J). We did                      

not find that the results of any of the analyses were dependent on the specific threshold chosen, and results                   

were   similar   in   individual   subjects. 
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Calculation of for shortest and longest  t s :  Because there was a finite number of  t s values, we                  

could not compute for and ( was not defined for and was                 

not defined for  ). Therefore, for the shortest  t s , we changed to (instead of                

), and for the longest  t s , to (instead of          

). 

Calculation of for the earliest and latest times: Because there was a finite number of time points,                  

we could not compute for and ( was not defined for and                 

was not defined for  ). Therefore, for the first time point, we changed to                

(instead of  ), and for the last time point, to (instead of             

). 
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Analysis   of   the   recurrent   neural   networks 

Figure S4 . Analysis of the recurrent neural networks (RNNs), related to  Figure 4 and  Figure 7 . ( A-E )                 

Tonic-input RNN. ( A ) “Behavior”; same format as in  Figure 1E . The networks successfully learned the task as                 

evidenced by positive regression slopes ( , larger for  g = 1.5 context) and a significant positive interaction                

between  t s and  g (p << 0.001). For each network, we simulated 30 trials per  t s and  g , removing outliers in which                      

t p was more than 3.5 times the median absolute deviation (MAD) away from the mean. ( B-D ) Organization of                  

neural trajectories within each context; same format as  Figure 4B-D . KiNeT analysis verified that the               

organization of neural trajectories in the tonic-input RNN matched the organization observed in DMFC              

(compare to  Figure 4B-D ). ( E ) Relating unit variability to behavioral variability; same format as in  Figure S3 .                 

(F-J)    Same   analyses   as   in   A-E   for   the   transient-input   RNN.  
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Symbol Description 

The   i-th   neural   trajectory 

The   state   on   the   i-th   trajectory   at   time   t,   ,   where   N   is   the   number   of   trajectories 

A   collection   of   neural   trajectories 

“Reference”   neural   trajectory 

The   trajectory   of   shortest   duration 

The   trajectory   of   longest   duration 

Elapsed   time   for   j-th   time   bin   on  

Neural   state   on      at  

Neural   state   on      with   minimum   distance   to  

    across   all   time   bins 

    on   all   trajectories   at   j-th   time   bin 

Elapsed   time   on      at  

Elapsed   time   on      across   all   time   bins 

Elapsed   time   on   all   trajectories   at   j-th   time   bin 

Euclidean   distance   between      and  

Array   of   euclidean   distances   between      and  

Vector   travelling   from      to      at   the   j-th   time   bin,  

Vector   traveling   from      to   ,  
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Angle   between      and   ,  

Average   of      across       for   the   j-th   time   bin 

Angle   between      and   ,  

Vector connecting the nearest points on line segments connecting and          

Magnitude   (length)   of  

Angle   between      and   the   mean   of      over    . 
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