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Abstract 17 

Hybrid breeding has dramatically boosted yield and its stability in rice. Genomic prediction further 18 

benefits rice breeding by increasing selection intensity and accelerating breeding cycles. With the rapid 19 

advancement of technology, other omic data, such as metabolomic data and transcriptomic data, are 20 

readily available for predicting genetic values (or breeding values) for agronomically important traits. In 21 

the current study, we searched for the best prediction strategy for four traits (yield, 1000 grain weight, 22 

number of grains per panicle and number of tillers per plant) of hybrid rice by evaluating all possible 23 

combinations of omic datasets with different prediction methods. We conclude that, in rice, the 24 

predictions using the combination of genomic and metabolomic data generally produce better results 25 

than single-omics predictions or predictions based on other combined omic data. Inclusion of 26 

transcriptomic data does not improve predictability possibly because transcriptome does not provide 27 

more information for the trait than the sum of genome and metabolome; rather, the computational 28 

complexity is substantially increased if transcriptomic data is included in the models. Best linear 29 

unbiased prediction (BLUP) appears to be the most efficient prediction method compared to the other 30 

commonly used approaches, including LASSO, SSVS, SVM-RBF, SVP-POLY and PLS. Our study has 31 

provided a guideline for selection of hybrid rice in terms of which types of omic datasets and which 32 

method should be used to achieve higher trait predictability. 33 

 34 

Keywords: prediction strategy, hybrid rice, omic data, genome, transcriptome, metabolome 35 
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Introduction 37 

Rice, which is enriched with complex carbohydrates, vitamins, minerals, and fiber, is the main staple 38 

food for a large segment of the world population. Heterosis, referred to the superior performance of 39 

hybrids relative to their parents, has been reported as a major contributor to the increased productivity in 40 

rice (Jones, 1926; Virmani et al., 1981). Only a small number of desirable hybrids can be selected through 41 

a large number of crosses in a traditional rice breeding program which is labor intensive and time 42 

consuming (Collard and Mackill 2008; Spindel et al. 2015). Marker-assisted selection (MAS) has been 43 

used to facilitate rice breeding (Chen et al. 2000; Chen et al. 2001; Zhou et al. 2003), leading to genetic 44 

improvement and reduced generation time. Quantitative trait loci (QTL) mapping is often used to identify 45 

DNA markers for breeding if these markers are in linkage disequilibrium (LD) with the genetic 46 

determinant of traits (Asins 2002). Genomic selection (Hayes and Goddard 2001) is a special form of 47 

MAS in which all markers on the genome are used for predicting expected breeding values (EBVs) for 48 

rice hybrids. A training set is used to build a genomic selection model which can be applied to an 49 

independent set for prediction of EBVs if this set share similar genetic architecture with the training set. 50 

Genomic selection models are often evaluated by trait predictability, a measurement of prediction 51 

accuracy that is calculated through cross validation (Riedelsheimer et al. 2012). A primary goal of 52 

genomic selection modelling is to optimize the trait predictability, which is defined as the squared 53 

correlation between the observed and the predicted phenotypic values. 54 

In addition to genomic data, the rapid advancement of technology generates other types of omic 55 

datasets, such as transcriptomic data, proteomic data, and metabolomic data. An integrated analysis of 56 

these omic datasets may advance our knowledge of the underlying genetic and biochemical basis for 57 

agronomic traits. For example, the joint analysis of transcriptomic data and genomic data, called eQTL 58 

mapping, treats gene expression profiles as quantitative traits and maps these expression traits to genomic 59 

loci (Jansen and Nap 2001; Doerge 2002; Schadt et al. 2003; Bing and Hoeschele 2005; Rockman and 60 

Kruglyak 2006; Keurentjes et al. 2007; Wang et al. 2014). Likewise, metabolomic expression profiles 61 

can be also treated as quantitative traits and mapped to genomic loci, i.e., mQTL mapping (Keurentjes et 62 

al. 2006; Schauer et al. 2006; Dumas et al. 2007; Gieger et al. 2008; Illig et al. 2010; Suhre et al. 2011; 63 

Wei et al. 2017). Both eQTL mapping and mQTL mapping are derivatives of QTL mapping. Genes and 64 

metabolites that are mapped to the same loci as a trait may be used to uncover the biological networks 65 

that govern the variability of the trait. Moreover, combining the additional omic datasets with genomic 66 

data in selection analysis has potential to improve trait predictability. 67 

Various omic datasets have been used for prediction of the EBVs of agronomic traits. For example, 68 

transcriptomic data have been used to predict hybrid performance (Stokes et al. 2010; Fu et al. 2012), 69 

and transcriptome-based prediction in hybrid maize appeared to be more precise than genome-based 70 

prediction (Frisch et al. 2010). Similarly, genomic data and metabolomic data of two backcross 71 

populations from 359 recombinant inbred lines (RILs) were used to predict biomass of Arabidopsis 72 

thaliana (Gärtner et al. 2009), in which the predictabilities for two prediction strategies were very close, 73 

i.e., 0.17 and 0.16 for genomic prediction and metabolomic prediction, respectively. A population was 74 
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generated by testcrossing 285 diverse Dent inbred lines from worldwide sources with two testers and 75 

used to predict the combining ability for seven biomass- and bioenergy-related traits (Riedelsheimer et 76 

al. 2012). The average predictabilities of these seven traits for genomic prediction and metabolomic 77 

prediction were 0.54 and 0.33, respectively. A three-step prediction strategy was proposed and evaluated 78 

using a wheat dataset which consists of 1,604 hybrids and their 135 parents (Zhao et al. 2015). Their 79 

results showed that for hybrids without parental line in common, hybrids sharing one parental line, and 80 

hybrids sharing both parental lines, the genome-based prediction accuracies were 0.32, 0.65 and 0.89, 81 

respectively. Note the prediction accuracy, which is a different measure from predictability, was defined 82 

as the correlation between the predicted and the observed phenotypes divided by the square root of 83 

heritability. The corresponding metabolome-based prediction accuracies were 0.15, 0.42 and 0.74, 84 

respectively. 85 

With the explosion of omic data, how to appropriately use these resources to aid selection has 86 

become a heated topic. It has been indicated that inclusion of metabolomic data did not improve 87 

predictive value, but hampered the performance of genomic selection in hybrid wheat (Zhao et al. 2015). 88 

Prediction based on all available omic data (genomic, metabolomics and transcriptomic data) rarely 89 

outperformed the best single omic data prediction in hybrid rice when various prediction models were 90 

compared (Xu et al. 2016). However, selection by combining transcriptomic data with genomic data 91 

resulted in a higher prediction accuracy than genomic selection in maize if the omic data (genomic, 92 

metabolomic and transcriptomic data) were collected from parental lines at their early developmental 93 

stages (Westhues et al. 2017). The conflicting conclusions in the literature highlighted the need for further 94 

investigation on what combination of the omic datasets and what prediction model yields the best 95 

prediction for a trait. The answer to this question will benefit academic research and will also greatly 96 

reduce the operative cost for the industry which specializes in breeding and selection.  97 

The goal of the study is to prove the concept that trait predictability may be optimized by using 98 

superior prediction models and selective omic datasets. For demonstration, we used an immortalized F2 99 

(IMF2) population which was created by randomly paring 210 RILs (Hua et al. 2003). Three individual 100 

omic datasets, i.e., genomic dataset, transcriptomic dataset and metabolomic dataset, and all possible 101 

combinations of these omic datasets were comprehensively analyzed for trait predictability using six 102 

widely adopted prediction methods. 103 

Results 104 

Analysis of variance for predictabilities 105 

We calculated 168 (4×7×6) predictabilities for 4 traits using all 7 possible combinations of omic datasets 106 

(G, M, T, G + M, G + T, M + T, and G + M + T) with 6 prediction methods (Table S1; Table S2). The 107 

predictability (168 values) was treated as the response variable, and 4 traits, 7 combinations of omics 108 

datasets and 6 methods were treated as factor variables in an ANOVA analysis to detect the differences 109 

between selection schemes with different levels of these factors. The results for the IMF2 population 110 

(Table 1) show that all main and three interaction effects are significant. Comparisons between various 111 
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omic data combinations with ‘method factor’ being averaged out are depicted in Figure 1. For YIELD 112 

(1st panel of Figure 1), the seven combinations are classified into three levels, i.e., A (best), B and C 113 

(worst). Combining genomic data and metabolomic data (G + M) produced the best predictability, while 114 

GS (prediction solely based on genomic data) gave the worst predictability. For the other three traits 115 

(KGW, GRAIN and TILLER), only two levels were detected for the seven combinations of omic datasets, 116 

with G + M being the best for KGW and GRAIN and G + M + T being the best for TILLER. Comparisons 117 

between six prediction methods with ‘combination factor’ being averaged out are depicted in Figure 2. 118 

BLUP appears to be the optimal method across all traits. For YIELD, LASSO generated the highest 119 

predictability; however, there is no statistical difference between BLUP and LASSO. 120 

Table 1. Analysis of variance of predictabilities for a IMF2 population using a 7 × 4 × 6 factorial design 121 

(seven combinations of omic datasets, four traits, and six prediction methods)  122 

Source d.f. Sum of square Mean square F-test P-value 

Predictor 6 0.0666 0.0111 22.69 <0.0001 

Trait 3 5.1340 1.7113 3495.75 <0.0001 

Method 5 0.0961 0.0192 39.25 <0.0001 

Method*Predictor 30 0.0389 0.0013 2.65 0.0002 

Method*Trait 15 0.0501 0.0033 6.82 <0.0001 

Predictor*Trait 18 0.0551 0.0031 6.25 <0.0001 

Residual 90 0.0441 0.0005   

 123 
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 124 

Figure 1. Multiple comparisons of the means of predictabilities of the four traits (YIELD, KGW, GRAIN, 125 

and TILLER) for in IMF2 population by seven combinations of omic datasets, with the differences of 126 

six prediction methods being averaged out. The capital letters ‘A’ through ‘C’ below box-plots represent 127 

the groups with significant differences in comparisons. For example, G + M (A) prediction is 128 

significantly better than G + T prediction (B), but T + G + M prediction (AB) is not significantly different 129 

from either of the other two predictions when YIELD is considered. 130 
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131 

Figure 2. Multiple comparisons of the means of predictabilities of the four traits in the IMF2 population 132 

by six prediction methods, with the differences between seven combinations of omic datasets being 133 

averaged out. 134 

 135 

Similar analyses have been performed on the RIL population. All main and interaction effects are 136 

significant in RILs (Table S3). Comparisons between various omic data combinations with ‘method 137 

factor’ being averaged out suggest that G + M is the best prediction scheme for YIELD, KGW and 138 

GRAIN. For TILLER, the best predictability was achieved by using genomic data G only; however, the 139 

difference between G + M and G is not significant (Figure S1). BLUP outcompeted other prediction 140 

methods again in the analysis of the RIL population (Figure S2). 141 

 142 

Effects of different variables under different models 143 

We calculated the effects of variables included in different models (G, M, T, G + M, G + T, M + T, and 144 

G + M + T) for 4 traits with the BLUP method since it appeared to be the optimal prediction method in 145 

both populations. All predictors (variables), including 1619 genomic variables, 1000 metabolites, and 146 

24,994 transcripts, had been standardized before this analysis. Comparisons of the estimated effects 147 

between various models for the IMF2 and the RIL populations are depicted in Figure 3 and Figure S3, 148 

respectively. The results suggested that estimated effects of genomic and metabolomic variables are 149 
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generally larger than those of the transcriptomic variables. Also, the effects of each type of omic variables 150 

under the combined model (G + M + T) are lower than those in the models where single omic data was 151 

used. In addition, the distribution of the effects of the genomic variables and metabolomic variables under 152 

the fully combined model (G + M + T) is similar with that of the G+M model.  153 

 154 

Figure 3. Coefficient effects with different omic datasets for the four traits in the IMF2 population. The 155 

dashed lines separate various omic-specific variables, with G, M, and T representing genomic, 156 

metabolomic, and transcriptomic variables, respectively. The dotted lines separate the additive (a) and 157 

dominance (d) variables within single omic-type variables.   158 

 159 

Computational efficiency 160 

We evaluated the computational efficiency (in terms of computing time in hours) across various omic 161 

combinations and prediction methods on a regular personal computer (Intel Core i7 CPU 7700K, 4.20 162 

GHz, Memory 16.00G). For both IMF2 population (Table S4) and RIL population (Table S5), we 163 

observed that BLUP achieved the greatest computational efficiency in average. Moreover, the computing 164 

time for BLUP increased modestly as the number of predictors increased when compared to the other 165 

methods.  166 

 167 

Heritability vs. predictability 168 
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The values of overall heritability of the four traits (YIELD, KGW, GRAIN and TILLER) in two 169 

populations (IMF2 and RIL) were previously calculated (Xu et al. 2016) and used in our study. The 170 

predictabilities for these four traits in the IMF2 population (average across all methods and omics 171 

combinations) were 0.2211, 0.6187, 0.3488 and 0.1794, respectively. The correlation between the 172 

heritability and the predictability for these four traits was 0.9603 (P = 0.040) in the IMF2 population. 173 

Similarly, the predictabilities for these four traits in the RIL population were 0.4260, 0.6807, 0.5259 and 174 

0.3828, respectively, and the correlation between heritability and predictability was 0.9440 (P = 0.040). 175 

As expected, trait predictability generally increases with trait heritability. 176 

 177 

Overfitting 178 

The squared correlation between the observed trait values and the predicted EBVs is called goodness of 179 

fit if no cross validation is applied, which is different from how predictability is defined. The measure of 180 

overfitting is the difference between the square root of goodness of fit and the square root of predictability. 181 

This is equivalent to the calculation of difference between the two correlation coefficients, one calculated 182 

between the observed trait values vs. the predicted EBVs without cross validation and the other one 183 

calculated with cross validation (Heslot et al. 2012). The levels of overfitting in the analyses of hybrids 184 

using various omic data combinations and prediction methods are listed in Figure 4, Figure 5 and Table 185 

S6. BLUP and LASSO were overall least affected by overfitting compared to the other prediction 186 

methods (Figure 5; Table S6); the difference between BLUP and LASSO is not statistically significant. 187 

Figure 4 suggested that G + M scheme is overall least affected by overfitting. Regarding the trait TN, G 188 

was visually less affected by overfitting than G + M; however, no statistical difference has been detected 189 

between the G and the G + M models. 190 
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 191 

Figure 4. Multiple comparisons of the means of levels of overfitting for the four traits in the IMF2 192 

population by the seven combinations of omic datasets, with the differences between the six prediction 193 

methods being averaged out. 194 
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195 

Figure 5. Multiple comparisons of the means of levels of overfitting for the four traits in the IMF2 196 

population by the six prediction methods, with the differences between the seven combinations of omic 197 

datasets being averaged out. 198 

 199 

Selection of top crosses 200 

The 278 experimental hybrids only represent a small subset of all 21945 possible crosses that could have 201 

been produced by the 210 RILs. For each trait, we therefore used the parameters estimated from the 202 

training samples (278 hybrids) to make predictions for all 21945 crosses. The 21945 possible crosses 203 

were then sorted based on the phenotypic values (from largest to smallest) predicted using different omic 204 

data combinations or different prediction methods. Example Data S1 shows the predicted phenotypic 205 

values of all 21945 hybrids with the BLUP method using all possible combinations of the omic data. Top 206 

10 hybrids of each sorted list are compared in two ways since we conclude the optimal strategy for 207 

predicting hybrid rice is the BLUP method using the G + M model: (1) we first compared the top 10 208 

hybrids selected by 6 prediction methods using G + M, and then (2) compared the top 10 hybrids selected 209 

by BLUP when different omic data combinations were used in regression. In comparison (1), out of the 210 

top 10 hybrids selected using BLUP, 9, 3, 6 and 7 hybrids were also selected by at least one other 211 

prediction method for four traits (YIELD, KGW, GRAIN and TILLER), respectively (Table S7). In 212 

comparison (2), out of the top 10 hybrids selected with G + M, 10, 8, 10 and 9 hybrids were also selected 213 

by at least one other omic data combination for four traits, respectively (Table S8). 214 
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Discussions 215 

This is the first study that systematically compares various trait prediction schemes using all possible 216 

combinations of omic datasets with different prediction models in order to identify the optimal strategy 217 

to achieve the best predictability. We found that the prediction based on the combination of genomic data 218 

and metabolomic data (G + M) produces the best result in the IMF2 rice population. Moreover, genomic 219 

prediction (G) or metabolomic prediction (M) is generally more effective than transcriptomic prediction 220 

(T). Inclusion of transcriptomic data to genomic prediction, metabolomic prediction, or prediction based 221 

on G + M impairs the overall model performance rather than increase predictive value. It is likely because 222 

transcriptome does not provide more information for the trait than the sum of genome and metabolome. 223 

Rather, the computational complexity is substantially increased when including transcriptomic data in 224 

the models because the number of predictor variables becomes much larger. The majority of transcripts 225 

included in the prediction models are irrelevant to the trait, leading to severe overfitting and therefore 226 

reduced predictability in cross validation. Considering YIELD, the greatest predictability was achieved 227 

by using metabolomic data (M) with LASSO, suggesting an optimal prediction strategy for prediction of 228 

yield of hybrid rice. In the RIL population, the combination of genomic data and metabolomic data (G + 229 

M) appeared to be a better option. We conclude that transcriptomic data is not necessary for selection of 230 

rice, which may greatly reduce labor and cost in industry and in future research. We also observed that 231 

the predictabilities for RILs were generally higher than those in hybrids, especially for predictions using 232 

metabolomic and transcriptomic data. This might be due to the fact that the metabolomic and 233 

transcriptomic data were directly measured for RILs but indirectly inferred, potentially with errors, for 234 

hybrids from the RIL parents. The predictabilities for hybrids may be improved if either metabolomic 235 

data or transcriptomic data or both are directly measured from the hybrids. 236 

The effects of genomic and metabolomic variables under different models are generally larger than 237 

those of the transcriptomic variables. Moreover, the effects of the transcriptomic variables are generally 238 

lower than those of the genomic variables and the metabolomic variables in the G + M + T model. The 239 

sum of these evidences confirmed the reliability of using G + M model in hybrid rice selection. We also 240 

noticed that the effects of genomic variables and metabolomic variables in the G + M model were both 241 

smaller than their counterparts in the G model or M model where single omic datatype was analyzed. 242 

This result indicated that genomic data and metabolomic data provide very similar information for 243 

prediction of traits, and, therefore, when included in the same model (G + M), their effects were 244 

compromised compared to the single-omic-data models (G or M). However, the increased predictability 245 

in G + M model compared with the single-omic-data models (G or M) justified the use of the combination 246 

of genomic data and metabolomic data in hybrid rice selection. In addition, the effects of the genomic 247 

and metabolomic variables under the G + M + T model are very similar to that of the G + M model, 248 

which supported our argument that transcriptomic data is not necessary in rice selection when genomic 249 

and metabolomic data are available. 250 

BLUP appeared to be a robust prediction method since the variation of the BLUP predictabilities of 251 

various omic data combination is small compared to those for the other prediction methods. Note that 252 
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the computing time of BLUP depends on the number of kinship matrix rather than the number of variables 253 

used for calculation of the kinship matrices. Whereas, the computing time of the other five prediction 254 

methods substantially increases with the number of variables in the models. The number of kinship 255 

matrices (covariance structures) used in BLUP for the hybrid population is twice as many as that for the 256 

RIL population; nevertheless, this does not significantly increase the total computational time. The much 257 

higher trait predictabilities achieved by the BLUP method made this method more desirable than other 258 

methods. 259 

Among the six prediction methods, SVM-POLY has the greatest goodness of fit (Table S9); however, 260 

the predictability of SVM-POLY is unfavorable. This suggests that goodness of fit is not suitable for 261 

evaluating prediction models and the potential overfitting may undermine the predictive value. Rather, 262 

the predictability, which is equivalent to the square of the difference between the square root of goodness 263 

of fit and the level of overfitting, can objectively reflect the applicability of the models when they are 264 

applied to independent datasets rather than training set. In our rice study, BLUP appeared to have the 265 

highest predictabilities and lowest levels of overfitting in hybrids (Table S1; Table S9; Figure 5), 266 

indicating that BLUP is more efficient in capturing signal from noise than the other prediction methods. 267 

We also examined the prediction performance for four traits based on the data in years 1998 and 268 

1999, respectively, using the BLUP method with various combinations of omic datasets. It seemed that 269 

the predictabilities for individual years were lower than that can be achieved with the combined data 270 

(averaged trait values across years) (Figure S4), indicating possible environmental variability in different 271 

years. Inclusion of environmental factor and its interaction with omic datasets may produce better trait 272 

predictabilities than simply averaging the trait values across years. 273 

The best individuals, for example top 10 in a population, predicted by each method are often 274 

compared to see how many are in common such that the reliability of the method of interest can be 275 

evaluated. Considering G + M, an average of 6.3 top hybrids (out of top 10) selected by the BLUP were 276 

also selected by at least one of other five methods. In addition, an average of 9.5 top hybrids (out of top 277 

10) selected with G + M model were also selected by at least one other omic data combinations when the 278 

BLUP was applied. These results further confirmed the reliability of our selection model using the BLUP 279 

method with the G + M combination. 280 

For YIELD, the predictabilities for BLUP, SSVS and SVM-POLY were close to each other. Among 281 

the top 10 hybrids selected by the BLUP, 7 were selected by SSVS and 6 were selected by SVM-POLY. 282 

It appeared that methods with similar predictabilities tend to select more common top individuals. For 283 

KGW, the predictability for BLUP was significantly higher than other methods; thus, less common top 284 

hybrids are expected between BLUP and other methods. Indeed, only 3 out of the top 10 hybrids selected 285 

by BLUP were also selected by at least one other method. For GRAIN, 6 out of the top 10 hybrids 286 

selected by BLUP were also selected by at least one other method. For TILLER, BLUP achieved the 287 

highest predictability. The method with the second highest predictability was PLS which shared 4 288 

common best hybrids with BLUP, and this number was larger than the number of common top hybrids 289 

shared by BLUP and other methods. The G + M model, of which the predictability was higher than that 290 
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of G model and M model, shared an average of 6.3 top hybrids with G model only and another average 291 

of 6.3 top hybrids with M model only, and with about 4 common hybrids selected by all three models (G 292 

+ M, G and M). The results indicated that genomic data and metabolomic data contribute overlapping 293 

and complementary information on traits and the model utilizing both data, e.g., the G + M model, 294 

benefits trait prediction most.    295 

The current study has provided a guideline for rice selection in terms of what types of omic datasets 296 

and what prediction model should be used to achieve the greatest predictability. The answer may vary 297 

when different traits are considered. For other types of crops, such as maize and wheat, similar studies 298 

may be conducted to develop a selection guideline for industry practice or scientific research. 299 

 300 

Methods 301 

Rice data 302 

Shanyou 63, an elite hybrid that has been widely cultivated in the last three decades in China, was derived 303 

from the cross between Zhenshan 97 and Minghui 63. A total of 210 RILs were derived by single-seed 304 

descent from this hybrid. An “immortalized F2” (IMF2) population was derived from randomly crossing 305 

these 210 RILs (Hua et al. 2002; Hua et al. 2003). Field data of four traits were considered, including 306 

yield (YIELD), 1000 grain weight (KGW), number of grains per panicle (GRAIN) and number of tillers 307 

per plant (TILLER). For the RIL population, each trait was measured from four replicated experiments 308 

(1997 and 1998 from one location, 1998 and 1999 from another location). In each replicated experiment, 309 

eight plants were sampled from each line and the average trait value was treated as the phenotypic value 310 

for this line in this experiment (Xing et al. 2002; Yu et al. 2011). For the IMF2 population, eight plants 311 

from each random cross were sampled and the average trait value was used as the phenotypic value for 312 

the F2 progeny of that cross. Trait values for each cross were measured twice in two consecutive years 313 

(1998 and 1999).  314 

Three omic datasets, i.e., genomic dataset, transcriptomic dataset, and metabolomic dataset, were 315 

only collected from the 210 RILs. Xie et al. (2010) and Yu et al. (2011) derived an ultra-high-density 316 

linkage map for these RILs, yielding genotype data represented by 1619 genetic bins. For each RIL, a 317 

genetic bin takes genotype value of 1 if the DNA in this bin is from Zhenshan 97, and 0 from Minghui 318 

63. The transcriptomic data consisted of 24,994 gene expression traits measured in tissues sampled from 319 

flag leaves of the 210 RILs in 2008 (Wang et al. 2014). RNAs were extracted from two biological 320 

replicates of each line, and then mixed in a 1:1 ratio for expression profiling by microarrays. Robust 321 

multi-array average (RMA) analysis was used for background correction and normalization. The 322 

metabolomic data for the 210 RILs consisted of 683 metabolites measured from flag leaves and 317 323 

metabolites measured from germinated seeds (Gong et al. 2013). Two biological replicates were sampled 324 

for flag leaves in 2009, while for germinated seeds one biological replicate was sampled in 2009 and the 325 

second biological replicate was sampled in 2010. Metabolomic data in both tissues were log2-326 
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transformed for statistical analysis to meet with the normality assumption. The average of two replicate 327 

measurements for a metabolite was used for analysis. 328 

The genotype of an IMF2 hybrid was deduced from the genotypes of two crossing parents. Let 
m

j  329 

and 
f

j  be 1p  vectors of the genotypes (1 for Zhenshan 97 and 0 for Minghui 63) for male and 330 

female RIL parents, respectively, where m = 1619. We define additive genotype of the IMF2 individual 331 

as 332 

    
m f

j j jz                               (1) 333 

and dominance genotype as  334 

 335 

  
m f

j j jw m                      (2) 336 

with j = 1, …, q, where q = 278. Therefore, the additive genotypes for the IMF2 population is defined as  337 

                                  
1{z ,...,z }T

qZ                         (3) 338 

and the dominance genotypes for the IMF2 population is defined as 339 

   
1{w ,...,w }T

qW                       (4)  340 

For the IMF2 population, 341 

 { ||W}X Z                (5) 342 

is a q×2p genotype matrix. Likewise, the metabolomic and transcriptomic data for the IMF2 population 343 

were not directly measured; rather, they were calculated from two crossing parents of each IMF2 hybrid 344 

in a similar way, with 
m

j  and 
f

j  representing metabolomic or transcriptomic measurements for the 345 

two RIL patents. 346 

 347 

Prediction methods 348 

Six statistical methods were used for prediction: (i) LASSO developed by (Tibshirani 1996) and 349 

implemented by GlmNet R program (Friedman et al. 2010); (ii) Henderson’s BLUP implemented in the 350 

R program written by (Xu et al. 2016); (iii) SSVS (also called Bayes B) developed by (George and 351 

McCulloch 1993); (iv) support vector machine using the radial basis function (SVM-RBF) implemented 352 
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in the R package kernlab (Karatzoglou et al. 2004); (v) support vector machine using the polynomial 353 

kernel function (SVP-POLY) implemented in the R package kernlab (Karatzoglou et al. 2004); and (vi) 354 

partial least squares (PLS) implemented in the R package pls (Wehrens and Mevik 2007).    355 

For the linear methods (LASSO, BLUP, SSVS and PLS), the single-omic-data regression is 356 

    y X                  (6) 357 

where y is the trait values, predictor variables X may be one of 𝑋𝑆𝑁𝑃, 𝑋𝑀𝐸𝑇and𝑋𝐸𝑋𝑃, where SNP, MET 358 

and EXP indicate the three omic datatypes, 𝛽  is the vector of regression coefficients, and 𝜀  is the 359 

random error which is normally distributed with N(0, σ2). The fully combined-omic-data regression 360 

becomes 361 

 SNP SNP MET MET EXP EXPy X X X                      (7) 362 

whereas other omic-data combined models have reduced format. Note in the BLUP method, more than 363 

one kinship matrix is needed to handle the mutually independent omic datasets. For IMF2 population 364 

with fully combined-omic-data regression, six kinships matrices were included in the model, with one 365 

for the additive effects and the other one for the dominance effects for each omic datatype. 366 

 Kernel methods are a class of algorithms for pattern recognition in machine learning. The most 367 

commonly used kernel methods include support vector machine (SVM) in which various kernel functions 368 

may be used for describe the relationship between dependent variable y and explanatory variable X, i.e., 369 

( | )y f X                      (8) 370 

Where 371 

                           
1

( | ) ( , )
n

j h jj
f X K X X 


              (9) 372 

and 𝐾ℎ(𝑋, 𝑋𝑗) is a kernel selected. In this study, we chose the Gaussian kernel (SVM-RBF) and the 373 

polynomial kernel (SVM-POLY) for implementation of SVM functions. 374 

Cross-validation 375 

In this study, a 10-fold cross-validation was used to evaluate the predictability of each prediction method 376 

and combination of omic datasets. The trait predictability is defined as the squared correlation between 377 

the observed trait values and the predicted EBVs in cross-validation environment. The predictability 378 

calculated for a sample depends on how the sample is partitioned into different subsets for cross-379 

validation. Therefore, 100 repeated cross-validations were performed for each analysis by randomly 380 

partitioning data in different ways and the average of the 100 predictabilities from the 100 repeated cross-381 

validations was used for the study. 382 
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