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Abstract 
Background: Somatic mutations promote the transformation of normal cells to cancer. Accurate iden-

tification of such mutations facilitates cancer diagnosis and treatment. A number of callers have been 

developed to predict them from paired tumor/normal or unpaired tumor sequencing data. However, the 

small size of currently available experimentally validated somatic sites limits evaluation and then im-

provement of callers. Fortunately, NIST reference material NA12878 genome has been well-character-

ized with publicly available high-confidence genotype calls.  

Results: We used BAMSurgeon to create simulated tumors by introducing somatic small variants 

(SNVs and small indels) into homozygous reference or wildtype sites of NA12878. We generated 135 

simulated tumors from 5 pre-tumors/normals. These simulated tumors vary in sequencing and subse-

quent mapping error profiles, read length, the number of sub-clones, the VAF, the mutation frequency 

across the genome and the genomic context. Furthermore, these pure tumor/normal pairs can be mixed 

at desired ratios within each pair to simulate sample contamination.  

Conclusions: This database (a total size of 15 terabytes) will be of great use to benchmark somatic 

small variant callers and guide their improvement. 

Key words: simulated tumors; somatic small variants; diverse in silico tumor characteristics; somatic 

callers’ benchmark; somatic callers’ improvement 

Contact information: jing.mengrabbit@gmail.com 

 

 

Background  

Somatic mutations promote the transformation of normal cells to cancer 

[1-3]. Like germline mutations, the length of affected nucleotide se-

quences exclusively in cancer cells ranges from one nucleotide to entire 

chromosomes [4, 5]. The ultimate goal of cancer research is precise ther-

apeutic targeting. To achieve the goal, a series of studies have been con-

ducting, including but not limited to: identifying genes that drive cancer 

progression [6-8]; classification of cancer subtypes to establish the corre-

lation between molecular properties and clinical outcomes [9, 10]; and 

linking environmental factors to mutational patterns in cancer genomes 

[11, 12]. Accurate identification of somatic mutations is the first step to 

therapeutic precision, which is followed by the aforementioned studies, 

and plays a key role in clinical diagnosis. 

   In an ideal error-free situation, it is not difficult to call somatic mutations 

from paired tumor/normal next generation sequencing data, as only at so-

matic sites are there bases different from the reference alleles in the tumor 

genome, but not in the matched normal genome. However, biological and 

technological factors, including intra-tumor heterogeneity, sample con-

tamination, uncertainties in base sequencing and read alignment, pose a 

big challenge to somatic mutation discovery [13-15]. Specifically, studies 

on tumor clonal and sub-clonal structures revealed that tumor cells vary in 

the way they are abnormal, and some mutations may be observed in only 

a small fraction of tumor cells in a patient [16, 17]. Furthermore, it is very 

hard to obtain absolutely pure tumor and normal samples by current ex-

perimental technologies, which may result in underestimated variant allele 

fractions (VAF) in tumor or overestimated VAFs in normal. In addition, 

technological limitations bring uncertainties in base calling and read align-

ment. These uncertainties complicate the transformation from aligned data 

to allelic counts. 

   A collection of callers and ensembles emerged to detect somatic small 

mutations from matched tumor/normal, or unmatched tumor sequencing 

data [18-23]. Designed for the same purpose, callers and ensembles are 

different in the diversity level of noises taken into account, in the way 

noises are modelled, in the threshold used to report a mutation as well as 

in the stringency level to define a false positive in post-call filtering. Val-

idated somatic mutations are valuable resources to evaluate the perfor-

mance of these callers and guide their improvement. However, it is re-

source intensive and time consuming to generate ground truth somatic 

sites [24, 25]. As different sequencing platforms have their own error pat-

terns, multi-platform data from the same sample are needed to comple-

ment each other. Standard 30x-50x depths for whole genomes and 100x-

150x depths for exomes are not adequate for detection of somatic events 

in tumors consisting of genetically heterogeneous tumor cells. Deep se-

quencing is required to offer the desired sensitivity to sub-clonal events. 

Arbitration is essential for sites whose genotypes disagree between callers 
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or datasets. For the currently available small-sized validated events of in-

dividual tumors, they may suffer bias towards one particular validation 

technology. 

   Fortunately, simulation of genomic data enables us to generate in silico 

tumors with completely known somatic mutations. Compared with wet-

lab validation, computer simulation is much more flexible. Simulated mu-

tations can happen at any genomic site, with any VAF, in any genomic 

context, and have no limitation in their mutation spectrum. Such flexibil-

ities facilitate characterization of somatic mutation callers and interroga-

tion of their weaknesses. BAMSurgeon is a tool to simulate tumor ge-

nomes from normal ones, which was developed by ICGC-TCGA DREAM 

Somatic Mutation Calling Challenge [26]. It randomly modifies reads 

spanning the desired sites in the normal or pre-tumor BAM files based on 

the specified VAFs, and then realigns the modified reads before merging 

them back into the original BAMs. The modified BAMs serve as tumors 

with successful spike-in mutations. This kind of simulated tumors are 

more realistic compared with those from a reference genome assembly, as 

the underlying biases and error profiles resulting from sequencing tech-

nologies and library construction methods are maintained [27]. Hap-

Map/1000 Genomes CEU female NA12878 is the first well-characterized 

whole-genome reference material from the National Institute of Standards 

and Technology (NIST) [24, 28]. Its high-confidence genotype calls that 

include single nucleotide polymorphisms (SNPs), small (1-50 bp) inser-

tions and deletions (indels) and homozygous reference sites have been de-

veloped and are publicly available. Furthermore, a large set of sequencing 

data of NA12878 are freely accessible to researchers [29]. All these lay a 

foundation for the work presented here. 

   Our work generated a database of 135 simulated tumor genomes for pub-

lic use. These simulated tumors were created by BAMSurgeon that intro-

duced small variants (single nucleotide variants (SNVs and small indels) 

into homozygous reference sites of high confidence of the well-character-

ized NA12878 genome. To increase the diversity level of sequencing and 

subsequent mapping errors, we used the NA12878 data (four whole ge-

nomes and one exome) from three sequencing centers with different li-

brary designs and sample preparations as pre-tumor or normal. Starting 

with each pre-tumor, 27 increasingly challenging tumors were simulated. 

The data complexity is displayed in the mutation frequency across the ge-

nome, the number of sub-clones and the VAFs. Since local copy number 

variation (CNV) and tumor ploidy can be computationally generalized to 

the factor of VAF at each genomic site, we did not include them as factors 

of data complexity. These pure tumor/normal pairs can be mixed at desired 

ratios within each pair to further simulate sample contamination. To-

gether, this database of diverse simulated tumors is of great use to bench-

mark somatic small variant callers’ performance and improve their accu-

racy metrics. 

Construction and content 

Data sets 

We show the procedure about how to develop simulated tumors from pre-

tumors/normals in Figure 1. To enhance analysis of different sequencing 

and subsequent mapping error profiles, we used four whole genomes and 

one exome Illumina data for NIST reference material NA12878 as pre-

tumor. Table 1 and Supplemental Material give detailed information about 

these five pre-tumor/normal sequencing data. Two whole genomes are 

part of a deep depth (~300x) dataset of 2x148 paired end reads (which is 

available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST 

_NA12878_HG001_HiSeq_300x/) [29]. This dataset was made from 14 

libraries in total, and two whole genomes in our work each contained 4 

libraries. The other two whole genomes are from a high depth (more than 

200x) dataset of 2x100 paired end reads 

(http://www.ebi.ac.uk/ena/data/view/ERS179577) [28]. The exome data 

is of 2x100 paired ends and accessible from ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG00 

1_HiSeq_Exome/. We did not directly use the BAM files provided. In-

stead, we downloaded the FASTQ format files first, used BWA to map the 

reads to the human reference genome hg38/GRCh38 with default settings 

[30], marked PCR and optical duplicates with Picard, realigned the raw 

gapped alignment and adjusted base quality scores with GATK [31]. The 

resulting pre-tumor BAM files are NA12878_HiSeq1_normal.bam, 

NA12878_HiSeq2_normal.bam, NA12878_Exome_normal.bam, 

NA12878_Illumina1_normal.bam and NA12878_Illumina2_normal.bam. 

   The high-confidence genotype calls for NA12878 are contained in two 

files: the BED format file that includes the genomic regions whose geno-

types were identified confidently and the VCF file for small variants. The 

genomic sites that are in the BED file and not in the VCF file are homo-

zygous reference allele sites. Such sites have a possibility to get mutated 

to harbor somatic mutations in the simulated tumors by BAMSurgeon. 

Currently, two resources of high-confidence genotype calls for NA12878 

are available: NIST Genome in a Bottle (GIAB) and Illumina’s Platinum 

Genomes (PG) [24, 28]. We used the latest GIAB version v3.3.2 call set 

under GRCh38 available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/releas 

e/NA12878_HG001/NISTv3.3.2/GRCh38/. For the PG call set, we used 

the v2016-1.0 under hg38/GRCh38 at ftp://ussd-ftp.illumina.com/2016-

1.0/hg38/. We also note the availability of PG v2017-1.0 call set, however, 

it was not released at the time of preparing our work. 

Generating target regions to receive spike-ins 

Given two sources of the BED format file consisting of genomic regions 

with highly confident genotype calls, we used the simple consensus ap-

proach to further exclude possible uncertainties, that is, we chose only the 

genomic sites that are both an element of GIAB and PG BED file. The 

result is referred to as the intersect BED file here. We then transformed 

the VCF file from GIAB and PG into the BED format. This step generated 

the BED file called VCF2BED for each source. The genomic regions that 

are present only in the intersect BED file and not in the GIAB and PG 

VCF2BED files have homozygous reference genotypes. They are target 

regions from which we can randomly select to receive spike-in somatic 

mutations. 

   The aforementioned file with target regions was generated without con-

sidering the specific sample BAM files. It needs to be modified when it 

comes to the different pre-tumor sequencing data. For each pre-tumor 

BAM file, we first calculated the depth of each genomic site within the 

target regions by SAMtools depth (v1.3.1) [32]. The target regions were 

filtered by excluding the genomic sites with the depth of lower than 10. 

The remaining regions were merged by BEDtools merge (v2.26.0) to com-

bine book-end sites or intervals [33], which are the final targets to be 

played with in the simulation step. The pre-tumor BAM files in the same 

order as detailed in the subsection of Data sets contain 2295167652, 

2294894981, 86922743, 2295481015 and 2296634693 target sites respec-

tively. 

Selecting from target regions for BAMSurgeon spike-in 
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From each file with final target regions, we used the python script ran-

domsites.py in the BAMSurgeon distribution to randomly select genomic 

sites for SNV spike-in. Then BEDtools subtract (v2.26.0) was performed 

to extract the genomic sites that are within the final target regions and not 

selected for SNV spike-ins. The genomic regions from the subtract step 

were fed into the randomsites.py script for BAMSurgeon addindel input 

this time. For the input to BAMSurgeon, the randomsites.py generates a 

list of genomic sites with four columns for addsnv and two more columns 

for addindel. We filled the fourth column (1-based) with our specified val-

ues and kept the other columns untouched. We also kept the default mu-

tated bases returned by BAMSurgeon.  

   For each pre-tumor, we simulated three types of mutation loads across 

the genome for SNV spike-ins: 2 mutations per MB (2/MB), 5 mutations 

per MB (5/MB) and 10 mutations per MB (10/MB). The mutation load for 

small indel spike-ins was 10% of that of SNVs. There were three types of 

cell sub-population composition to each mutation load: 2 sub-populations 

(subclone_2, expected VAFs of 0.5 and 0.35), 3 sub-populations (sub-

clone_3, expected VAFs of 0.5, 0.35 and 0.2) and 4 sub-populations (sub-

clone_4, expected VAFs of 0.5, 0.35, 0.2 and 0.1). Within a tumor, each 

sub-population took the same weight. For instance, for a simulated tumor 

with four sub-populations, four types of mutations in terms of the VAF 

each represented 25% of the total number. To create mutations in a diver-

sity of genomics contexts, we performed three random selections for the 

same characteristics (mutation frequency across the genome and the num-

ber of cell sub-populations). These parameters gave 27 simulated tumors 

in total from each pre-tumor. 

Simulating somatic small variants with BAMSurgeon 

We fed pre-tumor BAM files and their corresponding addsnv input to 

BAMSurgeon, and this step created simulated tumors with somatic SNVs. 

The simulated tumors from this step have some records that do not respect 

the sorting order of BAM file. So we resorted by position and indexed the 

BAM files by SAMtools (v1.3.1). Then they were fed into BAMSurgeon 

as the value of option -f with their corresponding addindel input to receive 

somatic small indels. The resulting BAM files were resorted and indexed 

before they could be used for benchmarking somatic small variant callers. 

The parameters used when running BAMSurgeon to generate addsnv in-

put, addindel input and simulated tumors are provided in Supplemental 

Material.   

   Take the simulated tumor BAM file NA12878_1_snv_indel_sorted.bam 

for instance, which has 2 sub-clones (expected VAFs of 0.5 and 0.35). Its 

somatic SNV and small indel mutation frequency are 2/MB and 0.2/MB 

respectively. To generate this tumor, we used BAMSurgeon to modify the 

pre-tumor/normal BAM file NA12878_HiSeq1_normal.bam based on the 

output of the randomsites.py script for BAMSurgeon addsnv input. The 

output was NA12878_1_snv.bam and snv_1.vcf. The BAM file was re-

sorted and indexed to be NA12878_1_snv_sorted.bam. Somatic small in-

dels in the output of the randomsites.py script for BAMSurgeon addindel 

input were added to it to yield NA12878_1_snv_indel.bam and in-

del_1.vcf. The operations of resorting and indexing were performed on 

this BAM file and made the final tumor 

NA12878_1_snv_indel_sorted.bam available. The snv_1.vcf and in-

del_1.vcf from BAMSurgeon were unordered, so we sorted them using 

natural ordering by vcf-sort (v0.1.15) [34]. Then the sorted VCF files were 

bgzipped (v1.2. and tabix indexed by SAMtools (v1.3.1) before being pro-

vided to vcf-merge (v0.1.15) to get merged by genomic position. The re-

sulting snv_indel_1.vcf file contains ground truth somatic SNVs and small 

indels in the simulated tumor NA12878_1_snv_indel_sorted.bam. Re-

searchers need both of them and the matched pre-tumor/normal 

NA12878_HiSeq1_normal.bam for evaluation and benchmark.  

Table 1. Description of pre-tumor/normal sequencing data of NIST ref-

erence material of NA12878 for our simulation work. The pre-tumors/nor-

mals are showed by their corresponding BAM file names without exten-

sion 

Pre-tumor 

(BAM) 
 

 

 
 

Sequencing 

machine 
(Illumina) 

depth Read 

length 

Sequencing  

content 

NA12878_HiSe
q1_normal 

HiSeq 2500 50 148 Genome 

NA12878_HiSe

q2_normal 

HiSeq 2500 50 148 Genome 

NA12878_Exo

me_normal 

HiSeq 2500 230 100 Exome 

NA12878_Illu
mina1_normal 

HiSeq 2000 50 100 Genome 

NA12878_Illu

mina2_normal 

HiSeq 2000 50 100 Genome 

 

Benchmarking with simulated tumors 

To accurately benchmark somatic callers, we need to focus on just the re-

gions with highly confident genotype calls. Besides, to comprehensively 

benchmark somatic callers in terms of accuracy metrics, every genomic 

site in the focused regions should have one of the three genotype calls: 

wildtype/reference site, germline site and somatic site. In the context of 

benchmarking with simulated tumors, successfully spike-in somatic small 

variants are positives to calculate sensitivity, and the rest of sites 

(germlines and wildtypes) are negatives to calculate specificity. For each 

of the pre-tumors/normals, we generated a benchmark BED file named 

NA12878_HiSeq1_benchmark.bed, NA12878_HiSeq2_benchmark.bed, 

NA12878_Exome_benchmark.bed, NA12878_Illumina1_benchmark.bed 

and NA12878_Illumina2_benchmark.bed. The benchmark BED files 

were generated by intersecting the aforementioned intersect BED file with 

each pre-tumor/normal BAM file. To benchmark and tune somatic small 

variant callers, a pair of simulated tumor and its pre-tumor/normal are in-

puts to output a VCF file with predicted somatic sites. Sensitivity is cal-

culated by evaluating the predicted VCF file against its corresponding 

ground truth VCF file, and the remaining sites that are in the benchmark 

BED file but not in the ground truth VCF file are used to calculate speci-

ficity.  
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Figure 1. The procedure about how to create simulated tumors by BAM-

Surgeon from pre-tumor/normal BAM files to benchmark and tune callers 

of somatic small variants. It started with PG and GIAB high-confidence 

genotype calls of NIST reference material NA12878. To further eliminate 

possible biases towards any particular sequencing technology, read map-

per and variant caller used for identifying NA12878 genotype calls, we   

took only the genomic sites that are shared by both GIAB and PG BED 

files, and the resulting file is called the intersect BED file. We obtained 

the target regions with homozygous reference genotypes by masking out 

the genomic sites with small variants and SNVs in the intersect BED file. 

Next, for each pre-tumor/normal BAM file, BAMSurgeon randomly se-

lected sites from its target regions for SNV and small indel spike-in. These 

selected genomic sites in BED format and pre-tumor specific BAM files 

were provided to BAMSurgeon to yield simulated tumors and ‘truth’ VCF 

files with successfully spike-in somatic sites. To benchmark and tune so-

matic small variant callers, a pair of synthetic tumor and its pre-tumor/nor-

mal acts as input to return a VCF file with predicted somatic sites, and 

accuracy metrics are obtained by evaluating the predicted VCF file against 

its corresponding ground truth VCF file and the benchmark BED file.  

Utility and discussion 

Overview of the database of simulated tumors 

Our work is motivated by the lack of ground truth somatic mutations to 

benchmark somatic callers. It is the product of the characterization of 

NIST reference material NA12878 genome and state-of-the-art simulation 

tool BAMSurgeon. Two projects have been working on identifying geno-

types of NA12878 with high accuracy: NIST GIAB and Illumina’s PG. 

Their own version’s genotype calls are publicly available on their corre-

sponding websites. These genotypes calls include high-confidence SNPs, 

small indels and homozygous reference sites. BAMSurgeon simulates tu-

mors by introducing synthetic mutations to original genomes. It modifies 

the reads spanning genomic sites to get these sites mutated. The reads cov-

ering the desired sites each have a probability that is equal to the user-

specified VAF to be selected and get modified into the variant allele. This 

way, simulated tumors are realistic and keep error profiles from library 

preparation and sequencing machines.  

   Our website contains 135 simulated tumors, which were yielded by in-

troducing small variants into the homozygous reference sites or wildtype 

sites of NA12878 genome by BAMSurgeon. Every 27 of them were cre-

ated from one normal BAM file. Figure 2 shows the organization of these 

simulated tumors on our website, and the file Simulated_tumor_infor-

mation there gives detailed information about the characteristics of these 

tumors. The fold Ground_truth_VCF_files comprises all the ground truth 

files with somatic SNVs and small indels. The rest five folds are named 

after the pre-tumor/normal BAM file without the extension. Within them 

are the pre-tumor/normal BAM file and 27 corresponding simulated tu-

mors. These tumor files have names from NA12878_1_snv_indel_sorted 

.bam to NA12878_135_snv_indel_sorted.bam. To benchmark somatic 

callers, a pre-tumor/normal BAM file, one simulated tumor from 27 files 

and the corresponding ground truth VCF file with the same index/number 

as that of the simulated tumor are needed. Within one fold, these tumors 

are different in the number of sub-clones, the VAF, the mutation frequency 

across the genome and the mutation site. Between folds, simulated tumors 

are different in sequencing and subsequent mapping error profiles, read 

length and capture content.  

Genomic features of spike-in somatic sites 

Due to the parameters’ constrain in BAMSurgeon, not all chosen spike-

ins can be successful. Supplemental Table S2 provides the successful rate 

of somatic SNV and small indel spike-ins for each simulated tumor. The 

overall successful rate for somatic small indel spike-ins is higher than that 

of somatic SNV spike-ins. We chose 1402598 somatic SNV sites and 

141743 somatic small indel sites respectively. 1285692 somatic SNV sites 

were mutated successfully (successful rate is about 0.917). The successful 

rate is about 0.991 for somatic small indels. Of the 135 simulated tumors, 

the minimum, median and maximum successful rate are 0.887, 0.932 and 

0.960 for somatic SNV spike-ins, and 0.889, 0.989 and 1 for somatic small 

indel spike-ins, respectively. 

   Considering the importance of genomic context in somatic SNV calling, 

we extracted the three bases (from -1 bp to +1 bp) centered on the simu-

lated somatic sites of hg38 reference genome for successful and unsuc-

cessful somatic SNV spike-ins. Figure 3 shows the fraction of 64 trinucle-

otide contexts for somatic SNV spike-ins. Successful and unsuccessful so-

matic SNV sites display similar distributions of trinucleotide contexts. 

AAA and TTT have the highest proportions for both types of somatic SNV 

sites. On the contrary, TCG, CGT, CGA and ACG are the least contribu-

tors, with a proportion of approximately 0.005. 

   

PG BED file 

 

Intersect BED file 

GIAB BED file 

 

PG VCF file GIAB VCF file 

Target regions with homozygous 

reference genotypes 

 

Pre-tumor BAM file 

 

Pre-tumor specific target regions 

BAMSurgeon addindel and addsnv input 

Simulated tumor and ground truth to benchmark and improve so-

matic small variant callers 
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Figure 2. The organization of simulated tumors on our website. The file Simulated_tumor_information provides detailed information on the characteristics 

of these tumors. The fold Ground_truth_VCF_files comprises all the ground truth files with somatic SNVs and small indels. The remaing five folds are 

named after the pre-tumor/normal BAM files without the extension, and each of them includes the pre-tumor/normal BAM file, benchmark BED file and 

27 corresponding simulated tumors. 

Figure 3. The fraction of 64 trinucleotide contexts for successful somatic SNV sites (left panel) and unsuccessful ones (right panel). Three bases (from -

1 bp to +1 bp) centered on the simulated somatic sites of hg38 reference genome were extracted for successful and unsuccessful somatic SNV spike-ins 

respectively. Then we calculated the proportion by dividing the number of somatic SNVs with a type of trinucleotide context by the total number.  
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Table 2. The category of known repeats in RepeatMasker regions and non-repeat sequence to which the simulated somatic SNV sites belong. Others 

stands for non-repeat sequence. 

 Type of genomic sequence Number Proportion  Number Proportion 

 DNA 37192 0.0289  796 0.0068 

 LINE 240110 0.1868  60904 0.5210 

 Low_complexity 7498 0.0058  293 0.0025 

 LTR 102532 0.0798  7471 0.0639 

 RC 143 0.0001  0 0 

 Retroposon 3449 0.0027  3869 0.0331 

 RNA 44 3.4228e-05  3 2.5663e-05 

Successful spike-in rRNA 68 5.2898-05 Unsuccessful spike-in 4 3.4217e-05 

somatic SNV sites Satellite 3867 0.003 somatic SNV sites 494 0.0042 

 scRNA 68 5.2898-05  4 3.4217e-05 

 Simple_repeat 40715 0.0317  1949 0.0167 

 SINE 287069 0.2233  23541 0.2014 

 snRNA 141 0.0001  4 3.4217e-05 

 srpRNA 116 9.0238e-05  3 2.5663e-05 

 tRNA 37 2.8783e-05  3 2.5663e-05 

 Unknown 224 0.0002  2 1.7108e-05 

 Others 562218 0.4374  17561 0.1502 

Short interspersed nuclear elements (SINE), which include ALUs; Long interspersed nuclear elements (Bettegowda, et al.); Long terminal repeat elements (Alioto, et al.), 

which include retroposons; DNA repeat elements (DNA); Simple repeats (micro-satellites); Low complexity repeat; Satellite repeat; RNA repeat (including RNA, tRNA, 

rRNA, snRNA, scRNA, srpRNA); RC (Rolling Circle).  

Table 3. The category of known repeats in RepeatMasker regions and non-repeat sequence to which the simulated somatic small indel sites belong. 

Others stands for non-repeat sequence. 

 Type of genomic sequence Number Proportion  Number Proportion 

 DNA 3821 0.0273  7 0.0052 

 LINE 29805 0.2127  647 0.4814 

 Low_complexity 817 0.0058  2 0.0015 

 LTR 11039 0.0788  46 0.0342 

 RC 20 0.0001  0 0 

 Retroposon 732 0.0052  31 0.0231 

 RNA 8 5.7103e-05  0 0 

Successful spike-in rRNA 3 2.1414e-05 Unsuccessful spike-in 0 0 

somatic  small indel sites Satellite 453 0.0032 somatic small indel sites 1 0.0007 

 scRNA 11 7.8517e-05  0 0 

 Simple_repeat 4492 0.0321  7 0.0052 

 SINE 31119 0.2221  394 0.2932 

 snRNA 19 0.0001  0 0 

 srpRNA 11 7.8517e-05  0 0 

 tRNA 2 1.4276e-05  0 0 

 Unknown 22 0.0002  0 0 

 Others 57723 0.4120  209 0.1555 

Short interspersed nuclear elements (SINE), which include ALUs; Long interspersed nuclear elements (Bettegowda, et al.); Long terminal repeat elements (Alioto, et al.), 

which include retroposons; DNA repeat elements (DNA); Simple repeats (micro-satellites); Low complexity repeat; Satellite repeat; RNA repeat (including RNA, tRNA, 

rRNA, snRNA, scRNA, srpRNA); RC (Rolling Circle). 
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   Then to determine the category of known repeats to which the simulated 

sites belong, we downloaded the RepeatMasker-masked regions 

rmsk.txt.gz from http://hgdownload.cse.ucsc.edu/goldenpath/hg38/data-

base, which contains a detailed annotation of the repeats present in hg38 

human reference genome and was generated by Arian Smit’s Repeat-

Masker Program at http://www.repeatmasker.org/. The format description 

of file rmsk.txt is available at http://genome.ucsc.edu/cgi-bin/hgTables. 

We mapped the genomic sites of successful and unsuccessful somatic 

SNVs and small indels to the regions in rmsk.txt by BEDOPS bedmap 

[35]. Tables 2 and 3 give the detailed composition of 16 different types of 

repeat sequence and non-repeat sequence (others). For successful somatic 

sites, approximately half of them occur at regions of non-repeat sequence, 

0.4374 for somatic SNV sites and 0.4120 for somatic small indel sites. 

When it comes to unsuccessful somatic sites, only approximately 0.15 of 

them lie within regions of non-repeat sequence, and almost half of them 

(0.5210 and 0.4814 for somatic SNVs and small indels respectively) come 

from regions of LINE of repeat sequence. 

Benchmark BED files 

Due to the limitations of current sequencing technologies, read mappers 

and variant callers, it is impossible to identify the genotype call of every 

genomic site across the whole genome. Thus, to accurately and compre-

hensively benchmark somatic small variant callers, we need to focus on 

just the regions where every genomic site has one of the three high-confi-

dence genotypes: wildtype or reference site, germline site and somatic site. 

To meet the purpose, we created a benchmark BED file for each of the 

pre-tumors/normals, named NA12878_HiSeq1_benchmark.bed, 

NA12878_HiSeq2_benchmark.bed, NA12878_Exome_benchmark.bed, 

NA12878_Illumina1_benchmark.bed and       NA12878_Illumina2_bench 

mark.bed, which contain 2302950972, 2302925972, 991374103, 

2303071124 and 2303135374 genomic sites respectively. When doing 

benchmark, somatic small variant callers take in a pair of simulated tumor 

and its pre-tumor/normal, and yield a VCF file with predicted somatic 

sites. The VCF file and its corresponding ground truth VCF file are used 

to calculate sensitivity. The negatives are the remaining genomic sites that 

are in the benchmark BED file but not in the ground truth VCF file, which 

are used to calculate specificity. 

Conclusions 

Accurate detection of somatic sites is critical to clinical diagnosis. A lot 

of somatic callers have been developed so far to identify somatic small 

variants from matched tumor/normal, or unmatched tumor sequencing 

data. However, the limited number of validated somatic sites challenges 

the evaluation and then improvement of somatic callers. Fortunately, com-

puting simulation of genomic data makes it possible to create simulated 

tumors with ground truth somatic mutations.   

   Genotype calls with high confidence of NIST reference material 

NA12878 genome are publicly available. The genotype calls consist of 

SNPs, small indels and homozygous reference sites. Also, different types 

of sequencing data of NA12878 are freely accessible to researchers. Given 

these available resources corresponding to NA12878, our work introduced 

somatic variants into homozygous reference or wildtype sites of its ge-

nome. BAMSurgeon performed the work of introducing somatic variants 

by modifying the reads covering the chosen genomic sites. This way, sim-

ulated tumors are more realistic, as they maintain the underlying error pro-

files stemming from library construction methods, sequencing technolo-

gies and then mapping algorithms.  

   We created 135 simulated tumors with somatic SNVs and small indels 

in total from 5 pre-tumor/normal BAM files. These pre-tumors/normals 

are different from each other in sequencing and subsequent mapping error 

profiles, read length, the number of sub-clones, the VAF, the mutation 

frequency across the genome and the genomic feature. Furthermore, to 

evaluate somatic callers’ performance in the situation of sample contami-

nation, contaminated samples can be simulated by mixing these pure tu-

mor/normal pairs at desired ratios. Together, this database of simulated 

tumors with high diversity will be a valuable resource to benchmark so-

matic small variant callers and guide their improvement.  
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