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Abstract 

Moonlighting proteins are a class of proteins having multiple distinct functions, which 

play essential roles in a variety of cellular and enzymatic functioning systems. Although 

there have long been calls for computational algorithms for the identification of 

moonlighting proteins, research on approaches to identify moonlighting long non-coding 

RNAs (lncRNAs) has never been undertaken. Here, we introduce a methodology, 

MoonFinder, for the identification of moonlighting lncRNAs. MoonFinder is a statistical 

algorithm identifying moonlighting lncRNAs without a priori knowledge through the 

integration of protein interactome, RNA-protein interactions, and functional annotation of 

proteins. We identify 155 moonlighting lncRNA candidates and uncover that they are a 

distinct class of lncRNAs characterized by specific sequence and cellular localization 

features. The non-coding genes that transcript moonlighting lncRNAs tend to have 

shorter but more exons and the moonlighting lncRNAs have a localization tendency of 

residing in the cytoplasmic compartment in comparison with the nuclear compartment. 

Moreover, moonlighting lncRNAs and moonlighting proteins are rather mutually 

exclusive in terms of both their direct interactions and interacting partners. Our results 

also shed light on how the moonlighting candidates and their interacting proteins 

implicated in the formation and development of cancers and other diseases. 

Keywords: moonlighting; long non-coding RNAs; RNA-protein interactions; functional 

module; function similarity 

1. Introduction 

     Protein moonlighting is a common phenomenon in nature involving a protein with a 

single polypeptide chain that can perform more than one independent cellular function 

(Boukouris et al, 2016; Monaghan & Whitmarsh, 2015). Enzymes, receptors, ion 

channels or chaperones are the typical form of moonlighting proteins (MPs). Enzyme is 

the most common form of moonlighting proteins whose primary function is enzymatic 

catalysis, but they are also in possession of additional roles such as signal transduction, 
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transcriptional regulation, apoptosis, motility, and structural proteins (Jeffery, 2015). For 

example, crystallins, a class of well-studied moonlighting proteins, function as enzymes 

when expressed at low levels in many tissues, but are densely packed to form lenses 

when expressed at high levels in eye tissue (Piatigorsky et al, 1988; Piatigorsky & 

Wistow, 1989). The genes encoding crystallins need to sustain functions of both 

catalytic and transparency maintenance. Another example is glycolysis, an ancient 

universal metabolic pathway, in which a high percentage of proteins are moonlighting 

proteins (Boukouris et al, 2016; Sriram et al, 2005). Moreover, some proteins work on 

their moonlighting by being assembled to supramolecular, such as the ribosome, which 

usually composed of more than a hundred of proteins and RNAs. However, the studies 

of moonlighting merely concentrated on proteins and the genes coding them, yet the 

moonlighting of non-coding RNAs has not been investigated, despite the fact that 

ncRNAs have gained widespread attention due to their functional importance over the 

last decade (Chen, 2016b; Liao et al, 2011; Quinn & Chang, 2016; Zhou et al, 2017a). 

     Currently, the information of MPs, such as protein functions, cell localization, and 

primary structures, is scattered across a number of publications, since the MPs perform 

a variety of functions in different tissues and cell types. Some researchers have 

summarized the literature about MPs from different aspects of the functional diversity, 

such as regulation circuits or signaling pathways. The Jeffery lab constructed a 

manually curated database MoonProt, which consists of over 200 MPs that have been 

experimentally verified (Mani et al, 2015). The structures and function information about 

the MPs can aid researchers to understand how proteins function in a moonlighting 

manner and help in designing proteins with novel functions. Min et al. summarized the 

MPs from the perspective of a coupled intracellular signaling pathway (Min et al, 2016). 

Numerous proteins are localized in more than one compartment in cells and the 

aberrant translocation of proteins may cause cancer or other disorders. Hence, it is 

necessary to study the localization dynamic and trans localization activity of MPs. 

Monaghan et al. reviewed several MPs with dual mitochondrial and nuclear functions 

(Monaghan & Whitmarsh, 2015). It is pointed out that the nuclear moonlighting of 

mitochondrial proteins is part of a mitochondria-to-nucleus signaling pathway in cells. 

They also discussed various mechanisms commanding the dual localization of proteins 

and indicated that the nuclear moonlighters perform as a regulating loop to maintain 

homeostasis in mitochondria. Boukouris et al. summarized the moonlighting functions of 

metabolic enzymes in the nucleus (Boukouris et al, 2016). They proposed a new 

mechanistic connection between metabolic flux and differential expression of genes, 

which is implemented via nuclear translocation or moonlighting of nuclear metabolic 

enzymes. This mechanistic link aids cells in adapting a changing environment in normal 

and disease states, such as cancer, and thus has the potential to be explored for novel 

therapeutic target. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261511doi: bioRxiv preprint 

https://doi.org/10.1101/261511


3 
 

     In parallel to the serendipitous findings of MPs through experiments, some 

computational approaches have been developed to predict MPs in recent years (Pritykin 

et al, 2015). Specifically, three algorithms were proposed for moonlighting protein 

identification, MoonGO (Chapple et al, 2015), MPFit (Khan & Kihara, 2016), and 

DextMP (Khan et al, 2017), executing statistic, machine learning, and text mining 

techniques, respectively. These studies investigated different aspects of MPs such as 

conserved sequence domains, structural disorders, protein interaction patterns, and 

network topology. MoonGO first identifies overlapping protein clusters in the human 

interactome (Chapple et al, 2015). Then, the clusters are annotated to the Gene 

Ontology (GO) terms of biological process. GO terms annotating more than half of a 

cluster’s proteins are assigned to the cluster. Each individual protein then inherits the 

annotations of its clusters in addition to its own. Finally, the proteins shared by dissimilar 

functional clusters are identified as MPs. MPFit uses a variety of protein features to 

address the diverse nature of MPs, including functional annotation, protein interactions, 

gene expression, phylogenetic profiles, genetic interactions, network-based graph 

properties, and protein structural properties (Khan & Kihara, 2016). In general, MPs are 

assigned in more clusters because they interact with proteins of diverse functions, so 

the number of clusters that a protein involved is used as an omics feature. For proteins 

that do not have an available record of certain features, an imputation step using 

random forest is used to predict the missing features. Eventually, these features are 

combined with machine learning classifiers to make moonlighting protein prediction. 

DextMP is a text mining algorithm consisting of four logical steps (Khan et al, 2017). 

First, it extracts textual information of proteins from literature and functional description 

in the UniProt database. Next, it constructs a k-dimensional feature vector from each 

text using three language models, i.e., paragraph vector, Term Frequency-Inverse 

Document Frequency (TFIDF) in the bag-of-words category, and Latent Dirichlet 

Allocation (LDA) in the topic modeling category. Third, using four machine learning 

classifiers, a text is classified to either MP or non-MP based on the text features. Finally, 

the text predictions for each protein are separately summarized to predict which ones 

are MPs.  

     Long non-coding RNAs (lncRNAs) is a subclass of non-coding RNAs with little 

coding potential whose transcript consists of no less than 200 nucleotides. lncRNAs are 

implicated in a variety of biological processes through diverse functional mechanisms 

such as chromatin remodeling, chromatin interactions, and functioning as competing 

endogenous RNAs (Ferre et al, 2016). Specific expression patterns of lncRNA in cells 

correspond to certain cell development and disorder. Nuclear and cytoplasmic lncRNAs 

can regulate gene expression and function in multiple ways, e.g., 1) affecting mRNA 

translation directly, 2) interfering with protein post-translational modifications to disturb 

signal transduction, 3) functioning as decoys for miRNAs and proteins, 4) acting as 

miRNA sponges, 5) interacting proteins to enhancer regions, and 6) encoding small 
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proteins and functional micro peptides, etc. (Cabili et al, 2015; Ferre et al, 2016; Quinn 

& Chang, 2016; Zhou et al, 2017b; Zhu et al, 2016). Many lncRNAs diversely reside in 

the nucleus and play an essential role as modulators for nuclear functions. Some others 

are translocated to the cytoplasm to enforce their regulatory roles. In some cases, these 

lncRNAs are implicated in an anterograde pathway bridging the nucleus and the 

mitochondria. Moreover, lncRNAs have a variety of subcellular localization patterns, 

which are not limited to specific nuclear and cytoplasm localization but also nonspecific 

localization in both the nucleus and cytoplasm (Barabasi & Oltvai, 2004; Buxbaum et al, 

2015). For the lncRNAs localized in multiple compartments, the intercommunication can 

modulate the interaction pattern or expression abundance, e.g. regulating the lncRNA 

abundance in one compartment may influence the function of the other cell 

compartment. Also, inappropriate moonlighting may trigger genetic diseases (Abumrad 

& Lange, 2006; Espinosa-Cantu et al, 2015; Min et al, 2016). Hence, it is necessary to 

study the localization dynamic and expression activity of moonlighting lncRNAs 

(mlncRNAs) and to investigate the mechanism of how the mlncRNAs modulate and 

switch the functions in the metabolic processes, which is of vital importance for cancer 

therapeutics and will provide tremendous opportunities for anti-cancer purposes (Du et 

al, 2013; Liu et al, 2014; Wang et al, 2015; Zhu et al, 2016). 

     We have demonstrated that using clustering algorithms is able to group proteins into 

functional modules allowing the identification of MPs (Chapple et al, 2015; Khan et al, 

2014; Pritykin et al, 2015). A module corresponds to a functional unit, which is 

composed of several closely interacted proteins involved in specific tasks in the cell. 

Therefore, it is promising to use the functional module approach to identify mlncRNAs 

that exhibit multiple but distinct functionalities. Our study is focused on the moonlighting 

of human lncRNAs, since lncRNAs are pervasively transcribed in the mammalian 

genome and several of them play the roles as oncogenic or tumor-suppressor genes in 

multiple cancers (Ning et al, 2016; Quinn & Chang, 2016; Wahlestedt, 2013; Zhu et al, 

2016). We first propose a novel algorithm MoonFinder to identify mlncRNAs that have 

multiple but unrelated functions. Then, we characterize the sequence features and the 

localization tendency of these mlncRNA candidates. After that, we construct a 

mlncRNA-module network and topologically analyzed the mlncRNAs with regard to the 

association with cancer, diseases, drug targets, and moonlighting proteins. We also 

predict two cancer lncRNAs exclusively interacted with functional modules from the 

network. 

2. Material and methods 

2.1. Data 
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2.1.1. Protein-protein interactions 

     The protein interaction network was constructed using data from InWeb_InBioMap, 

which is a large-scale, standardized, and transparent resource well suited for 

functionally interpreting large genomic datasets (Li et al, 2017). It is well known that the 

protein interaction network is extremely useful for implicating unsuspected pathways in 

cancer or other disorders, but the currently available datasets all come in different 

organisms with different interaction number, and the experimental methods are 

extensive and varied. InWeb_InBioMap contains about 0.6 million interactions between 

proteins, other than the computationally predicted ones, 57% of them were directly 

obtained from experiments with human proteins, and 95% from at least one organism, 

i.e., human, mouse, rat, cow, nematode, fly, or yeast. 

2.1.2. Subcellular localization of proteins 

     The information of protein localization was obtained from the Cell Atlas (Thul et al, 

2017), a comprehensive resource for human protein subcellular localization, which is 

also a subproject of the Human Protein Atlas (Ponten et al, 2008). All proteins were 

annotated to 14 major compartments and they can be further subdivided into 33 

subcellular locations on a single-cell level based on the cellular substructures. We only 

used the protein annotation of the major compartments. 

2.1.3. Protein module identification 

     We used ClusterONE to identify functional modules from the co-localized protein 

interaction network (Cheng et al, 2017; Nepusz et al, 2012). It executes a greedy growth 

algorithm to detect overlapping clusters by starting from a seed. Each processed cluster 

is supervised by a cohesiveness score to evaluate its separability. Lastly, the cluster 

pair with a high overlap score (>0.75) is combined and clusters of a small size (<3) and 

low density (<0.5) are filtered out. 

2.1.4. Gene Ontology and functional similarity 

     The Gene Ontology (GO) provides the functional annotation of gene products (Gene 

Ontology, 2015; Mazandu et al, 2017). The GO structure is organized as directed 

acyclic graphs to annotate gene products with appropriate functional terms from three 

orthogonal ontologies, Biological Process, Molecular Function, and Cell Component. 

We only used the terms of Biological Process to evaluate the similarity between protein 

clusters. 

     The GO semantic similarity provides the basis for functional comparison of gene 

products or gene product sets. Five common semantic similarity scores are used to 

measure the functional similarity between identified protein modules, i.e., Resnik, Lin, 

Jiang and Conrath, Schlicker, and Wang. Wang is a graph-based measurement while 

the other four are information content based (Yu et al, 2010). Assessment results had 

shown that one measure may outperform the others in different scenarios in terms of 
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the correlations with sequence similarity, gene co-expression, or interacted gene pairs. 

Considering the results from different approaches are variable, only the common 

moonlighting RNAs identified using all the five measurements are determined for further 

analysis. 

2.1.5. lncRNA-protein interactions 

     The interactions between lncRNAs and proteins were obtained from the database 

RAID v2.0 (Yi et al, 2017), which is a high-confidence resource of RNA-protein 

interactions integrating 18 data sources such as StarBase (Li et al, 2014) and 

LncRNA2Target (Jiang et al, 2015) as well as curated literature. It covers many types of 

RNAs, such as lncRNA, circRNA, and miRNA, and the interactions between them and 

proteins are either experimental or computationally predicted. Here, only 12,008 human 

lncRNAs with protein targets were considered.  

2.1.6. Subcellular localization of lncRNAs and RCI 

     To establish the subcellular localization of lncRNAs, we downloaded data from 

LncATLAS (Mas-Ponte et al, 2017) and RNALocate (Zhang et al, 2016). Mas-Ponte et 

al. developed a comprehensive resource of lncRNA localization in human cells named 

LncATLAS (Mas-Ponte et al, 2017). The localization of a lncRNA is represented by its 

expression level in the RNA-seq data of 15 human cell lines, which is quantified by 

fragment per kilobase per million mapped (FPKM). They also introduced a measure, 

Relative Concentration Index (RCI), a log2 transformed ratio of FPKM between two 

(sub)compartments, to represent the localization tendency of lncRNAs. RNALocate is a 

localization specific database with manually curated localization classifications across 

multiple species including Human (Zhang et al, 2016). 

2.1.7. lncRNAs biotypes 

     LncRNAs are usually categorized into six biotypes based on their sequence features 

such as transcriptional directionality and exosome sensitivity according to FANTOM 

(Hon et al, 2017). The data were downloaded for assessing whether the lncRNAs of 

interest are overrepresented in any of these biotypes, i.e., antisense, divergent, sense 

intronic, intergenic, exonic, and pseudogenes. 

2.1.8. Sequence conservation and expression correlation 

      We collected a set of evolutionarily conserved lncRNAs with correlated expression 

from lncRNAtor (Park et al, 2014), which serves as a comprehensive resource for 

functional investigation of lncRNAs. The evolutionary conservation score was calculated 

for each lncRNAs from UCSC genome database (Pollard et al, 2010) and the co-

expression with genes was calculated for the RNA-Seq datasets. 
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2.1.9. Cancer lncRNAs and drug target proteins 

     The lncRNAs involved in cancers were obtained from the Lnc2Cancer database 

(July 4, 2016) (Ning et al, 2016), which curated and integrated the experimental 

associations between lncRNAs and cancers from the scientific literature. 55 cancer 

lncRNAs among 76 human cancers were used in this study. Another resource that 

manually collected the experimentally supported cancer annotations is LncRNADisease 

(Chen et al, 2013), which contains not only the associations between lncRNAs and 

cancers but also other diseases. 115 disease lncRNAs implicated in 222 complex 

diseases, including cancers, are involved in protein interaction network and they were 

used to evaluate the performance of moonlighting lncRNA candidates. The 

pharmaceutical drug-targeted proteins were obtained from DrugBank (version 5.0.9) 

(Law et al, 2014). All drugs in the database are FDA approved. 1,269 proteins in the co-

localized protein interaction network are targeted by either small molecule or antibody-

based drugs and they are used for further analysis. 

2.1.10. Moonlighting proteins 

     We obtained the moonlighting proteins (MPs) from MoonProt (Mani et al, 2015). MPs 

are a class of proteins that have multiple but distinct functions that are not due to gene 

fusions, multiple RNA splice variants or multiple proteolytic fragments. The moonlighting 

functions of MPs are often not conserved among protein homologues. All the MPs 

collected in this database are validated biochemically or biophysically. 

2.2. The workflow of MoonFinder 

     Like proteins, moonlighting lncRNAs (mlncRNAs) may perform their distinct functions 

through different target proteins in different cell compartments. Meanwhile, proteins in 

the interaction network are usually modeled into a variety of functional modules, the 

proteins in which are associated with specific tasks in the cell or tend to participate in 

the same biological processes. Hence, it is promising to identify mlncRNAs from the 

aspect of whether they are targeting functionally unrelated protein modules. MoonFinder 

integrates several statistical models based on the RNA and protein interactome as well 

as the protein functional annotations for the identification of moonlighting 

macromolecules. The workflow of MoonFinder contains the following six steps, 

1) Protein interaction network refinement. Refine the protein interaction network by 

filtering out protein pairs sharing no identical cell compartments and only the co-

localized interactions are considered for further analysis.  

2) Protein module identification. Detect protein modules from the co-localized 

protein interaction network (using ClusterONE by default). Each of the detected 

modules is highly interconnected and expected to be implicated in a specific 

cellular process.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/261511doi: bioRxiv preprint 

https://doi.org/10.1101/261511


8 
 

3) Functional annotation of modules. Establish the annotation of the modules with 

GO terms by performing the functional category enrichment using 

hypergeometric test (HGT). The pairwise association between the modules and 

the GO terms are constructed.  

4) Establish RNA-module interactions. Assess whether the target proteins of an 

RNA are significantly overrepresented in a module. If yes, we define the RNA 

functionally regulates the module.  

5) Construct similarity matrix of modules. All pairwise functional similarities are pre-

calculated using five semantic similarity measurements and eventually a 

similarity matrix is produced. 

6) Moonlighting determination. Calculate the principal components (PCs) and their 

contribution weights of the similarity matrix of the modules targeted by an RNA 

using principal component analysis (PCA). An RNA is determined as 

moonlighting if none of the principal components play a dominant role, such as 

weight > 0.7.  

For instance, we say an RNA is moonlighting if the weights of the top three PCs of the 

module similarity matrix are 0.4, 0.3, and 0.2, respectively, because three PCs (more 

than one) are unneglectable. On the other hand, an RNA is multifunctional but not 

moonlighting if the weight of the first PC is 0.95 and the rest share the negligible weight 

of 0.05, which reflects dependent functions. The workflow of MoonFinder is explained in 

more detail in Fig. 1. 

2.3. Statistical methods 

2.3.1. Module-function and lncRNA-module association 

     The hypergeometric test (HGT) was used to evaluate the statistical significance of 

the association between lncRNAs and functional modules. A lncRNA is considered to 

be interacting with a module if the proteins interacting with the lncRNA are significantly 

enriched in the module, i.e., P-value <0.05, which is shown as follows, 

                                                       𝑝 = 1 − ∑
( 𝑖
𝑥)(

𝑚−𝑖
𝑛−𝑥)

(𝑚𝑛)

𝑘−1
𝑖=0                                         (2.1) 

where 𝑛 is the total number of all proteins in the protein interaction network, 𝑚 is the 

number of proteins analyzed in a module, 𝑥 is the number of proteins interacting with a 

specific lncRNA, and 𝑖  is the number of proteins in the module interacting with the 

lncRNA. The P-value describes the probability of randomly select no less than 𝑘 

interacted proteins in the module with size 𝑚. Similarly, the model was also utilized to 

carry out the functional annotation for the identified modules by functional categories (or 

GO terms), where in this case 𝑛 is still the total number of gene products in the protein 

interaction network, but 𝑚 represents the module size and 𝑥 represents the term size. 𝑖 
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is the number of gene products annotated in the term and involved in the module. The 

P-value shows the probability of randomly choosing no less than 𝑘 proteins annotated 

by a GO term for a given module. 

     Monte Carlo simulation was adopted to model the probability of interacting 

mlncRNAs and MPs. 𝑁 pairs of mlncRNAs and MPs were randomly extracted from the 

lncRNA-protein interaction network and then we calculated the interacting pair number,  

𝑇𝑖. The P-value is the ratio of the number of simulated interactions (𝑇𝑖) that is larger than 

the number of practical interactions (𝑇), which is mathematically defined as: 

                                                      𝑝 =  
∑ 𝑠𝑔𝑛(𝑇𝑖−𝑇)𝑁

𝑖=1

𝑁
                                                (2.2) 

where 𝑠𝑔𝑛 is defined as 𝑠𝑔𝑛(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

. 

     To gain the statistical significance, all comparisons in this study between two lists of 

genes or gene products were analyzed using Wilcoxon Ranksum Test (WRT, R-3.4.1). 

 

2.3.2. Decomposition of the functional similarity matrix 

     Principal component analysis (PCA) is a statistical procedure used to reduce the 

number of features used to represent data. We accomplish the reduction by projecting 

data from a higher dimension to a lower dimensional manifold such that the error 

incurred by reconstructing the data in the higher dimension is minimized (Ma & Dai, 

2011; Ma & Kosorok, 2009). Mathematically, we want to map the features 𝑥 ∈ 𝑅𝑝  to 

𝑥̃ ∈ 𝑅𝑞 where 𝑞 < 𝑝. Here, eigenvalue decomposition of the similarity matrix was used 

to calculate the principle components (PCs) and their weights for the modules interacted 

by each lncRNA. According to the Spectral Theorem,  

                                                         𝐴𝑣𝑖⃗⃗⃗  = 𝜆𝑖𝑣𝑖⃗⃗⃗                                                          (2.3) 

we can calculate the eigenvalues 𝜆1 + ⋯+ 𝜆𝑚  of the Similarity matrix (arranged in 

decreasing order) and accordingly the trace of the matrix is 

                                                       𝑇 = 𝜆1 + ⋯+ 𝜆𝑚                                                (2.4) 

Only the lncRNAs whose similarity matrix can be decomposed into PCs without a 

dominant role were selected as the candidates, such as the sum of the weights of the 

first 𝑘 PCs is less than a threshold 𝜏 (𝜏 = 0.7 by default) as follows, 

                                                     argmax𝑘=0,1,2… ∑
𝜆𝑖

𝑇

𝑘
𝑖=1 < 𝜏                                                

(2.5) 
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Then the maximum 𝑘 is the number of latent features. The eigenvalue or the weight of a 

latent feature has minor influence when it is less than 0.1, so we also define 𝜆𝑖 ≥ 0.1 in 

Eqt 2.4 and accordingly the number of latent features with key contribution is  

                                               𝑛 = ∑ 𝑠𝑔𝑛(𝜆𝑖 − 𝜆𝑐𝑢𝑡𝑜𝑓𝑓)
𝑚
𝑖=1                                          (2.6) 

where 𝑠𝑔𝑛  is defined as 𝑠𝑔𝑛(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 and 𝜆𝑐𝑢𝑡𝑜𝑓𝑓 = 0.1 . Consequently, the 

number of latent functions for an RNA is 

                                                         𝑙 =  𝑚𝑖𝑛(𝑘, 𝑛)                                                   (2.7) 

An RNA is determined as moonlighting RNA if 𝑙 is larger than one. Namely, the RNA 

has more than one latent feature in terms of the interacting functional modules. 

2.3.3. Interactor share ratio 

     To measure how likely the interactors of a given lncRNA are shared by the other 

lncRNAs, we introduced a score Interactor Share Rate (ISR) as follows, 

                                                       𝐼𝑆𝑅𝑖 = 
𝑑𝑖+𝑑̅

𝐷𝑖+𝑑̅
                                                       (2.8) 

where 𝑑𝑖  is the connection degree of RNA 𝑖 , 𝐷𝑖  is the sum of the degrees of all 

neighbors of RNA 𝑖, and 𝑑̅ is the average degree of all the RNAs in the network. To 

make the distribution of the ISR scores more normal and range in between 0 and 1, the 

scores are normalized as follows, 

𝐼𝑆𝑅 = 1 +
log(𝐼𝑆𝑅𝑖)

max𝑖=1…𝑛(𝑎𝑏𝑠(log (𝐼𝑆𝑅𝑖))) 
                                        

(2.9) 

1 means all the neighbors of a lncRNA are only connected to it while a small value, say 

0.05, means its neighbors are also connected by many other lncRNAs. 

 

3. Results 

3.1. Experimental and parametric setups of MoonFinder 

     Moonlighting lncRNAs (mlncRNAs) are assumed to execute multiple distinct 

functions through interactions with proteins that are localized in different cell 

compartments, so we identify mlncRNAs from the aspect of whether they are targeting 

multiple but functionally unrelated protein modules in a co-localized protein interactome. 

The human protein interactome was first refined and only the co-localized interactions 
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were maintained for module identification, since proteins closely interacted with each 

other in a module are more likely to reside in the same cell compartment. Eventually, a 

compartment-specific protein interaction network with 210,410 interactions among 

10,111 proteins was constructed. After that, a total of 765 functional modules were 

identified using ClusterONE, an algorithm that can detect overlapping clusters of 

proteins highly connected inside but sparse outside (Nepusz et al, 2012). We choose 

ClusterONE because not only it can detect biological relevant clusters that can be 

appropriately mapped to modules, but also its ability to softly identify the overlapping 

modules considering the network topological structure.  

Functional enrichment analysis was employed to annotate each identified module 

with specific and significant function categories. We applied the hypergeometric test 

(HGT) to obtain the enrichment P-values and the FDR adjusted P-values of 0.01 were 

eventually used as the threshold. To establish the RNA-module interactions, similarly, 

we used HGT to assess whether there are significant connections between the lncRNAs 

and the functional modules. The target proteins of a lncRNA are significantly 

overrepresented in a module if the FDR adjusted enrichment P-values were less than a 

given threshold of 0.01. Accordingly, we obtained a bipartite network with 2,726 

interactions among 538 lncRNA and 106 protein modules. The function similarity 

matrices were calculated using the semantic similarities among the modules of each 

lncRNA using five semantic similarity measurements, i.e., Resnik, Lin, Jiang and 

Conrath, Schlicker, and Wang (see Section 2.1.4). Only the intersection of the five sets 

of mlncRNAs identified using the five measures was determined as the candidates (in 

total 155), because one measure may outperform the others in different expression or 

interaction scenarios. Importantly, we utilized eigenvalue decomposition to calculate the 

number of latent features of each lncRNA. The lncRNAs whose module similarity matrix 

can be decomposed into the principal components without a dominant role (more than 

one latent feature) were selected as the candidates. The workflow of MoonFinder is 

described in more detail in the Methods section 2.2 as well as in Fig. 1. 

3.2. Overview of the mlncRNA candidates  

     As shown in the Venn diagram of Fig. 2A, among the 1,284 lncRNAs with interacted 

proteins (background lncRNAs), 538 lncRNAs (flncRNAs) are annotated to at least one 

functional module and eventually 155 out of them are determined as moonlighting 

lncRNAs (mlncRNAs), whose target modules are functionally unrelated. These identified 

mlncRNA candidates are displayed in Supplementary Table 1, including the respective 

genome locations, cell localization, interacting proteins, and function information. The 

mlncRNAs were identified using five semantic similarity (SS) measures to quantify the 

functional similarity between modules. To obtain more reliable results, only lncRNAs in 

the intersection of the sets of identified mlncRNAs using the five different measures 

were defined as mlncRNAs (Fig. 2B). The modules targeted by an identical lncRNA 
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have a higher probability of sharing the same functions than the randomly picked 

modules. Not surprisingly, significantly more mlncRNAs are detected when simulating 

the randomly selected modules as the target modules. Specifically, Fig. 2C shows that 

around 40% of the lncRNAs with target module can be identified as mlncRNAs using 

either SS measures, the ratio is as low as 28% when using Lin’s measure, while the 

ratios increase to about 60% when the target modules are randomly picked.  

     Here, we take ANCR as an example to illustrate its moonlighting functions. ANCR is 

an anti-differentiation lncRNA that is required to enforce the undifferentiated state in 

somatic progenitor populations of epidermis. Using MoonFinder, we observed ANCR 

mainly interacts with three functional modules with closely linked proteins inside and no 

proteins are shared between any two modules, as shown in Fig. 2D. The SS scores are 

extremely low among the three modules, i.e., 23%, 26%, and 23%, respectively, owing 

to few GO terms of biological process are hierarchically correlated (Fig. 2, E-G). 

Specifically, one module was enriched in a variety of metabolic processes, such as 

estrogen, retinal, and steroid, etc., whereas another module was enriched in functions 

like tissue morphogenesis and development. Signaling pathways for enforcing 

intracellular receptors like toll-like receptor 5 and 10 were highly represented for the 

other module. Consequently, ANCR was determined as a mlncRNA who shows its 

functional diversity via regulating protein modules taking part in distinct biological 

processes and it would serve as a highly reliable candidate of moonlighting lncRNA.  

3.3. Sequence features of mlncRNAs 

     To investigate whether the mlncRNAs form a distinct group of lncRNAs, we analyzed 

the sequences of the corresponding non-coding genes to detect common features such 

as biotype, gene length, transcript length, transcript number, exon length, and exon 

number, as well as the evolutionary conservation and expression correlation with 

orthologous genomes. The candidates were compared with other two groups of 

lncRNAs, i.e., the entire set of lncRNAs with protein targets (background lncRNAs) and 

the functional module related lncRNAs (flncNRAs), which interacts with functionally 

related or unrelated modules (Fig. 2A). Hence, it is important to identify the unique 

characteristics of mlncRNAs that the other types of lncRNAs do not exhibit. Although no 

significant differences of gene length were detected for distinct categories of lncRNAs 

(Fig. 3A), the candidate mlncRNAs have a significantly longer transcript than the other 

types of lncRNAs. On average, the transcript length is about 19,500 compared with 

about 11,000 for the flncRNAs (WRT P-value = 1.27e-3; Fig. 3B). But the number of 

transcripts in these lncRNA categories are similar to each other, only a marginal 

significance was tested between the mlncRNAs and the background lncRNAs (WRT P-

value = 4.7e-2; Fig. 3C). Importantly, we observed that the exon of mlncRNAs are 

significantly shorter than the other categories of lncRNAs (WRT P-value = 3.4e-6 and P-

value = 8.3e-9; Fig. 3D) but the number is much more than the regular lncRNAs (10 vs 
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1, WRT P-value = 2.2-e16; Fig. 3E), probably owing to the transcripts of mlncRNAs are 

on average much longer than that of the regular lncRNAs. In short, mlncRNAs have 

short but more exons, which is a potential sequence feature for lncRNAs to moonlight in 

between multiple biological functions.  

     Phylogenetic conservation and expression correlation are strong evidence for 

inferring functions of coding or non-coding genes (Cheng et al, 2016a; Cheng et al, 

2016b; Park et al, 2014). As lncRNAs are crucial in biological processes if they are 

evolutionarily conserved or expression-correlated across species, we checked whether 

the mlncRNAs tend to be conserved among orthologous genomes and whose 

expression patterns are highly correlated in orthologs. As shown in Fig. 3F, the 

mlncRNAs are prone to gain higher conservation scores (>0.12) than flncRNAs and 

background lncRNAs (<0.10). The scores of flncRNAs are lower than mlncRNAs but still 

higher than that of the background lncRNAs. Similarly, the largest proportion of 

mlncRNAs are found to be expression conserved and the ratio of flncRNAs is second to 

it. Consequently, the evolution and expression pattern of mlncRNAs is more conserved 

than the other lncRNAs, which is in contrast with the conventional knowledge that 

lncRNAs are generally less conserved than mRNAs and proteins (Hon et al, 2017; Park 

et al, 2014), revealing that the lncRNAs moonlighting in the cells may play more 

important biological roles. Besides, RNA species were officially grouped into several 

biotypes by their transcriptional direction and exosome sensitivity (Hon et al, 2017). 

Here we also examined the relationship between the functional categories and biotypes, 

but no significant correlation was detected (Supplementary Fig. 1A). 

3.4. Subcellular localization features 

     Next, we aimed to understand how the mlncRNAs behave relative to the other 

lncRNAs in terms of subcellular localization. To investigate the spatial distribution of 

lncRNAs at a subcellular level, we applied Relative Concentration Index (RCI) (Mas-

Ponte et al, 2017), a ratio of a transcript’s concentration between two cellular 

compartments, to measure the localization tendency of non-coding RNAs. Essentially, 

RCI is the log2 transformed ratio of FPKM (fragments per kilobase per million mapped) 

in two compartments like cytoplasm and nucleus. First, we calculated the cytoplasmic-

nuclear RCI to measure the relative concentration of a lncRNA between the cytoplasm 

and the nucleus in 15 cell lines. Fig. 4A illustrates the RCI distributions of mlncRNAs, 

flncRNAs, and background lncRNAs. It is apparent that mlncRNAs tend to have higher 

RCI values compared to the other two categories of lncRNAs in almost all these cell 

lines except SK.N.DZ, SK.MEL.5, and K562, indicating that the mlncRNAs are more 

likely to reside in the cytoplasmic in comparison with the other lncRNAs. Then, we 

further investigated the localization of mlncRNAs at the sub-compartment level, since 

LncATLAS also provides information about enrichment in the cytoplasmic and nuclear 

sub-compartments of the K562 cells. As shown in Fig. 4B, the sub-nuclear RCI values 
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of mlncRNAs are higher than that of the other two groups of lncRNAs while the sub-

cytoplasmic RCI values are relatively small. Namely, in the nucleus, the mlncRNAs are 

prone to appear in the sub-compartments of nucleoplasm, nucleolus, and chromatin, 

whereas in the cytoplasm, the mlncRNAs are not likely to reside in insoluble and 

membrane relative to the other lncRNAs. That is why the cytoplasmic-nuclear RCI 

values of mlncRNAs are almost the same as the background lncRNAs in the K562 cell 

line (Fig. 4A). Meanwhile, we also calculated the expression value distribution of 

lncRNAs in each sub-compartment in the K562 cell line. More importantly, the 

expression values of the mlncRNAs are significantly higher in all the sub-compartments, 

revealing that the expression abundance of lncRNAs is crucial in executing the part-time 

functions (Fig. 4C). 

    In addition, we also used another RNA localization resource RNALocate, which 

contains manually-curated localizations classifications, to investigate the localization 

tendency of mlncRNAs. In this database, the lncRNAs were collected and annotated to 

different cell compartments, e.g., nucleus, cytosol, and cytoplasm. We calculated the 

ratio of lncRNAs in these compartments separately for each category of lncRNAs. We 

found that mlncRNAs tend to appear in more than one compartment and localize in the 

cytoplasmic compartments such as cytosol and cytoplasm (Fig. 4D-G). The ratio of 

multilocation mlncRNAs is as high as 0.35, which is much higher than that of flncRNAs 

and the background lncRNAs (about 0.3 and 0.26, respectively; Fig. 4D). More 

importantly, mlncRNAs were found to be enriched in cytosol and cytoplasm with the 

ratios of 0.55 and 0.3 (Fig. 4F, G), respectively, whereas the ratio is comparable to the 

other categories of lncRNAs in the nucleus (Fig. 4E). Consequently, we can draw the 

same conclusion that mlncRNAs have a localization tendency of residing in the 

cytoplasmic compartment.  

3.5. Topological features of mlncRNAs and its roles in cancers 

     lncRNA functions through its interacting partners. Accumulating studies show that 

the multi-functionality of lncRNAs as interacting hubs with other molecules such as 

proteins, DNAs, and RNAs. Apparently, the candidate mlncRNAs connect a significantly 

larger number of proteins and modules than the other lncRNAs according to the 

identification methodology. On average, the number of partner proteins is 36.1 for 

mlncRNA while less than 20 for the others (WRT P-value = 7.4e-8; Supplementary Fig. 

1B). The number of the interacted module is around 6.8 for mlncRNA compared with 5 

for the other lncRNAs (WRT P-value = 8.8e-14; Supplementary Fig. 1C). To illustrate 

the combinatorial regulation and give a systematic description, we constructed a 

mlncRNA-module regulatory network, in which the edges link the candidate mlncRNAs 

to their corresponding functional modules. This network contains in total 1,055 predicted 

regulatory interactions between 155 mlncRNAs and 83 modules (Fig. 5A). Some 

modules connect more candidate mlncRNAs than others, indicating that they might be 
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engaged in a larger number of moonlighting regulations. In particular, the largest 

module in the center of the network shows the highest degree of 70, suggesting that it is 

subjected to the regulations of 70 mlncRNAs. The proteins in this module were found to 

be mainly implicated in biological processes such as nucleic acid metabolic process, 

gene expression, and amniotic stem cell differentiation (Fig. 5B). 

     To determine whether the moonlighting of lncRNAs is implicated in the formation and 

development of cancers and other diseases, we associated the mlncRNAs with public 

available cancer and disease lncRNAs as well as cancer proteins and drug target 

proteins (see Methods). Around 13% of the mlncRNA candidates have been studied 

involved in cancer processes, while the ratios of flncRNAs and background lncRNAs are 

less than 10% (Fig. 5C). When considering other complex diseases, not surprisingly, 

the ratio is as high as 23% for mlncRNAs, which is still much higher than that the other 

categories (16% and 17%, respectively; Fig. 5D). From the perspective of regulated 

functional modules, about 39% of the candidates are included in modules significantly 

enriching cancer proteins, whereas the ratios decrease to about 29% and 33% for the 

other two groups (Fig. 5E). Similarly, for the modules enriched of drug targets, they are 

more likely to interact with mlncRNAs than the flncRNAs and the background lncRNAs 

(12% vs 7% vs 8%; Fig. 5F). Besides, we can draw the same conclusion when 

concentrating on the proportion of cancer modules or drug target modules regulated by 

the mlncRNAs (Supplementary Fig. 1D and E). Therefore, these results demonstrate 

that the mlncRNAs exercise a great influence on cancer metastasis and progression 

through pairwise interactions and clustered modules of proteins in the regulatory 

network.  

     More importantly, we observed that the mlncRNAs and moonlighting proteins (MPs) 

tend to be mutually exclusive in terms of interactions and interacted partners. Only five 

MPs directly interacts with the mlncRNAs, whereas on average the value is as high as 

18.9 when randomly selected the same number of MPs (Monte Carlo P-value = 1e-04, 

HGT P-value=5.4e-18, Fig. 5G). Also, we simulated the interacted partners of both 

mlncRNAs and MPs 10000 times and found the number of common partners between 

them is 691 on average, which is significantly higher than the practical value of 529 

(Monte Carlo P-value = 0, HGT P-value=2.1e-86, Fig. 5H). In other words, the number 

of common partner proteins that the moonlighting lncRNAs and proteins shared is 

significantly less than that of randomly selected ones. These results indicate the 

mechanism that the cells make full use of the macromolecules to efficiently and 

systematically perform cellular tasks avoiding the redundant implementations. 

     Additionally, from the mlncRNA-module network in Fig. 5A, we found the mlncRNAs 

that exclusively interact functional modules tend to be cancer-related. Accordingly, we 

introduced a score, Interactor Share Rate (ISR), to measure how likely the interactors of 

a given lncRNA are shared by the other lncRNAs (see section 2.3.3). We found that the 
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cancer mlncRNAs have significantly higher ISRs than that of the others (WRT P-

value=3.2e-03, Fig. S1F). For the mlncRNAs with the top ten highest ISR scores, six out 

of them are cancer lncRNAs (Fig. 5I). When strengthening the threshold to 0.5, six out 

of eight (75%) of the mlncRNAs are cancer genes and the other two, ANCR and 

LRRC75A-AS1, could be considered as the candidates of cancer mlncRNA, where the 

dysfunction or inappropriate switching of these RNAs in different cell compartments may 

result in the biological activity of cancer, although further experimental works are 

needed to warrant this claim.  

4. Discussion 

   In this study, we introduced a computational framework MoonFinder to systematically 

identify moonlighting lncRNAs (mlncRNAs) based on the integrated lncRNA and protein 

interaction network as well as the protein functional annotations. In total 155 lncRNAs 

were determined as candidates with multiple but distinct functions. Also, we 

characterized them from various aspects of sequence features, evolutionary 

conservation, expression correlation, expression abundance, localization tendency, and 

interaction patterns, which will facilitate our further understanding of their functions and 

the mechanism of moonlighting.  

     Remarkably, we observed that the non-coding genes that transcript mlncRNAs tend 

to have shorter but more exons, which is a potential sequence feature for lncRNAs to 

moonlight in between multiple biological functions. Also, we found the evolution and 

expression patterns of mlncRNAs are more conserved than the other lncRNAs, which in 

contrast with the conventional knowledge that lncRNAs are generally less conserved 

than mRNAs and proteins(Hon et al, 2017; Park et al, 2014), suggesting that mlncRNAs 

are central for the homeostasis maintenance of human. 

     More importantly, we found that mlncRNAs have a localization tendency of residing 

in cytoplasmic compartment, although they display high expression across all the cell 

compartments. mlncRNAs are expressed significantly higher in all the sub-

compartments of the K562 cell lines in comparison with the other lncRNAs, suggesting 

that the high expression abundance is necessary for executing the part-time functions. 

We studied the localization tendency and translocation activity of these mlncRNAs 

because lncRNAs are diversely resided in the cells and play a crucial role as 

modulators to regulate gene expression in multiple ways (Cabili et al, 2015; Ferre et al, 

2016; Quinn & Chang, 2016; Zhou et al, 2017b; Zhu et al, 2016). lncRNAs have a 

variety of subcellular localization patterns, which are not limited to specific nuclear and 

cytoplasm localization but also nonspecific localization in both the nucleus and 

cytoplasm (Barabasi & Oltvai, 2004; Buxbaum et al, 2015). For the lncRNAs localized in 

multiple compartments, in the future we will investigate whether the intercommunication 
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can modulate the interaction pattern or expression abundance, e.g. regulating the 

abundance of lncRNAs in one compartment may influence the function of the other cell 

compartment. 

     Our result also shows that mlncRNAs and MPs are rather mutually exclusive in 

terms of their direct interactions and interacting partners. In other words, lncRNAs and 

proteins with moonlighting functions are not likely to interact with each other and they 

even tend to share fewer neighbors in the regulatory network. The reason might be that 

the macromolecules in cells are usually organized to be efficient to perform different 

cellular tasks without redundancy. According to the mlncRNA-module bipartite network, 

we also predicted eight cancer lncRNAs and six out of them were previously identified 

as cancer lncRNAs by different experimental assays. 

     We believe our observations can aid our and other research groups to understand 

how they function in a moonlighting manner and help in designing RNAs with novel 

functions and applications. Moreover, investigating the mechanisms that determine the 

functional diversity of mlncRNAs has the potential to provide new insights into their 

biogenesis, physical interaction, subcellular localization, and therapeutic application in 

diseases. In the future, we will investigate the mechanism of how the mlncRNAs 

modulate and switch the functions in metabolic processes, which is of vital importance 

for cancer therapeutics and will provide tremendous opportunities for anti-cancer 

strategies. The moonlighting feature of the other types of RNAs, such as miRNA and 

circRNA (Chen, 2016a), will also be studied and compared and eventually a 

moonlighting atlas of both RNAs and proteins will be provided. 
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Figure legends 

Figure 1. Schematic diagram of MoonFinder. The orange, green and blue boxes 

represent the input, generated, and output data, respectively. The clustering algorithm 

and statistical models are shown in the dotted boxes. 

Figure 2. Overview of the identified mlncRNAs. (A) Venn diagram of the lncRNAs. (B) 

Venn diagram of the mlncRNAs identified using five semantic similarity measures. (C) 

The ratio of real and randomly identified mlncRNAs. (D) An example of mlncRNA ANCR. 

(E-G) Gene Ontology functional enrichment of the three modules regulated by ANCR. 

Figure 3. The distributions of lncRNAs in different functional groups with regard to 

distinct sequence features. (A) Gene length. (B) Transcript length. (C) Transcript 

number. (D) Exon length. (E) Exon number. (F) Evolutionary conservation and 

expression correlation. Outliers are not shown. Blue, yellow, and red boxes (or bars) 

represent lncRNA, flncRNA, and mlncRNA, respectively.  

Figure 4. The mlncRNA localization and expression features. (A) RCI distribution of all 

lncRNAs (blue), flncRNAs (yellow) and mlncRNAs (red) for each cell line. (B) Sub-

compartment expression value distribution of lncRNAs in the K562 cell line. (C) Sub-

compartment RCI distribution of lncRNAs in the K562 cell line. (D) The ratios of different 

groups of lncRNAs residing in multiple locations. (E-G) The ratios of different groups of 

lncRNAs residing in the nucleus, the cytosol, and the cytoplasm, respectively. RCI, 

Relative Concentration Index 

Figure 5. Association between mlncRNAs and diseases. (A) The mlncRNA-module 

regulation network. RNAs are represented in squares while modules are in circles. 

RNAs associated with cancer and diseases are shown in red and orange, respectively. 

The circle size corresponds to the module size. (B) Gene Ontology function enrichment 

of the module with the largest number of regulated mlncRNAs. (C, D) The ratio of 

cancer and disease lncRNAs among the three lncRNA categories. (E, F) The ratio of 

lncRNAs associated with cancer and drug target module. (G) mlncRNAs tend not to 

interact with MPs. T, the number of practical mlncRNA-MP interactions. (H) mlncRNAs 

and MPs tend to share less interacting partners. T, the number of common partners 

practically interacted by mlncRNAs and MPs. (I) Summary of the top ten mlncRNAs with 

the highest OR scores.  
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