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partitioned heritability27 analysis across the phenotypes by tissue and functional category 

using LD-score regression24 with the LDSC tool. Significant enrichments for individual traits 

were identified using thresholds of p<1x10-3 for tissues (i.e. p<0.05/10 cell types/5 traits) and 

p<3.57x10-4 for functional categories (i.e. p<0.05/28 categories/5 traits). We also 

investigated enrichments in the median value across all accelerometer-measured traits.  

 

To calculate the explained phenotypic variance for each trait, we used the PRSice67 tool to 

generate polygenic risk scores for the lead SNP in GWS loci and also for all SNPs with 

p<5x10-3, distance > 250kb from index SNPs, and r2 < 0.1. The same participant inclusion 

criteria were used as for association analysis. 

 

To identify plausible causal SNPs associated with sleep and activity phenotypes, we used 

the FINEMAP28 software. Configurations of plausible causal SNPs from a 1Mb window 

around each genome-wide significant locus were calculated on the assumption that there 

were a maximum of five causal variants per locus. Across all loci, we defined plausible 

causal SNPs as those meeting a log10 Bayes Factor > 2. 

 

Sexual dimorphism in activity and sleep traits 

To investigate potential sources of sex heterogeneity, we ran the aforementioned genome 

wide association analyses for men and women independently. Genetic correlations30 of trait 

architectures between men and women were measured using LD score regression24 for 

each phenotype. We also tested for heterogeneity of effect estimates29 between men and 

women for all SNPs using the EasyStrata68 tool, with P<5x10-9 to assess significance. 

Heritability differences between men and women for each trait were assessed by extracting 

a two-tailed p-value from the following z-score (where ‘var’ indicates variance):  

𝑧 =
ℎ!"#$%"&! −  ℎ!"#$%

!

!"#!!!"#$%"&
! ! !!"# ℎ!"#$%!
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To estimate genetic contributions to phenotypic variance for men and women separately, we 

selected index SNPs from loci with a less stringent p<5x10-7, due to smaller sample sizes 

within strata. 

 

Associations of activity and sleep traits with other traits 

To estimate genetic correlations between our movement phenotypes and other complex 

traits and diseases, we used LD score regression24 implemented in the LD-Hub web 

resource31. We did not test moderate intensity activity as it had a strong genetic correlation 

with overall activity (rg = 0.97, se = 0.004, Fig S9). To assess significance, we corrected for 

3,328 tests (activity/sleep/sitting/walking x 832 phenotypes available on LD-Hub) with 

p<1.5x10-5. 

 

To examine whether the genome-wide significant SNPs identified in our analysis affected 

other traits, we used the Oxford Brain Imaging Genetics Server (big.stats.ox.ac.uk32) to 

perform a phenome-wide association study (PheWAS) on almost 4,000 traits in UK Biobank 

participants. This included GWAS results of ~2,000 phenotypes in ~330,000 UK Biobank 

participants published by the Neale lab at the Broad Institute, and the remaining traits were 

brain imaging-derived phenotypes measured on a subset of ~10,000 UK Biobank 

participants32. To assess significance, we corrected for 40,000 tests (10 loci x 4,000 traits) 

with p<1.25x10-6. Additionally, we extracted previously reported GWAS associations within 

400kb and r2>0.2 of accelerometer index SNPs from the NHGRI GWAS catalog33. 

 

To investigate whether activity and sleep might causally contribute to disease outcomes, we 

performed Mendelian Randomization (MR) analysis. Rather than selecting all significant 

traits identified in other correlation analysis, we decided to concentrate on major diseases 

and peripheral risk factors. These included vascular disease (CHD, stroke, heart failure), 

diabetes, Alzheimer's, major cancer subtypes, blood pressure, and anthropometric traits 

(BMI and body fat %). Disease phenotypes were prepared following similar procedures as 
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used for UK Biobank variables in the LD-Hub web resource31. We defined hypertensive 

cases as individuals with systolic blood pressure of >140 mmHg, or a diastolic blood 

pressure of >90 mmHg, or the report of blood pressure medication usage. For the analysis 

of systolic and diastolic blood pressure, we corrected blood pressure measures in people on 

antihypertensive drugs by adding 15 mmHg to systolic and 10 mmHg to diastolic blood 

pressure, in keeping with the approach taken by genome-wide association studies69. Similar 

to the LD-Hub web resource31, we used linear regression analyses with sex and the first 10 

principal components as covariates. For linear regression, we used the bgenie tool59. We 

removed participants from the accelerometer discovery sample (n=91,112), those who self-

reported as being non-white British (n=68,428), had abnormal genetic versus self-reported 

sex mismatches (n=192) or sex chromosome aneuploidy (n=652). We also removed 48,658 

participants due to relatedness. This left 278,367 UK Biobank participants who were not 

included in our discovery analysis, and other publicly available GWAS summary data from 

the MR-Base web platform34. Where possible, estimates were meta-analysed using a fixed 

effects model (inverse variance weighted average). 

 

For analysis we retained index SNPs with p<5x10-8 that were pruned for LD (r2 < 0.001) and 

more than 10,000 kb apart. We then followed a number of steps to denote potential causality 

with disease outcomes (Note S2). We used the maximum likelihood-based approach as our 

primary source of MR estimates. This is based on published simulation results suggesting 

that causal estimates obtained from summarized data using a likelihood-based model are 

almost as precise as those obtained from individual-level data36. Only likelihood-based risk 

estimates that were significant after correction using a false-discovery rate of <5% were 

considered. The potential effect of pleiotropy was evaluated by three complementary 

approaches, namely weighted median and weighted mode estimation70,71, and the 

regression intercept from the MR-Egger method72. The sensitivity of causal inference to any 

individual genetic variant was tested by leave-one-out analysis. The Steiger test was used to 

provide evidence for the causal direction of the effect estimates73. Additionally, for MR 
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associations that appeared robust to sensitivity and pleiotropy analyses, bidirectional MR 

was conducted to assess the direction of the causal estimate. All MR analyses were 

conducted in R using the TwoSampleMR package34.  

 

Investigating functional and biological mechanisms for activity and sleep traits 

To investigate potential biological mechanisms underlying physical activity and sleep, we 

used DEPICT38 at suggestive loci with p<1x10-5 to identify: the most likely causal gene; 

reconstituted gene sets enriched for movement phenotype associations; and tissues and cell 

types in which genes from associated loci are highly expressed. Next, we used the FUMA 

web platform26 to perform tissue enrichment analysis where the full distribution of SNPs was 

tested with 53 specific tissue types, based on GTEx74 data. To identify significant 

enrichments, we accounted for multiple testing across 53 tissues and 5 traits (p<1.88x10-4). 

To then identify pathways implicated by the activity and sleep associated loci, we used 

FUMA to perform hypergeometric tests on genes from these loci to investigate over-

representations in genes predefined from the GWAS-catalog.  

 

Data and code availability 

The summary phenotype variables that we have constructed will be made available as a part 

of the UK Biobank dataset at http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1008. All data 

processing, feature extraction, and machine learning, code will be available at 

https://github.com/activityMonitoring. 
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FIGURE LEGENDS 

 
Figure 1 | Miami plot of European sex-combined GWAS of physical activity in UK Biobank 

measured by accelerometer (top, n=91,112) and self-report (below, n=351,154). 

 

Figure 2 | Heritability partitioning enrichment estimates across functional categories and 

tissues, for median value across 5 physical activity and sleep traits. 

 

Figure 3 | Tissue enrichment analysis using eQTL data from GTEx for median value across 

5 physical activity and sleep traits. 
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TABLES 

Table 1 | Genome-wide significant (5x10-9) loci associated with accelerometer-measured physical activity and sleep behaviours in 91,112 UK 

Biobank participants. 

Status Trait Locus Chr SNP Position Nearest gene 
Allele 

(effect/ 
other) 

Effect 
allele 

frequency 
beta SE P 

Novel Overall activity 1 18 rs59499656 40,768,309 SYT4 A/T 0.655 -0.234 0.039 2.0 x 10-09 

Novel Sleep 2 6 rs7765476 19,069,450 LOC101928519 T/G 0.799 0.002 0.000 2.4 x 10-13 

Novel Sleep 3 9 rs2416963 128,241,414 MAPKAP1 C/T 0.589 0.002 0.000 6.9 x 10-10 

Novel Sit / stand 4 5 rs26579 87,985,295 MEF2C-AS2 G/C 0.415 0.002 0.000 3.8 x 10-11 

Novel Sit / stand 5 2 rs113851554 66,750,564 MEIS1 G/T 0.943 -0.005 0.001 1.4 x 10-10 

Novel Moderate 
intensity activity 6 16 rs9938281 49,625,336 ZNF423 A/G 0.474 -0.023 0.004 1.8 x 10-09 

Known8 Overall activity 7 17 rs56194509 43,844,559 
LINC02210-

CRHR1 T/G 0.779 -0.314 0.045 2.2 x 10-12 

Known11 Sleep 5 2 rs113851554 66,750,564 MEIS1 G/T 0.943 0.006 0.001 2.6 x 10-26 

Known11 Sleep 8 2 rs62158170 114,082,175 PAX8-AS1 A/G 0.783 -0.003 0.000 1.6 x 10-21 

KnownNeale Sleep 9 1 rs1198575 98,562,260 MIR137 T/C 0.190 -0.002 0.000 8.3 x 10-11 

Known21 Sleep 10 19 rs2303100 9,968,434 OLFM2 C/T 0.447 -0.002 0.000 3.1 x 10-10 

Known23 Sleep 7 17 rs7502280 43,670,221 MAPK8IP1P2 T/G 0.867 0.002 0.000 2.4 x 10-09 

Known8 Moderate 
intensity activity 7 17 rs2957316 44,331,214 KANSL1-AS1 T/C 0.795 -0.033 0.005 1.3 x 10-11 
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Figure 1 | Miami plot of European sex-combined GWAS of physical activity in UK Biobank measured by accelerometer (top, n=91,112) and self-report (below,
n=351,154).

Genomic control(λ), explained variance (R2) and heritability (h2) estimates are also provided.

Overall activity (n=91k): λ = 1.20,   LD intercept = 1.01,   h2 = 0.21,   R2(GWS loci) = 0.05%,  R2(5x10-3loci) = 12.1%

Self-reported activity (n=351k): λ = 1.05,   LD intercept = 1.01,   h2 = 0.06,   R2(GWS loci) = nan%,  R2(5x10-3loci) = 0.8%
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Figure 2 | Heritability partitioning enrichment estimates across functional categories and tissues, for median value across 5 physical activity and sleep traits.

Activity traits
 

Error bars represent 95% confidence intervals around the estimate, proportion of SNPs indicated in x-axis label parentheses. Annotated categories indicate
annotations or tissues that pass the multiple testing significance threshold (p<2.38x10-4 for functional annotations, p<5x10-3 for cell types).
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Figure 3 | Tissue enrichment analysis using eQTL data from GTEx for median value across 
5 physical activity and sleep traits. 
 
 

 Annotated categories indicate tissues that pass the multiple testing significance threshold 
(p<9.44x10-4).  
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