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Abstract 22 

The environmental health of aquatic ecosystems is critical to society, yet traditional assessments 23 

of water quality have limited utility for some bodies of water such as large rivers. Sequencing of 24 

environmental DNA (eDNA) has the potential to complement if not replace traditional sampling 25 

of biotic assemblages for the purposes of reconstructing aquatic assemblages and, by proxy, 26 

assessing water quality. Despite this potential, there has been little testing of the ability of eDNA 27 

to reconstruct assemblages and their absolute and relative utility to infer water quality metrics. 28 

Here, we reconstruct phytoplankton communities by amplifying and sequencing DNA from a 29 

portion of the 23S rRNA region from filtered water samples along a 2900-km transect in the 30 

Mississippi River. Across the entire length, diatoms dominated the assemblage (72.6%) followed 31 

by cryptophytes (8.7%) and cyanobacteria (7.0%). There were no general trends in the 32 

abundances of these major taxa along the length of the river, but individual taxon abundance 33 

peaked in different regions. For example, the abundance of taxa genetically similar to Melosira 34 

tropica peaked at approximately 60% of all reads 2750 km upstream from the Gulf of Mexico, 35 

while taxa similar to Skeletonema marinoi began to increase below the confluence with the 36 

Missouri River until it reached approximately 30% of the reads at the Gulf of Mexico. There 37 

were four main clusters of samples based on phytoplankton abundance, two above the 38 

confluence with the Missouri and two below. Phytoplankton abundance was a poor predictor of 39 

NH4
+ concentrations in the water, but predicted 61% and 80% of the variation in observed NO3

- 40 

and PO4
3- concentrations, respectively. Phytoplankton richness increased with increasing 41 

distance along the river, but was best explained by phosphate concentrations and water clarity. 42 

Along the Mississippi transect, there was similar structure to phytoplankton and bacterial 43 

assemblages, indicating that the two sets of organisms are responding to similar environmental 44 
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factors. In all, the research here demonstrates the potential utility of metabarcoding for 45 

reconstructing aquatic assemblages, which might aid in conducting water quality assessments.  46 

  47 
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Introduction 48 

Inland freshwater systems provide vital services of drinking water, habitat for fisheries, irrigation 49 

for agriculture and recreation (Davies and Jackson 2006, American Sportfishing Association 50 

2015). Yet, the ecological status of lakes, rivers, streams, and reservoirs is increasingly 51 

threatened by agriculture, roads, industry, mining, human waste, urbanization, and deforestation 52 

(Malmqvist and Rundle 2002, US Environmental Protection Agency 2015) Effective monitoring 53 

of water quality and the causes of water quality impairment are critical steps to maintaining 54 

freshwater resources, preventing further degradation, and guiding restoration efforts. Quantifying 55 

the state and dynamics of aquatic ecosystems is often best done indirectly by quantifying the 56 

structure of aquatic assemblages (Palaniappan et al. 2010, Young and Loomis 2014). Because 57 

each organism has a unique set of ecological traits and responds uniquely to environmental 58 

conditions, their abundance in waters is an indicator of environmental conditions such as salinity, 59 

temperature, oxygen levels, nutrient supplies, and turbidity (Karr 1999, Schoolmaster et al. 2012).  60 

 61 

Fish and aquatic invertebrates are the two of the most common indicators quantified for the 62 

purpose of inferring water quality (Barbour et al. 1999, Stein et al. 2014a). Yet, assessments of 63 

these assemblages are currently labor intensive, slow, expensive, and often imprecise. For 64 

example, manually sampling fish or aquatic invertebrate communities can cost approximately 65 

US$2500 for a single site, limiting the number of sites that can be sampled (Stein et al. 2014a). 66 

Biotic assessments also are less effective for certain types of aquatic ecosystems. For example, 67 

even without fiscal constraints, assessments of fish and aquatic insect assemblages of large rivers 68 

can be exceedingly difficult. The efficiency of sampling fish in large rivers with traditional 69 

electrofishing is low (and seasonally variable) due to a number of factors such as turbidity 70 
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(Goffaux et al. 2005, Reyjol et al. 2005, Lyon et al. 2014). Standard techniques for kicknetting 71 

insects or collecting exuviae do not work on large rivers (Buss et al. 2015).  72 

 73 

One response to the constraints on sampling fish and insects for large rivers is to rely on other 74 

organisms such as diatoms for water quality assessments (Kelly and Whitton 1995, Stein et al. 75 

2014a). Yet, traditional techniques for visually assessing the relative abundance of taxa such as 76 

diatoms is still expensive, subject to taxonomic bias, and constrained by low taxonomic 77 

resolution (Zimmermann et al. 2015). Given these constraints, next generation sequencing of 78 

environmental DNA has the potential to quantify assemblages of not only fish and aquatic 79 

insects, but also smaller organisms such as phytoplankton or bacteria (Mächler et al. 2014, Stein 80 

et al. 2014b, Barnes and Turner 2015, Thomsen and Willerslev 2015). To accomplish this, DNA 81 

present in the water is filtered and then regions in the genome are amplified and sequenced, 82 

providing information on the presence, if not relative abundance, of organisms. Depending on 83 

the regions of the genome amplified, different taxonomic groups can be sequenced, including 84 

bacteria, phytoplankton, arthropods, fish, and mammals (Jackson et al. 2014, Stein et al. 2014b, 85 

Cannon et al. 2016, Deiner et al. 2016, Olds et al. 2016). This potential is coupled with the 86 

ability to provide data for less cost, or improved taxonomic specificity, and at a faster rate. For 87 

example, water can be filtered and analyzed for environmental DNA at less than a tenth of the 88 

cost of traditional biotic assessments.  89 

 90 

Despite this potential, there are few examples of successful application of metabarcoding for 91 

reconstructing phytoplankton assemblages and we have not started in earnest to assess whether 92 

these reconstructions have value on their own, no less relative to reconstructions generated with 93 
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organisms (Hamsher et al. 2013). To better understand the potential of environmental DNA to 94 

reconstruct phytoplankton assemblages in a large river, we amplified and sequenced DNA using 95 

a 23S rRNA gene region primer pair (Sherwood and Presting 2007) specific to phytoplankton 96 

(hereafter, 23S) for 39 sites along over 2900 km of the Mississippi River in addition to its 97 

headwaters at Lake Itasca. The Mississippi River is one of the Great Rivers of the US and has 98 

been the subject of a number of studies attempting to assess the ecological health of its waters 99 

with biological assessment (Angradi et al. 2009, Kireta et al. 2012b, Bellinger et al. 2013). With 100 

these data, we examined the patterns of phytoplankton assemblages along the length of the river 101 

to determine how the structure and richness of these assemblages changed along the length of the 102 

river. As a first test, we compared relationships between the abundance of 23S OTUs and 103 

nutrient concentrations in the water. Next, to assess whether the factors structuring 104 

phytoplankton were similar to those structuring bacterial assemblages, we compared assemblage 105 

structure of 23S and bacterial 16S rRNA gene (hereafter, 16S) OTUs from a previous set of 106 

analyses (Henson et al. in review). This was followed with a comparison of the explanatory 107 

power of 23S and 16S OTUs to predict nutrient concentrations. 108 

Methods 109 

Sample acquisition 110 

Duplicate water samples were collected from 39 sites along the Mississippi River from 111 

September 18, 2014 to November 26, 2014 (Henson et al. in review). The core of these sites 112 

spanned 2917 km, from Minneapolis, MN to the Gulf of Mexico. An additional sample was 113 

acquired from Lake Itasca, the headwaters of the river. At each site, 120 mL of water was filtered 114 

through a 2.7 μm GF/D filter (Whatman GE, New Jersey, USA) and then a 0.2 μm Sterivex filter 115 
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(EMD Millipore, Darmstadt, Germany) with a sterile 60 mL syringe (BD, New Jersey, USA). 116 

The first 60 mL of flow-through water was collected and saved in an autoclaved, acid-washed 60 117 

mL polycarbonate bottle. Filters and filtrate were stored on ice until they could be shipped to the 118 

laboratory for analyses. At each site, light penetration was assessed with a secchi disk (Wildco, 119 

Yulee, FL).  120 

Sample processing 121 

DNA was extracted from filters with a MoBio PowerWater DNA kit (MoBio Laboratories, 122 

Carlsbad, CA) following the manufacturer’s protocol. If there was sufficient DNA remaining 123 

from previous analyses (Henson et al. in review), DNA from the two fractions for a site were 124 

combined. For some sites, DNA from the two fractions taken from the two replicate samples 125 

were combined. Phytoplankton sequences were amplified at the 23S rRNA gene region, which is 126 

located on the chloroplast and can amplify DNA from taxa such as cyanobacteria, green algae, 127 

and diatoms (Sherwood and Presting, 2007). Initial PCR amplification included Promega 128 

Mastermix, forward and reverse primers, gDNA, and DNase/RNase-free H2O. After an initial 3-129 

minute period at 94°C, DNA was PCR amplified for 40 cycles at 94°C (30 seconds), 55°C (45 130 

seconds) and 72°C (60 seconds), followed by 10 minutes at 72°C. Products were then visualized 131 

on an 2% agarose gel. 20µl of the PCR amplicon was used for PCR clean-up using ExoI/SAP 132 

reaction. In order to index the amplicons with a unique identifier sequence, the first PCR stage 133 

was followed by an indexing 8-cycle PCR reaction to attach 10-bp error-correcting barcodes 134 

unique to each sample to the pooled amplicons. These products were again visualized on a 2% 135 

agarose gel and checked for band intensity and that amplicons are the correct size. PCR products 136 

were purified and normalized using the Life Technologies SequalPrep Normalization kit and 137 
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samples pooled together. Amplicons were sequenced on an Illumina MiSeq at the University of 138 

Colorado Boulder BioFrontiers Sequencing Center running the v2 500-cycle kit. 139 

For nutrient analyses, filtrate was previously analyzed colorimetrically for [NH4
+], [NO3

-], and 140 

[PO4
3-] at the University of Washington Marine Chemistry Laboratory as described in Henson et 141 

al. (in review). 142 

Bioinformatic processing 143 

Sequences were demulitplexed using a python script. Paired end reads were then merged using 144 

fastq_merge pairs. Since merged reads often extended beyond the amplicon region of the 145 

sequencing construct, we used fastx_clipper to trim primer and adaptor regions from both ends 146 

(https://github.com/agordon/fastx_toolkit). Sequences lacking a primer region on both ends of 147 

the merged reads were discarded. Sequences were quality trimmed to have a maximum expected 148 

number of errors per read of less than 0.1 and only sequences with more than 3 identical 149 

replicates were included in downstream analyses. BLASTN 2.2.30+ was run locally, with a 150 

representative sequence for each OTU as the query and the current NCBI nt nucleotide and 151 

taxonomy database as the reference. The tabular BLAST hit tables for each OTU representative 152 

were then parsed so only hits with > 97% query coverage and identity were kept. 153 
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Sequences were clustered into OTUs at the ≥ 97% sequence similarity level and sequence 154 

abundance counts for each OTU were determined using the usearch7 approach. The National 155 

Center for Biotechnology Information (NCBI) genus names associated with each hit were used 156 

to populate the OTU taxonomy assignment lists. Sequences that did not match over 90% of the 157 

query length and did not have at least 85% identity were considered unclassified. Otherwise the 158 

top BLASTn hit was used. 159 

Statistical analyses 160 

To quantify the accumulation of 23S OTUs with increasing numbers of samples, we used the 161 

specaccum function of the vegan package with the Lomolino function to describe the curves 162 

(Oksanen et al. 2017).  163 

Hierarchical clustering of 23S was based on Ward’s minimum variance method. A heat map was 164 

generated with the heatmap.2 function of the gplots package (Warnes et al. 2016) using distance 165 

matrices created from the relative abundance of the top 50 23S OTUs. To identify taxa 166 

disproportionately associated with the 8 major clusters, indicator values were calculated for each 167 

of the top 50 OTUs based on abundance of occurrence (Dufrêne and Legendre 1997).  168 

To assess the relationships between nutrient concentrations and 23S OTU abundance, forward 169 

stepwise regression was performed for [NH4
+], [NO3

-], and [PO4
3-] with the top 50 23S OTUs (P 170 

< 0.01 for entry). To assess the relationships between phytoplankton richness and predictors, all 171 

singletons were removed from the abundance of reads, phytoplankton richness was first rarefied 172 

to the minimum number of reads for the sample set (4,212) and then regressed in a backwards 173 

elimination stepwise regression with nutrient concentration data, distance along the river, and 174 

secchi disk depth.  175 
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To compare 23S and 16S patterns, we restricted 16S data to the top 100 OTUs, representing 76% 176 

of the total reads. Previously, the 16S region was sequenced for the two particle size fractions 177 

independently (Henson et al. in review). Here, bacterial OTU abundance was averaged for the 178 

two fractions for a given sample. Mantel tests (mantel function of the vegan package) assessed 179 

Pearson correlations among assemblage similarity matrices, which were based on Euclidean 180 

distances. A cophenetic correlation was assessed for the 23S and 16S distance matrices using the 181 

cor_cophenetic function of dendextend package (Galili 2015). To visualize similarity in 182 

clustering between 23S and 16S OTU abundances, a tanglegram was generated using the 183 

tanglegram function of dendextend package based on the 23S hierarchical clustering and a new 184 

hierarchical clustering of 16S data also based on Ward’s minimum variance method. The same 185 

stepwise regression technique on nutrient concentrations was used for the top 50 16S OTUs as 186 

was done for the 23S OTUs.  187 

All statistical analyses were conducted in R 3.2.5 using Rstudio v. 1.0.136 except the stepwise 188 

regressions, which were computed in JMP v. 13.0.0 (SAS Institute, Cary NC, USA). 189 

Results 190 

Across all samples, the most abundant phytoplankton OTU was for taxa similar to Thalassiosira 191 

rotula, which represented 37.6% of all reads. The next most abundant OTU was for taxa similar 192 

to the diatom Melosira tropica, which represented 15.8% of all reads. In general, the top 10 193 

OTUs represented 80.9% of all reads and the top 50 OTUs represented 96.4% of all reads. 194 

Among the top 50 OTUs, 72.6% of the reads were from Bacillariophyta, 8.7% were from 195 

Cryptophyta, and 7.0% were from Cyanobacteria. Chlorophyta and Eustigmatophyceae 196 

comprised 3.5% and 3.2% of the reads, respectively. Examining the pattern of OTU 197 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2018. ; https://doi.org/10.1101/261727doi: bioRxiv preprint 

https://doi.org/10.1101/261727
http://creativecommons.org/licenses/by-nc-nd/4.0/


accumulation, OTU abundance is predicted to asymptote at 447 OTUs with half of this occurring 198 

in 11.8 samples (Figure 1). Mean richness after rarefication was 55.3 ± 15.9 (s.d.) OTUs per 199 

sample. Mean richness increased at a rate of 7.1 ± 1.7 species per 1000 km (r2 = 0.23, P < 0.001). 200 

 201 

Phytoplankton had different patterns of distribution along the length of the river (Figure 2). 202 

Among the four most abundant OTUs, Melosira tropica OTU abundance peaked at 203 

approximately 60% of all reads 2750 km upstream from the Gulf of Mexico, while Thalassiosira 204 

rotula OTU abundance peaked at approximately 90% of all reads approximately 2250 km from 205 

the Gulf. In contrast, Cyclotella sp. WC03 (OTU 48) did not peak until ~1300 km from the Gulf 206 

(17% of all reads) and the Skeletonema marinoi OTU continued to increase below the confluence 207 

with the Missouri River, until it reached approximately 30% of the reads at the Gulf of Mexico. 208 

There were no general trends in the abundance of phytoplankton groups with respect to distance 209 

along the river when read abundance for the top 50 OTUs was aggregated by phylum (Figure 3).  210 

 211 

Clustering of sites 212 

The phytoplankton of Lake Itasca was the most unique set of OTUs and did not cluster with any 213 

other samples (Figure 4). The Lake Itasca assemblage was characterized by the abundance of 214 

chrysophyte species similar to Ochromonas danica, dinoflagellates similar to Dinophysis fortii 215 

and species similar to the yellow-green alga Trachydiscus minutus (Table 1). Beyond Lake Itasca, 216 

four other main clusters of sites were identified, which encompassed 57 of the remaining 61 217 

samples. The first cluster contained 17 of the 27 samples taken upstream of the confluence with 218 

the Missouri River (Figure 4). These samples were indicated by their abundances of taxa similar 219 

in sequence to Thalassiosira rotula (P = 0.003; Table 1). The second cluster consisted of 8 220 
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samples in the Upper Mississippi that ranged along 300 km from Lake Pepin in Minnesota to 221 

Dubuque, Iowa. These sites were indicated by their abundances of species similar in sequence to 222 

the dinoflagellate Gymnodinium eucyaneum, the diatom Tenuicylindrus sp., the cryptomonad 223 

Cryptochloris, and the diatom Melosira tropica (Table 1). The third main cluster denoted 20 of 224 

the samples below the confluence with the Missouri River, primarily by their abundance of taxa 225 

similar in sequence to Skeletonema marinoi. The fourth main cluster contained 12 samples below 226 

the Missouri River confluence from above Vicksburg, MS to just below Three Rivers Wildlife 227 

Management Area. These samples were indicated by their abundances of species similar in 228 

sequence to the cryptomonads Teleaulax acuta, Cryptomonas sp., and Plagioselmis 229 

nannoplanctica as well as two diatom OTUs for species similar in sequence to Cyclotella sp. 230 

(Table 1). 231 

 232 

Relationships with nutrient data 233 

The best predictor of NH4
+ concentrations at a given location was the abundance of diatoms 234 

similar in sequence to Sellaphora pupula, which explained 38% of variation in [NH4
+] (Table 2), 235 

but mostly as a result of two sites having high [NH4
+] (> 25 µg L-1) and abundances of 236 

Sellaphora pupula. After this OTU, the abundances of no other phytoplankton OTU predicted 237 

NH4
+ concentrations (P > 0.01 for all OTUs). [NO3

-] was best predicted by 4 diatom OTUs, 238 

which explained 61% of the variation in [NO3
-]. Nitrate concentrations decreased with increasing 239 

abundances of species similar in sequence to Melosira tropica and increased with increasing 240 

abundances of species similar in sequence to Cyclotella sp. WC03, Navicula salinicola, and 241 

Dinophysis fortii (Table 2). 80% of the variation in [PO4
3-] was explained by the abundances of 242 

six diatom OTUs (Table 2). [PO4
3-] increased with increasing abundances of species similar in 243 
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sequence to Skeletonema marinoi, Cyanobium sp. Navicula salinicola, Cyclotella sp. WC03, 244 

Cryptomonas ovata, and Dinophysis fortii. Phytoplankton OTU richness increased downstream 245 

(P < 0.01), but in the backwards elimination stepwise regression, phytoplankton OTU richness 246 

(intercept = 16.42 ± 6.83; P = 0.02) increased with increasing secchi disk depth (0.295 ± 0.071 247 

OTUs cm-1; P < 0.001) and with increasing [PO4
3-] (0.328 ± 0.048 OTUs (µg L-1)-1 ; P < 0.001) 248 

(Figure 5). 249 

Comparing phytoplankton and bacteria 250 

Comparing distance matrices with a Mantel test, 23S and 16S assemblages were correlated (r = 251 

0.44, P < 0.001). Similarly, the hierarchical clustering of sites based on 23S and 16S 252 

assemblages were correlated (cophenetic correlation, r = 0.43), revealing structural similarity in 253 

the two assemblages. For example, comparing the dendrograms, paired samples often clustered 254 

together for both the 23S and 16S assemblages, such as the D samples and Aa samples. Also, 255 

sites U and W were more similar to one another than other sites for both 23S and 16S (Figure 6). 256 

Stepping back to the broader patterns, the major clusters of sites in the 23S data were also largely 257 

present for the 16S data, though the relative positions within this cluster were mixed. Some 258 

differences in the clustering between the two sets of samples were likely due to stochasticity or 259 

contamination in individual samples for one primer pair. For example, with the 23S data, site P 260 

clustered with the Al sites. Yet, in the 16S data it clustered more closely with the adjacent O sites.  261 

Compared to phytoplankton, using the same forward stepwise regression technique—top 50 262 

OTUs, P < 0.01 for entry—bacterial OTUs typically explained a greater proportion of nutrient 263 

concentrations in the water. For [NH4
+], five bacterial OTUs predicted 69% of the variation in 264 

[NH4
+] compared to 38% of the variation with phytoplankton (Table 3). Sites with greater 265 

abundances of three OTUs (a Firmicutes, a Bacteroidetes, and a Proteobacteria) had higher 266 
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[NH4
+] while sites with greater abundances of two OTUs (an Actinobacteria and a Bacteriodetes) 267 

had lower [NH4
+] (Table 3). For [NO3

-], phytoplankton had predicted 61% of the variation, but 268 

the abundances of six bacterial OTUs explained 80%. [NO3
-] concentrations increased with 269 

increasing abundances of two bacterial OTUs (an Actinobacteria and a Bacteriodetes) and 270 

decreased with increasing abundances of four bacterial OTUs (an Actinobacteria, a Bacteriodetes, 271 

and two Proteobacteria) (Table 3). For [PO4
3-], bacteria predicted 81% of the variation in 272 

concentrations, compared to 80% for phytoplankton. [PO4
3-] were lower with increasing 273 

abundances of three bacterial OTUs (an Actinobacteria, a Bacteriodetes, and a Proteobacteria) 274 

and increased with increasing abundances of a Planctomycetes OTU (Table 3). 275 

Discussion 276 

Overall, this research demonstrates the potential of sequencing the 23S region in water samples 277 

to reconstruct a broad diversity of the phytoplankton assemblage and provide information on 278 

underlying environmental conditions. Here, we saw that 23S-derived phytoplankton assemblages 279 

shifted along the length of the river, paralleled shifts in bacterial assemblages, and could predict 280 

abiotic conditions such as aquatic inorganic nutrient concentrations. These results support the 281 

further development of 23S sequencing of aquatic eDNA to reconstruct phytoplankton 282 

assemblages in order to infer environmental conditions.  283 

The patterns in phytoplankton eDNA abundance observed for the Mississippi River were similar 284 

to those in other rivers. For example, Cannon et al. sequenced both 16S and 23S along the length 285 

of the Cuyahoga River in northern Ohio, USA (Cannon et al. 2017). As with the Mississippi, in 286 

the Cuyahoga, phytoplankton 23S OTUs were spatially patterned and many phytoplankton and 287 

bacteria were correlated along the length of the river, potentially reflecting underlying 288 
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environmental conditions. In another study, Craine et al. sequenced 4 primer pairs including 16S 289 

and 23S to reconstruct biotic assemblages along 475 km of the Potomac River in Maryland, USA 290 

(Craine et al. in review). As with the Mississippi River, phytoplankton assemblages were 291 

distinctly patterned along the river and were strongly associated with river size and aquatic 292 

phosphorus concentrations. For the Potomac, phytoplankton richness increased downstream, just 293 

as with the Mississippi. Among these three studies, there were strong differences in 294 

phytoplankton assemblages. For example, compared to the Mississippi River, the Cuyahoga 295 

River had a greater dominance of Cryptophytes. Although both the lower Potomac and 296 

Mississippi were dominated by diatoms, different diatoms dominated the two rivers. 297 

Traditional sampling of large rivers with visual quantification of phytoplankton also showed 298 

many similar patterns as we observed here. For example, in the River Loire, large portions of the 299 

river were dominated by diatoms and many taxa were associated with eutrophic conditions 300 

(Abonyi et al. 2012). In the Upper Missouri/Mississippi/Ohio River basin in 2004/5, 301 

phytoplankton diatom assemblages responded to agricultural disturbance, urbanization, and 302 

eutrophication (Kireta et al. 2012b). Compared to the other two rivers, the upper Mississippi 303 

River was distinguished by its high levels of eutrophication, with many of the taxa observed here 304 

in high abundance (or congeners) being indicative of eutrophic and/or high agricultural or urban 305 

disturbance (Kireta et al. 2012b). The lower Mississippi River is also considered generally 306 

eutrophic and many of the taxa that indicated eutrophic or saline conditions were similar to those 307 

that dominated assemblages here (Bellinger et al. 2013). 308 

Empirically, given the greater abundance of phytoplankton in waters than, for example, insects 309 

or fish, there has been greater success sequencing the eDNA of phytoplankton than larger 310 

organisms. This further favors developing the use of phytoplankton over other taxa. The ability 311 
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in this study of the relative abundance of phytoplankton to predict aquatic nutrient concentrations 312 

should encourage future research to develop this technique for bioassessment. For example, 313 

sections of the Mississippi River with high abundances of Melosira tropica and Navicula 314 

salinicola or low abundances of a Cyclotella OTU had high [NO3
-]. If these relationships were to 315 

hold up across different river systems and seasons, then the abundances of these species as 316 

determined by sequencing eDNA could broadly serve as an indicator of [NO3
-] without having to 317 

measure it directly. Given that using a similar technique, strong relationships between aquatic 318 

nutrient concentrations and phytoplankton abundances were seen in the Potomac River, too 319 

(Craine et al. in review), this method continues to show promise as a bioassessment tool. To our 320 

knowledge, there is no theory to explain why phytoplankton diversity increases with distance 321 

downstream and/or with increased [PO4
3-], which was also observed in the Potomac. In fact, such 322 

observations actually run counter to the popular River Continuum Concept, which postulated that 323 

after an initial increase in headwaters, diversity should decrease with increasing river size 324 

(Vannote et al. 1980). However our observed trend of increasing diversity is consistent with 325 

other measurements of Mississippi River microbial assemblages (Payne et al. 2017)(Henson et al. 326 

in review). Theory aside, it will take much larger datasets to assess whether phytoplankton 327 

diversity, in and of itself, is diagnostic for any environmental conditions.  328 

Greater taxonomic resolution is likely possible with other primer pairs in conjunction with 23S, 329 

but there is no evidence yet that this is necessary. That said, there are still areas where more 330 

research is required before metabarcoding with 23S for phytoplankton assemblages can be 331 

operationalized. For example, the number of sequences known from diatom taxa is small fraction 332 

of the several thousand species described from North America (Kociolek 2006). Of the nearly 333 

one thousand taxa listed in the Diatoms of the US web flora (Spaulding et al. 2010), 334 
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approximately one hundred have associated sequences that are currently available in GenBank. 335 

Other studies (Visco et al. 2015) report that only 28% of taxa identified by microscopy had 336 

corresponding reads in sequence data. Consequently, for diatoms, the OTUs were mapped to taxa 337 

that were most similar, with the outcome that species that are well-characterized in gene 338 

sequences (i.e. Melosira tropica) that have not reported from inland waters in river surveys (U.S. 339 

Geological Survey BioData). 340 

It is possible that the OTU matches to Melosira tropica could reflect the presence of the very 341 

common M. varians. Melosira tropica has not been reported from inland waters, but M. varians 342 

is one of the very common river species (Potapova and Charles 2007). Although it is not 343 

expected to find Thalassiosira rotula in the more northern reaches of the Mississippi River, 344 

others (Visco et al. 2015) report that the common Stephanodiscus minutulus was included in a 345 

well-supported clade with a number of Thalassiosira species, at least based on the particular 346 

region examined. Skeletonema potamos and S. costatum are commonly reported from rivers with 347 

high conductivity, resulting from agricultural input (Potapova and Charles 2007). For example, 348 

both of these species have been found in national surveys in rivers including the Milwaukee 349 

River at Milwaukee WI and the Maumee River at Waterville OH.  350 

Beyond improving reference databases, autecological information for many phytoplankton taxa 351 

exist (Reynolds et al. 2002, Padisák et al. 2009), but indices generated with 23S will need to 352 

continue to be calibrated against environmental conditions with multiple reference sites to ensure 353 

that there are not covariates driving the relationship. For example, nutrient concentrations, 354 

distance downstream, and time of sampling were all associated in this study and these other 355 

factors could be influencing the relationships we observed between phytoplankton assemblages 356 

and nutrient availability. Multiple large rivers of different nutrient status will need to be included 357 
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to partition out the direct effects of nutrient concentrations from other covariates driving 358 

assemblage composition. Reference databases will also need to be expanded by sequencing a 359 

larger diversity of phytoplankton organisms and identifying taxa associated with sequences. 360 

Although eDNA-based bioassessment can occur independent of taxonomy (Apotheloz-Perret-361 

Gentil et al. 2017), more robust, stable indices will likely require ecological information about 362 

individual taxa, too. Given the breadth of taxa sequenced with 23S, this means broad biodiversity 363 

surveys are required for all phytoplankton taxa rather than a single taxonomic group, such as 364 

cyanobacteria. Although this technique should work with periphyton also, future work should 365 

continue to test whether phytoplankton or periphyton are best for bioassessment of given 366 

environmental conditions (Kireta et al. 2012a), although previous work with traditional 367 

techniques appears to favor the utility of phytoplankton over periphyton for assessing 368 

environmental conditions in some large rivers (Reavie et al. 2010), though not others (Bellinger 369 

et al. 2013). 370 

  371 
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Table 1. Table of indicator values for different clusters. See Figure 4 for which sites belong to 503 

each cluster.  504 

OTU Taxon Cluster Indicator value P value 

OTU.12 Planktothrix agardhii Site A 0.85 <0.001 

OTU.29 Cryptomonas obovoidea Site A 0.83 0.03 

OTU.79 Skeletonema marinoi 2 0.74 <0.001 

OTU.10 Teleaulax acuta 3 0.66 <0.001 

OTU.37 Cryptomonas sp. Sinjeong 080610A 3 0.61 0.02 

OTU.338 Plagioselmis nannoplanctica 3 0.41 0.03 

OTU.192 Cyclotella sp. WC03_2 3 0.36 <0.001 

OTU.48 Cyclotella sp. WC03_2 3 0.34 0.002 

OTU.49 Choricystis parasitica Sample Ai1 0.99 0.003 

OTU.418 Nannochloropsis salina Sample Ai1 0.92 0.01 

OTU.77 Navicula salinicola Sample Ai1 0.58 0.006 

OTU.96 Gymnodinium eucyaneum Sample Ai1 0.55 0.04 

OTU.1 Thalassiosira rotula 5 0.30 0.003 

OTU.145 Gymnodinium eucyaneum 6 0.67 0.03 

OTU.189 Tenuicylindrus sp. LG-2015 6 0.65 <0.001 

OTU.100 Cryptochloris sp. PR-2015 6 0.62 0.04 

OTU.3 Melosira tropica 6 0.43 0.002 

OTU.43 Ochromonas danica Itasca 1.00 0.05 

OTU.28 Dinophysis fortii Itasca 0.98 0.01 

OTU.14 Trachydiscus minutus Itasca 0.87 <0.001 
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OTU.50 Synechococcus sp. RCC307 Samples U1,W1 0.50 0.04 

 505 
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Table 2. 23S OTU predictors of nutrient concentrations including sums of squares, estimates (µg 507 

L-1), and P values. Coefficients of variation for [NH4
+], [NO3

-], and [PO4
3-] were 0.38, 0.61, 0.80, 508 

respectively. 509 

 510 

Nutrient Variable %SS Estimate P value 

[NH4
+] Intercept  3.2 ± 0.8 <0.001 

 Sellaphora pupula 100% 492.4 ± 75.7 <0.001 

[NO3
-] Intercept  1046 ± 148.4 <0.001 

 Cyclotella sp. WC03_2 34.1% -1947.5 ± 453.1 <0.001 

 Melosira tropica 23.0% 4152.7 ± 1177.9 <0.001 

 Navicula salinicola 22.6% 67288.8 ± 19245.2 <0.001 

 Dinophysis fortii 20.3% 5803301 ± 1749619.8 0.002 

[PO4
3-] Intercept  2.4 ± 6.4 0.7095 

 Cyclotella sp. WC03_2 8.2% 248.3 ± 61.1 <0.001 

 Skeletonema marinoi 38.2% 317.3 ± 36.2 <0.001 

 Cyanobium sp. PCC 7009 27.6% 352.2 ± 47.2 <0.001 

 Cryptomonas ovata 9.9% 1597.8 ± 357.6 <0.001 

 Navicula salinicola 9.9% 3977.9 ± 891.1 <0.001 

 Dinophysis fortii 6.2% 299742.4 ± 84789.6 <0.001 

 511 

 512 
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Table 3. 16S OTU predictors of nutrient concentrations including sums of squares, estimates (µg 515 

L-1), and P values. Coefficients of variation for [NH4
+], [NO3

-], and [PO4
3-] were r2 = 0.69, 0.78, 516 

0.81, respectively. 517 

Nutrient Variable %SS Estimate P value 

[NH4
+] Intercept  0.2 ± 1.3 0.84 

 OTU13 21.2% 167.8 ± 36.7 <.001 

 OTU17 28.8% -133.1 ± 25 <.001 

 OTU15 9.2% -52.5 ± 17.4 0.004 

 OTU25 8.2% 138.0 ± 48.4 0.006 

 OTU45 32.6% 899.3 ± 158.6 <.001 

[NO3
-] Intercept  1875.2 ± 125.5 <.001 

 OTU3 11.1% 6966.0 ± 1961.3 <0.001 

 OTU7 11.7% -14045.1 ± 3850.6 <0.001 

 OTU19 9.6% -49899.6 ± 15098.3 0.002 

 OTU44 18.5% -37316.1 ± 8125.9 <0.001 

 OTU25 31.0% 32079.2 ± 5393.8 <0.001 

 OTU35 18.2% -20507.3 ± 4508.4 <0.001 

[PO4
3-] Intercept  102.5 ± 8.7 <0.001 

 OTU15 55.0% -916.7 ± 105.6 <0.001 

 OTU23 7.8% -1054.3 ± 322.7 0.002 

 OTU30 11.7% 3924.4 ± 981.9 <0.001 

 OTU49 25.5% -3925.7 ± 663.6 <0.001 

  518 
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 519 

 520 

 521 

Figure captions. 522 

Figure 1. Accumulation of OTUs with additional samples. 50% of the accumulation of OTUs 523 

occurs with 11.8 samples and richness is predicted to asymptote at 447 samples.  524 

Figure 2. Relative read abundance of four most abundant OTUs as a function of distance from 525 

the mouth of the Mississippi River. 526 

Figure 3. Relative read abundance of five main taxonomic groups as a function of distance from 527 

the mouth of the Mississippi River. 528 

Figure 4. Heat map of abundances of OTUs at sites along the Mississippi River based on the 529 

standardized relative abundance of the 50 most abundant 23S OTUs. Blue indicates a low 530 

relative abundance and red high with gray intermediate. Sites and OTUs were clustered 531 

hierarchically based on dissimilarity index of relative abundances. Four major site clusters 532 

shown in color including Cluster 2 (purple), Cluster 5(green), Cluster 6 (red), and Cluster 3 533 

(blue).  534 

Figure 5. Partial residual plots of rarefied OTU richness as a function of (a) secchi disk depth and 535 

(b) [PO4
3-]. Non-significant variables include distance down the river, [NO3

-], and [NH4
+]. 536 

Figure 6. Tanglegram for the association between site hierarchical clusterings based on 23S and 537 

16S OTU abundance. Colored lines between dendrogram tips represent similar relative 538 

placement of sites within the clustering diagram.539 
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