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Abstract: Bacterial infection in the gut is often due to successful invasion of the host microbiome by an 12	

introduced pathogen. Ecological theory indicates that resident community members and their interactions 

should be strong determinants of whether an invading taxon can persist in a community. In the context of 14	

the gut microbiome, this suggests colonization resistance against newly introduced bacteria should 

depend on the instantaneous bacterial community composition within the gut and interactions between 16	

these constituent members. Here we develop a mathematical model of how metabolite-dependent biotic 

interactions between resident bacteria mediate invasion, and find that stronger biotic connectivity from 18	

metabolite cross-feeding and competition increases colonization resistance. We then introduce a statistical 

method for identifying invasive taxa in the human gut, and show empirically that greater connectivity of 20	

the resident gut microbiome is related to increased resistance to invading bacteria. Finally, we examined 

patient outcomes after fecal microbiota transplant (FMT) for recurring Clostridium difficile infection. 22	

Patients with lower connectivity of the gut microbiome after treatment were more likely to relapse, 

experiencing a later infection. Thus, simulation models and data from human subjects support the 24	

hypothesis that stronger interactions between bacteria in the gut repel invaders. These results demonstrate 

how ecological invasion theory can be applied to the gut microbiome, which might inform targeted 26	

microbiome manipulations and interventions. More broadly, this study provides evidence that low 

connectivity in gut microbial communities is a hallmark of community instability and susceptibility to 28	

invasion. 

30	
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Introduction 30	

Human infection is often due to the successful invasion of harmful bacteria in the host-associated 

microbiome (Nizet et al. 2001, Bel et al. 2017). Although the human body is frequently exposed to 32	

harmful invaders (for example, pathogens on food [Berger et al. 2010] or household surfaces [Flores et al. 

2013]), few introductions result in disease. However, pathogens comprise only a small subset of all 34	

potentially invasive bacteria within the human gut microbiome (David et al. 2014). The resident 

microbiome plays a substantial role in mediating resistance to invaders, but the mechanisms of action are 36	

only partially understood (Baumler and Sperandio 2016).  

Ecological invasions progress through distinct stages, beginning with transport and population 38	

expansion, and culminating in their impact on ecosystems (Sakai et al. 2001). These same stages occur 

when newly introduced bacteria colonize the human microbiome (Bosch et al. 2013, Kc et al. 2017). Most 40	

ecological invasions are unsuccessful (Williamson 2006). This is also observed in invasions in the human 

microbiome; although humans are constantly exposed to novel bacteria, the microbiomes of different 42	

body sites retain distinct compositional profiles and display stability over time (Caporaso et al. 2011, Oh 

et al. 2016). Thus, most bacterial populations introduced into the human-associated microbiome also fail 44	

to establish.    

Ecological studies have demonstrated that the success of invading taxa depends strongly on the 46	

biotic interactions within the resident community (Lodge 1993, Fey and Herren 2014). This is also 

observed in the context of the gut microbiome, where interactions take the form of exchanging and 48	

competing for metabolites (Kinnunen et al. 2016, Mullineaux-Sanders et al. 2018). For example, a recent 

study demonstrated that an alteration to the resident gut microbial community allowed invasive 50	

Salmonella to thrive on a newly abundant metabolite (Gillis et al. 2017). Thus, the resident gut 

community was indicative of resource availability, which mediated colonization resistance against 52	

Salmonella. Despite the importance of metabolite-mediated bacterial interactions, few models of 

microbial community invasion have explicitly included metabolites.  54	
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In this study, we investigate the role of the resident gut microbiome community in mediating 

resistance to invasion. First, we developed a computational model to study how metabolite cross-feeding 56	

and competition mediate success of an invading microbe. We then introduce a novel statistical method to 

identify invasive taxa in empirical microbial communities, and use this approach to study the invasive 58	

bacteria in three long-term gut time series. The gut microbiome is an ideal system to test ecological 

invasion theory, because the gut is at constant risk of invasion from consumed bacteria and from 60	

opportunistically invasive commensal bacteria (Benjamin et al. 2013). Finally, we evaluated whether gut 

connectivity could predict susceptibility to invasion by the pathogen Clostridium difficile in patients who 62	

received fecal microbiota transplant (FMT) therapy. We chose C. difficile as a test case because it is a 

well-studied bacterial pathogen whose colonization depends on the resident gut microbiome (Schubert et 64	

al. 2015). 

 66	

Methods  

Simulation Model  68	

We constructed a mathematical model consisting of resident taxa, an invading taxon, and the 

metabolites required for cell reproduction. Taxa interact through competition for metabolites in the 70	

environment and through cross-feeding of metabolites. Of all possible metabolites in the model (m), each 

taxon required a randomly assigned unique subset of n metabolites for growth, giving each a distinct 72	

niche. Each taxon also excreted a non-overlapping subset of q metabolites. Excretion profiles were not 

necessarily unique. Cross-feeding, defined as direct flow of metabolites from one taxon to another, was 74	

possible if one taxon excreted a certain metabolite required by a different taxon. Other parameters in the 

simulation model included the proportion of possible metabolite exchanges due to cross-feeding that are 76	

realized (p), a competition coefficient (c), variability in competition coefficients among taxa (v), an input 

rate for metabolites (i), a flushing rate for metabolites and cells (f), metabolite input rates (i) and the 78	

number of taxa present in the community at the start (x). During each run, all possible combinations of m 

choose n metabolite requirement profiles were generated, and a random subset of x requirement and 80	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2018. ; https://doi.org/10.1101/261750doi: bioRxiv preprint 

https://doi.org/10.1101/261750
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

excretion profiles were assigned to the taxa. One of the x taxa had metabolic requirements matching the 

input metabolites. From the requirement and excretion profiles, every possible one-way metabolite flow 82	

was identified. A random subset of these possible exchanges were selected as realized cross-feeding 

relationships. Competition coefficients for each taxon were drawn from a normal distribution with mean c 84	

and a standard deviation of v.  

In each time step, metabolites enter the environmental pool (Fig. 1a). Taxa then compete for these 86	

metabolites, with uptake rates governed by their competition coefficients, which quantify scavenging 

efficiency. Demand for each metabolite is calculated as the number of individuals lacking the metabolite 88	

multiplied by their respective competition coefficients. If total demand is greater than the available 

metabolites, metabolites are allocated among taxa in proportion to the demand of each taxon. We assume 90	

for simplicity that metabolite uptake amongst individuals in a population is arranged to maximize 

biomass production (Klitgord and Segrè 2011). Individuals that obtain one unit of each necessary 92	

metabolite reproduce and excrete their given metabolites. If these individuals were from taxa participating 

in cross-feeding, the excreted metabolites were preferentially available to the recipient taxon before 94	

entering the environmental pool. If the growing taxon had more than one exchange (i.e. more than one 

cross-feeder), an equal amount of metabolites were made available to each recipient taxon. Finally, a 96	

proportion f of individuals and environmental metabolites were flushed from the system.  

The invader was introduced after the community of resident taxa equilibrated (Fig 1b). The 98	

invader had a fixed competition value (in these simulations, 0.9), and participated in no cross-feeding. We 

reasoned that cross-feeding exchanges often need time to develop (e.g. time for proper spatial 100	

configuration [Pathak et al. 2012], construction of nanotubes [Pande et al. 2015], or within-host 

coevolution [Foster et al. 2017]), and that an invading taxon would therefore have no preexisting cross-102	

feeding relationships. The run was completed once the model reached equilibrium after the invader was 

introduced. The outcomes recorded were persistence of the invader, standing pools of metabolites, total 104	

number of individuals in the community, and number of taxa persisting. We evaluated these outcomes 
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while changing the strength of biotic interactions (magnitude of competition and proportion of cross-106	

feeding). 

For simulations analyzed here, we changed the mean strength of competition (c) between 0.4 and 108	

0.9 and the proportion of cross-feeding (p) between 0 and 0.5. The standard deviation of competition 

values (v) was equal to 0.3 * c. Any randomly generated competition values below 0.01 were set to 0.01. 110	

We initialized the model with 15 taxa, 7 possible metabolites, 4 metabolites required for growth, 2 

metabolites excreted, and an input rate of 100 units of each of 4 metabolites. The flushing rate was 0.15 112	

during each time step. We used 5000 runs for each combination of competition coefficient and cross-

feeding proportion. The model was determined to be at equilibrium when the maximum abundance 114	

change of any taxon was lower than 0.01. In a small fraction of model runs, the model resulted in a stable 

limit cycle (see SOM). In this case, the final values were recorded at 20,000 time steps. 116	

 

Dynamics of invasion in healthy subjects 118	

Next, we present a technique to identify invasive taxa in three long-term time series of the human 

gut microbiome. Invasive taxa are, by definition, newly introduced into communities during discrete 120	

events. Thus, the distribution of invasive taxa over time shows clusters of presences and absences. We 

quantified the degree of presence/absence clustering using an equation that calculates the probability that 122	

a streak of successes would be observed in a series of Bernoulli trials (Feller 1968). This method of 

identifying invasive taxa avoids problems associated with defining invasive taxa as those newly observed 124	

in a community (Kinnunen et al. 2016). In that case, the taxa classified as invasive would change based 

on the reference time frame.   126	

For each taxon, we identified the longest consecutive number of days in which the taxon was 

present (termed a “streak”). We also calculated the fraction of total samples in which was present. From 128	

these two values, it is possible to calculate a p value that described the probability that a streak equal to 

or longer than the observed streak would occur if presences and absences were randomly distributed. 130	

This probability (qn) is given by (see Feller 1968, p. 325 for a derivation): 
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 132	

     Eq. 1 

 134	

 

Where n is the number of samples, r is the length of the longest streak, p is the fraction of presences 136	

across the time series, q = 1 – p, and x is the root nearest to 1 (but not 1/p) of the equation: 

 138	

      Eq. 2 

 140	

 

Using this formula, a small qn (p value) indicates that the observed streak of persistence is longer than 142	

would be expected; this denotes a highly patchy presence/absence distribution. We classified invasive 

taxa as those that were significantly patchy in their distribution (p < 0.01) and which were present in 144	

fewer than 50% of samples. We note that a cutoff of p < 0.05 may not be sufficiently conservative, due to 

expected autocorrelation in abundances. The presence threshold was necessary because common taxa that 146	

became temporarily absent during a disturbance would also have a significantly patchy distribution. 

Analyses were robust to changes in these cutoffs (see SOM). To account for differences in detection 148	

limits between samples due to differing sequencing depth, we set a universal detection limit across the 

entire dataset (see SOM). Any values lower than this limit were set to zero.  150	

Data for human mirobiome subjects A and B were originally published in David et al. 2014. 

These data are near-daily stool samples from two unrelated male subjects. We downloaded the 152	

operational taxonomic unit (OTU) tables generated from closed reference OTU picking from the Qiita 

portal (ID 2196). We removed samples with fewer than 10000 reads and those with otherwise low 154	

detection ability (see SOM). We removed an additional two samples from subject B (days 252 and 318) 

because sampling became infrequent after day 242. This resulted in 321 samples from subject A and 182 156	

qn ∼1 −
1− px

(r +1− rx)q
i
1
x n+1

1− x + q prxr+1 = 0
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samples from subject B. Data from subject C were obtained from the Qiita portal (ID 11052). Again, we 

used the OTU tables generated from closed reference OTU picking. We removed samples with fewer than 158	

5000 reads and further removed OTUs with fewer than 10 reads across the full dataset. We subset the data 

to fecal samples from subject M03, and analyzed the longest window of consecutive fecal samples. This 160	

window corresponded to the 511 samples taken from 14 July 2015 to 06 February 2017. Four additional 

samples were removed due to poor detection limits.   162	

 

Calculation of connectivity using the cohesion statistics 164	

We quantified connectivity of the resident gut community using cohesion statistics (Herren and 

McMahon 2017, https://github.com/cherren8/Cohesion), which give instantaneous measures of the degree 166	

of interconnectedness among OTUs in a microbial sample. Connectivity is hypothesized to arise from 

biotic interactions (see Herren and McMahon 2017 for further discussion). We operationally define 168	

connectivity as the true network of correlations between microbes, whereas cohesion is an estimate that 

quantifies connectivity.  170	

In brief, cohesion statistics represent the average pairwise correlations between individuals in a 

sample, after correcting for methodological biases. There are two cohesion values for each sample, 172	

corresponding to connectivity from positive relationships and connectivity from negative relationships. 

The first step in the workflow is to calculate connectedness values for each taxon. Connectedness values 174	

are the average positive and negative correlation of the focal taxon with other taxa, after accounting for 

bias introduced by the compositional nature of the data. Cohesion values are weighted sums of the 176	

connectedness values multiplied by the abundances of the taxa in each sample. Taxa that are below 

specified abundance or persistence thresholds are not included in calculating cohesion, and are given 178	

connectedness values of zero.  

For the long-term gut time series, we first-differenced the data before calculating cohesion values. 180	

This is a suggested step in the cohesion workflow to handle autocorrelation in abundances due to high 

sampling frequency (Herren and McMahon 2017). We set the persistence threshold for inclusion at 0.5 182	
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for the long-term gut data, which was the same cutoff for exclusion for defining invasive OTUs. Using the 

same cutoff for these two analyses meant that no taxon in the invasion analyses contributed to the 184	

cohesion values, thereby eliminating possible artificial relationships between the predictor and response 

variables in the multilevel model (see next section). We tested two possible mean abundance cutoffs of 186	

0.001 and 0.0001. We evaluated which cutoff yielded a better fit of the population dynamics of invasive 

OTUs and used that cutoff value. For subjects A and B, we used a mean abundance cutoff of 0.001, while 188	

for subject C we used 0.0001.  

 190	

Multilevel model analysis and model selection 

 To evaluate whether connectivity could predict changes in taxon abundances, we built a 192	

hierarchical linear mixed effects model (hereafter called a “multilevel model”). We chose a multilevel 

model because it enables analysis of rare taxa without risk of over-parameterization. Invasive taxa are 194	

sufficiently rare that confident parameter estimates cannot be obtained for each taxon; instead, this type of 

analysis pools low-confidence estimates from each taxon to obtain a single overall estimate of how a 196	

predictor variable affects all invasive taxa. A template and sensitivity analysis of this type of analysis can 

be found in Jackson et al. 2012.  198	

 The predictors included in the multilevel models were fixed effects for the natural log-

transformed abundance at time t, positive cohesion values of the communities at time t, and negative 200	

cohesion values of the communities at time t. The response variable was the natural log-transformed 

abundances of invasive taxa at time t + 1. We did not include time points when the OTU was absent 202	

(abundance = 0) at time t or at time t +1. This was for two reasons: 1) model residuals were improved by 

preventing zero-inflation, and 2) it was then possible to log transform the abundances without adding an 204	

arbitrary positive value. Random effects were included to allow mean abundance (intercept) to vary by 

OTU, for the effect of positive cohesion to vary by OTU, and for the effect of prior abundance to vary by 206	

OTU (effectively assuming density dependence varies by OTU). We did not include a random effect to 

allow negative cohesion to vary by OTU, because this random effect showed high collinearity with the 208	
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random effect for positive cohesion, and negative cohesion was a weaker predictor than positive cohesion. 

We evaluated significance of random effects by comparing AIC values of models with and without the 210	

terms included.  

 In order to ensure that any significant results of our analyses of invasive OTUs were not spurious 212	

or statistical artifacts, we analyzed paired models of OTUs that were uncommon but non-invasive. We 

expected that OTUs classified as non-invasive would have a lesser response to cohesion values. Instead of 214	

analyzing OTUs with significantly patchy distributions (p < 0.01), we analyzed OTUs that showed no 

trend toward patchiness (p > 0.3) that were present in fewer than 50% of samples. We fit the same 216	

multilevel model for these OTUs. For subject A, highly collinear random effects caused convergence 

problems, so we removed the random effect that allowed density dependence to vary by OTU. A full table 218	

of results from the six multilevel models can be found in SOM.  

 220	

Relapse in patients treated with FMT 

Finally, we tested whether the observed relationship between cohesion and resistance to invasion 222	

could be used to predict patient responses to a therapeutic microbiome intervention. We obtained data 

from a clinical study evaluating the role of the gut microbiome during FMT for the treatment of recurring 224	

C. difficile (Khanna et al. 2016). We downloaded the data from the Qiita portal (id 10057), again using 

the OTU table generated from closed reference OTU picking. As before, bacterial community 226	

composition data were obtained using 16S rRNA amplicon sequencing. We also contacted the original 

authors to ensure accurate interpretation of the metadata. FMT is a commonly used treatment for chronic 228	

C. difficile infection that has a higher success rate than antibiotic treatment (van Beurden et al. 2017). 

This study collected stool samples from 38 patients treated with FMT. Of these 38 patients, 29 had stool 230	

samples analyzed at day 28 post-FMT. The study also recorded whether patients experienced another C. 

difficile infection within two years after FMT. We hypothesized that patients who would later relapse 232	

would have lower community connectivity after FMT. To test this hypothesis, we calculated OTU 

connectedness values from the healthy donors, which we used to obtain cohesion values for the patients at 234	
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28 days post-FMT. The cutoffs for persistence and mean abundance of OTUs included in the cohesion 

calculation were 0.6 and 0.001. Because of the different variances of cohesion values among relapsing 236	

and cured patients, we used the non-parametric one-tailed Wilcoxon rank test for this analysis.  

 238	

Software used for analyses 

 All analyses and simulations were conducted in R, version 3.4.0. In the metabolite exchange 240	

simulations, taxon metabolite requirements were generated using the combinat package. The packages 

abind, data.table, and dplyr were used to manipulate matrices. Linear mixed effects models were fit using 242	

the lme4 package. Conditional R2 values were obtained using the MuMIn package. Significance values 

for models were obtained using the lmerTest package.  244	

 

Results and Discussion 246	

Simulation model 

Simulation results showed that the probability that an invader could persist in the community was 248	

strongly related to the strength of biotic interactions in the resident community. As the strength of either 

interaction (competition or cross-feeding) increased, standing metabolite pools decreased (Fig. 1c). 250	

Similarly, invaders were less successful when interactions were stronger (Fig. 1d). The two types of 

interactions had different mechanisms of reducing metabolites available to the invader. Stronger 252	

competition resulted in greater metabolite scavenging from the environment by resident taxa, thereby 

decreasing the probability that the invader could acquire metabolites. Conversely, cross-feeding decreased 254	

the amount of excreted metabolites entering the environmental pool due to direct provisioning of 

metabolites. Thus, stronger biotic interactions, whether originating from competition or cross-feeding, 256	

also led to lower rates of invasion. Our model supports the hypothesis that bacterial interactions can 

mediate invasion by inducing resource scarcity, thereby making it difficult for invaders to gain a foothold 258	

(Kinnunen et al. 2016).  

 260	
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Figure 1: Stronger biotic interactions lead to more complete metabolite uptake and a decreased chance of 262	

invasion. a) A conceptual diagram showing the flux of metabolites during each step in the simulation model, 

beginning with metabolite inflow and ending with flushing. In this scenario, cross-feeding occurs from the blue cells 264	

to brown cells and from brown cells to both green cells and blue cells. b) The outputs of the simulation model are 

the taxon abundances over time and the environmental metabolite concentrations over time. The red dashed line 266	

shows the time point where the invader (pink) was introduced. In this case, the invader persisted in the community. 

c) Environmental metabolite concentrations at model equilibrium decrease as either parameter of biotic interaction 268	

(proportion of cross-feeding or competition coefficient) becomes stronger. The figure shows median values of 5000 

runs for each parameter combination. d) The probability that an invader persisted in the community decreased when 270	

either parameter of biotic interaction (proportion of cross-feeding or competition coefficient) was stronger.  

 272	
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In the absence of cross-feeding, the model simplifies to the well-known result that only m taxa 

can persist on m metabolites (Tilman 1982). When cross-feeding was introduced, one taxon for every 274	

niche (m choose n taxa) could be present. Interestingly, this strong increase in diversity when allowing for 

cross-feeding is another possible explanation for the paradox of the plankton (Hutchinson 1961). The 276	

model has a carrying capacity determined by i, n, q, and f. If metabolite exchange from cross-feeding 

were configured such that every excreted metabolite were immediately consumed, the maximum 278	

community density (carrying capacity) is equal to 

 280	

             Eq. 3 

 282	

Dynamics of invasion in healthy subjects 

Next, we used our new approach for identifying invasive taxa in three long-term time series of the 284	

human gut microbiome. We designated taxa with significantly temporally clustered presence-absence 

profiles (p < 0.01) as invasive (Fig. 2).  286	

i i (1− f )
f
i

1

1− qn

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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 288	

Figure 2: Invasive taxa have distinct time-series signatures. We classified each OTU as invasive or non-invasive 

based on its presence/absence distribution across the time series. We used a formula for quantifying the temporal 290	

clustering of presence/absence data to make this classification (Feller 1968). This formula calculates the probability 

of observing consecutive presences of a taxon, which we call a “streak”. The p values displayed correspond to the 292	

probability that the OTU’s longest streak would occur if presences and absences were distributed independently 

across the time series. Taxa showing interspersed presences and absences across the time series were categorized as 294	

not significantly clustered, and therefore non-invasive (OTU 1 and OTU 2). Taxa showing highly segregated 

presences and absences across the time series were categorized as significantly clustered, and therefore invasive 296	

(OTU 3 and OTU 4).  

 298	

Invasive taxa were common in all three subjects. The total number of OTUs in each dataset was 

1828 for subject A, 1771 in subject B, and 4918 in subject C. In subject A, we identified 250 invasive 300	
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OTUs (subject B: 441, subject C: 131) that comprised an average of 2.2% (subject B: 8.6%, subject C: 

2.9%) of the gut bacterial community. Although invasions were common, invader abundances were low 302	

and the duration of invasions were short. Median peak invader abundance was 0.053% (subject B: 

0.047%, subject C: 0.13%) of the community, with an interquartile range of 0.022-0.24% (subject B: 304	

0.022-0.15%, subject C: 0.058 – 0.32%), and median invasion duration was 7 days with an interquartile 

range of 4-14 days (subject B: median 8 days, IQR of 4-15 days, subject C: median 7 days and IQR of 5-306	

14 days). The large number of invaders in subject B is likely explained by this subject’s gastrointestinal 

infection during the course of the sampling period.    308	

The multilevel models showed that cohesion values were significant predictors of abundance 

changes for invasive OTUs, but not for non-invasive OTUs. In all subjects, invasive OTUs declined in 310	

abundance when positive cohesion in the gut community was stronger (subject A: p < 10-8, slope 95% 

confidence interval = [-8.32, -4.24]; subject B: p < 10-10, CI = [-8.32, -4.59]; subject C: p < 10-5, CI = [-312	

12.3, -4.98]; Fig. 2). Please see SOM for full results tables. Invasive OTUs in subjects A and B showed 

no response to negative cohesion, while invasive OTUs in subject C declined as negative cohesion 314	

became stronger (subject A: p = 0.18, CI = [-2.27, 0.45]; subject B: p = 0.10, CI = [-1.72, 0.16]; subject 

C: p < 10-4, CI = [2.28, 6.74]). Conversely, OTUs that were not classified as invasive showed no response 316	

to changes in cohesion in subjects A (positive: p = 0.11, CI = [-6.07, 0.70]; negative: p = 0.85, CI = [-

2.56, 3.08]) and B (positive: p = 0.12, CI = [-8.92, 1.09]; negative: p = 0.57, CI = [-2.66, 4.81]), and 318	

showed increases in abundance in subject C (positive: p = 0.014, CI = [2.56, 24.7]; negative: p  = 0.068, 

CI = [-13.7, 0.63]). The range of positive cohesion values observed in communities from subject A was 320	

0.035 to 0.148 (subject B: 0.026 to 0.121, subject C: 0.024 – 0.114). A decrease in cohesion of 0.05 was 

associated with an increase of the average invader’s abundance by 37% (subject B: 38%, subject C: 54%) 322	

(Fig. 3). The conditional R2 values for the hierarchical models of invasive taxa were 0.45 for subject A, 

0.61 for subject B, and 0.44 for subject C. 324	

 

 326	
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Figure 3: Invasive OTUs decrease in response to stronger cohesion, whereas non-invasive OTUs do not. Each 328	

panel shows the predicted abundances of the 50 most abundant taxa in each multilevel model analyzing OTU 

abundance as a function of cohesion. Each line indicates the predicted abundance of the OTU at time t + 1 if the 330	

OTU were observed at a relative abundance of 0.01 at time t. Red lines indicate taxa that decreased by at least 50% 

over the range of observed positive cohesion values. Blue lines indicate taxa that increased by at least 50%. 332	

Although there was variability in how the OTUs responded to positive cohesion, invasive OTUs had a significant 

overall negative response to stronger positive cohesion in all three subjects (top row). For comparison, we also 334	

analyzed OTUs that were uncommon but non-invasive. In subjects A and B, these OTUs showed no significant 

response to cohesion, whereas OTUs in subject C the non-invaders increased in response to positive cohesion 336	

(bottom row).  

 338	

Relapse in patients treated with FMT 

Finally, we analyzed the data from a clinical study evaluating the role of the gut microbiome 340	

during FMT for the treatment of recurring C. difficile (Khanna et al. 2016). Stool samples were taken 

from patients before and after FMT, as well as from donors. We found that patients who would have a 342	

future relapse within 2 years after FMT had weaker gut cohesion at 28 days post-FMT than patients who 
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were cured (Fig. 4). Signed Wilcoxon rank tests were significant for both positive cohesion (p = 0.012) 344	

and negative cohesion (p = 0.015). Thus, weak connectivity of the patient gut bacterial community after 

FMT was an indicator that the patient was more likely to relapse. Prior efforts to predict C. difficile 346	

relapse from the microbiome did not find post-FMT indicators of relapse, although connectivity was not 

previously considered (Pakpour et al. 2017). 348	

 

 350	

Figure 4: Resident microbiome cohesion predicts C. difficile relapse in patients treated with FMT. Patients 

who would later experience a relapse of C. difficile had lower gut bacterial cohesion values at 28 days post-FMT. 352	

We calculated connectedness values of OTUs in healthy stool samples, which were then used to calculate cohesion 

values for patients after they received FMT. Relapsing patients had weaker positive cohesion (Wilcoxon signed rank 354	

test p value = 0.012) and weaker negative cohesion (Wilcoxon signed rank test p value = 0.015) after treatment.  

 356	

We conducted similar analyses using other possible predictors of relapse to evaluate the 

comparative explanatory power of the cohesion statistics. Other potential predictors of relapse were not 358	

statistically significant, including post FMT gut diversity (p = 0.92 using a one-way ANOVA), Bray-

Curtis dissimilarity from the donor community (p = 0.69 using a one-way ANOVA), and cohesion of the 360	

donor community (p = 0.18 for positive cohesion, p = 0.14 for negative cohesion using signed Wilcoxon 
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rank tests). The small number of relapsing patients is expected, because the success rate of FMT is high. 362	

However, when using cohesion values as the predictor, the effect size was sufficiently large that the small 

sample size did not impede identifying significant separation between the cured and relapsing groups. 364	

 

Incorporating invasion into ecological models of the gut microbiome 366	

The three cases considered here consistently showed that stronger connectivity of the resident 

bacterial community led to increased colonization resistance. Agreeing with ecological invasion theory, 368	

most bacterial invasions were short and ultimately unsuccessful. Prior studies have hypothesized that 

antibiotics increase susceptibility to invaders by eliminating resident microbes (David et al. 2014, 370	

Schubert et al. 2015). We further suggest that the most highly connected taxa are disproportionately 

important to maintaining resistance against invaders, and that successful gut microbiome interventions 372	

(such as probiotics [Johnston et al. 2016] or dietary changes [Griffin et al. 2017]) may be attributable in 

part to restoring connectivity among resident gut microbes.  374	

Interestingly, our results show predictive power independent of the role of the host immune 

system, which is a substantial contributor to host susceptibility to invasion (Round and Mazmanian 2009). 376	

Observing the responses of each invasive gut OTU (Fig. 3), it is clear that some invasive taxa had a 

positive or neutral response to increased gut connectivity. The variability of invader response to cohesion 378	

may be explained by factors not considered in this analysis. For example, it is possible that the taxa that 

are largely unaffected by cohesion are instead regulated by an immune response or the synthesis of 380	

antimicrobial compounds (Mullineaux-Sanders et al. 2018). Thus, we expect that resident community 

connectivity is only one of several factors affecting gut invasion. Furthermore, although the empirical 382	

results are consistent with the interpretation that pairwise correlations reflect biotic interactions, we 

cannot exclude the possibility that other factors, such as environmental forcing, contributed to cohesion 384	

values.   

The mechanisms by which FMT resolves C. difficile infection are still poorly known (Bajaj et al. 386	

2017, Patron et al. 2017, Zuo et al. 2017). Indeed, when announcing the FMT National Registry, the 
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American Gastronomical Society wrote that the widespread use of FMT “has advanced the practice of gut 388	

microbiota manipulation in patients more rapidly than our scientific understanding” (Kelly et al. 2017). 

Our results indicated that FMT is more successful when post-transplant communities have many highly 390	

connected taxa. We therefore hypothesize that successful intervention via FMT reestablishes microbial 

interactions, thereby creating a microbial community that can repel invaders. Taken together, our analyses 392	

show that strong connectivity of the resident gut bacteria appears to be an important indicator of a 

resilient microbial community.  394	
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