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Abstract. Assembling metagenomic data sequenced by NGS platforms
poses significant computational challenges, especially due to large vol-
umes of data, sequencing errors, and variations in size, complexity, di-
versity and abundance of organisms present in a given metagenome. To
overcome these problems, this work proposes an open-source, bioinfor-
matic tool called GCSplit, which partitions metagenomic sequences into
subsets using a computationally inexpensive metric: the GC content. Ex-
periments performed on real data show that preprocessing short reads
with GCSplit prior to assembly reduces memory consumption and gen-
erates higher quality results, such as an increase in the N50 metric and
the reduction in both the L50 value and the total number of contigs
produced in the assembly. GCSplit is available at https://github.com/
mirand863/gcsplit.

Keywords: DNA sequencing ·Metagenomics ·Data partitioning · Bioin-
formatic tools · Metagenomic data preprocessing

1 Introduction

Metagenomics consists in determining the collective DNA of microorganisms
that coexist as communities in a variety of environments, such as soil, sea and
even the human body [1–3]. In a sense, the field of metagenomics transcends the
traditional study of genes and genomes, because it allows scientists to investigate
all the organisms present in a certain community, thus allowing the possibility
to infer the consequences of the presence or absence of certain microbes. For
example, sequencing the gastrointestinal microbiota enables the understanding
of the role played by microbial organisms in the human health [4].

Nevertheless, second generation sequencing technologies — which belong to
the Next Generation Sequencing (NGS), and are still the most widespread tech-
nology on the market — are unable to completely sequence the individual genome
of each organism that comprises a metagenome. Instead, NGS platforms can se-
quence only small fragments of DNA from random positions, and the fragments
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of the different organisms are blended [5]. Hence, one of the fundamental tasks
in metagenome analysis is to overlap the short reads in order to obtain longer
sequences, denominated contigs, with the purpose of reconstructing each individ-
ual genome of a metagenome or represent the gene repertoire of a community [6].
This task is referred to as the metagenome assembly problem.

Roughly speaking, metagenome assembly can be done with or without the
guidance of a reference genome. The reference assembly can be performed by
aligning reads to the genomes of cultivated microbes [7]. However, this method
is rather limited because the microbial diversity of most environments extends far
beyond what is covered by the reference databases. Consequently, it is necessary
to perform de novo assembly when reconstructing a metagenome that contains
many unknown microorganisms.

Although it seems simple at first glance, the metagenome assembly problem
is actually quite complex. Among the several challenges this task arises, there
are sequencing errors specific to each platform and the processing of the large
volume of data produced by NGS platforms [8]. Moreover, the problem is further
complicated by variations on the size of the genomes and also by the complexity,
diversity and abundance of each organism present in a microbial community [9].
For these reasons, the metagenome assembly becomes a challenging problem.

To solve all these challenges, either de novo assembly can be performed di-
rectly by a metagenome assembler, or the short reads can be clustered in advance
in order to individually assembly each organism present in the metagenome [10].
The latter approach has the advantage of reducing the computational complex-
ity during the metagenome assembly, because the assembler will process smaller
subsets of short reads and, furthermore, it is possible to run the individual as-
sembly of each genome in parallel, since those tasks are independent from each
other. The reduction of computational complexity can also be achieved through
the previous digital normalization or data partitioning prior to assembly, which
reduces the dataset by removing redundant sequences, and divides it into groups
of similar reads, respectively [11].

The main focus of this study is the application of the data partitioning
method towards the reduction of computational complexity and the improve-
ment of metagenome assembly. The developed computational approach, denom-
inated GCSplit, uses the nucleotide composition of the reads, i.e., the amount of
bases A, G, C and T present on DNA sequences. This decision was based on the
fact that different organisms or genes that compose metagenomes have distinct
GC content and different GC contents will present coverage variation, a metric
used by assemblers to reconstruct the genomes, which in turn affects the k-mer
selected to perform the sequence assembly based on NGS reads.

The rest of this paper is structured as follows. Related works on digital
normalization and data partitioning are discussed in Section 2. Section 3 then
presents the proposed algorithm. In Section 4, the impact of the new approach
on the performance of the metagenomic assembler metaSPAdes [12] is evaluated
through experiments on real data. Finally, Section 5 presents the conclusions
and plans for future works.
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2 Related Work

In the literature there are several studies that attempt to reduce the compu-
tational complexity and improve metagenomic assemblies through data prepro-
cessing techniques. The main approaches used are either digital normalization or
data partitioning, the latter being the main focus of this article. In this context,
the goal of this section is to carry out a bibliographical review of tools that use
such methodologies.

Diginorm [13] is a tool that uses the CountMin Sketch data structure to count
k-mers, with the purpose of obtaining an estimate of the sequencing coverage;
and reducing coverage variation by discarding redundant data. Due to the data
structure, this technique keeps a constant memory usage and a linear runtime
complexity for the de novo assembly in relation to the amount of input data.

Trinity’s in silico normalization (TIS) [14], which belongs to the Trinity as-
sembler algorithm package, presents an implementation that computes the me-
dian k-mer coverage for all reads of a given dataset. If the median coverage is
lower than the desired value, all reads are kept. Otherwise, the reads may be
kept with a probability that is equal to the ratio of the desired coverage by the
median coverage.

NeatFreq [15] clusters and selects short reads based on the median k-mer
frequency. However, the main innovation in the work is the inclusion of methods
for the use of paired reads alongside with preferential selection of regions with
extremely low coverage. The results achieved indicate that the coverage reduction
obtained by NeatFreq increased the processing speed and reduced the memory
usage during the de novo assembly of bacterial genomes.

ORNA [16] presents a novel and interesting approach that normalizes short
reads to the minimum necessary amount in order to preserve important k-mers
that connect different regions of the assembly graph. The authors treat data nor-
malization as a set multi-cover problem, and they also have proposed a heuristic
algorithm. Their results show that a better normalization was achieved with
ORNA, when compared with similar tools. Moreover, the size of the datasets
was drastically reduced without a significant loss in the quality of the assem-
blies.

Pell et al. [17] presented a novel data partitioning methodology, in which the
main data structure — a probabilistic model called bloom filter — was used to
obtain a compact representation for graphs. The authors’ implementation can
represent each k-mer using only 4 bits, which was the major factor for achieving
a forty-fold memory economy while assembling a soil metagenome.

MetaPrep [18] contains efficient implementations for k-mer counting, par-
allel sorting, and graph connectivity and partitioning. The developed solution
was evaluated in a soil metagenome dataset composed of 223 Gigabases (Gb)
distributed in 1.13 billion short reads. As a result of the experiment, MetaPrep
took only 14 minutes to process this dataset using just 16 nodes of the NERSC
Edison supercomputer. The authors also assessed how MetaPrep can improve
the performance of the metagenomic assembler MEGAHIT.
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Cleary et al. [19] proposed an approach that separates the DNA sequences
into partitions considering the biological factor, thus allowing the individual
assembly of each genome present in a metagenome. The proposed methodology
assumes that the abundance of the genomes present in a sample reflects on their
k-mer abundance. The results achieved allowed the partial or almost complete
assembly of bacteria whose relative abundance varies to a minimum of 0.00001%.

During the literature review, it was not found any software that performs
data partitioning using the information present in the nucleotide composition
of short reads sequenced by NGS platforms. Hence, in this work we propose
GCSplit, a tool that uses the GC content of the DNA sequences in combination
with statistical metrics to partition the dataset. This new approach is promising
because it is computationally inexpensive and uses information present in the
reads that, as far as we know, has not been used in any other work for data
partitioning. Further details about this new algorithm will follow.

3 The Proposed Algorithm

GCSplit was implemented in C++ in order to facilitate the communication with
the library that performs the parallelization of the critical sections of the al-
gorithm. The software KmerStream [20] and metaSPAdes [12], which are au-
tomatically executed to estimate the best values of k-mer and to assembly
the metagenome, respectively, are dependencies of the proposed algorithm. The
object-oriented programming paradigm was used in order to simplify an even-
tual addition of new assemblers and k-mer estimation programs in the future,
since one would only need to implement new classes to interact with the desired
programs. Figure 1 summarizes the main steps of the developed algorithm.

Fig. 1. GCSplit algorithm overview.
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As input, GCSplit takes two paired FASTQ files, both containing the metage-
nome’s sequences. The files are automatically passed to KmerStream, which
estimates the best 10 k-mer values for the assembly. Next, an algorithm was
developed within GCSplit in order to partition the datasets, as shown in the
pseudo-code of Algorithm 1. More specifically, the algorithm computes the GC
content from all reads, making use of OpenMP library to do so in parallel. C++
STL library, on the other hand, has a parallel implementation of the merge sort
algorithm, which is used to sort the sequences according to their GC values
in ascending order. The proposed algorithm then calculates the first, second
(median) and third quartiles for the set of sorted reads; and divides the dataset
into four subsets based on those statistical metrics.

Algorithm 1: Pseudo-code to partition the dataset

Input : Paired dataset vectors Li(x) and Ri(x), output base name b
Output : Four sets of paired FASTQ files

1 n← |L|;
2 for i← 0 to n− 1 do
3 l← |Li|;
4 Li.gc = 0;
5 for j ← 0 to l − 1 do
6 if Li[j] = ‘C’ or Li[j] = ‘G’ then
7 Li.gc = Li.gc + 1;

8 Li.gc =
Li.gc× 100

l
;

9 Li.pair ← Ri ; // Creates a pointer from Li to Ri

10 sort(L, 0, n− 1) ; // merge sort

11 m← getHalfIndex(n);
12 f ← getHalfIndex(m);
13 t← m + f + 1;
14 createPartition(L, 0, f, b + “ 1”);
15 createPartition(L, f + 1, m, b + “ 2”);
16 createPartition(L, m + 1, t, b + “ 3”);
17 createPartition(L, t + 1, n - 1, b + “ 4”);

The number of partitions has been set to four because the coverage may
become low in an excessively divided dataset and, consequently, the assembly
may become fragmented as well. It is important to notice that this partitioning
method keeps the reads paired, which is crucial in obtaining assemblies with the
highest quality possible.

The calculation of quartiles is performed by the function getHalfIndex, which
contains only a conditional test and a simple mathematical operation, thus its
complexity can be said to be asymptotically constant, i.e., O(1). On the other
hand, the division of the data into subsets is performed by a procedure called cre-
atePartition, whose implementation has four attributions and a single loop.
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Therefore, the asymptotic analysis of the second task results in a complexity
of O(e− b), where “b” is the beginning and “e” the end of the partition.

Function getHalfIndex(n)

Input : n, the number of elements in the vector
Output : i, the index of the vector that divides it in half

1 if n mod 2 = 0 then

2 i← n− 1

2
;

3 else

4 i← n

2
;

5 return i;

Procedure createPartition(L, b, e, p)

Input : dataset vector Li(x), the beginning of the partition b, the end of the
partition e, the output prefix p

Output : Two paired FASTQ files with reads from the selected range
1 OutputStream r1 ← New OutputStream(p + “ R1.fastq”);
2 OutputStream r2 ← New OutputStream(p + “ R2.fastq”);
3 for i← b to e do
4 r1 ← Li;
5 r2 ← Li.pair;

6 r1.close();
7 r2.close();

Regarding Algorithm 1, the computation of the number of reads |L| takes
O(n); sorting with merge sort takes Θ(n log n); calculating the quartiles and
dividing the dataset into partitions takes O(1) + O(b − e); and computing the
GC content of “n” reads with length “l” takes O(nl) due to the nested loop
ranging from line 2 to line 9. Therefore, we can conclude that the the proposed
partitioning algorithm has an asymptotic complexity of O(nl), since in the worst
case n× l > n log n > b− e.

The created partitions are individually assembled by metaSPAdes. Then,
another assembly is performed with SPAdes [21] to concatenate the four previous
assemblies, where the assembly result that gets the highest N50 is used as input
in the trusted contigs parameter and the remaining are used as single libraries.
SPAdes was used in this final step because metaSPAdes does not accept multiple
libraries as input yet. Ultimately, the final output is a FASTA file that contains
a high quality assembly.
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4 Evaluation

4.1 Datasets and Platform

In order to evaluate GCSplit, analysis were conducted in three real metagenomic
datasets, whose samples were collected from the following environments: from
a moose rumen, from hot springs at headwaters and a sewage treatment plant.
The datasets used in the experiments are listed in Table 1.

Table 1. Dataset description

ID Dataset
Read Count

R (×106)

Size

M (Gbp)

SRA Accession

Number

MR Moose Rumen 25.6 5.2 ERR1278073

HS Hot Springs 7.4 3.7 ERR975001

STP Sewage Treatment Plant 21.3 6.4
SRR2107212,

SRR2107213

The moose rumen sample was collected in Växsjö, Sweden. This sample
was sequenced with the Illumina HiSeq 2500 platform and contains 25, 680, 424
paired short reads with 101 base pairs (bp). These short reads can be obtained
from the Sequence Read Archive (SRA) database through the accession number
ERR1278073.

The hot springs samples were collected in the years 2014 and 2015 at the
headwaters of Little Hot Creek, located in the Long Valley Caldera, near Mam-
moth Lake in California, United States [22]. Sequencing was conducted using
one of the following Illumina platforms: MiSeq PE250, MiSeq PE300 or HiSeq
Rapid PE250. The insert size used has approximately 400 bp and MiSeq runs
were prepared using the the Agilent SureSelect kit, while HiSeq PE250 sam-
ples were prepared using the Nextera XT library preparation kit. These data,
which contain 7, 422, 611 short reads of 250 base pairs can be obtained via SRA
accession number ERR975001.

The sludge sample was collected in a municipal sewage treatment plant lo-
cated in Argentina [23]. This sample was split in two technical replicates and
sequenced with the platform Illumina HiSeq 1500 in 150 bp short reads. This
dataset can be downloaded through the SRA accession numbers SRR2107212
and SRR2107213, which contain 8, 899, 734 and 12, 406, 582 short reads, respec-
tively.

The assemblies were performed in a cluster that runs the GNU/Linux x64
operating system (openSUSE), and contains 4 nodes with 64 cores and 512
Gigabytes (GB) of Random Access Memory (RAM).
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4.2 Results

Table 2 shows the assembly quality results produced by metaSPAdes with and
without preprocessing for the metagenomes collected from the Moose Rumen
(MR), the Hot springs (HS) and the Sewage Treatment Plant (STP) datasets.
Assembly statistics were computed with the tool MetaQUAST [24], while peak
memory usage was extracted from the assemblers’ log. The best results are high-
lighted in bold.

Table 2. Assembly quality comparison

MetaSPAdes assembly statistics

Dataset Preproc.? #Contigs
Largest
Contig

Total
Length
(Mbp)

N50 L50
Memory

Peak
(GB)

MR
Yes 6,656 42,585 12.9 2,875 959 19
No 175,829 408,484 276.1 2,003 23,838 34

HS
Yes 989 101,712 4.8 12,589 86 20
No 26,656 109,705 28.6 1,108 4,795 45

STP
Yes 11,224 114,168 28.4 5,059 1,133 33
No 385,566 340,186 463.8 1,312 71,126 76

For the MR dataset, the amount of contigs was drastically reduced from
175, 829 to 6, 656 with the previous preprocessing by GCSplit. The N50 value
increased from 2, 003 bp in the assembly without preprocessing to 2, 875 bp after
preprocessing, while the L50 value decreased from 23, 838 to 959 contigs with
the aid of GCSplit. This implies that to reach the N50 value of 2, 875, we need to
sum the length of only 959 contigs, whereas without GCSplit 23,838 contigs were
necessary to reach approximately the same value, which means that the assembly
with metaSPAdes alone contained smaller sequences overall. There was also a
reduction of 15 GB in memory consumption during the assembly with GCSplit.

Nevertheless, the largest contig produced in the MR assembly after prepro-
cessing the dataset with GCSplit decreased from 408, 484 bp to 42, 585 bp. Sim-
ilarly, the total length of the assembly generated after applying GCSplit to the
data dropped from 276.1 Mbp to 12.9 Mbp. The merging strategy adopted may
be one of the reasons for these reductions, but other possibilities are under in-
vestigation.

The assembly of the HS sample also showed improvements with the usage
of GCSplit. Memory peak dropped from 45 GB to 20 GB on partitioned data.
Furthermore, the amount of contigs decreased from 26, 656 in the assembly with
metaSPAdes alone to 989 contigs after preprocessing with GCSplit, represent-
ing a 96% reduction. On the other hand, the N50 value increased significantly,
yielding a 1036% growth after partitioning, which is excellent for gene prediction.
Moreover, the L50 value reduced about 98% with the GC content partitioning.
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In the HS dataset, the size of the largest contig produced in the assembly after
preprocessing was closer to the assembly with metaSPAdes alone, containing
101, 712 bp and 109, 705 bp, respectively. The total length of the assembly also
experienced a less dramatical decrease, going from 28.6 Mbp in the traditional
assembly to 4.8 Mbp after using GCSplit.

For the STP sample, there was a 56% economy in memory usage with prior
data partitioning. Additionally, the amount of contigs drastically reduced from
385, 566 to 11, 224 contigs when the assembly was performed after preprocessing
the sequences with GCSplit. The N50 value raised from 1, 312 bp in the assem-
bly with metaSPAdes alone to 5, 059 bp after partitioning, while the L50 value
decreased from 71, 126 to 1, 133 contigs with the aid of GCSplit.

However, the largest contig produced in the STP assembly after preprocessing
the dataset with GCSplit decreased from 340, 186 bp to 114, 168 bp. Likewise,
the total length of the assembly generated after applying GCSplit to the data
declined from 463.8 Mbp to only 28.4 Mbp. This result shows that despite the
amount of data has decreased, the N50 value improved and this can favor gene
prediction in later analysis.

5 Conclusion

In this work, we developed a new bioinformatic tool called GCSplit, which parti-
tions metagenomic data into subsets using a computationally inexpensive metric:
the GC content of the sequences. GCSplit has been implemented in C++ as an
open-source program, which is available at https://github.com/mirand863/

gcsplit. It requires GCC version 4.4.7 or higher, the library OpenMP and the
software KmerStream and metaSPAdes.

Empirical results showed that applying GCSplit to the data before assem-
bling reduces memory consumption and generates higher quality results, such
as increase in the N50 metric and reduction in the L50 value and in the total
number of contigs generated in the assembly. Although assemblies with GCSplit
produced less data, it is important to notice that the next analysis performed
after assembly is gene prediction, where larger sequences are more likely to have
genes predicted, as opposed to fragmented assemblies such as those carried out
without GCSplit, which contain smaller N50 and larger amounts of bp.

As future work, we will explore alternative merging strategies to improve the
size of the largest contigs generated in the assembly. Additionally, we also plan
to test the application of GCSplit in eukaryotic datasets and compare it with
existing algorithms specialized in either digital normalization or data partition-
ing.
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