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Abstract

Methyl-IT, a novel methylome analysis procedure based on information thermodynamics and
signal detection was recently released. Methylation analysis involves a signal detection problem,
and the method was designed to discriminate methylation regulatory signal from background
noise induced by thermal fluctuations. Methyl-IT enhances the resolution of genome methylation
behavior to reveal network-associated responses, offering resolution of gene pathway influences
not attainable with previous methods. Herein, an example of MethylIT application to the
analysis of breast cancer methylomes is presented.

1. MethylIT

MethylIT is an R package for methylome analysis based on information thermodynamics and
signal detection. The information thermodynamics-based approach is postulated to provide greater
sensitivity for resolving true signal from the thermodynamic background within the methylome
(Sanchez and Mackenzie 2016). Because the biological signal created within the dynamic methylome
environment characteristic of plants is not free from background noise, the approach, designated
MethylIT, includes the application of signal detection theory (Greiner, Pfeiffer, and Smith 2000;
Carter et al. 2016; Harpaz et al. 2013; Kruspe et al. 2017). A basic requirement for the application
of signal detection is a probability distribution of the background noise. Probability distribution, as
a Weibull distribution model, can be deduced on a statistical mechanical/thermodynamics basis for
DNA methylation induced by thermal fluctuations (Sanchez and Mackenzie 2016). Assuming that
this background methylation variation is consistent with a Poisson process, it can be distinguished
from variation associated with methylation regulatory machinery, which is non-independent for all
genomic regions (Sanchez and Mackenzie 2016). An information-theoretic divergence to express
the variation in methylation induced by background thermal fluctuations will follow a Weibull
distribution model, provided that it is proportional to minimum energy dissipated per bit of
information from methylation change. Herein, we provide an example of MethylIT application to
the analysis of breast cancer methylomes. Due to the size of human methylome the current example
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only covers the analysis of chromosome 13. A full description of MethylIT application of methylome
analysis in plants is given in the manuscript (Sanchez et al. 2018).

1.1. Installation of MethylIT

To install MethylIT you might need to install the Bioconductor packages: ‘GenomicFeatures’,
‘VariantAnnotation’, ‘ensembldb’, ‘GenomicRanges’, ‘BiocParallel’, ‘biovizBase’, ‘DESeq2’, and
‘genefilter’. Please check that both the R and bioconductor packages are up to date:

update.packages(ask = FALSE)
source("https://bioconductor.org/biocLite.R")
biocLite(ask = FALSE)

MethylIT can be installed from PSU’s GitLab by typing in an R console:

install.packages("devtools")
devtools::install_git("https://git.psu.edu/genomath/MethylIT")

Some possible troubleshooting installation on Ubuntu is given in section S1. Installation on our
Windows OS machines was straightforward.

2. Available datasets and reading

Methylome datasets of whole-genome bisulfite sequencing (WGBS) are available at Gene Expression
Omnibus (GEO DataSets). For the current example, datasets from breast tissues (normal and
cancer) and embryonic stem cells will be downloaded from GEO. The data set are downloaded
providing the GEO accession numbers for each data set to the function ‘getGEOSuppFiles’ (for
details type ?getGEOSuppFiles in the R console).
suppressMessages(library(MethylIT))

# Embryonic stem cells datasets
esc.files = getGEOSuppFiles(GEO = c("GSM2041690", "GSM2041691", "GSM2041692"),

verbose = FALSE)
# Breast tissues (normal, cancer, metastasis)
cancer.files = getGEOSuppFiles(GEO = c("GSM1279517", "GSM1279514",

"GSM1279513"), verbose = FALSE)

The file path and name of each downloaded dataset is found in the output variables ‘esc.files’ and
‘cancer.files’.

2.1. Reading datasets

Datasets for our example can be read with function ‘readCounts2GRangesList’. To specify the
reading of only chromosome 13, we can specify the parameter ‘chromosomes = “Chr13” ’. The
symbol chromosome 13, in this case “Chr13”, must be consistent with the annotation provided in
the given GEO dataset. Each file is wholly read with the setting ‘chromosomes = “Chr13” ’ and
then the GRanges are built only with chromosome 13, which could be time consuming. However,
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users working on Linux OS can specify the reading of specific lines from each file by using regular
expressions. For example, if only chromosomes 1 and 3 are required, then we can set chromosomes
= NULL (default) and ‘chromosome.pattern = “ˆChr[1,3]” ’. This will read all the lines in the
downloaded files starting with the words “Chr1” or “Chr3”. If we are interested in chromosomes 1
and 2, then we can set ‘chromosome.pattern = “ˆChr[1-2]” ’. If all the chromosomes are required,
then set chromosomes = NULL and chromosome.pattern = NULL (default).
# Embryonic stem cells datasets
ref = readCounts2GRangesList(filenames = esc.files,

sample.id = c("ESC1","ESC2", "ESC3"),
columns = c(seqnames = 1, start = 2,

mC = 4, uC = 5), pattern = "^chr13",
remove = TRUE, verbose = FALSE)

# Breast tissues (normal, cancer, metastasis)
LR = readCounts2GRangesList(filenames = cancer.files,

sample.id = c("Breast_normal", "Breast_cancer",
"Breast_metastasis"),

columns = c(seqnames = 1, start = 2,
mC = 3, uC = 4),

remove = TRUE, pattern = "^13",
chromosome.names = "chr13", verbose = FALSE)

In the metacolumn of the last GRanges object, mC and uC stand for the methylated and unmethy-
lated read counts, respectively. Notice that option ‘remove = TRUE’ remove the decompressed files
(default: FALSE, see ?readCounts2GRangesList for more details about this function).

3. The reference individual

Any two objects located in a space can be compared if, and only if, there is a reference point
(a coordinate system) in the space and a metric. Usually, in our daily 3D experience, our brain
automatically sets up the origin of coordinates equal to zero. The differences found in the comparison
depend on the reference used to perform the measurements and from the metric system. The space
where the objects are located (or the set of objects) together with the metric is called metric space.

To evaluate the methylation differences between individuals from control and treatment we introduce
a metric in the bidimensional space of methylation levels Pi = (pi, 1 − pi). Vectors Pi provide a
measurement of the uncertainty of methylation levels. However, to perform the comparison between
the uncertainty of methylation levels from each group of individuals, control (c) and treatment
(t), we should estimate the uncertainty variation with respect to the same individual reference
on the mentioned metric space. The reason to measure the uncertainty variation with respect
to the same reference resides in that even sibling individuals follow an independent ontogenetic
development. This a consequence of the “omnipresent” action of the second law of thermodynamics
in living organisms. In the current example, we will create the reference individual by pooling the
methylation counts from the embryonic stem cells.

It should be noticed that the results are sensitive to the reference used. The statistics mean, median,
or sum of the read counts at each cytosine site of some control samples can be used to create a
virtual reference sample. It is up to the user whether to apply the ‘row sum’, ‘row mean’ or ‘row
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median’ of methylated and unmethylated read counts at each cytosine site across individuals:
Ref = poolFromGRlist(ref, stat = "mean", num.cores = 12L, verbose = FALSE)

Ref

## GRanges object with 1560637 ranges and 2 metadata columns:
## seqnames ranges strand | mC uC
## <Rle> <IRanges> <Rle> | <numeric> <numeric>
## [1] chr13 [19020631, 19020631] * | 1 1
## [2] chr13 [19020633, 19020633] * | 2 2
## [3] chr13 [19020642, 19020642] * | 1 1
## [4] chr13 [19020643, 19020643] * | 2 2
## [5] chr13 [19020679, 19020679] * | 1 1
## ... ... ... ... . ... ...
## [1560633] chr13 [115108993, 115108993] * | 1 3
## [1560634] chr13 [115109022, 115109022] * | 1 1
## [1560635] chr13 [115109023, 115109023] * | 3 4
## [1560636] chr13 [115109523, 115109523] * | 2 2
## [1560637] chr13 [115109524, 115109524] * | 1 1
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

Only direct lab experiments can reveal whether differences detected with distinct references outside
the experimental conditions for control and treatment groups are real. The best reference would
be estimated using a subset of individuals from control group. Such a reference will contribute to
remove the intragroup variation, in control and in treatment groups, induced by environmental
changes external to or not controlled by the experimental conditions.

Methylation analysis for each cystosine position is frequently performed in the bidimensional
space of (methylated, unmethylated) read counts. Frequently, Fisher test is applied to a single
cytosine position, under the null hypothesis that the proportions pct = methylatedct/(methylatedct+
unmethylatedct) and ptt = methylatedtt/(methylatedtt + unmethylatedtt) are the same for control
and treatment, respectively. In this case, the implicit reference point for the counts at every cytosine
positions is (methylated = 0, unmethylated = 0), which corresponds to the point Pi = (0, 1).

In our case, the Hellinger divergence (the metric used, here) of each individual in respect to
the reference is the variable to test in place of (methylated, unmethylated) read counts or the
methylation levels Pi = (pi, 1− pi).

The use of references is restricted by the thermodynamics basis of the the theory. The current
information-thermodynamics based approach is supported on the following postulate:

“High changes of Hellinger divergences are less frequent than low changes, provided that the divergence
is proportional to the amount of energy required to process one bit of information in methylation
system”.

The last postulate acknowledges the action of the second law of thermodynamics on the biomolecular
methylation system. For the methylation system, it implies that the frequencies of the infor-
mation divergences between methylation levels must be proportional to a Boltzmann factor (see
supplementary information from reference (Sanchez and Mackenzie 2016)). In other words, the
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frequencies of information divergences values should follow a trend proportional to an exponential
decay. If we do not observe such a behaviour, then either the reference is too far from experimental
condition or we are dealing with an extreme situation where the methylation machinery in the cell
is dysfunctional. The last situation is found, for example, in the silencing mutation at the gene of
cytosine-DNA-methyltransferase in Arabidopsis thaliana. Methylation of 5-methylcytosine at CpG
dinucleotides is maintained by MET1 in plants.

In our current example, the embryonic stem cells reference is far from the breast tissue samples and
this could affect the nonlinear fit to a Weibull distribution (see below). To illustrate the effect of
the reference on the analysis, a new reference will be built by setting:
Ref0 = Ref
Ref0$uC <- 0

The reason for the above replacement is that natural methylation changes (Ref$mC) obey the second
law of thermodynamics, and we do not want to arbitrarily change the number of methylated read
counts. ‘mC’ carries information linked to the amount of energy expended in the tissue associated
with concrete methylation changes. However, ‘uC’ is not linked to any energy expended by the
methylation machinery in the cells. In the bidimensional space Pi = (pi, 1 − pi), reference Ref0
corresponds to the point Pi = (1, 0) at each cytosine site i, i.e., the value of methylation level at
every cytosine site in reference Ref0 is 1. The analyses with respect to both individual references,
Ref and Ref0, will be performed in the downstream steps.

4. Hellinger divergence estimation

To perform the comparison between the uncertainty of methylation levels from each group of
individuals, control (c) and treatment (t), the divergence between the methylation levels of each
individual is estimated with respect to the same reference on the metric space formed by the vector
set Pi = (pi, 1− pi) and the Hellinger divergence H. Basically, the information divergence between
the methylation levels of an individual j and reference sample r is estimated according to the
Hellinger divergence given by the formula:

H(p̂ij , p̂ir) = wi[(
√
p̂ij −

√
p̂ir)2 + (

√
1− p̂ij −

√
1− p̂ir)2]

where wi = 2 mijmir

mij+mir
, mij = ni

mCj + ni
uCj + 1, mir = ni

mCr + ni
uCr + 1 and j ∈ {c, t}. This

equation for Hellinger divergence is given in reference (Basu, Mandal, and Pardo 2010), but other
information theoretical divergences can be used as well. Next, the information divergence for control
(Breast_normal) and treatment (Breast_cancer and Breast_metastasis) samples are estimated
with respect to the reference virtual individual. A Bayesian correction of counts can be selected or
not. In a Bayesian framework, methylated read counts are modeled by a beta-binomial distribution,
which accounts for both the biological and sampling variations (Hebestreit, Dugas, and Klein 2013;
Robinson et al. 2014; Dolzhenko and Smith 2014). In our case we adopted the Bayesian approach
suggested in reference (Baldi and Brunak 2001) (Chapter 3). In a Bayesian framework with uniform
priors, the methylation level can be defined as: p = (mC + 1)/(mC + uC + 2).

However, the most natural statistical model for replicated BS-seq DNA methylation measurements
is beta-binomial (the beta distribution is a prior conjugate of binomial distribution). We consider
the parameter p (methylation level) in the binomial distribution as randomly drawn from a beta
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distribution. The hyper-parameters α and β from the beta-binomial distribution are interpreted as
pseudo-counts. The information divergence is estimated here using the function ‘estimateDivergence’:
HD = estimateDivergence(ref = Ref, indiv = LR, Bayesian = TRUE,

min.coverage = 5, high.coverage = 300,
percentile = 0.999, num.cores = 12L, tasks = 0L,
verbose = FALSE)

HD0 = estimateDivergence(ref = Ref0, indiv = LR, Bayesian = TRUE,
min.coverage = 9, high.coverage = 300,
percentile = 0.999, num.cores = 12L, tasks = 0L,
verbose = FALSE)

HD$Breast_cancer

## GRanges object with 987895 ranges and 9 metadata columns:
## seqnames ranges strand | c1 t1
## <Rle> <IRanges> <Rle> | <numeric> <numeric>
## [1] chr13 [19020631, 19020631] * | 1 1
## [2] chr13 [19020633, 19020633] * | 2 2
## [3] chr13 [19020643, 19020643] * | 2 2
## [4] chr13 [19020680, 19020680] * | 0 1
## [5] chr13 [19020687, 19020687] * | 1 1
## ... ... ... ... . ... ...
## [987891] chr13 [115108788, 115108788] * | 2 4
## [987892] chr13 [115108789, 115108789] * | 2 2
## [987893] chr13 [115108993, 115108993] * | 1 3
## [987894] chr13 [115109023, 115109023] * | 3 4
## [987895] chr13 [115109524, 115109524] * | 1 1
## c2 t2 p1 p2
## <numeric> <numeric> <numeric> <numeric>
## [1] 14 24 0.413370663720767 0.375495465916207
## [2] 14 25 0.442871729587454 0.36633665561778
## [3] 7 38 0.442871729587454 0.170626940254775
## [4] 1 43 0.209181014646214 0.043896699394733
## [5] 0 46 0.413370663720767 0.0212335246596664
## ... ... ... ... ...
## [987891] 0 0 0.33036727060318 0.254902793892838
## [987892] 27 43 0.442871729587454 0.389164474334267
## [987893] 72 5 0.272599930600126 0.924313453079455
## [987894] 56 36 0.405836166223695 0.606598044818736
## [987895] 31 9 0.413370663720767 0.762392481743825
## TV bay.TV hdiv
## <numeric> <numeric> <numeric>
## [1] -0.131578947368421 -0.0378751978045603 0.00836901839443372
## [2] -0.141025641025641 -0.0765350739696741 0.0541295473053947
## [3] -0.344444444444444 -0.272244789332679 0.818120566547519
## [4] 0.0227272727272727 -0.165284315251481 0.265271064208063
## [5] -0.5 -0.392137139061101 1.67587572624957
## ... ... ... ...
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## [987891] -0.333333333333333 -0.075464476710342 0.0120745026788796
## [987892] -0.114285714285714 -0.0537072552531863 0.0277523179966212
## [987893] 0.685064935064935 0.651713522479329 4.95063809290373
## [987894] 0.180124223602485 0.20076187859504 0.600010041025287
## [987895] 0.275 0.349021818023058 0.729845744260704
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

Function ‘estimateDivergence’ returns a list of GRanges objects with the four columns of counts,
the information divergence, and additional columns:

1. The original matrix of methylated (ci) and unmethylated (ti) read counts from control (i = 1)
and treatment (i = 2) samples.

2. “p1” and “p2”: methylation levels for control and treatment, respectively.
3. “bay.TV”: total variation TV = p2 - p1.
4. “TV”: total variation based on simple counts: TV = c1/(c1 + t1)− c2/(c2 + t2).
5. “hdiv”: Hellinger divergence.

If Bayesian = TRUE, results are based on the posterior estimations of methylation levels p1 and p2.
Filtering by coverage is provided at this step which would be used unless previous filtering by coverage
had been applied. This is a pairwise filtering. Cytosine sites with ‘coverage’ > ‘min.coverage’ and
‘coverage’ < ‘percentile’ (e.g., 99.9 coverage percentile) in at least one of the samples are preserved.
The coverage percentile used is the maximum estimated from both samples: reference and individual.

For some GEO datasets only the methylation levels for each cytosine site are provided. In this case,
Hellinger divergence can be estimated as given in reference (Sanchez and Mackenzie 2016):

H(p̂ij , p̂ir) = (
√
p̂ij −

√
p̂ir)2 + (

√
1− p̂ij −

√
1− p̂ir)2

4.1. Histogram and boxplots of divergences estimated in each sample

First, the data of interest (Hellinger divergences, “hdiv”) are selected from the GRanges objects:
normal = HD$Breast_normal[, "hdiv"]
normal = normal[ normal$hdiv > 0.01 ]
metastasis = HD$Breast_metastasis[, "hdiv"]
metastasis = metastasis[ metastasis$hdiv > 0.01 ]
cancer = HD$Breast_cancer[, "hdiv"]
cancer = cancer[ cancer$hdiv > 0.01 ]

Next, a single GRanges object is built from the above set of GRanges objects using the function
‘uniqueGRanges’. Notice that the number of cores to use for parallel computation can be specified.
hd = uniqueGRanges(list(normal, cancer, metastasis), missing = NA,

verbose = FALSE, num.cores = 12L)
hd

## GRanges object with 1015592 ranges and 3 metadata columns:
## seqnames ranges strand | hdiv
## <Rle> <IRanges> <Rle> | <numeric>
## [1] chr13 [19020631, 19020631] * | 0.285305034787823
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## [2] chr13 [19020633, 19020633] * | 0.806968481642969
## [3] chr13 [19020643, 19020643] * | 0.466515853285301
## [4] chr13 [19020680, 19020680] * | 0.268933638261748
## [5] chr13 [19020687, 19020687] * | 0.0145912580031885
## ... ... ... ... . ...
## [1015588] chr13 [115108788, 115108788] * | <NA>
## [1015589] chr13 [115108789, 115108789] * | 0.490453538128809
## [1015590] chr13 [115108993, 115108993] * | 4.6055432713229
## [1015591] chr13 [115109023, 115109023] * | 3.67811869870307
## [1015592] chr13 [115109524, 115109524] * | 1.11848682950288
## hdiv.1 hdiv.2
## <numeric> <numeric>
## [1] <NA> 2.03059776265135
## [2] 0.0541295473053947 2.84065152216992
## [3] 0.818120566547519 <NA>
## [4] 0.265271064208063 <NA>
## [5] 1.67587572624957 0.826531969073375
## ... ... ...
## [1015588] 0.0120745026788796 0.0351683423894548
## [1015589] 0.0277523179966212 2.06686115112413
## [1015590] 4.95063809290373 5.14891226533106
## [1015591] 0.600010041025287 0.922570387484644
## [1015592] 0.729845744260704 0.393160452572587
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

Now, the Hellinger divergences estimated for each sample are in a single matrix on the metacolumn
of the GRanges object and we can proceed to build the histogram and boxplot graphics for these
data.
suppressMessages(library(ggplot2)) # graphic
suppressMessages(library(reshape2)) # To reshape the data frame
suppressMessages(library(grid)) # For multiple plots
suppressMessages(library(gridExtra)) # For multiple plots

# Define an auxiliary function
fun_length <- function(x){

return(data.frame(y = median(x) + 4, label = paste0("n = ", length(x))))
}

data <- data.frame(normal = hd$hdiv, cancer = hd$hdiv.1,
metastasis = hd$hdiv.2)

data = suppressMessages(melt(data))
colnames(data) <- c("Breast.tissue", "HD")
data = data[data$HD > 0, ]
head(data)

## Breast.tissue HD
## 1 normal 0.28530503
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## 2 normal 0.80696848
## 3 normal 0.46651585
## 4 normal 0.26893364
## 5 normal 0.01459126
## 6 normal 0.19088980

p1 = ggplot(data, aes(x = HD, fill = Breast.tissue, colour = Breast.tissue)) +
geom_histogram(alpha = 0.5, bins = 50, position = "identity", na.rm = TRUE,

size = 0.7) +
theme(axis.title.x = element_text(face = "bold", size = 20),

axis.text.x = element_text(face = "bold", size = 20, color = "black",
hjust = 0.5, vjust = 0.75),

axis.text.y = element_text(face = "bold", size = 20, color = "black"),
axis.title.y = element_text(face = "bold", size = 20,color = "black"),
legend.text = element_text(size = 20, face = "bold"),
legend.title = element_text(size = 20, face = "bold")
) +

ylab( "Counts" ) +
ggtitle("Histogram of Hellinger Divergence")

# For visualization purposes HD is limited to the interval 0 to 4
dt = data[ which(data$HD < 50), ]
p2 = ggplot(dt,aes(x = Breast.tissue, y = HD , fill = Breast.tissue)) +

geom_boxplot(na.rm = TRUE) +
stat_summary(fun.data = fun_length, geom = "text",

position = position_dodge(width = 0.9), vjust = 1,
size = 6, fontface = "bold") +

theme(axis.title.x = element_text(face = "bold", size = 20),
axis.text.x = element_text(face = "bold", size = 20, color = "black",

hjust = 0.5, vjust = 0.75),
axis.text.y = element_text(face = "bold", size = 20, color = "black"),
axis.title.y = element_text(face = "bold", size = 20,color = "black"),
legend.position = "none"
) +

ggtitle("Boxplot of Hellinger Divergence")
grid.arrange(p1, p2, ncol = 2)
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Except for the tail, most of the methylation changes occurred under the area covered by the density
curve corresponding to the normal breast tissue. This is theoretically expected. This area is
explainable in statistical physical terms and, theoretically, it should fit a Weibull distribution. The
tails regions cover the methylation changes that, with high probability, are not induced by thermal
fluctuation and are not addressed to stabilize the DNA molecule. These changes are methylation
signal. Professor David J. Miller (Department of Electrical Engineering, Penn State) proposed
modeling the distribution as a mixed Weibull distribution to simultaneously describe the background
methylation noise and the methylation signal (personal communication, January, 2018). This model
approach seems to be supported by the above histogram, but it must be studied before being
incorporated in a future version of Methyl-IT.

5. Nonlinear fit of Weibull distribution

A basic requirement for the application of signal detection is the knowledge of the probability
distribution of the background noise. Probability distribution, as a Weibull distribution model, can
be deduced on a statistical mechanical/thermodynamics basis for DNA methylation induced by
thermal fluctuations (Sanchez and Mackenzie 2016). Assuming that this background methylation
variation is consistent with a Poisson process, it can be distinguished from variation associated
with methylation regulatory machinery, which is non-independent for all genomic regions (Sanchez
and Mackenzie 2016). An information-theoretic divergence to express the variation in methylation
induced by background thermal fluctuations will follow a Weibull distribution model, provided that
it is proportional to the minimum energy dissipated per bit of information associated with the
methylation change. The nonlinear fit to a Weibull distribution model is performed by the function
‘nonlinearFitDist’.
nlms = nonlinearFitDist(HD, column = 9, num.cores = 3L, verbose = FALSE)
nlms0 = nonlinearFitDist(HD0, column = 9, num.cores = 3L, verbose = FALSE)

nlms # this returns:

## $Breast_normal
## Estimate Std. Error t value Pr(>|t|)) Adj.R.Square
## shape 0.5543145 0.0002139500 2590.861 0 0.948873244359916
## scale 1.3468977 0.0005372617 2506.968 0
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## rho R.Cross.val DEV AIC
## shape 0.948873142978588 0.975345070130324 4099.05484372979 -2690639.45164462
## scale
## BIC COV.shape COV.scale COV.mu n
## shape -2690603.97940838 4.577459e-08 -5.917927e-09 NA 1008605
## scale -5.917927e-09 2.886501e-07 NA 1008605
##
## $Breast_cancer
## Estimate Std. Error t value Pr(>|t|)) Adj.R.Square
## shape 5.391149e-01 1.506168e-04 3579.381429 0.000000e+00 0.96941589951915
## scale 1.134588e+00 3.739751e-04 3033.860064 0.000000e+00
## mu 7.607881e-05 1.356645e-05 5.607863 2.048944e-08
## rho R.Cross.val DEV AIC
## shape 0.969415837601309 0.984822843250931 2409.03055126017 -3139991.5054956
## scale
## mu
## BIC COV.shape COV.scale COV.mu n
## shape -3139944.29216882 2.268541e-08 -5.369580e-09 -4.699170e-10 987895
## scale -5.369580e-09 1.398574e-07 -4.640279e-10 987895
## mu -4.699170e-10 -4.640279e-10 1.840486e-10 987895
##
## $Breast_metastasis
## Estimate Std. Error t value Pr(>|t|)) Adj.R.Square
## shape 0.55596350 1.506398e-04 3690.6809 0 0.977972027557549
## scale 0.92855327 2.711461e-04 3424.5502 0
## mu 0.01631553 3.409143e-05 478.5817 0
## rho R.Cross.val DEV AIC
## shape 0.977971980615213 0.989064141158607 1647.99283323508 -3291231.66890221
## scale
## mu
## BIC COV.shape COV.scale COV.mu n
## shape -3291184.66069 2.269235e-08 -1.522434e-10 -2.562546e-09 938514
## scale -1.522434e-10 7.352018e-08 -2.497534e-09 938514
## mu -2.562546e-09 -2.497534e-09 1.162226e-09 938514

Cross-validations for the nonlinear regressions (R.Cross.val) were performed as described in reference
(Stevens 2009). In addition, Stein’s formula for adjusted R squared (ρ) was used as an estimator of
the average cross-validation predictive power (Stevens 2009).

The goodness-of-fit of Weibull to the HD0 (Ref0 ) data is better than to HD (Ref ):
nlms0

## $Breast_normal
## Estimate Std. Error t value Pr(>|t|)) Adj.R.Square
## shape 0.8294116 0.0001082846 7659.556 0 0.995937143067973
## scale 0.3103328 0.0000296877 10453.243 0
## rho R.Cross.val DEV AIC
## shape 0.995937132223697 0.998305237948404 253.748299340483 -3860960.92341557
## scale
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## BIC COV.shape COV.scale COV.mu n
## shape -3860926.34268738 1.172554e-08 -7.197877e-10 NA 749311
## scale -7.197877e-10 8.813597e-10 NA 749311
##
## $Breast_cancer
## Estimate Std. Error t value Pr(>|t|)) Adj.R.Square
## shape 0.65808523 1.592997e-04 4131.114 0 0.990007423933119
## scale 0.71350113 1.551868e-04 4597.693 0
## mu 0.01231425 3.325003e-05 370.353 0
## rho R.Cross.val DEV AIC
## shape 0.990007395583978 0.995153354501662 587.148032395742 -2998041.98350013
## scale
## mu
## BIC COV.shape COV.scale COV.mu n
## shape -2997996.11987504 2.537640e-08 -3.720161e-09 -2.704483e-09 704967
## scale -3.720161e-09 2.408294e-08 -1.475318e-09 704967
## mu -2.704483e-09 -1.475318e-09 1.105565e-09 704967
##
## $Breast_metastasis
## Estimate Std. Error t value Pr(>|t|)) Adj.R.Square
## shape 0.590229316 1.198288e-04 4925.6057 0 0.99130928757275
## scale 1.103193068 2.464984e-04 4475.4572 0
## mu 0.006755526 2.520266e-05 268.0482 0
## rho R.Cross.val DEV AIC
## shape 0.991309259423371 0.995659524740394 447.581035974421 -2711720.97325685
## scale
## mu
## BIC COV.shape COV.scale COV.mu n
## shape -2711675.63969437 1.435894e-08 -4.500865e-09 -1.129274e-09 617473
## scale -4.500865e-09 6.076146e-08 -1.140726e-09 617473
## mu -1.129274e-09 -1.140726e-09 6.351740e-10 617473

The goodness-of-fit indicators suggest that the fit to Weibull distribution model for Ref0 is better
than for Ref.

6. Signal detection

The information thermodynamics-based approach is postulated to provide greater sensitivity for
resolving true signal from the thermodynamic background within the methylome (Sanchez and
Mackenzie 2016). Because the biological signal created within the dynamic methylome environment
characteristic of plants is not free from background noise, the approach, designated Methyl-IT,
includes the application of signal detection theory (Greiner, Pfeiffer, and Smith 2000; Carter et
al. 2016; Harpaz et al. 2013; Kruspe et al. 2017). Signal detection is a critical step to increase
sensitivity and resolution of methylation signal by reducing the signal-to-noise ratio and objectively
controlling the false positive rate and prediction accuracy/risk.
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6.1. Potential methylation signal

The first estimation in our signal detection step is the identification of the cytosine sites carry-
ing potential methylation signal PS. The methylation regulatory signal does not hold Weibull
distribution and, consequently, for a given level of significance α (Type I error probability, e.g.
α = 0.05), cytosine positions k with information divergence Hk >= Hα=0.05 can be selected as
sites carrying potential signals PS. The value of α can be specified. For example, potential signals
with Hk > Hα=0.01 can be selected. For each sample, cytosine sites are selected based on the
corresponding fitted Weibull distribution model estimated in the previous step. Additionally, since
cytosine with |TVk| < 0.1 are the most abundant sites, depending on the sample (experiment),
cytosine positions k with Hk >= Hα=0.05 and |TVk| < 0.1 can be observed. To prevent the last
situation we can select the PS with the additional constraint |TVk| > TV0, where TV0 (‘tv.cut’) is
a user specified value. The PS is detected with the function ‘getPotentialDIMP’:
PS = getPotentialDIMP(LR = HD, nlms = nlms, div.col = 9, alpha = 0.05,

tv.col = 7, tv.cut = 0.2)
PS0 = getPotentialDIMP(LR = HD0, nlms = nlms0, div.col = 9, alpha = 0.05,

tv.col = 7, tv.cut = 0.2)

PS$Breast_cancer

## GRanges object with 959 ranges and 10 metadata columns:
## seqnames ranges strand | c1 t1 c2
## <Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric>
## [1] chr13 [20137885, 20137885] * | 7 8 31
## [2] chr13 [20267416, 20267416] * | 6 6 57
## [3] chr13 [20279401, 20279401] * | 8 8 33
## [4] chr13 [20285268, 20285268] * | 0 5 30
## [5] chr13 [20680750, 20680750] * | 5 6 53
## ... ... ... ... . ... ... ...
## [955] chr13 [114995714, 114995714] * | 2 6 104
## [956] chr13 [114995719, 114995719] * | 1 6 98
## [957] chr13 [115003506, 115003506] * | 0 4 89
## [958] chr13 [115049352, 115049352] * | 5 6 45
## [959] chr13 [115090019, 115090019] * | 3 6 77
## t2 p1 p2 TV
## <numeric> <numeric> <numeric> <numeric>
## [1] 0 0.45048218742099 0.970328544095088 0.533333333333333
## [2] 0 0.475815388309824 0.983404482207982 0.5
## [3] 0 0.481227946148085 0.972024139204215 0.5
## [4] 1 0.0874396287267155 0.94002393396164 0.967741935483871
## [5] 0 0.435095578441169 0.98219749770619 0.545454545454545
## ... ... ... ... ...
## [955] 3 0.263443639719927 0.963493855019361 0.72196261682243
## [956] 7 0.180432322273311 0.925427707571774 0.790476190476191
## [957] 2 0.102328131612797 0.967965998825198 0.978021978021978
## [958] 0 0.435095578441169 0.979167173630546 0.545454545454545
## [959] 1 0.331185648084296 0.97526063050039 0.653846153846154
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## bay.TV hdiv wprob
## <numeric> <numeric> <numeric>
## [1] 0.519846356674098 9.00956640068852 0.0470836932334934
## [2] 0.507589093898158 9.45940418698377 0.043405888839761
## [3] 0.490796193056131 8.8670225410283 0.0483316945609365
## [4] 0.852584305234925 9.68800576922036 0.041676901917537
## [5] 0.547101919265021 9.66096829306787 0.0418767769318518
## ... ... ... ...
## [955] 0.700050215299434 11.039595608022 0.033053793767963
## [956] 0.744995385298462 10.2400645328768 0.0378476601046051
## [957] 0.865637867212401 9.78238187227201 0.0409886409957129
## [958] 0.544071595189377 9.09110832004754 0.0463882979784358
## [959] 0.644074982416095 10.759779809129 0.0346398125223427
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

Notice that the total variation distance |TV | is an information divergence as well and it can be used
in place of Hellinger divergence (Sanchez and Mackenzie 2016). The set of vectors Pi = (pi, 1− pi)
and distance function |TV | integrate a metric space. In particular:

|TV | = 1
2(|p̂ij − p̂ir|+ |(1− p̂ij)− (1− p̂ir)|) = |p̂ij − p̂ir|

That is, the quantitative effect of the vector components 1− p̂ij and 1− p̂ir (in our case, the effect
of unmethylated read counts) is not present in TV as in H(p̂ij , p̂ir).

6.2. Histogram and boxplots of methylation potential signals

As before, a single GRanges object is built from the above set GRanges objects using the function
‘uniqueGRanges’, and the Hellinger divergences of the cytosine sites carrying PS (for each sample)
are located in a single matrix on the metacolumn of the GRanges object.
ps = uniqueGRanges(PS, missing = NA, verbose = FALSE, num.cores = 12L)
dat = data.frame(normal = ps$hdiv, cancer = ps$hdiv.1, metastasis = ps$hdiv.2)
dat = suppressMessages(melt(dat))
colnames(dat) <- c("Breast.tissue", "HD")
head(dat)

## Breast.tissue HD
## 1 normal NA
## 2 normal NA
## 3 normal NA
## 4 normal NA
## 5 normal NA
## 6 normal NA

p1 = ggplot(dat, aes(x = HD, fill = Breast.tissue, colour = Breast.tissue)) +
geom_histogram(alpha = 0.5, bins = 50, position = "identity", na.rm = TRUE,

size = 0.7) + ylab("Counts") + xlim(7,50) +
theme(axis.title.x = element_text(face = "bold", size = 20),
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axis.text.x = element_text(face = "bold", size = 20, color = "black",
hjust = 0.5, vjust = 0.75),

axis.text.y = element_text(face = "bold", size = 20, color = "black"),
axis.title.y = element_text(face = "bold", size = 20,color = "black"),
legend.text = element_text(size = 20, face = "bold"),
legend.title = element_text(size = 20, face = "bold")
) +

ggtitle("Histogram for Potential methylation signal")

p2 = ggplot(dat,aes(x = Breast.tissue, y = HD , fill = Breast.tissue)) +
geom_boxplot(na.rm = TRUE) +
stat_summary(fun.data = fun_length, geom = "text", na.rm = TRUE,

position = position_dodge(width = 0.9), vjust = 1,
size = 6, fontface = "bold") +

theme(axis.title.x = element_text(face = "bold", size = 20),
axis.text.x = element_text(face = "bold", size = 20, color = "black",

hjust = 0.5, vjust = 0.75),
axis.text.y = element_text(face = "bold", size = 20, color = "black"),
axis.title.y = element_text(face = "bold", size = 20,color = "black"),
legend.position = "none"
) +

ggtitle("Boxplot for Potential methylation signal")

grid.arrange(p1, p2, ncol = 2)
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7. Cutpoint estimation

Laws of statistical physics can account for background methylation, a response to thermal fluctuations
that presumably functions in DNA stability (Sanchez and Mackenzie 2016). True signal is detected
based on the optimal cutpoint (López-Ratón et al. 2014), which can be estimated from the area
under the curve (AUC) of a receiver operating characteristic (ROC) curve built from a logistic
regression performed with the potential signals from controls and treatments. The ROC AUC is
equivalent to the probability that a randomly-chosen positive instance is ranked more highly than a
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randomly-chosen negative instance (Fawcett 2005). In the current context, the AUC is equivalent
to the probability to distinguish a randomly-chosen methylation regulatory signal induced by the
treatment from a randomly-chosen signal in the control.
cutpoints = estimateCutPoint(PS, control.names = "Breast_normal",

treatment.names = c("Breast_cancer",
"Breast_metastasis"),

div.col = 9, verbose = FALSE)
cutpoints

## $cutpoint
## Breast_normal
## Breast_cancer 9.539561
## Breast_metastasis 6.848653
##
## $auc
## Breast_normal
## Breast_cancer 0.25034090
## Breast_metastasis 0.08249673
##
## $accuracy
## Breast_normal
## Breast_cancer 0.4820937
## Breast_metastasis 0.8723602

cutpoints0 = estimateCutPoint(PS0, control.names = "Breast_normal",
treatment.names = c("Breast_cancer",

"Breast_metastasis"),
div.col = 9, verbose = FALSE)

cutpoints0

## $cutpoint
## Breast_normal
## Breast_cancer 3.514418
## Breast_metastasis 2.418451
##
## $auc
## Breast_normal
## Breast_cancer 0.9762920
## Breast_metastasis 0.9985477
##
## $accuracy
## Breast_normal
## Breast_cancer 0.9737442
## Breast_metastasis 0.8517964

In practice, potential signals are classified as “control”" (CT ) and “treatment”" (TT ) signals (prior
classification) and the logistic regression (LG): signal (with levels CT (0) and TT (1)) versus
Hk is performed. LG output yields a posterior classification for the signal. Prior and posterior
classifications are used to build the ROC curve and then to estimate AUC and cutpoint Hcutpoint.
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8. DIMPs

Cytosine sites carrying a methylation signal are designated differentially informative methylated
positions (DIMPs). The probability that a DIMP is not induced by the treatment is given by the
probability of false alarm (PFA, false positive). That is, the biological signal is naturally present in
the control as well as in the treatment. Each DIMP is a cytosine position carrying a significant
methylation signal, which may or may not be represented within a differentially methylated position
(DMP) according to Fisher’s exact test (or other current tests). A DIMP is a DNA cytosine position
with high probability to be differentially methylated or unmethylated in the treatment with respect
to a given control. Notice that the definition of DIMP is not deterministic in an ordinary sense, but
stochastic-deterministic in physico-mathematical terms.

DIMPs are selected with the function:
DIMPs = selectDIMP(PS, div.col = 9, cutpoint = 6.848653 )

8.1. Histogram and boxplots of DIMPs

The cutpoint detected with the signal detection step is very close (in this case) to the Hellinger
divergence value Hα=0.05 estimated for cancer tissue. The natural methylation regulatory signal is
still present in a patient with cancer and reduced during the metastasis step. This signal is detected
here as a false alarm (PFA, false positive)

The list of GRanges with DIMPs are integrated into a single GRanges object with the matrix of
‘hdiv’ values on its metacolumn:
dimp = uniqueGRanges(DIMPs, missing = NA, verbose = FALSE, num.cores = 12L)
dat <- data.frame(normal = dimp$hdiv, cancer = dimp$hdiv.1,

metastasis = dimp$hdiv.2)
dat = suppressMessages(melt(dat))
colnames(dat) <- c("Breast.tissue", "HD")
dt = dat[ which(dat$HD < 50), ]
cutp = 6.848653

The multiplot with the histogram and the boxplot can now built:
p1 = ggplot(data, aes(x = HD, fill = Breast.tissue, colour = Breast.tissue)) +

geom_histogram(alpha = 0.5, bins = 50, position = "identity", na.rm = TRUE,
size = 0.7) + ylab( "Counts" ) +

geom_vline(xintercept = cutp, color = "red", linetype = "dashed") +
annotate(geom = "text", x = cutp + 5, y = -11000, fontface = 2, size = 6,

label = paste0("cutopoint = ", cutp)) +
annotate(geom = "text", x = cutp + 5, y = 4.1e5, label = "DIMPs",

fontface = 2, size = 6) +
geom_segment(aes(x = cutp, xend = 60, y = 4e5, yend = 4e5),

arrow = arrow(length = unit(0.5, "cm")), color = "blue") +
theme(axis.title.x = element_text(face = "bold", size = 20),

axis.text.x = element_text(face = "bold", size = 20, color = "black",
hjust = 0.5, vjust = 0.75),
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axis.text.y = element_text(face = "bold", size = 20, color = "black"),
axis.title.y = element_text(face = "bold", size = 20,color = "black"),
legend.text = element_text(size = 20, face = "bold"),
legend.title = element_text(size = 20, face = "bold")

)

p2 = ggplot(dt,aes(x = Breast.tissue, y = HD , fill = Breast.tissue)) +
geom_boxplot(na.rm = TRUE) + ylab("HD values of DIMPS") +
stat_summary(fun.data = fun_length, geom = "text",

position = position_dodge(width = 0.9), vjust = 2,
size = 6, fontface = "bold") +

theme(axis.title.x = element_text(face = "bold", size = 20),
axis.text.x = element_text(face = "bold", size = 20, color = "black",

hjust = 0.5, vjust = 0.75),
axis.text.y = element_text(face = "bold", size = 20, color = "black"),
axis.title.y = element_text(face = "bold", size = 20,color = "black"),
legend.position = "none"

)
grid.arrange(p1, p2, ncol = 2)
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8.2. Venn Diagram of DIMPs

The Venn diagram of DIMPs reveals that the number cytosine site carrying methylation signal
with a divergence level comparable to that observed in breast tissues with cancer and metastasis is
relatively small (2797 DIMPs). The number of DIMPs decreased in the breast tissue with metastasis,
but, as shown in the last boxplot, the intensity of the signal increased.
suppressMessages(library(VennDiagram))

n12 = length(GenomicRanges::intersect(DIMPs$Breast_normal,
DIMPs$Breast_cancer))

n13 = length(GenomicRanges::intersect(DIMPs$Breast_normal,
DIMPs$Breast_metastasis))

n23 = length(GenomicRanges::intersect(DIMPs$Breast_cancer,
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DIMPs$Breast_metastasis))
n123 = length(Reduce(GenomicRanges::intersect,

list(DIMPs$Breast_normal, DIMPs$Breast_cancer,
DIMPs$Breast_metastasis)))

grid.newpage()
v = draw.triple.venn(area1 = length(DIMPs$Breast_normal),

area2 = length(DIMPs$Breast_cancer),
area3 = length(DIMPs$Breast_metastasis),
n12 = n12, n23 = n23, n13 = n13, n123 = n123,
category = c("Breast_normal", "Breast_cancer",

"Breast_metastasis"),
lty = rep("blank", 3), fill = c("blue", "yellow",

"magenta"),
alpha = c(0.1, 0.2, 0.3),
cat.pos = c(-80, 90, 0),
cat.col = c("blue", "darkorange", "red"),
cat.dist = c( -0.1, -0.08, -0.26),
cex = rep(1.7, 7),
cat.cex = c( 1.5, 1.5, 1.5),
label.col = c( "blue", "darkorange", "darkorange",

"red",
"white", "red", "red"),

scaled = TRUE)
grid.draw(v)
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Notice that natural methylation regulatory signals (not induced by the treatment) are present
in both groups, control and treatment. The signal detection step permits us to discriminate the
“ordinary” signals observed in the control from those induced by the treatment (a disease in the
current case). In addition, this diagram reflects a classification of DIMPs only based on the cytosine
positions. That is, this Venn diagram cannot tell us whether DIMPs at the same position can be
distinguishable or not. For example, DIMPs at the same positions in control and treatment can
happened with different probabilities estimated from their corresponding fitted Weibull distributions
(see below).

8.3. Venn Diagram of DIMPs for reference Ref0

DIMPs0 = selectDIMP(PS0, div.col = 9, cutpoint = 3.514418)

n12 = length(GenomicRanges::intersect(DIMPs0$Breast_normal,
DIMPs0$Breast_cancer))

n13 = length(GenomicRanges::intersect(DIMPs0$Breast_normal,
DIMPs0$Breast_metastasis))

n23 = length(GenomicRanges::intersect(DIMPs0$Breast_cancer,
DIMPs0$Breast_metastasis))

n123 = length(Reduce(GenomicRanges::intersect,
list(DIMPs0$Breast_normal, DIMPs0$Breast_cancer,

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/261982doi: bioRxiv preprint 

https://doi.org/10.1101/261982
http://creativecommons.org/licenses/by-nc-nd/4.0/


DIMPs0$Breast_metastasis)))

grid.newpage()
v = draw.triple.venn(area1 = length(DIMPs0$Breast_normal),

area2 = length(DIMPs0$Breast_cancer),
area3 = length(DIMPs0$Breast_metastasis),
n12 = n12, n23 = n23, n13 = n13, n123 = n123,
category = c("Breast_normal", "Breast_cancer",

"Breast_metastasis"),
lty = rep("blank", 3), fill = c("blue", "yellow",

"magenta"),
alpha = c(0.1, 0.2, 0.3),
cat.pos = c(-80, 90, 0),
cat.col = c("blue", "darkorange", "red"),
cat.dist = c( -0.1, -0.08, -0.26),
cex = rep(1.7, 7),
cat.cex = c( 1.5, 1.5, 1.5),
label.col = c( "blue", "darkorange", "darkorange",

"red",
"white", "red", "red"),

scaled = TRUE)
grid.draw(v)
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9. Differentially informative methylated genomic regions (DIMRs)

Our degree of confidence in whether DIMP counts in both groups of samples, control and treatment,
represent true biological signal was determined in the signal detection step. To estimate DIMRs,
we followed similar steps to those proposed in Bioconductor R package DESeq2 (Love, Huber,
and Anders 2014), but our GLM test looks for statistical difference between the groups based
on gene-body DIMP counts overlapping a given genomic region rather than read counts. The
regression analysis of the generalized linear model (GLM) with logarithmic link was applied to test
the difference between group counts. The fitting algorithmic approaches provided by ‘glm’ and
‘glm.nb’ functions from the R packages stat and MASS, respectively, were used for Poisson (PR),
Quasi-Poisson (QPR) and Negative Binomial (NBR) linear regression analyses, respectively.

9.1. Differentially methylated genes (DMGs)

We shall call DMGs those DIMRs restricted to gene-body regions. DMGs are detected using function
‘countTest’. We used computational steps from DESeq2 packages. In the current case we follow the
steps:
suppressMessages(library(DESeq2))
suppressMessages(library(rtracklayer))
# To load human gene annotation
AG = import(con = paste0("ftp://ftp.ensembl.org/pub/release-91/gff3/",

"homo_sapiens/Homo_sapiens.GRCh38.91.gff3.gz"))
genes = AG[ AG$type == "gene", c( "gene_id", "biotype" ) ]
genes = genes[ genes$biotype == "protein_coding", "gene_id" ]
seqlevels(genes, "coarse") <- "13" # To keep a consistent chromosome annotation
seqlevels(genes) <- "chr13"

Function ‘getDIMPatGenes’ is used to count the number of DIMPs at gene-body. The operation of
this function is based on the ‘findOverlaps’ function from the ‘GenomicRanges’ Bioconductor R
package. The ‘findOverlaps’ function has several critical parameters like, for example, ‘maxgap’,
‘minoverlap’, and ‘ignore.strand’. In our function ‘dimpAtGenes’, except for setting ignore.strand =
TRUE and type = “within”, we preserve the rest of default ‘findOverlaps’ parameters. In this case,
these are important parameter settings because the local mechanical effect of methylation changes
on a DNA region where a gene is located is independent of the strand where the gene is encoded.
That is, methylation changes located in any of the two DNA strands inside the gene-body region
will affect the flexibility of the DNA molecule (Choy et al. 2010; Severin et al. 2011).
DIMPsBN = getDIMPatGenes(GR = DIMPs$Breast_normal, GENES = genes)
DIMPsBC = getDIMPatGenes(GR = DIMPs$Breast_cancer, GENES = genes)
DIMPsBM = getDIMPatGenes(GR = DIMPs$Breast_metastasis, GENES = genes)

The number of DIMPs on the strand where a gene is encoded is obtained by setting ignore.strand =
FALSE. However, for the current example results will be the same since the datasets downloaded
from GEO do not have strand information. Next, the above GRanges objects carrying the DIMP
counts from each sample are grouped into a single GRanges object. Since we have only one control,
to perform group comparison and to move forward with this example, we duplicated ‘Breast_normal’
sample. Obviously, the confidence on the results increases with the number of sample replications
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per group (in this case, it is only an illustrative example on how to perform the analysis, since a fair
comparison requires for more than one replicate in the control group).
Genes.DIMPs = uniqueGRanges( list(DIMPsBN[, 2], DIMPsBN[, 2],

DIMPsBC[, 2], DIMPsBM[, 2]),
type = "equal", verbose = FALSE,
ignore.strand = TRUE )

colnames( mcols(Genes.DIMPs)) <- c("Breast_normal", "Breast_normal1",
"Breast_cancer", "Breast_metastasis")

Next, the set of mapped genes are annotated
GeneID = subsetByOverlaps(genes, Genes.DIMPs, type = "equal",

ignore.strand = FALSE)
dmps = data.frame( mcols( Genes.DIMPs ) )
dmps = apply( dmps, 2, as.numeric )
rownames( dmps ) <- GeneID$gene_id

Now, we build a ‘DESeqDataSet’ object using functions DESeq2 package.
condition = data.frame(condition = factor(c("BN", "BN", "BC", "BC"),

levels = c("BN", "BC")))
rownames(condition) <- c("Breast_normal", "Breast_normal1",

"Breast_cancer", "Breast_metastasis")

DIMR <- DESeqDataSetFromMatrix( countData = dmps,
colData = condition,
design = formula( ~ condition ),
rowRanges = Genes.DIMPs)

## converting counts to integer mode

DMG analysis is performed with the function ‘countTest’
DMGs = countTest(DIMR, num.cores = 3L, minCountPerIndv = 4, countFilter = TRUE,

Minlog2FC = 1, pvalCutOff = 0.05,
MVrate = .95, verbose = FALSE)

## gene-wise dispersion estimates

## mean-dispersion relationship

## final dispersion estimates

DMGs

## GRanges object with 10 ranges and 11 metadata columns:
## seqnames ranges strand | Breast_normal
## <Rle> <IRanges> <Rle> | <integer>
## ENSG00000132932 chr13 [ 25372071, 26025851] * | 1
## ENSG00000132938 chr13 [ 28820348, 29505947] * | 1
## ENSG00000102763 chr13 [ 41566837, 41961120] * | 1
## ENSG00000183098 chr13 [ 93226842, 94407401] * | 1
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## ENSG00000175198 chr13 [100089015, 100530437] * | 4
## ENSG00000125247 chr13 [100603927, 100675093] * | 1
## ENSG00000102452 chr13 [101053776, 101416492] * | 1
## ENSG00000204442 chr13 [107163510, 107866735] * | 1
## ENSG00000185974 chr13 [113667155, 113737735] * | 1
## ENSG00000185989 chr13 [113977783, 114132611] * | 1
## Breast_normal1 Breast_cancer Breast_metastasis log2FC
## <integer> <integer> <integer> <numeric>
## ENSG00000132932 1 2 51 3.725693
## ENSG00000132938 1 17 125 4.649187
## ENSG00000102763 1 2 14 2.397895
## ENSG00000183098 1 12 14 2.525729
## ENSG00000175198 4 28 29 4.127134
## ENSG00000125247 1 110 295 3.654978
## ENSG00000102452 1 8 24 3.020425
## ENSG00000204442 1 1 43 2.639057
## ENSG00000185974 1 3 7 2.302585
## ENSG00000185989 1 5 23 2.944439
## pvalue model adj.pval CT.SignalDensity
## <numeric> <character> <numeric> <numeric>
## ENSG00000132932 1.923633e-07 Neg.Binomial 9.618167e-07 0.0015295642
## ENSG00000132938 2.059568e-03 Neg.Binomial 4.119135e-03 0.0014585764
## ENSG00000102763 1.167245e-03 Neg.Binomial 2.918113e-03 0.0025362429
## ENSG00000183098 1.994458e-02 Neg.Binomial 3.095665e-02 0.0008470556
## ENSG00000175198 1.752839e-07 Neg.Binomial.W 9.618167e-07 0.0090616030
## ENSG00000125247 1.709922e-05 Neg.Binomial.W 5.699740e-05 0.0140514564
## ENSG00000102452 2.166965e-02 Neg.Binomial 3.095665e-02 0.0027569703
## ENSG00000204442 3.927490e-02 Neg.Binomial.W 4.087004e-02 0.0014220180
## ENSG00000185974 3.997781e-02 Neg.Binomial.W 4.087004e-02 0.0141681189
## ENSG00000185989 4.087004e-02 Neg.Binomial 4.087004e-02 0.0064587384
## TT.SignalDensity SignalDensityVariation
## <numeric> <numeric>
## ENSG00000132932 0.04053345 0.03900389
## ENSG00000132938 0.10355893 0.10210035
## ENSG00000102763 0.02028994 0.01775370
## ENSG00000183098 0.01101172 0.01016467
## ENSG00000175198 0.06456392 0.05550232
## ENSG00000125247 2.84541993 2.83136847
## ENSG00000102452 0.04411152 0.04135455
## ENSG00000204442 0.03128440 0.02986238
## ENSG00000185974 0.07084059 0.05667248
## ENSG00000185989 0.09042234 0.08396360
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
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9.2. DMGs for reference Ref0

DIMPs0BN = getDIMPatGenes(GR = DIMPs0$Breast_normal, GENES = genes)
DIMPs0BC = getDIMPatGenes(GR = DIMPs0$Breast_cancer, GENES = genes)
DIMPs0BM = getDIMPatGenes(GR = DIMPs0$Breast_metastasis, GENES = genes)

Genes.DIMPs0 = uniqueGRanges( list(DIMPs0BN[, 2], DIMPs0BN[, 2],
DIMPs0BC[, 2], DIMPs0BM[, 2]),

type = "equal", verbose = FALSE,
ignore.strand = TRUE )

colnames( mcols(Genes.DIMPs0)) <- c("Breast_normal", "Breast_normal1",
"Breast_cancer", "Breast_metastasis")

GeneID = subsetByOverlaps(genes, Genes.DIMPs0, type = "equal",
ignore.strand = FALSE)

dmps = data.frame( mcols( Genes.DIMPs0 ) )
dmps = apply( dmps, 2, as.numeric )
rownames( dmps ) <- GeneID$gene_id

condition = data.frame(condition = factor(c("BN", "BN", "BC", "BC"),
levels = c("BN", "BC")))

rownames(condition) <- c("Breast_normal", "Breast_normal1",
"Breast_cancer", "Breast_metastasis")

DIMR0 <- DESeqDataSetFromMatrix( countData = dmps,
colData = condition,
design = formula( ~ condition ),
rowRanges = Genes.DIMPs0)

## converting counts to integer mode

DMGs0 = countTest(DIMR0, num.cores = 3L, minCountPerIndv = 9,
countFilter = TRUE, Minlog2FC = 1, pvalCutOff = 0.05,
MVrate = .95, verbose = FALSE)

## gene-wise dispersion estimates

## mean-dispersion relationship

## final dispersion estimates

DMGs0

## GRanges object with 89 ranges and 11 metadata columns:
## seqnames ranges strand | Breast_normal
## <Rle> <IRanges> <Rle> | <integer>
## ENSG00000132958 chr13 [19422877, 19536762] * | 2
## ENSG00000121390 chr13 [19674752, 19783019] * | 2
## ENSG00000121741 chr13 [19958670, 20091829] * | 1
## ENSG00000172458 chr13 [20702127, 20723098] * | 10
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## ENSG00000132953 chr13 [20777329, 20903048] * | 2
## ... ... ... ... . ...
## ENSG00000150403 chr13 [113490995, 113554590] * | 10
## ENSG00000198176 chr13 [113584721, 113641470] * | 11
## ENSG00000185974 chr13 [113667155, 113737735] * | 4
## ENSG00000184497 chr13 [113759240, 113816995] * | 10
## ENSG00000185989 chr13 [113977783, 114132611] * | 12
## Breast_normal1 Breast_cancer Breast_metastasis log2FC
## <integer> <integer> <integer> <numeric>
## ENSG00000132958 2 184 37 3.591424
## ENSG00000121390 2 174 15 4.326023
## ENSG00000121741 1 110 12 3.701302
## ENSG00000172458 10 1 0 -3.761200
## ENSG00000132953 2 33 6 2.683953
## ... ... ... ... ...
## ENSG00000150403 10 35 79 1.957427
## ENSG00000198176 11 15 57 1.349155
## ENSG00000185974 4 17 80 2.320078
## ENSG00000184497 10 45 34 1.301737
## ENSG00000185989 12 91 62 1.813947
## pvalue model adj.pval CT.SignalDensity
## <numeric> <factor> <numeric> <numeric>
## ENSG00000132958 0.0139844607 Neg.Binomial.W 0.0170495479 0.017561421
## ENSG00000121390 0.0001587262 Neg.Binomial 0.0003924064 0.018472679
## ENSG00000121741 0.0360133028 Neg.Binomial.W 0.0377080464 0.007509763
## ENSG00000172458 0.0005714643 Neg.Binomial.W 0.0011056593 0.476826245
## ENSG00000132953 0.0082692229 Neg.Binomial 0.0111509218 0.015908368
## ... ... ... ... ...
## ENSG00000150403 1.581619e-02 Neg.Binomial 1.902218e-02 0.15724259
## ENSG00000198176 4.434089e-02 Neg.Binomial 4.484477e-02 0.19383260
## ENSG00000185974 3.441486e-07 Neg.Binomial 2.187802e-06 0.05667248
## ENSG00000184497 2.321227e-02 Neg.Binomial 2.648579e-02 0.17314218
## ENSG00000185989 1.308002e-02 Neg.Binomial.W 1.616836e-02 0.07750486
## TT.SignalDensity SignalDensityVariation
## <numeric> <numeric>
## ENSG00000132958 0.97026851 0.9527071
## ENSG00000121390 0.87283408 0.8543614
## ENSG00000121741 0.45809552 0.4505858
## ENSG00000172458 0.02384131 -0.4529849
## ENSG00000132953 0.15510659 0.1391982
## ... ... ...
## ENSG00000150403 0.8962828 0.7390402
## ENSG00000198176 0.6343612 0.4405286
## ENSG00000185974 0.6871538 0.6304813
## ENSG00000184497 0.6839116 0.5107694
## ENSG00000185989 0.4940935 0.4165886
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
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BRCA2, a breast cancer associated risk gene, is found between the DMGs
# DMGs0
DMGs0[ grep( "ENSG00000139618", names(DMGs0) ) ]

## GRanges object with 1 range and 11 metadata columns:
## seqnames ranges strand | Breast_normal
## <Rle> <IRanges> <Rle> | <integer>
## ENSG00000139618 chr13 [32315474, 32400266] * | 3
## Breast_normal1 Breast_cancer Breast_metastasis log2FC
## <integer> <integer> <integer> <numeric>
## ENSG00000139618 3 125 31 3.516508
## pvalue model adj.pval CT.SignalDensity
## <numeric> <factor> <numeric> <numeric>
## ENSG00000139618 3.447489e-06 Neg.Binomial 1.804862e-05 0.03538028
## TT.SignalDensity SignalDensityVariation
## <numeric> <numeric>
## ENSG00000139618 0.9198873 0.884507
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

10. Classification of DIMPs into two classes

The regulatory methylation signal is an output from a natural process that continuously takes
place across the ontogenetic development of the organism. Therefore, we expect to see methylation
signal in natural, ordinary conditions. Function ‘evaluateDIMPclass’ can be used to perform a
classification of DIMPs into two classes: DIMPS from control and DIMPs from treatment samples,
as well as an evaluation of the classification performance (for more details see ?evaluateDIMPclass).
In the setting below, a logistic regression: group versus divergence (at DIMPs), will be executed
after randomly splitting the original DIMP dataset into two subsets: training (60%) and testing
(40%).

The performance of the logistic classifier using reference ‘Ref’ is:
conf.mat <- evaluateDIMPclass(DIMPs,

column = c(hdiv = TRUE, TV = TRUE,
wprob = TRUE, pos = TRUE),

control.names = "Breast_normal",
treatment.names = c("Breast_cancer",

"Breast_metastasis"),
output = "conf.mat", prop = 0.6)

## Model: treat ~ hdiv + TV + logP + pos

conf.mat$conf.mat

## Confusion Matrix and Statistics
##
## Reference
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## Prediction CT TT
## CT 41 0
## TT 11 1888
##
## Accuracy : 0.9943
## 95% CI : (0.9899, 0.9972)
## No Information Rate : 0.9732
## P-Value [Acc > NIR] : 3.972e-12
##
## Kappa : 0.8789
## Mcnemar’s Test P-Value : 0.002569
##
## Sensitivity : 1.0000
## Specificity : 0.7885
## Pos Pred Value : 0.9942
## Neg Pred Value : 1.0000
## Prevalence : 0.9732
## Detection Rate : 0.9732
## Detection Prevalence : 0.9789
## Balanced Accuracy : 0.8942
##
## ’Positive’ Class : TT
##

The best fitted logistic model using reference ‘Ref’ is:
summary(conf.mat$model)

##
## Call:
## glm(formula = formula, family = binomial(link = "logit"), data = dt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.8978 0.0004 0.0025 0.0083 8.4904
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.020e+01 6.162e+00 -9.769 < 2e-16 ***
## hdiv -3.803e+00 3.653e-01 -10.411 < 2e-16 ***
## TV -2.509e-01 6.790e-01 -0.370 0.71172
## logP -7.227e+01 7.151e+00 -10.107 < 2e-16 ***
## pos 1.461e-08 5.045e-09 2.897 0.00377 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 718.38 on 2907 degrees of freedom
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## Residual deviance: 225.67 on 2903 degrees of freedom
## AIC: 235.67
##
## Number of Fisher Scoring iterations: 11

In this case, the only variable not included in the model is total variation TV and all the rest
are significant. The generalized linear regression can be performed by removing the variables
TV . There are three other classifiers available: “pca.logistic”, “pca.lda”, and “pca.qda” (type
?evaluateDIMPclass in R console for more details). Principal component analysis (PCA) is used to
convert a set of observations of possibly correlated predictor variables into a set of values of linearly
uncorrelated variables (principal components, PCs). Then, the PCs are used as new uncorrelated
predictor variables for LDA, QDA, and logistic classifiers. In the current case, the best classification
result is obtained with the combination PCA + Quadratic Discriminant Analysis (PCA + QDA,
“pca.qda”).
conf.mat <- evaluateDIMPclass(DIMPs,

column = c(hdiv = TRUE, TV = TRUE,
wprob = TRUE, pos = TRUE),

classifier = "pca.qda", n.pc = 4,
center = TRUE, scale = TRUE,
control.names = "Breast_normal",
treatment.names = c("Breast_cancer",

"Breast_metastasis"),
output = "conf.mat", prop = 0.6)

## Model: treat ~ hdiv + TV + logP + pos

conf.mat$conf.mat

## Confusion Matrix and Statistics
##
## Reference
## Prediction CT TT
## CT 47 0
## TT 5 1888
##
## Accuracy : 0.9974
## 95% CI : (0.994, 0.9992)
## No Information Rate : 0.9732
## P-Value [Acc > NIR] : < 2e-16
##
## Kappa : 0.9482
## Mcnemar’s Test P-Value : 0.07364
##
## Sensitivity : 1.0000
## Specificity : 0.9038
## Pos Pred Value : 0.9974
## Neg Pred Value : 1.0000
## Prevalence : 0.9732
## Detection Rate : 0.9732
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## Detection Prevalence : 0.9758
## Balanced Accuracy : 0.9519
##
## ’Positive’ Class : TT
##

summary(conf.mat$model)

## Length Class Mode
## qda 8 qda list
## pca 5 prcomp list

Monte Carlo (bootstrap) validation with 500 resamplings is performed by using the option ‘output
= “mc.val” ’:
conf.mat <- evaluateDIMPclass(DIMPs,

column = c(hdiv = TRUE, TV = TRUE,
wprob = TRUE, pos = TRUE),

classifier = "pca.qda", n.pc = 4,
center = TRUE, scale = TRUE,
control.names = "Breast_normal",
treatment.names = c("Breast_cancer",

"Breast_metastasis"),
output = "mc.val", prop = 0.6,
mc.cores = 12L, num.boot = 500)

## Model: treat ~ hdiv + TV + logP + pos

conf.mat

## Accuracy Kappa AccuracyLower AccuracyUpper
## Min. :0.9923 Min. :0.8348 Min. :0.9873 Min. :0.9957
## 1st Qu.:0.9969 1st Qu.:0.9396 1st Qu.:0.9933 1st Qu.:0.9989
## Median :0.9979 Median :0.9589 Median :0.9947 Median :0.9994
## Mean :0.9977 Mean :0.9541 Mean :0.9944 Mean :0.9992
## 3rd Qu.:0.9985 3rd Qu.:0.9701 3rd Qu.:0.9955 3rd Qu.:0.9997
## Max. :1.0000 Max. :1.0000 Max. :0.9981 Max. :1.0000
##
## AccuracyNull AccuracyPValue McnemarPValue Sensitivity
## Min. :0.9732 Min. :0.000e+00 Min. :0.001496 Min. :0.9984
## 1st Qu.:0.9732 1st Qu.:0.000e+00 1st Qu.:0.133614 1st Qu.:0.9995
## Median :0.9732 Median :0.000e+00 Median :0.449692 Median :0.9995
## Mean :0.9732 Mean :2.257e-12 Mean :0.486036 Mean :0.9995
## 3rd Qu.:0.9732 3rd Qu.:5.000e-16 3rd Qu.:1.000000 3rd Qu.:1.0000
## Max. :0.9732 Max. :1.061e-09 Max. :1.000000 Max. :1.0000
## NA’s :2
## Specificity Pos Pred Value Neg Pred Value Precision
## Min. :0.7500 Min. :0.9932 Min. :0.9388 Min. :0.9932
## 1st Qu.:0.9038 1st Qu.:0.9974 1st Qu.:0.9783 1st Qu.:0.9974
## Median :0.9423 Median :0.9984 Median :0.9804 Median :0.9984
## Mean :0.9302 Mean :0.9981 Mean :0.9830 Mean :0.9981
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## 3rd Qu.:0.9615 3rd Qu.:0.9989 3rd Qu.:1.0000 3rd Qu.:0.9989
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Recall F1 Prevalence Detection Rate
## Min. :0.9984 Min. :0.9960 Min. :0.9732 Min. :0.9716
## 1st Qu.:0.9995 1st Qu.:0.9984 1st Qu.:0.9732 1st Qu.:0.9727
## Median :0.9995 Median :0.9989 Median :0.9732 Median :0.9727
## Mean :0.9995 Mean :0.9988 Mean :0.9732 Mean :0.9728
## 3rd Qu.:1.0000 3rd Qu.:0.9992 3rd Qu.:0.9732 3rd Qu.:0.9732
## Max. :1.0000 Max. :1.0000 Max. :0.9732 Max. :0.9732
##
## Detection Prevalence Balanced Accuracy
## Min. :0.9722 Min. :0.8745
## 1st Qu.:0.9737 1st Qu.:0.9519
## Median :0.9747 Median :0.9706
## Mean :0.9746 Mean :0.9649
## 3rd Qu.:0.9753 3rd Qu.:0.9805
## Max. :0.9794 Max. :1.0000
##

The performance of the PCA+QDA classifier using reference ‘Ref0’ is:
conf.mat0 <- evaluateDIMPclass(DIMPs0,

column = c(hdiv = TRUE, TV = TRUE,
wprob = TRUE, pos = TRUE),

classifier = "pca.qda", n.pc = 4,
center = TRUE, scale = TRUE,
control.names = "Breast_normal",
treatment.names = c("Breast_cancer",

"Breast_metastasis"),
output = "conf.mat", prop = 0.6)

## Model: treat ~ hdiv + TV + logP + pos

conf.mat0$conf.mat

## Confusion Matrix and Statistics
##
## Reference
## Prediction CT TT
## CT 848 0
## TT 0 23654
##
## Accuracy : 1
## 95% CI : (0.9998, 1)
## No Information Rate : 0.9654
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
## Mcnemar’s Test P-Value : NA
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##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.9654
## Detection Rate : 0.9654
## Detection Prevalence : 0.9654
## Balanced Accuracy : 1.0000
##
## ’Positive’ Class : TT
##

Monte Carlo (bootstrap) validation with 500 resamplings using reference ‘Ref0’ can be now performed:
conf.mat01 <- evaluateDIMPclass(DIMPs0,

column = c(hdiv = TRUE, TV = TRUE,
wprob = TRUE, pos = TRUE),

classifier = "pca.qda", n.pc = 4,
center = TRUE, scale = TRUE,
control.names = "Breast_normal",
treatment.names = c("Breast_cancer",

"Breast_metastasis"),
output = "mc.val", prop = 0.6,
mc.cores = 12L, num.boot = 500)

## Model: treat ~ hdiv + TV + logP + pos

conf.mat01

## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## Min. :1 Min. :1 Min. :0.9998 Min. :1 Min. :0.9654
## 1st Qu.:1 1st Qu.:1 1st Qu.:0.9998 1st Qu.:1 1st Qu.:0.9654
## Median :1 Median :1 Median :0.9998 Median :1 Median :0.9654
## Mean :1 Mean :1 Mean :0.9998 Mean :1 Mean :0.9654
## 3rd Qu.:1 3rd Qu.:1 3rd Qu.:0.9998 3rd Qu.:1 3rd Qu.:0.9654
## Max. :1 Max. :1 Max. :0.9998 Max. :1 Max. :0.9654
##
## AccuracyPValue McnemarPValue Sensitivity Specificity Pos Pred Value
## Min. :0 Min. : NA Min. :1 Min. :1 Min. :1
## 1st Qu.:0 1st Qu.: NA 1st Qu.:1 1st Qu.:1 1st Qu.:1
## Median :0 Median : NA Median :1 Median :1 Median :1
## Mean :0 Mean :NaN Mean :1 Mean :1 Mean :1
## 3rd Qu.:0 3rd Qu.: NA 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1
## Max. :0 Max. : NA Max. :1 Max. :1 Max. :1
## NA’s :500
## Neg Pred Value Precision Recall F1 Prevalence
## Min. :1 Min. :1 Min. :1 Min. :1 Min. :0.9654
## 1st Qu.:1 1st Qu.:1 1st Qu.:1 1st Qu.:1 1st Qu.:0.9654
## Median :1 Median :1 Median :1 Median :1 Median :0.9654
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## Mean :1 Mean :1 Mean :1 Mean :1 Mean :0.9654
## 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1 3rd Qu.:0.9654
## Max. :1 Max. :1 Max. :1 Max. :1 Max. :0.9654
##
## Detection Rate Detection Prevalence Balanced Accuracy
## Min. :0.9654 Min. :0.9654 Min. :1
## 1st Qu.:0.9654 1st Qu.:0.9654 1st Qu.:1
## Median :0.9654 Median :0.9654 Median :1
## Mean :0.9654 Mean :0.9654 Mean :1
## 3rd Qu.:0.9654 3rd Qu.:0.9654 3rd Qu.:1
## Max. :0.9654 Max. :0.9654 Max. :1
##

That is, with high accuracy level, DIMPs from control group can be discriminated from DIMPs
found in cancer tissues.
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Supplements.

S1. Troubleshooting installation on Ubuntu

Herein, a possible path to prevent potential issues originated during MethylIT installation on Ubuntu
is given:

1. To update R:

i. To added an R CRAN repository typing in the terminal:
sudo echo “deb /bin/linux/ubuntu xenial/” | sudo tee -a /etc/apt/sources.list

For example:
sudo echo "deb https://cran.mtu.edu/bin/linux/ubuntu xenial/" |

sudo tee -a /etc/apt/sources.list

ii. sudo apt update

iii. sudo apt upgrade

2. Install Bioconductor:
source(“https://bioconductor.org/biocLite.R”)
biocLite()

3. Install Bioconductor packages: ‘GenomicFeatures’, ‘VariantAnnotation’, ‘ensembldb’, ‘Genom-
icRanges’, ‘BiocParallel’, ‘biovizBase’, ‘DESeq2’, and ‘genefilter’. Package ‘GenomicFeatures’
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depends on the R package ‘RMySQL’, which is not in ’Bioconductor. To install “RMySQL”
from CRAN you might require the ’installation of the library “libmysqlclient-dev”. If this is
the case, ’then you can solve it by typing in the Ubuntu Teminal:
sudo apt install libmysqlclient-dev

Next, in the R console:
install.packages("RMySQL")

4. install.packages(“devtools”)

5. devtools::install_git(“https://git.psu.edu/genomath/MethylIT”)

S2. Session Information

## R version 3.4.3 (2017-11-30)
## Platform: x86_64-redhat-linux-gnu (64-bit)
## Running under: CentOS Linux 7 (Core)
##
## Matrix products: default
## BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] VennDiagram_1.6.19 futile.logger_1.4.3
## [3] gridExtra_2.3 reshape2_1.4.3
## [5] ggplot2_2.2.1 MethylIT_0.3.1
## [7] rtracklayer_1.38.3 DESeq2_1.18.1
## [9] SummarizedExperiment_1.8.1 DelayedArray_0.4.1
## [11] matrixStats_0.53.1 Biobase_2.38.0
## [13] GenomicRanges_1.30.3 GenomeInfoDb_1.14.0
## [15] IRanges_2.12.0 S4Vectors_0.16.0
## [17] BiocGenerics_0.24.0 knitr_1.20
##
## loaded via a namespace (and not attached):
## [1] backports_1.1.2 Hmisc_4.1-1
## [3] AnnotationHub_2.10.1 plyr_1.8.4
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## [5] lazyeval_0.2.1 splines_3.4.3
## [7] BiocParallel_1.12.0 digest_0.6.15
## [9] foreach_1.4.4 BiocInstaller_1.28.0
## [11] ensembldb_2.2.2 htmltools_0.3.6
## [13] magrittr_1.5 checkmate_1.8.5
## [15] memoise_1.1.0 BSgenome_1.46.0
## [17] cluster_2.0.6 sfsmisc_1.1-2
## [19] etm_0.6-2 recipes_0.1.2
## [21] Biostrings_2.46.0 annotate_1.56.2
## [23] gower_0.1.2 dimRed_0.1.0
## [25] ArgumentCheck_0.10.2 prettyunits_1.0.2
## [27] colorspace_1.3-2 blob_1.1.1
## [29] dplyr_0.7.4 RCurl_1.95-4.10
## [31] genefilter_1.60.0 bindr_0.1.1
## [33] survival_2.41-3 VariantAnnotation_1.24.5
## [35] zoo_1.8-1 iterators_1.0.9
## [37] glue_1.2.0 DRR_0.0.3
## [39] gtable_0.2.0 ipred_0.9-6
## [41] zlibbioc_1.24.0 XVector_0.18.0
## [43] kernlab_0.9-25 ddalpha_1.3.1.1
## [45] DEoptimR_1.0-8 scales_0.5.0
## [47] futile.options_1.0.0 DBI_0.8
## [49] Rcpp_0.12.16 xtable_1.8-2
## [51] progress_1.1.2 cmprsk_2.2-7
## [53] htmlTable_1.11.2 foreign_0.8-69
## [55] bit_1.1-12 Formula_1.2-2
## [57] lava_1.6 prodlim_1.6.1
## [59] htmlwidgets_1.0 httr_1.3.1
## [61] RColorBrewer_1.1-2 acepack_1.4.1
## [63] pkgconfig_2.0.1 XML_3.98-1.10
## [65] nnet_7.3-12 locfit_1.5-9.1
## [67] caret_6.0-78 labeling_0.3
## [69] tidyselect_0.2.4 rlang_0.2.0
## [71] AnnotationDbi_1.40.0 munsell_0.4.3
## [73] tools_3.4.3 RSQLite_2.0
## [75] broom_0.4.3 evaluate_0.10.1
## [77] stringr_1.3.0 yaml_2.1.18
## [79] ModelMetrics_1.1.0 bit64_0.9-7
## [81] robustbase_0.92-8 purrr_0.2.4
## [83] AnnotationFilter_1.2.0 bindrcpp_0.2
## [85] nlme_3.1-131.1 mime_0.5
## [87] RcppRoll_0.2.2 biomaRt_2.34.2
## [89] compiler_3.4.3 rstudioapi_0.7
## [91] curl_3.1 interactiveDisplayBase_1.16.0
## [93] e1071_1.6-8 tibble_1.4.2
## [95] geneplotter_1.56.0 stringi_1.1.7
## [97] GenomicFeatures_1.30.3 Epi_2.26
## [99] lattice_0.20-35 ProtGenerics_1.10.0
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## [101] Matrix_1.2-12 psych_1.7.8
## [103] pillar_1.2.1 data.table_1.10.4-3
## [105] bitops_1.0-6 httpuv_1.3.6.2
## [107] R6_2.2.2 latticeExtra_0.6-28
## [109] RMySQL_0.10.14 codetools_0.2-15
## [111] lambda.r_1.2 dichromat_2.0-0
## [113] MASS_7.3-49 assertthat_0.2.0
## [115] CVST_0.2-1 rprojroot_1.3-2
## [117] minpack.lm_1.2-1 withr_2.1.2
## [119] GenomicAlignments_1.14.1 Rsamtools_1.30.0
## [121] mnormt_1.5-5 GenomeInfoDbData_1.0.0
## [123] rpart_4.1-13 timeDate_3043.102
## [125] tidyr_0.8.0 class_7.3-14
## [127] nls2_0.2 rmarkdown_1.9
## [129] biovizBase_1.26.0 lubridate_1.7.3
## [131] numDeriv_2016.8-1 shiny_1.0.5
## [133] base64enc_0.1-3 tinytex_0.4
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