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Abstract
Advances in genome sequencing and genomics research are
bringing us closer to a new era of personalized medicine,
where healthcare can be tailored to the individual’s genetic
makeup, and to more effective diagnosis and treatment of rare
genetic diseases. Much of this progress depends on collabo-
rations and access to genomes, thus, a number of initiatives
have been introduced to support seamless data sharing. Among
these, the Global Alliance for Genomics and Health runs a pop-
ular platform, called Matchmaker Exchange, that allows re-
searchers to perform queries for rare genetic disease discovery
over multiple federated databases. Queries include gene varia-
tions which are linked to rare diseases, and the ability to find
other researchers that have seen or have interest in those vari-
ations is extremely valuable. Nonetheless, in some cases, re-
searchers may be reluctant to use the platform since the queries
they make (thus, what they are working on) are revealed to
other researchers, and this creates concerns with privacy and
competitive advantage.

In this paper, we present AnoniMME, a novel framework
geared to enable anonymous queries within the Matchmaker
Exchange platform. We build on Reverse Private Information
Retrieval (PIR) to let researchers anonymously query the feder-
ated platform, in a multi-server setting, by writing their query,
along with a public encryption key, anonymously in a public
database. AnoniMME also supports responses, allowing other
researchers to respond to queries by providing their encrypted
contact details.

1 Introduction
Advances in genome sequencing and genomics are enabling
tremendous progress in medicine and healthcare, paving the
way to making prevention, diagnosis, and treatment of diseases
tailored to the individual’s genetic makeup, and thus cheaper
and more effective. Researchers are also gaining a better un-
derstanding, and developing more successful treatments of rare
genetic diseases. However, although over the past 15 years
sequencing costs have plummeted from billions to thousands
of dollars, and continue dropping [15], it is still hard for re-
searchers to gain access to genomic data, especially those per-
taining to rare conditions.

Therefore, progress in genomics research hinges on the abil-

ity to collaborate and share data among different institutions.
Indeed, funding agencies often require that data sharing is con-
sidered in grant applications, and a number of initiatives have
been announced to gather and share genomic data. For in-
stance, the All Of Us Research Program [16] (aka the Precision
Medicine initiative) was kicked off in the US in 2015, aiming
to collect health and genetic data from one million citizens.
Similar initiatives exist elsewhere, e.g., in the UK, Genomics
England is sequencing the genomes of 100,000 patients, focus-
ing on rare diseases and cancer [9].

The Global Alliance for Genomics and Health (GA4GH)
was established a few years ago with the goal of making
data sharing between institutes simple and effective [11]. The
GA4GH has developed several platforms, e.g., the Beacon
Project [4], allowing researchers to search if a certain allele
exists in a database hosted at a certain organization as well as
the Matchmaker Exchange [17], which facilitates rare disease
discovery.

In this paper, we focus on Matchmaker Exchange (MME):
the platform connects multiple distributed databases through
an API and allows researchers to query for genetic variants
in other databases in the network. In other words, MME
acts as a portal supporting simultaneous querying over mul-
tiple databases that are members of the exchange. In a nut-
shell, MME allows a researcher to query a specific gene, e.g.,
“AP3B2” (a gene where rare mutations have been associated
with early-onset epileptic encephalopathy). If a match is found,
the researcher is notified of all matches within all databases in
the MME, and can get in touch with the user that submitted the
case on which a match is generated. Note that, querying a gene
really implies querying a known rare variation of that gene. On
the other hand, however, researchers might be reluctant to use
the platform since the queries they make are revealed to other
researchers, and this exposes what they are working on and
what kinds of patients they might have, ultimately resulting in
loss of privacy and competitive advantage. Indeed, MME cur-
rently requires researchers to submit a registration application
to be given access to the platform, with the goal of preventing
misuse of the system, thus, queries made on this platform are
not anonymous and are revealed to all other researchers with
an interest in the same gene.

This motivates the need to support anonymous querying on
MME, so that a researcher’s interest a gene is not broadcast,
but only communicated to relevant contacts, i.e., researchers
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with same interests or willing to collaborate. To this end, we
present AnoniMME, a novel framework allowing researchers
to anonymously query a gene within the MME, without vio-
lating any of MME’s current functionalities and requirements.
We build AnoniMME using a cryptographic primitive called
Reverse Private Information Retrieval (PIR), using a model
similar to that presented by the anonymous messaging system
Riposte [7], while creating queries and implementing the same
functionalities as in MME. By using Reverse Private Informa-
tion Retrieval (PIR) as a building block, we allow researchers
to anonymously query the federated platform, in a multi-server
setting, by writing their query, along with a public encryp-
tion key, anonymously in a public database. AnoniMME also
supports responses, allowing other researchers to respond to
queries by providing their encrypted contact details.

Our intuition is to build queries in regular epochs, where the
length of each epoch is based on the number of write requests.
In order to anonymously write to the database, the user selects
a random row of the the database, and splits the query, con-
taining the gene and her public key, into shares, one for each
server (which we denote as node servers). This way, the node
servers cannot learn anything about the write request this way,
if at least one of the them is honest. Then, a master server can
gather queries that have been collected during an epoch from
the node servers and collate them together to recover and pub-
lish the actual queries. The MME matching system can then be
used in order to generate matches for the queries, in the usual
manner and contact details of other researchers/clinicians can
be exchanged, encrypted using the public key, and published
in the same row as the queried gene, in an adjacent column.

To demonstrate the practicality of AnoniMME, we imple-
ment and evaluate our prototype experimentally. We do so in
two different settings, one involving two node servers and a
master server, and another involving six node servers (and a
master server). In both settings, the nodes collect write requests
during an epoch, and then forward them to the master server
which collates them and publishes the final database.
Contributions. In summary, our paper makes several contri-
butions:

1. We present AnoniMME, a framework enabling anony-
mous queries within the Matchmaker Exchange, without
breaking any of its current security and functionality re-
quirements.

2. We build AnoniMME from Reverse PIR [7], using an
information-theoretic approach, extending queries to sup-
port public key encryption of contact details, and adding a
response phase so that users can also anonymously reply
to queries.

3. We show, experimentally, that AnoniMME is efficient and
scalable, and can bring anonymity to MME with low over-
head. Therefore, we are confident that it can be deployed
in the wild and further encouraging researchers to share
genomic data a.

Paper Organization. The rest of the paper is organized as

follows. In Section 2, we review the Matchmaker Exchange
(MME) platform, we define the entities and operations of our
goal system as well as the security model and present a first
attempt at designing a privacy-enhancing protocol supporting
the functionalities of MME, with a discussion of its limitations.
Section 3 describe the methods used for collision handling and
collision recovery, presents the n-server protocol, and evaluate
the performance of the proposed protocol on the client side. In
Section 4, we discuss the results from the experimental evalu-
ation, and place our protocol in the context of related work in
Section 5. Finally, we conclude the paper in Section 6.

2 Approach
2.1 Matchmaker Exchange

Genomics research is often dependent on resources that fa-
cilitate and encourage sharing of genomic data. To this end,
the Global Alliance for Genomics and Health (GA4GH) was
established in 2013, aiming to support simple mechanisms for
sharing data between institutes. The GA4GH has developed
and deployed various systems, including the Beacon Network
project [4], which allows researchers to search if a certain al-
lele exists in a database, as well as the Matchmaker Exchange
(MME) [17], which facilitates rare disease gene discovery and
constitutes the main focus of our work.

The MME is a federated platform that facilitate the identifi-
cation of cases with similar phenotypic and genotypic profiles
through a standardized Application Programming Interface
(API). Essentially, it enables searches in multiple databases,
without having to query all of them separately or deposit data
in each of them. As of November 2017, it involves seven orga-
nizations with full member status and eight additional partici-
pant organizations.

The Matchmaker Exchange Application Programming In-
terface (MME API) [5] fully specifies the data format and the
protocol for querying databases to identify individuals with
similar phenotypic profiles and genetic variations. To ensure
the accuracy of the patient comparison, similar phenotypes are
determined by matching identical or ontologically similar with
the Human Phenotype Ontology (HPO). The MME API also
specifies the format of both the query, which is sent to partic-
ipating databases (called “matchmaking service”) and the re-
sponse, which contains information about matching individu-
als in the remote database. It is implemented under a query-by-
example methodology: a user can query a specific gene, e.g.,
“AP3B2,” and she will be notified of all matches within all
databases in the MME. Note that, querying a gene really im-
plies querying a known rare variation of that gene. If a match
is found, the user receives a Case ID for the match, informa-
tion about the user that submitted the case on which a match is
generated, such as name, institution and email address, as well
as the corresponding candidate gene or phenotype.

In order to query the platform, users must be regis-
tered with one of the member databases, and have a clini-
cian/researcher account. Some of the member databases allow
for patient/family registrations as well, however the submis-
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Figure 1: Visual representation of a MME query sequence.

sions made by these type of users are excluded from matching
via MME, due to the current MME rules.

The query protocol is illustrated in Figure 1. A user, Bob,
sends the metadata (i.e., Case ID, submitter information) as
well as the patient data (gene and/or phenotype) to database
B. Another user, Alice, submits a similar case to database
A. Database A then sends an MME API match request to
Database B, which performs the match and returns a list of
scored patients plus metadata to database A. After receiving
the match results, database A informs Alice, providing contact
information for Bob. The result of querying MME presents a
list of matches, where each match has a patient object, i.e., the
information on the matched patient, consisting of the same in-
formation as described in the query, and a score object. The
scoring of the patients is done according to how well the re-
sults patient matches the query patient; i.e., it is a numerical
value and must be in the range [0, 1], with 0.0 being a poor
match and 1.0 being a perfect match.

2.2 Entities and Operations
AnoniMME aims to support anonymous queries on the

Matchmaker Exchange (MME). It involves the following en-
tities:

Querying Users: researchers/clinicians who query the system
to find other users that have patients with a rare mutation or an
interest in the same gene. As detailed below, they generate a
write request specifying the row at which their query, i.e., the
gene of interest and their public key, will be processed.

Responding Users: researchers/clinicians replying to an exist-
ing query. They use the public key of a querying user to encrypt
their contact details and generate a write request for the same
row as the gene of interest including their (encrypted) contact
details.

Nodes: the servers collecting write requests from the users.
These are aggregated until the end of an epoch, based on the
maximum number of write requests.

Master Server: a server that gathers the databases from each
node at the end of an epoch, and publishes the database with
all the write requests revealed.

Therefore, AnoniMME implements the following operations:
Query Write Request: On input row i, query gene X , and pub-
lic key PK, a querying user generates n write requests, one
for each node. Each write request is generated by encoding the
gene and the public key into n vectors, so that all of them com-
bined will write the gene/public key at index i.
Query Response Request: On input row i, encrypted contact
details c, a responding user generates n write requests, one for
each node. Write requests are generated, once again, by encod-
ing the encrypted contact details into n vectors.
Database Collation: On input n databases, the master server
collates them into one final database, and publishes it.

2.3 Security Model
AnoniMME aims to guarantee the following three security

goals.
1. Correctness. When all nodes execute the protocols correctly
and send data to the master server at the end of an epoch, the
resulting database contains all the write requests processed as
if the requests were directly applied to the final database.
2. Anonymous Write. The probability that an adversary
guesses at which particular row a user has written is the same
as random guessing.
3. Disruption Resistance. An adversary controlling n users
can make at most n write requests (i.e., there is a limit to the
number of write requests each user can make during an epoch).
Threat Model. We assume that the users of the system are un-
trusted, and may collude with the nodes, the master server, or
other users in order to break the security properties of the sys-
tem. Both the master server and the nodes are trusted for avail-
ability, and assumed that at least one of the nodes is honest
(i.e., does not collude with other nodes). We do not consider
external adversaries, since their actions can be mitigated via
standard network security techniques (i.e., using a secure and
authenticated communication channel). Note that the security
model of AnoniMME mirrors that of Riposte [7].

2.4 A First Attempt
We now present a first attempt at designing a privacy-

enhancing protocol supporting the functionalities of the
Matchmaker Exchange (MME), i.e., querying the federated
platform to find patients with similar gene mutations or phe-
notypes. We discuss its limitations, some of which we address
in the actual, N-server construction of AnoniMME presented
in Section 3.2.
Intuition. We start by attempting to build from a simple ex-
tension of Reverse PIR [7]. Specifically, we implement the
query phase (cf. Section 2.2) using the same mechanism of
Riposte [7], i.e., we let users anonymously submit the gene
of interest, along with their public key, with a “write request.”
We then add a response phase, allowing users with an inter-
est in the same gene to respond; specifically, by encrypting
their contact information using the public key contained in the
query, and adding it to another write request.
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Setting. In the following, we present a construction assuming
the presence of 2 servers (S1 and S2) and a database with l
rows.

Query phase. Assume user A wants to anonymously
query gene XA. She builds a write request, consisting of
(XA, PKA), where PKA is her public key, and writes this at
row i in the database. More specifically, she picks 2l random
numbers, r1, r2, . . . , rl and s1, s2, . . . , sl, where l is the size of
the database. The query write request vectors are constructed
as follows:

v1 = (r1, r2, . . . , ri +XA, . . . , rl),

v′1 = (s1, s2, . . . , si + PKA, . . . , sl),

v2 = (−r1,−r2, . . . ,−ri, . . . ,−rl),
v′2 = (−s1,−s2, . . . ,−si, . . . ,−sl).

Note that v1 + v2 = XA · ei, and v′1 + v′2 = PKA · ei, where
ei denotes the unit vector with 0’s at all positions except at
position i, where it is equal to 1, and thus the construction is
correct. Then, A sends (v1, v′1) to S1, and (v2, v

′
2) to S2.

Write requests are collected until the end of an epoch, when
the servers combine their local states and publish the database
with the queries. As long as the two servers do not collude,
none of them can reconstruct what any given user has written.,
i.e., none of the servers can recover the gene or public key of
the user sent in the write request. Also, in order to achieve
disruption resistance, one can limit the number of queries to
one per user for each phase of the epoch.

Response phase. After the database with the queries is pub-
lished, the response phase begins. Here we can rely on MME’s
algorithm to generate matches on existing MME data, and sim-
ply extend it to encrypt the contact details of the relevant users
with an interest in the same gene. This would be inline with
the current privacy policy of the MME, as contact details of re-
searchers with an interest in the same gene are already shared.

Users can also be given an option to voluntarily provide their
contact details as follows. If user B notices that another re-
searcher (user A) has an interest in the same gene X, say at
row i of the database, she gets A’s public key PKA, and en-
crypt her contact information (CB) under PKA and generates
a write request as a share of EncPKA(CB), in a similar man-
ner to the first epoch. More specifically, she chooses random
r′1, . . . , r

′
l and forms the following vectors:

u1 = (r′1, . . . , r
′
i + EncPKA (CB), . . . , r′l),

u2 = (−r′1, . . . ,−r′i, . . . ,−r′l)

User B then sends u1 to server S1 and u2 to S2. At the end of
this epoch, the results are being published in a column adjacent
to the queried gene and the public encryption key. The query-
ing users can use the database to find the row of interest (in
this case i), decrypt the contact details, and get in touch with
the responding users.

Correctness and Security. It is straightforward to see that the
construction is correct, since, if all nodes execute the proto-
cols correctly the result of combining all their local database

states at the end of an epoch by the master server will result
in revealing all the write requests processed. An adversary’s
advantage of guessing at which a certain user has written in
the final database is the same as random guessing, hence, the
construction guarantees anonymous writes. Disruption resis-
tance can be also achieved in a straightforward manner since
MME requires users to register on one of the databases, so they
can allow maximum one write request per registered user per
epoch.
Limitations. Alas, this construction has the following limita-
tions:

1. Collisions: They might occur for writes generated by hon-
est users, which all want to write at the same row;

2. Maliciously-formed write requests: A malicious user can
easily send a malformed request to the servers, making all
the data within the database non recoverable.

3 Methods
3.1 Handling Collisions

As discussed previously, collisions might occur whenever
multiple users try to write at the same row. Aiming to address
them, we set the database size to be large enough to accommo-
date write requests at a 95% non-collision rate. In other words,
5% of the queries will likely fail due to collisions and will need
to be re-submitted.

3.1.1 Minimizing collisions

Our intuition is to follow a “balls and bins” approach, i.e., if
we throw m balls uniformly and randomly into the l bins, we
can estimate how many bins will contain exactly one ball. In
our model, we can associate write requests to the m balls and
the rows of the database to the l bins. Let Bij be the event that
ball i falls into bin j: for all i and j, we have Pr[Bij ] =

1
l .

Then, let O(1)
j be the event that exactly one ball falls in bin j.

We have that:

Pr[O
(1)
j ] =

m

l
(1−

1

l
)m−1 ≈

m

l
−

(m
l

)2
+

1

2

(m
l

)3

using the binomial theorem and ignoring low order terms.
Then, lPr[O(1)

j ] is the expected number of bins with exactly
one ball, i.e., the expected number of messages successfully
received. Dividing by m, we get the expected success rate as

E[SuccesRate] =
l

m
Pr[O

(1)
j ] ≈ 1−

m

l
+

1

2

(m
l

)2

Thus, for a 95% expected success rate, we need l ≈ 19.5m.
In AnoniMME, in order to set the size of the database, we

need to estimate the expected number of write requests for
each epoch. Looking at the three MME members which show
statistics on the number of users, we find that GeneMatcher
has 4, 066 registered users, MyGene2 345 registered families,
and Decipher 247 registered projects (users have to be part of
a project in order to join Decipher) as of November 2017. This
yields an average of approximately 1, 550 users per database.
Assuming that this is representative of the number of users for
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all MME databases, we can approximate the total number of
users to be in the order 10, 000. We also need to estimate how
many users make queries in each epoch: assuming 5% of users
do so at each epoch, each epoch can run for 500 queries, yield-
ing a database of size l ≈ 10, 000. Further, note that we design
AnoniMME’s write request so that the row number at which
we write is determined at randomly, given the number of write
requests in the epoch as well as the database size, in order to
avoid biases in choosing rows. This method, however, does not
provide any way to recover in the case where a collision occurs,
in that case the queries are irrecoverable, and the users would
need to resubmit their queries in a future epoch.

3.1.2 Recovering from collisions

We also use a simple technique for recovering from collisions
if/when these occur. Assume α messages have been written at
row i, i.e., we have a = m1 +m2 + . . .+mα. Inspired by [7],
we can modify the way in which the queries are built to recover
each of the individual messagemj , for 1 ≤ j ≤ α; specifically,
we can use a system of α equations, which allows us to solve
for each of the colliding messages. Without loss of generality,
we consider the case α = 2 and explain how to recover from
collisions occurring for the gene name, but similar methods can
be used for α > 2 and to recover public key and/or encrypted
contact details. When a collision occurs at row i, we have an
entry a = XA+XB , whereXA is the gene sent by userA, and
XB is the gene sent by user B. If, rather than just sending the
queried gene X , users send (X,X2), we can recover XA and
XB by solving a system of two equations with two variables.

In this case we also compute the size of the database needed
for an expected success rate as follows:

E[SuccessRate] =
l

m
Pr[O

(1)
j ] +

2l

m
Pr[O

(2)
j ]

where lPr[O
(1)
j ] is the expected number of rows with ex-

actly one write request applied to them, computed as before,
and 2lPr[O

(2)
j ] is the expected number of rows with exactly

two write requests applied to them. Computing Pr[O
(2)
j ] =(

m
2

)
1
l2 (1−

1
l )
m−2, we the expected success rate as:

E[SuccessRate] ≈ 1−
1

2

(m
l

)2
+

1

3

(m
l

)3

In this case, for an epoch of m write requests, with a 95%
expected success rate, we need a database with l′ ≈ 2.7 m
cells (two columns and l = l′

2 rows ). This implies that with
500 write requests per epoch, the database needs l′ ≈ 2.7· 500
= 1,350 cells for each vector.

We now generalize for any value of α. Users submit
X,X2, . . . , Xα for gene X to be queried. This allows us to
recover from an α-way collision, obtaining a system of α equa-
tions with α variables. The expected success rate is:

E[SuccessRate] =
l

m
Pr[O

(1)
j ] +

2l

m
Pr[Oj(2)] + . . .+

αl

m
Pr[Oαj ]

where lPr[O(k)
j ] is the expected number of rows with exactly

k write requests applied to them. Each Pr[O
(k)
j ] is computed

as Pr[O(k)
j ] =

(
m
k

)
1
lk
(1− 1

l )
m−k.

Hence, we obtain:

E[SuccessRate] ≈ 1 +
(−1)α+1

α!
(
m

l
)α +

(−1)α+2

(α+ 1)!
(
m

l
)α+1

We solve this equation for l, given the expected success rate
E[SuccessRate], the collision recovery factor α and m the
number of write requests to be written in a certain epoch. If
this method is used throughout both epochs, colliding requests
from the query phase will have to be recovered before the re-
sponse phase can begin.

Due to the nature of our query/response model, we can
expect collisions to occur more often in the response phase.
Hence, we will can build the system using different collision
recovery factors αq for the query phase and αr for the response
phase, with αr ≥ αq .

3.2 N-server Construction
We now present the generalized model for the case with n

servers and a database with l rows. We use collision parameters
αq and αr for the query and response phase, respectively. The
various steps of the construction are illustrated in Figure 2.

Query phase. Assume user A wants to query gene XA, but
does not want to reveal that she is the person querying it. As
in the construction presented in Section 2.4, A builds her write
request, consisting of (XA, PKA), where PKA is her public
key, aiming to write at row i in the database. She picks ran-
dom numbers r1,1, . . . , r1,l, r1,l+1, . . . r1,lαq , r2,1, . . . , rn,lαq
and r′1,1, . . . , r

′
1,l, r

′
1,l+1, . . . , r

′
1,lαq

, r′2,1, . . . , r
′
n,lαq

, where l
is the size of the database, n the number of nodes the write
request will be sent to, and αq the number of allowed colli-
sions.

The query write request vectors are constructed as follows:

v1,1 = (r1,1, r1,2, . . . , r1,i +XA, . . . , r1,l)

v
′
1,1 = (r

′
11,, r

′
1,2, . . . , r

′
1,i + PKA, . . . , r

′
1,l)

v1,2 = (r1,l+1, . . . , r1,l+i +X
2
A, . . . , r1,2l)

v
′
1,2 = (r

′
1,l+1, . . . , r

′
1,l+i + PK

2
A, . . . , r

′
1,2l)

...
v1,αq=(r1,l(αq−1)+1, . . . , r1,l(αq−1)+i +X

αq
A , . . . , r1,lαq )

v
′
1,αq

=(r
′
1,l(αq−1)+1, . . . , r

′
1,l(αq−1)+i + PK

αq
A , . . . , r

′
1,lαq

)

...
v2,1 = (r2,1, r2,2, . . . , r2,i, . . . , r2,l)

v
′
2,1 = (r

′
2,1, r

′
2,2, . . . , r

′
2,i, . . . , r

′
2,l)

...

vn,1 = −(r1,1, r1,2, . . . , r1,i, . . . , r1,l)−
n−1∑
j=2

vj,1

v
′
n,1 = −(r′11,, r

′
1,2, . . . , r

′
1,i, . . . , r

′
1,l)−

n−1∑
j=2

v
′
j,1

...

vn,αq=(r1,l(αq−1)+1, . . . , r1,l(αq−1)+i, . . . , r1,lαq )−
n−1∑
j=2

vj,αq

v
′
n,αq

=(r
′
1,l(αq−1)+1, . . . , r

′
1,l(αq−1)+i, . . . , r

′
1,lαq

)−
n−1∑
j=2

v
′
j,αq

5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2018. ; https://doi.org/10.1101/262295doi: bioRxiv preprint 

https://doi.org/10.1101/262295
http://creativecommons.org/licenses/by/4.0/


S1

S2

Sn

Master 
Server

Database

(5) Master Server combines 
all the databases from the 
nodes and publishes the 
database with all the write 
requests.

(2) User sends a 
share of the 
query to each 
node

(3) Nodes 
collect write 
requests 
untill the 
end of the 
epoch

(4) Nodes send their local 
databases to the master server

DB1

DB2

DBnvn

v2

v1

(1)

(2)

Epoch 
End

(4) (5)
(3)

(1) User forms her
 write request and 
splits it into n 
shares

Figure 2: n-server write request processing. At the end of the epoch the Master Server publishes the database with all the write requests and
the nodes will be reset to hold an empty database.

The querying user A ends (vj , v
′
j) to server j for each j,

1 ≤ j ≤ n, where vj = (vj,1, . . . , vj,αq ), and v′j =
(v′j,1 . . . , v

′
j,αq

). We also consider the special case of αq = 1,
when there is no recovery for collisions, but, instead, we adjust
the database size according to the minimizing collisions case.
The servers collect write requests until the end of the epoch
and then send their local databases to the master server, which
will combine them to reveal the database.

Response Phase. As the database with the queries is pub-
lished, the response phase begins. As discussed in Section 2.4,
we can rely on MME’s algorithm to generate matches on
existing data from the platform, encrypt the contact details
of the relevant users with an interest in the same gene, and
extend it to allow for voluntary responses. More specifi-
cally, user B can add their contact details CB by sending a
write request as a share of c = EncPKA(CB), in a simi-
lar manner to the first epoch. That is, first, she picks random
s1,1, . . . , s1,l, s1,l+1, . . . , s1,lαr , s2,1, . . . , sn,lαr and forms the
following vectors:

u1,1 =(s1,1, . . . , s1,i + c, . . . , s1,l),

u1,2 =(s1,l+1, . . . , s1,l+i + c
2
, . . . , s1,2l),

...

u1,αr =(s1,l(αr−1)+1, . . . , s1,l(αr−1)+i + c
αr , . . . , s1,lαr )

u2,1 =(s2,1, . . . , r
′
2,i, . . . , s2,l)

...

un,1 =− (s1,1, s1,2, . . . , s1,i, . . . , s1,l)−
n−1∑
j=2

uj,1,

...

un,αr =− (s1,l(αr−1)+1, . . . , s1,l(αr−1)+i, . . . , s1,lαr )−
n−1∑
j=2

uj,αr

User B then sends uj = (uj,1, . . . uj,αq ) to server Sj . At
the end of this epoch, the results are being published in a col-
umn adjacent to the queried gene and the public encryption
key. In case of collisions, the individual ciphertexts can be re-
covered up to αr collisions. Finally, the querying users can use
the database to find the row of interest (in this case i) and de-
crypt the contact details received and contact the person.

3.3 Experimental Evaluation
In this section, we present an experimental evaluation of

AnoniMME, aiming to demonstrate its practicality for real-
world deployment.

We have implemented the n-server construction (Sec-
tion 3.2) using Python 3.6 and evaluated our prototype on a
Macbook Pro running MacOS Sierra 10.12.6 and equipped
with a 2.7GHz Intel i5 processor, and 16GB of RAM.

Experiments are performed in two different settings, with
two and six node servers, respectively, and always averaged
over 1,000 executions. We also use three different epoch sizes,
namely, 100, 500, and 1,000 write requests per epoch during
the query phase. For the response phase, we keep the database
size fixed from the query phase. Overall, we evaluate running
times needed to generate the write requests and the bandwidth
overhead supporting the recovery of 2, 5, and 10 colliding mes-
sages, all on the client side (i.e. one request per epoch). The
servers run Flask with RESTful interface, so we use HTTP re-
quests to send the messages, and the payload is built in JSON,
therefore, we measure, in bytes, the size of the JSON payload
(plus HTTP headers) to estimate the total bandwidth required
for sending write requests.

On the client side, the cryptographic layer includes generat-
ing public/private keys (done only once) and building the vec-
tors to be sent to the n servers as part of the write request,
which incurs O(n) complexity. Gene name and contact details
are assumed to be no longer than 64 characters, while random
numbers used for vector generation during query phase are up
to 1,024 bits long, for αq ∈ {1, 2} and αr = 2. For the re-
sponse phase, the length of the random values varies according
to the collision recovery factor αr. For αr = 5, their length is
2,560 bits, while for αr = 10 it is 5,120. Finally, note that we
generate plausible gene queries using the set of gene symbols
(e.g, “BRCA2”), taken from http://gfuncpathdb.ucdenver.edu/
iddrc/iddrc/data/officialGeneSymbol.html.

3.3.1 Two Node Servers

We start with the setting involving two node servers and a mas-
ter server, considering epochs of size 100, 500, and 1,000. As
mentioned above, we evaluate bandwidth overhead and run-
ning times required for query and response write requests.

The database size required for each of the three test cases

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2018. ; https://doi.org/10.1101/262295doi: bioRxiv preprint 

http://gfuncpathdb.ucdenver.edu/iddrc/iddrc/data/officialGeneSymbol.html
http://gfuncpathdb.ucdenver.edu/iddrc/iddrc/data/officialGeneSymbol.html
https://doi.org/10.1101/262295
http://creativecommons.org/licenses/by/4.0/


2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Database size(rows)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ti

m
e 

(s
)

Query phase write, q = 1
Response phase write, r = 2
Response phase write, r = 5
Response phase write, r = 10

Figure 3: Two nodes running times for query write request, response
write request with recovery from 2 collisions, response write request
with recovery from 5 collisions, response write request with recovery
from 10 collisions.
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Figure 4: Two nodes bandwidth averages for query write request,
response write request with recovery from 2 collisions, response write
request with recovery from 5 collisions, response write request with
recovery from 10 collisions.

is calculated according to the method presented in Section 3.1
for minimizing collisions, thus, l = 19.5m, where l denotes
the number of rows required and m is the number of write
requests for the epoch.

It follows that the l amounts to 2,000, 10,000, and 20,000
rows for m equal to 100, 500, and 1,000, respectively.

Running times for both the query write and the response
(considering αr ∈ {2, 5, 10}) are shown in Figure 3. Overall,
we find that, during the query phase, with a database size of
2,000 rows, it takes approximately 0.014s to generate vectors
in our testbed. Running times scale linearly, i.e., it takes 0.062s
with 10,000 rows and 0.126s with 20,000 rows. The bandwidth
overhead, shown in Figure 4, ranges from 2.5MB for the small-
est database size to 25MB for the largest case considered in
our test cases, which can be considered an acceptable amount
of traffic expected from the client side.

For the response phase, we find that, when αr = 2, the re-
sults are similar to the query phase since responding users need
to generate two vectors in order to allow collision recovery,
same as for the querying user. When αr equals 5 or 10, we no-
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Figure 5: Six nodes running times for query write request, response
write request with recovery from 2 collisions, response write request
with recovery from 5 collisions, response write request with recovery
from 10 collisions.
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Figure 6: Six nodes bandwidth averages for query write request, re-
sponse write request with recovery from 2 collisions, response write
request with recovery from 5 collisions, response write request with
recovery from 10 collisions.

tice an increase in both running times and bandwidth. Nonethe-
less, computational complexity is still acceptable, since, even
with the largest database size, write request generation takes
less than 0.5s for αr = 5 and less than 1.5s for αr = 10. Com-
munication overhead, on the other hand, increases to 160MB
and 617MB, respectively, with the largest database size. How-
ever, one can adjust the collision minimization parameter so
that 10-way collision recovery is not needed.

3.3.2 Six Node Servers

We also experiment with an instantiation of AnoniMME us-
ing six node servers, thus mirroring the current MME setting,
which involves seven members. Once again, we consider three
settings (100, 500, and 1,000 write requests per epoch), and ob-
tain the resulting database size based on the recovery from col-
lisions method discussed in Section 3.1. We support recovery
from two colliding messages for the query phase, i.e. αq = 2.
Therefore, the number of rows required is l = 2.7m

2 , where m
is the number of write requests for the epoch, thus, l equals
135, 675, and 1,350 for m = 100, 500, and 1,000, respectively.
As per the response phase, we run tests with different values
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αr ∈ {2, 5, 10}, considering the database size fixed as for the
query phase.

Once again, we estimate running times (see Figure 5) and
the bandwidth overhead (see Figure 6). Even though this re-
quires more vectors to be generated by the users compared
to the two-node setting (cf. Section 3.3.1), we observe a con-
siderable decrease in both running times and bandwidth over-
head for the same epoch sizes due to the decreased number of
rows in the database. Specifically, computational complexity
is again linear over all test cases, but the write request gen-
eration taking less than half the time. There is also a big im-
provement in terms of communication complexity: even in the
most bandwidth-heavy case (i.e., αr = 10), with 1,000 write
requests per epoch, we observe a five-fold improvement, with
bandwidth decreasing from 617MB to 125MB.

On the other hand, the query phase is less efficient than the
response phase (with αr = 2), compared to the two-node set-
ting, since the querying user now has to generate two vectors
for each gene so that collision recovery is possible, hence, four
vectors in total; whereas, the responding user only generates
two vectors.

4 Discussion
Our experimental evaluation attests to the practicality of Anon-
iMME and the feasibility of using it to bring anonymity to the
Matchmaker Exchange. Overall, using the method proposed in
Section 3.3.1 to recover write requests in the case of collisions
yields better running times and bandwidth complexities, even
when the number of nodes increases.

Considering the close relatedness of our model to Ri-
poste [7], a comparison between the evaluation of them could
be interesting. However, the evaluations are done differently
in the two models: Riposte analyzes the experimental results
at server level, while we evaluate the performance from a user
perspective. In both cases, the bandwidth overhead in our n-
server construction is non-negligible, especially with a high
collision recovery factor and increasing database sizes as ob-
served in Section 3.3.1. A possible solution is to use, like Ri-
poste, distributed point functions to reduce bandwidth com-
plexity; we leave this as part of future work.

Furthermore, as in AnoniMME the anonymity set size cor-
responds to the number of users querying in a given epoch,
one could increase the anonymity set by requiring users to send
empty queries to the system following a certain probability dis-
tribution. The write requests would be formed as discussed in
Section 3.2, although, instead of inputting a gene, the public
key or the contact details, the users just send an empty query.
This is also used in Riposte, in order to minimize statistical
disclosure attacks on their platform.

Finally note that our implementation currently allows for 64
character messages, thus, queries can also include phenotypes
from the Human Phenotype Ontology (as currently supported
by MME), although, to ease of presentation we have discussed
our experiments by only considering gene names.

5 Related Work
Over the past few years, the research community has produced
a large body of work aimed to analyze and counter a number of
challenging privacy and security threats in genomics. Genomic
data contains information about ethnic heritage, predisposition
to diseases and conditions, as well as many other phenotypic
traits [1], and, as discussed below, is hard to anonymize [12, 8].

In particular, early genomic privacy work has focused on
personal genomic testing, i.e., computational tests run on se-
quenced (digitized) genomes aiming to assess an individual’s
genetic susceptibility to diseases and/or determine the best
course of treatment. Baldi et al. [3] assume that each individ-
ual will keep a copy of their data and consent to tests done
in such a way that only the outcome is disclosed: in this set-
ting, the authors present several cryptographic protocols allow-
ing researchers to privately search mutations in specific genes.
Then, Ayday et al. [2] rely on a semi-trusted party to store an
encrypted copy of the individual’s genomic data: using addi-
tively homomorphic encryption and proxy re-encryption, they
allow a Medical Center to privately perform disease suscepti-
bility tests on patients’ SNPs.

Rapid and effective progress in genomics and personalized
medicine is often promoted as being dependent on the abil-
ity to share sequenced genomes, and make them accessible
to researchers for different research purposes. However, it is
often hard to share data due to privacy, ethical, legal, and in-
formed consent hurdles. To address these issues, a few privacy-
preserving methods have been presented to facilitate genomic
data sharing. Kamm et al. [14] use secret sharing for dis-
tributing data among several entities. Using secure multi-party
computations on the data, computations can be done across
multiple independent entities, without violating the privacy of
individual donors or leaking the data to third parties. Then,
Wang et al. [20] allow clinicians to find similar patients in
bio-repositories, with similarity being defined as the edit dis-
tance. Their construction is based on a combination of a novel
genomic edit distance approximation algorithm and new con-
struction of private set difference size protocols. Also, Chen et
al. [6] introduce a framework using Intel’s Software Guard Ex-
tension and hardware for trustworthy computations. This way,
secure and distributed computation over encrypted data can be
performed, respecting institutional policies and regulations for
protected health information.

Another initiative developed by GA4GH, besides MME, is
the Beacon Project [10]; a beacon is a service that any insti-
tution can implement to share genetic data. Users can query
the system through a federated search engine, the Beacon Net-
work. The queries are of the form “Do you have any genomes
with an ‘A’ at position 100,735 on chromosome 3?”, and the
beacon responds with either “Yes” or “No”, keeping all other
sequence data concealed. This kind of queries can be used to
either search all beacons or specific databases. The result is
then shown as a list of databases where the allele has been
previously observed, including the institution that holds the
said database. In [18], Shingapure et al. present an attack
on beacons, showing that re-identification is possible using a
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likelihood-ratio test. This attack has been improved by Thenen
et al. [19], in terms of number of queries needed to determine
the presence of an individual in a beacon. Note that these at-
tacks do not apply to MME, since no genotype information or
aggregate data is released publicly, and the querying is done
only on specific genes, with no genotype information.

Overall, a number of attacks to anonymized/de-identified
genomic data have been presented. Homer et al. [13] show how
to detect the presence of an individual genotype in a mixture of
pooled DNA, while Gymrek et al. [12] recover the surnames of
individuals from a genomic data repository by profiling short
tandem repeats on the Y chromosome, querying recreational
genealogy databases, and relying on additional metadata (such
as age and state) to identify the identity of the target.

Finally, closely related to our construction is Riposte [7], an
anonymous broadcast messaging system, which is also built
using Reverse PIR. As discussed earlier, it allows a large num-
ber of clients to post messages anonymously on a “bulletin
board” maintained at a small set of servers. The main goal
of the system is to provide a platform for whistleblowers, al-
lowing them to anonymously post 160 byte length messages.
Besides using Reverse PIR in a different setting, and thus ad-
dressing different challenges in scalability, also note that our
AnoniMME framework also allows replies to messages. Fur-
thermore, we also introduce a new extension to prevent mali-
cious writes.

6 Conclusion
This paper presented AnoniMME, a framework geared to
bring anonymity to Matchmaker Exchange (MME) platform.
Specifically, AnoniMME supports anonymous queries, by re-
lying on Reverse PIR, while mirroring the functionalities of
MME. Queries include the gene name as in MME, but also the
querying user’s public key, and are collected during epochs,
whose length is based on the number of write requests. By
taking advantage of the underlying MME matching protocol,
these queries can be seamlessly responded to, without publicly
revealing the contact details of other researchers/clinicians
which generated a match, by using the public key provided
to encrypt the match. Also, other users can provide their (en-
crypted) contact details if they so wish.

The proposed protocol is compatible with the functionalities
and the requirements of MME, but adds anonymous queries
with a low overhead, as we demonstrated empirically. Thus,
we are confident that AnoniMME can eventually be deployed
in the wild and further encouraging researchers to share ge-
nomic data, by minimizing the possibility of exposing confi-
dential research when using Matchmaker Exchange.

As part of future work, we plan to include and experimen-
tally evaluate an extension to malicious users in our proto-
type, support the execution of the response phase over multiple
query epochs, and further reduce bandwidth complexity.
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