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ABSTRACT  

RNA viruses generate a cloud of genetic variants within each host. This cloud 

contains high frequency genotypes, and a very large number of rare variants. While 

the dynamics of frequent variants are affected by the fitness of each variant, the rare 

variants cloud is affected by more complex genetic factors, including context 

dependent mutations. It serves as a spearhead for the viral population’s movement 

within the adaptive landscape. We here use an experimental evolution system to 

show that the genetic cloud surrounding the Coxsackie virus master sequence slowly, 

but steadily, evolves over hundreds of generations. The evolution of the rare variants 

cloud often precedes the appearance of high frequency variants. The rare variants 

cloud's evolution is driven by a combination of a context-dependent mutation pattern 

and selection for and against specific nucleotide compositions.  This combination 

affects the mutated dinucleotide distribution, and eventually leads to a non-uniform 

dinucleotide distribution in the main viral sequence. We tested these conclusions on 

other RNA viruses with similar conclusions. 
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INTRODUCTION 

Some of the most difficult diseases to treat or cure are caused by RNA viruses. 

The global AIDS pandemic and the repeating seasonal flu epidemics are both 

examples of diseases caused by RNA viruses (1-3). One of the main obstacles in the 

treatment and vaccination against such diseases is the particularly high mutation 

rate of RNA viruses (10-3 to 10-5 substitutions per nucleotide copied (4-6)). This 

mutation rate induces a rapid adaptation to the changing environment, and the 

resulting  development of  resistance to various vaccines and drugs (7). In addition to 

high mutation rates, RNA viruses also present short generation times, and large 

population sizes, as the number of viral particles in an infected organism can be 

higher than 1012 virions (8). The combination of high mutation rates, large population 

sizes, and short generation times results in a complex and dynamic mutant 

distribution termed viral quasispecies (9), viral cloud or mutant spectrum. The 

concept was first developed by Eigen, Schuster, and Biebricher to describe error-

prone replication and self-organization of primitive macromolecules thought to carry 

information as precursors of more complex life forms (10-13). It was later found 

relevant in the understanding of RNA virus dynamics, as the viral mutant distribution 

undergoes a continuous process of genetic change and selection (14).  

The composition of viral sequences within a single host contains a high 

frequency master sequence (often the consensus sequence) and a mutant 

spectrum - the viral "cloud".  Due to the high mutation rate and population size of 

RNA viruses, theoretically even a single virion infection can quickly evolve into a 

collection of related viral genomes, containing every possible point mutation and 

many double mutations (15). As a result it would only take a few rounds of replication 

for the viral cloud to expand in sequence space and lose important biological 

information, if not for the continuous selection against unfit variants, and viral 

robustness mechanisms (16). This combination of mutation and selection determines 

the composition of the viral cloud. Eigen proposed that selection not only works on 

each specific unfit variant, but that the quasispecies cloud as a whole also acts as a 

unit of selection (10-13). Whether this is the case for RNA viruses remains to be 

determined; some evidence suggests that, at least under certain growth conditions, 

selection of a group of minority variants may occur (17-19). 
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The analysis of viral genetic variants, due to technical limitations, has mostly 

focused on the evolution of a specific subset of minority variants bearing 

phenotypic (fitness) alterations, such as amino acid substitutions. However, 

with the advent of Next Generation Sequencing (NGS) it is possible to enlarge the 

analysis beyond a limited set of variants with macroscopic frequencies, and expand 

the study to low frequency variants that were previously undetectable (20-22). We 

here describe the dynamics of these rare variants. While these rare variants are 

short-lived, the full cloud evolves over the scale of hundreds of generations. While 

selection of the main minority variants is determined by their specific fitness, the rare 

variants cloud is affected by a genetic selection mechanism (i.e. selection 

mechanism not determined by the proteins produced).  

Viral nucleotide composition is affected by the host environment. In particular, 

patterns of codon usage are strongly correlated with overall genomic GC content 

(23). Viruses also avoid specific nucleotide pairs, such as CpG, in order to mimic 

their hosts' CpG usage and avoid detection by the host (24-26). CpG repression is 

also affected by codon position, with repression being much weaker between codons 

(25). APOBEC, a host antiviral protein, also affects the A to G mutation composition 

(27). Finally, viral mutations have been shown to maintain a constant GC-content 

(28,29). Virus consensus dinucleotide abundance is also affected by the host, mostly 

due to CpG repression (30). For example, viruses transferred from avian to human 

hosts have been shown to change over decades (31-34). Here we show that at the 

short time scale within a single host, the dinucleotide composition of mutant variants 

derived from the main sequence significantly differs from that of the consensus 

sequence and that this difference is the result of a context-dependent mutation 

pattern. Our results demonstrate several important points regarding the population 

structure of viruses: 1) The viral population is composed of high frequency variants 

and a rare variants cloud, 2) the cloud of mutants is genetically linked, 3) the cloud 

evolves over hundreds of viral life cycles. 4) The high frequency variants follow a 

regular selection process, while the rare variants cloud moves ahead, following 

complex dynamics based on context-dependent mutation patterns and genetic 

selection. 
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MATERIAL AND METHODS 

Viral sequences  

NGS data from a previous experiment (19) was used. Three different variant of CVB3 virus were used: 

Wild type variant, low fidelity variants and high fidelity variant. Each independent passage started 

from a single isolate of each of the CVB3 virus variants, and passages were carried out in triplicate for 

forty passages (representing around 120 viral generations). The infections were kept until full 

cytopathic effect (CPE) was observed, around 24 hours, before preparing the new passage. To 

prepare the next passage, cultures were freeze-thaw, centrifuged to obtain a clean viral supernanant 

and a new passaged was prepared by diluting the obtained supernanant to have a new infection at a 

multiplicity of infection of 0.01. Deep sequencing was done for passages 1, 3, 5, 7, 9, 11, 13, 15, 17, 

19, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, and 40, and the first and last passages were re-

sequenced as technical replicates (19). 

To verify our results in other viruses, NGS data from two variants of NDV were used. 1) Newcastle 

disease vaccine (B1 type, LaSota strain). 2) An NDV natural infection, obtained from a chicken coop 

at Klahim moshav in southern Israel. The viral genome was sequenced using an Illumina sequencer.  

In addition, we used influenza virus NGS data. Wild-type influenza A virus (A/Paris/2590/2009 

(H1N1pdm09)) was passaged 5 times (at least 15-20 replication cycles) in triplicate on MDCK cell 

monolayers in 6-well plates. Cells were  infected at an MOI =  0.001 and 48 hours post-infection, 

influenza A viruses were harvested in clarified supernatant and virus titres (TCID50 or plaque assay) 

were determined at each passage. Viral RNA genome was extracted from supernatants (Macherey-

Nagel), reverse transcribed with Accuscript High Fidelity 1st strand cDNA Synthesis kit (Agilent) using 

5’-AGCRAAAGCAGG-3’ primer, and amplified by PCR using Phusion High-Fidelity DNA Polymerase 

(ThermoScientific). Eight PCRs were designed to cover the coding regions of the eight genomic 

segments (primer sequences are available upon request). The PCR products were fragmented 

(Fragmentase), multiplexed, clustered, sequenced in the same lane with Illumina cBot and GAIIX 

technology. 

Quality control 

Initial quality control of the fastq files was performed using FastQC v0.10.1(35). Since the quality of 

the edges of the reads was inconsistent, six nucleotides from each edge were trimmed. Reads that 

had more than twenty percent nucleotides with a quality score of less than twenty were removed. The 

remaining reads were mapped to the known viral genome using bowtie v1.0.0. (36). Reads with a 

mapping score lower than fifty, and over expressed reads were removed. The clean files were again 

tested using FastQC v0.10.1 and samples that did not show good results on all standard indices were 

removed. In addition, all samples from passage one were removed, as they did not have enough time 

to develop a full cloud. Only the open reading frame (ORF) was used. 
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Data organization 

The mapping of the reads to the known viral genome was performed using bowtie v1.0.0. The 

resulting sam files were used to calculate the frequencies of nucleotides, dinucleotides and 

nucleotides triplets in every position over the viral genome. These frequencies were used during 

downstream nucleotide composition analysis.  

Frequent variants reconstruction  

High frequency minority variants full sequences were reconstructed using QuasiRecomb-1.2(37) with 

default parameters. This reconstruction was done separately for each sample and gene. Aligned sam 

files from previous steps were used for this analysis. 

Variants mutation frequency 

For each read, the genetic distance from the consensus sequence of the sample was calculated. 

These distances were used to determine the frequency of mutations from the consensus over time.  

To estimate the same frequency in high frequency minority variants full sequences, those 

reconstructed sequences were used. The genetic distance was calculated as the number of mutations 

of each such variant from the most common variant in the sample. A variant is considered shared if it 

appears in samples from two or more independent experiments (different virus variant or duplicate). 

Statistical analysis 

Poisson λ parameter for the fit to the frequency of mutations per read was estimated as the average 

number of mutation from the consensus sequence per read. The value of λ was than divided by read 

length to estimate mutation rate per nucleotide. This λ parameter was used to calculate the theoretical 

poisson distribution.  

Correlations were calculated using spearman's rank correlation coefficient.  

Wilcoxon signed-rank test was used to test the significance of some of our results. Both one sided 

and two sided tests were used. In the case of two sided test, paired measures from the same sample 

were used.  

Analysis of variance (ANOVA) was used to confirm the significance of the effect of neighbouring 

nucleotides on the mutation profile. ANOVA was calculated separately for each specific mutation (e.g. 

C to A) and Bonferroni correction was used. The range of p values is shown.   

Information theory 

To estimate the genetic diversity of each sample, Shannon Entropy was used. Entropy can be written 

as ( ) log( ( ))
i

p i p i−∑ . We used the number of possibilities as the base of the log. The entropy of the 
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clouds was calculated per position using nucleotide frequencies obtained from all the sequenced 

reads that passed the quality control. The entropy of the high-frequency variants was calculated per 

gene sample using the frequencies of the reconstructed genes. 

Calculating nucleotides and dinucleotides frequencies and 

mutation rates 

Nucleotides and dinucleotides frequencies were directly calculated as the average frequencies in the 

nucleotide and dinucleotide frequency tables. Frequencies of mutations were calculated as the 

frequencies after removing the nucleotides at the consensus from the tables for each position in 

sample. Mutation rates were estimated as nucleotides frequencies by nucleotides in the consensus. 

For example the mutation rate from A to G was calculated as the frequency of G only at positions that 

had A in the consensus. The Mutation rate from A to G with a 3' C was calculated as the frequency of 

G only at positions that had an A and a C before at the consensus. The mutation rate was then 

normalized by the average mutation rate for each specific mutation, to leave only the effect of 

neighbouring nucleotides. The neighbour affected mutation rate of high-frequency mutations was 

calculated, for example, as frequency the of mutations from A to G with a 3' C out of all the mutations 

from A to G, and later normalized by the average frequency of mutations from A to G, to fit the scale 

of the low-frequency mutation rates.  

For calculations of the expected dinucleotide mutation rates, the frequencies of dinucleotides in the 

consensus sequence and the mutation rates from one nucleotide to another were used. 

Rare variant cloud, synonymous and non-synonymous 

computation 

For each sample, all positions with entropy higher than the average entropy by more than ten 

standard deviations were found. During rare variants cloud calculations, these positions were ignored, 

to neutralize the effect of the high-frequency variants. 

For synonymous calculations, we removed all mutations in the nucleotide frequency tables that 

resulted in amino acid change compared to the consensus. Positions that had no possible mutations 

as a result were ignored. The same was done for mutations that did not cause an amino acid 

replacement in non-synonymous calculations. 

Estimating the rate of cloud evolution 

The per position nucleotide Shannon entropy was used. We normalized the entropy by nucleotide and 

codon position, by calculating the average entropy of all consensus nucleotides in each codon 

position. We than divided the entropy of each position by the fitting average entropy. This calculation 

was performed for all samples. For each experiment, the normalized entropy of samples from the fifth, 
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seventh and ninth passages were correlated to that of later samples. The changes in those 

correlations following different lags (number of passages between samples) were used as an estimate 

of the rate of cloud evolution. 

Calculating entropy correlations 

Spearman's rank correlation coefficient was calculated between nucleotide frequency Shannon 

entropy for each position in the genome, and same entropy for positions k nucleotides away in each 

sample. To account for codon position, the correlations were calculated separately between first and 

second codon positions, third codon position and first codon position at the following codon, etc. The 

same calculation was performed for entropy normalized by codon position and nucleotide entropy, 

and for entropy normalized by codon position, nucleotide and first neighbour nucleotides in the 

consensus. 

 

RESULTS 

The viral population is multilayered with different within host 

mutation depths 

We studied NGS data of three different variants of Coxsackievirus B3 (CVB3): 

wild type variant (WT), low fidelity variant (S299T) and high-fidelity variant 

(A372V). Each variant was independently evolved in triplicate for forty passages, 

starting from a single isolate, with each passage representing 2-3 viral generations 

giving us a total of around 120 generations. MOI was kept at 0.01 for all the 40 

passages minimizing the effect of bottlenecks. Every odd passage, the twentieth 

passage and the last passage were deep sequenced. Technical replicates of the first 

and last passages were re-sequenced for quality control. The average coverage per 

sample was 10,968-fold (Table S1). The experimental procedures are detailed in a 

previous publication (19). Briefly, 70-nucleotide reads were sequenced, and aligned 

to the viral consensus sequence. We then produced full reads of the main minority 

variants in each gene using the QuasiRecomb-1.2 Software (37) (see Methods).  

Variant frequency can be estimated locally at the single read level, or at the full-gene 

level. Note that full genome reconstructed variants may not be reliable and are thus 

not analysed here.  

Most observed mutations are real and not sequencing errors. The variant 

frequency at the read level was calculated using every read that passed the quality 
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control (Fig S1), without filtering for statistically significant mutations. Due to the 

sequencing and methodological errors mixed with this data It was not used to study 

specific mutations but overall trends, as the methodological error should affect all 

samples in a similar way. To validate that most of observed mutations are not 

methodological errors (PCR, sequencing…), and can be used to study the properties 

of the genetic cloud, we calculated the percentage of mutations in the cloud over 

time by virus variant (Fig S2A). As expected, the mutation percentage rose over time, 

as mutations accumulated (r = 0.85, p-value = 1.15e-52 for spearman correlation 

coefficient). WT variant accumulated fewer mutations than the low fidelity variant and 

more mutations than the high-fidelity variant (Two-sided Wilcoxon signed-rank test p-

value < 0.05 for both WT and low fidelity variant, and WT and high-fidelity variant). 

The mutation percentage over time was also calculated by codon position. The 

mutation percentage was significantly different between codon positions (Two-sided 

Wilcoxon signed-rank test p-value < 9.013e-07 between codon positions). This result 

is unlikely to be the result of sequencing errors, but rather by the codon composition 

and synonymous-nonsynonymous mutation difference. After combining those two 

effects (Fig S2B), by the end of the analysis, the low fidelity virus at third codon 

positions had about four times the initial mutation load of the high-fidelity virus at the 

first codon position. Thus, at least in the at last period of the experimental evolution a 

high enough (at least 75 %, but probably much more) portion of the mutations in our 

data are not the results of sequencing errors and can be used to study the genetic 

cloud. Since there were no significant differences in the biases obtained in the early 

and later periods of the experiment, we conclude that during most of the experiment, 

the vast majority of observed mutations are not artefacts. Note that the signal 

obtained is much stronger than a difference of 25 %. Thus, even in the extreme 

unlikely case that all the mutations in the early period are sequencing errors, our 

results are still valid. 

Highly mutated variants appear more than expected randomly.  The mutation 

frequency was calculated as the fraction of mutations per read compared to the 

consensus sequence of the sample. The variant distribution did indeed follow a 

Poisson distribution up to a mutation probability of 2.e-3 per nucleotide per 

sequencing passage (Fig 1A) (see Methods). Beyond this point, the distribution did 

not fit a Poisson any more, showing significantly more highly mutated variants than 

expected randomly. This deviation shows that the neutral process by itself cannot 
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explain our observations, and that other mechanisms, such as positive selection or 

biased mutation profiles (i.e. not all reads have equal mutation rates) must be 

considered. When translating the computed nucleotide mutation rate to the gene 

level, an estimated 34%-93% of sampled sequences of each gene carried at least 

one mutation (except for gene 3B that is exceptionally short, 65 Nt). Some of these 

mutations were high-frequency variants that repeatedly appeared in different 

replicates of the experiment, but the large majority represented rare variants (Fig 1B). 

A clear difference was observed between the high frequency minority variants, 

and the large cloud of rare variants. While the frequent variants appeared at some 

stage and then stabilized, with divergent variants taking over the population (Fig 1B), 

the rare variant frequency slowly, but steadily, increased over time even before the 

more frequent ones emerged, as can be observed from the regression coefficient of 

the mutant frequencies vs. time (Fig 1C and 1D). The cumulative frequency of the 

rare variant was at least 99.91 % of the total viral population and cannot be 

neglected. Thus, as will be further shown, the cloud of rare variants preceded the 

emergence of the more frequent ones and may have facilitated their appearance.  

Our results could theoretically be explained as selection for specific high 

frequency mutations, or protein level functionality specific to this virus. To 

prove that this is not the case, the same calculations were performed considering 

only synonymous mutations (see Methods) with similar results, as shall be further 

shown. To validate that the observed synonymous mutations are not 

sequencing errors, we tested the effect of time on the synonymous mutations 

rate.  The percentage of synonymous mutations rose over time (r = 0.837, p. value = 

1.4132e-48 for spearman correlation coefficient), and were strongly affected by 

variant fidelity (Two-sided Wilcoxon signed-rank test p-value < 0.05 for both WT and 

low fidelity variant, and WT and high fidelity variant) (Fig S2C), showing that the 

observed mutations are not sequencing artefacts. 

The rare variants cloud evolves slowly but steadily over many 

generations 

Many of the frequent minority variants taking over the population were shared 

among experiments and are argued to be selected through a higher fitness of 

the resulting viral phenotype (Fig 1B)(19,38). However, the rare variants cloud 
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may determine the availability and initial frequency of different variants for the 

selection process.  To estimate the importance of the rare variants cloud, we 

computed the per position nucleotide distribution entropy (see Methods). The 

entropy represents the deviation from the consensus at each position (Fig 2A). 

Higher entropy implies a larger fraction of the population in the mutation cloud. The 

entropy calculations were highly reproducible over the technical replicates, further 

validating this method (Fig S3) (average r over all replicates = 0.7713, standard error 

= 0.0401 (n=17), p-value < 4.8333e-168 for Spearman correlation of nucleotide 

entropy of all technical replicates). The average entropy increased along the 

experiments, until it reached a maximal value and then stabilized (Fig 2B) (r = 0.88, 

p-value = 5.46e-60 for spearman correlation against time). This behaviour was 

similar over all sub-strains studied and over all repeats of the analysis. 

The per-position entropy was strongly affected by the codon composition, with 

a clear difference between the first two positions in each codon and the third 

position in the codon (Fig 2C) (Two-sided Wilcoxon signed-rank test p-value < 

1e-30). An even stronger difference was observed between positions with A and T, 

compared with positions with C and G in the consensus (Fig 2C, D) (Two-sided 

Wilcoxon signed-rank test p-value < 1e-30). While the latter difference could be 

explained by the stability of the molecular bonds, the first could be the effect of 

selection, since third position mutations are typically synonymous mutations. Indeed, 

when computing the entropy of synonymous mutations, the most significant 

difference was between AT and CG in the third position (Fig S4C) (Two-sided 

Wilcoxon signed-rank test p-value < 1e-30). All other results were conserved when 

studying only synonymous mutations (Fig S4), showing that the evolution of the 

cloud is not solely directed by amino-acid based selection. 

To limit the entropy to the rare variants cloud, positions where the entropy was 

higher than the average entropy by more than ten standard deviations were removed 

(Fig S5). These positions typically represent the high frequency variants. The results 

were similar to the results for the whole population, indicating that the results above 

were caused by the rare variants cloud and not the high frequency variants. The 

entropy of each position followed approximately the average entropy over the entire 

sequence.  
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To understand the evolution of specific nucleotides in the cloud, we divided 

the entropy per position in the nucleotide by the average entropy of the 

sample. We found that the normalized entropy evolved very slowly, but consistently 

(Fig 2D). The entropy of Cytosine slowly increased over time, while the entropy of 

Adenine and Thymine decreased. The strongest changes were the slow increase of 

Cytosine in third position (C3), and the decrease in the entropy of Thymine in first 

position (T1) (Fig 2E).  

The rare variants cloud starts evolving before the main frequent variants. 

The slow changes in entropy show that the rare variants cloud evolves at a 

slow pace. To produce a quantitative estimate of the change rate, we computed the 

cross-correlation between the entropy profile (entropy as a function of position along 

the sequence) between each time t and time t + lag. The effects of codon positions 

and the difference between AT and CG clearly induced correlations in different times. 

However, even when the entropy in each position was normalized by the average 

entropy as a function of the nucleotide and the position in the codon (see Methods), 

the correlation remained high for a long time. The correlation dropped by a factor of 

approximately 0.15 over 30 passages (r = -0.67, p-value = 2.97e-59 for spearman 

correlation) and would expectedly decrease to 0 over approximately 120 passages 

(each passage is 2-3 generations), showing a very slow evolution of the genetic 

cloud over a period of 240-360 viral generations (Fig 2F).  

The same result held when only synonymous mutations were considered, and 

when high-frequency variants were removed from the analysis (Fig S4F and 

S5F), showing again that the observed phenomena are a generic process 

affecting the rare variants cloud. Interestingly, the entropy of the high-frequency 

variants rose slower than the rest of the cloud (Fig S6 and 2B), further supporting the 

concept that the rare variants cloud may drive the emergence of the high-frequency 

variants, and could serve as a predictor for the emergence of future high frequency 

variants. 

The rare variants cloud variants are genetically linked 

To understand the dynamics of the rare variants cloud, we first analyzed its 

genetic structure. The simplest characteristic of the cloud is the nucleotide 
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distribution, which was slightly biased toward A in the consensus and toward G in the 

mutants, following a high A to G mutation frequency (Fig 3A – inset).  The 

distribution became more interesting when the frequency of dinucleotides was 

computed (Fig 3A). The dinucleotide frequencies were biased, and cannot be 

explained by the single nucleotide frequencies. This bias has been speculated to be 

the result of dinucleotide stacking energies and properties of cell environments(39), 

such as CG repression(24,25). 

The mutation cloud surrounding the consensus sequence had a completely 

different distribution (Fig 3A). The frequency of all dinucleotides differing from the 

consensus sequence (non-consensus dinucleotide - NCDN) was computed and 

found to differ from the distribution in the consensus in all dinucleotide pairs (Fig3A) 

(Two-sided Wilcoxon signed-rank test p-value < 1e-30 for all dinucleotide pairs 

except GT). One could consider the following model for the observed NCDN 

distribution. If the entire cloud was produced from random mutations, the probability 

of observing dinucleotide CT (for example) can be computed as the sum over all 

possible combinations in the consensus sequence multiplied by the mutation 

probabilities. For example: 

(1)  

All elements of the model can be computed from the observed consensus and 

variants. The observed distribution was very different from the expected one using 

the model above (Fig 3B) (one-sided Wilcoxon signed-rank test p-value < 1e-12 for 

all dinucleotide except TC, CT and GA). One possible explanation for the difference 

could be that mutations in neighbouring positions are correlated. However, double 

mutations (mutation in neighbouring positions in the same read) amount to less than 

0.94% of the cloud. A simpler explanation would be the effect of the high-frequency 

portion of the variants taking over. However, those variants typically carry 1-2 

mutations per gene (Fig 1B) and do not affect the rare variants cloud.  

Another possible way to explain the divergence from the expected distribution 

is that specific dinucleotides were preferentially produced, maintained or lost. 

In the following sections, we will show that this is indeed the case. Such a result 
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suggests either a strong genetic based selection or a mechanism of induced 

mutations, either by the host or by viral molecules. 

Preferential generation of dinucleotides – Effect of neighbouring 

positions 

The peculiar structure of the NCDN cloud structure can be understood through 

the correlation between the entropy of neighbouring nucleotides. The 

correlation was computed between the entropy in each position and the entropy in 

positions k nucleotides away. The entropy in first and second neighbour nucleotides 

was correlated along all positions in the codon (Fig 4A) (One-Sample Wilcoxon 

signed-rank test p-value < 1e-14 for first and second neighbours at all codon 

positions). Surprisingly, the correlation was negative in first neighbours and positive 

in second neighbours (One-Sample Wilcoxon signed-rank test p-value < 1e-20 for 

distances 1-4). The entropy correlations were constant over time (Fig 4B). The 

negative correlation can be explained by the different probability of fixation of 

different nucleotides and the dinucleotide bias. There are fewer CG pairs in the 

consensus than other dinucleotides, and AT have higher entropy than CG. Since AT 

were more often than randomly expected near CG, a negative correlation between 

the entropy in nearest neighbours emerged. Indeed, when the entropy in each 

position was divided by the expected entropy based on the consensus sequence 

nucleotide and codon position, the negative correlations disappeared. However, 

surprisingly, the correlation at distance 2 was still much higher than the correlation 

between neighbouring positions or positions 3 nucleotides away (Fig 4C) (two-

Sample Wilcoxon signed-rank test p-value < 1e-30). This was not a codon effect, 

since the different correlation was consistent over all positions in the codon, as well 

as nucleotides in different codons (Fig 4A) (One-Sample Wilcoxon signed-rank test 

p-value < 1e-14 for first and second neighbours at all codon positions). If the 

correlation would have been induced by the presence of conserved regions, the 

normalized correlation would be maximal at a distance of 1.  

A simple, yet surprising explanation for this correlation was that mutations 

were affected by the nucleotide in neighboring positions. In other words, 

mutations near an A nucleotide would be rarer than mutations near a C nucleotide. 

In such a case, for example:  
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(2) ( ) ( ) ( )p CT CA p CT p T A→ ≠ → . 

The outcome of such a context-dependent mutation profile would be 

correlations in the entropy in nucleotides at distances of 2 and 3. Since AT and 

CG have different entropies, then the codon usage could induce correlations 

between distant positions. Indeed, when entropy was normalized by the effect of 

neighbouring positions (see Methods), the correlation decreased with distance 

between nucleotides (Fig 4D). 

To confirm that the mutation profile was affected by neighbouring positions, 

we computed the probability of mutation from each nucleotide to each 

nucleotide, as a function of the 5’ and 3’ neighbouring nucleotide (Fig 5A). 

Surprisingly, both the 3’ and 5’ neighbouring positions affected the probability to 

mutate (Fig 5A) (ANOVA 1.88e-305 ≤ p-value ≤ 0.16 for neighbour nucleotides). The 

biggest difference in the mutation rate was between different mutations, mostly 

between transitions and transversions. The effect of neighbouring nucleotides 

remains even after normalizing for specific mutations (e.g. C to A) (Fig 5B) (see 

Methods). The variance of the normalized specific mutation frequencies, as effected 

by their 5' and 3' neighbouring nucleotides, rose over time (Fig S7) (spearman 

correlation r=0.535, p-value = 4.69e-14 for variance over time), further suggesting 

that this is not purely the effect of biased sequencing and methodological errors.  

This effect could in principle result from the codon structure.  We thus repeated 

the analysis for synonymous and non-synonymous mutations (Fig S8). The results 

were similar for non-synonymous mutations (ANOVA 1.51e-290 ≤ p-value ≤ 4.86e-7 

for neighbour nucleotide). For synonymous mutations the effect was weaker but still 

present (ANOVA 0 ≤ p-value ≤ 0.58 for neighbour nucleotides), indicating that the 

mutation profile was affected by codon structure, but not fully explained by it. The 

analysis was also performed at each codon position by itself (e.g. all nucleotides at 

position 1 of the codon etc.) (Fig S9) with similar results. The biased mutation 

probability explained the dinucleotide structure and the correlation, but more 

interestingly, it may affect the dinucleotide distribution of the consensus. 

To further examine the observed position dependent mutation probability, we 

studied the mutation profile of high frequency mutations. High frequency 
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mutation frequencies were calculated as the frequencies of mutations in the 

reconstructed genes (see methods), while accounting for neighbour nucleotides and 

mutation type. Frequencies were normalized by the average mutation type frequency 

to fit the scale of low-frequency mutations. The high frequency mutation profile was 

affected by neighbouring nucleotides (Fig S10A), and the effect was similar to that of 

the low-frequency mutations (Fig 5B, S10A, S10B) (Spearman correlation for high 

frequency mutations, and low frequency mutations r = 0.5452579, p. value = 9.237e-

09). This result further supports the possibility of context-dependent mutation rate 

affecting nucleotide distribution at all levels, from low-frequency mutations to high-

frequency mutations, and possibly even the consensus dinucleotide distribution.  

Such context-dependent mutation rate was previously studied in other 

organisms, such as eukaryotes, yeast, bacteria, and bacteriophages (40-45). 

Various mutation-causing mechanisms were suggested to be affected by 

neighbouring nucleotides, causing this effect in mutation rates. These mechanisms 

include polymerase fidelity and proofreading, mismatch repair, mismatch stability 

and Dcm methylation (45-47). With the exception of polymerase fidelity, all of these 

mechanisms affect DNA. Thus, they and are not relevant here, as they cannot affect 

viral single stranded RNA. 

The current results suggest that the genetic dynamics affecting the rare 

variants cloud are not simply a combination of random mutations and 

purifying selection. Instead, the rare variants cloud is driven by a context-

dependent mutation mechanism and complex selection patterns.  

This claim emerges from results obtained from experimentally evolved 

populations. To check that this may be a generic feature of RNA viruses, we 

analysed NGS data from three additional RNA viruses: Newcastle disease virus 

(NDV) vaccine, natural infection of NDV and Influenza virus. As was the case for the 

Coxsackie virus experimental samples, the mutation profile of those viruses was 

affected by neighbouring nucleotides (Fig 6) (ANOVA 1.10e-10 ≤ p-value ≤ 5.07 for 

neighbour nucleotide for Influenza virus, where we had enough repeated 

experiments). 
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DISCUSSION 

Virus populations constitute a cloud of genetic variants. This cloud is often 

composed of a dominant genotype, a few high-frequency minority variants and a 

very large number of rare variants. While the dynamics of the dominant genotype 

and high-frequency variants are easier to monitor and have been the focus of 

research, the dynamics of the rare variants cloud that encompasses most of the 

observed sequences has not been fully studied yet. Here, we studied the dynamics 

of this cloud and shown in multiple strains and samples of Coxsackie virus that it 

slowly evolves over hundreds of replication cycles. This slow evolution precedes the 

selection and emergence of higher frequency minority variants and may be the 

background supporting their emergence.  

The main data analysed in this study comes from a longitudinal evolutionary 

study in which a homogeneous population of Coxsackie virus B3 was 

passaged for 120 generations to a new, never encountered before, cell type, 

A549. During these passages, we found that mutations in the whole viral population 

do not follow a Poisson distribution, where rare outliers are more frequent than 

expected from the Poisson distribution. 

The cloud can be described through a bilayered distribution of variants in the 

viral population: a layer composed of higher frequency shared variants and 

another broader layer composed of rare variants.  

The lack of fit to Poisson distribution forfeits the possibility of neutral local 

evolution and implicates that either strong positive selection or another 

mechanism was acting. One salient observation was that some of the high 

frequency variants in the population appeared at some point and increased to 
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dominate the population. These variants depict a more classical positive selection 

based on the fitness advantages of beneficial mutations. Indeed, in a previous study 

on the adaptation of CVB3 to A549 cells, there was a strong selective process for 

beneficial mutations in the structural proteins of the virion, VP1, VP2 and VP3 

involved in binding to the primary and secondary viral receptors (CAR and DAF) on 

the host cell. When we decoupled these high frequency variants from the rest of the 

mutations in the population, we unveiled the rare variants cloud layer, which 

according to our calculations evolved slowly over time, but precede the emergence 

of these variants. This steady increase in variability goes in concordance with a 

starting homogeneous population that generates new variability without any 

bottlenecks. 

Some of the mutations in the rare variants cloud can be attributed to the well-

described lack of proofreading mechanisms in viral RNA-dependent RNA 

polymerases (48). Indeed, our entropy results show that the lowest fidelity variant 

3D-S299T replicates had higher average entropy compared to the other variants. It is 

possible that the observed context-dependent mutation rate is affected by a context-

dependent bias in the viral RNA-dependent RNA polymerases activity. Such an 

explanation will be consistent with the fact that the context-dependent mutation 

profile seems to differ from one virus to another, as RNA viruses usually encode their 

own unique RNA-dependent RNA polymerase (49). 

Another possible explanation is that a significant fraction of mutations in 

viruses are induced, and not simply the result of random replication errors. 

Such mutations may result from RNA editing, such as the ADAR and APOBEC 

families (50-53). ADAR and APOBEC are believed to be mechanisms of antiviral 
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defense in the cell, mainly for retroviruses where this effect is well proven, although 

for single stranded RNA viruses this function is still contested (27,54-56). If this is the 

case, we could expect mutation patterns to be affected by the binding sites of these 

enzymes. However, proteins of the ADAR and APOBEC families can only cause A to 

G and C to U mutations, and as a result they cannot fully explain the observed 

context-dependent mutation profile. In addition, the mutation pattern was also 

affected in a natural infection of Newcastle disease virus in chicken. As the chicken 

APOBEC family is incapable of mediating C to U mutations (31,57), it cannot explain 

the mutation profile by itself.     

A further possibility is that the observed cloud is a result of either positive or 

negative selection acting upon this initial pool of variants. This selection may be 

for structural stability (58) or GC content (28,29). If this is indeed the case, one could 

conclude that the entire cloud evolves, and rare variants are producing other rare 

variants. This could explain the large number of variants with many mutations, not 

expected if all mutations would originate from the consensus sequence. 

The genetic diversity of the cloud can be estimated by several methods (59). 

An interesting observation resulting from our analysis of the genetic diversity of the 

rare variants cloud is the effect of the neighboring sequence on mutation. Here, we 

used nucleotide composition entropy to measure genetic diversity. Other methods 

such as the fraction of mutated sequences in each position yield similar results. 

Entropy is affected by nucleotide composition as well as codon position. Mutations at 

third codon position are more likely to accumulate in the population, as these 

mutations usually result in synonymous mutations (60). Adenine and Thymine are 

more likely to mutate than Cytosine and Guanine. As a result, nucleotide 
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composition entropy is naturally biased, and should be accounted for. However, 

even when accounted for, the observed composition of the cloud could not be 

explained.  

We show here that cloud composition is the result of context-dependent 

mutation patterns and the probability of observing a given mutation (e.g. C to 

A) is determined by its neighboring nucleotides. Strikingly, the observed effect of 

neighboring positions occurred regardless of codon position and thus, was not 

limited to within single codons. Moreover, the analysis of different viruses revealed 

similar patterns. Such  patterns also appeared when only accounting for high-

frequency mutations, indicating that this phenomenon could also affect the long term 

mutation accumulation in the consensus. Those mutations are mostly affected by 

selection, but a bias in the initial pool of available mutations could affect the mutation 

distribution. The context-dependent mutation rate, as well as the need to avoid 

certain dinucleotides (e.g. CG), induced correlations in the entropy profiles, as well 

as a highly biased dinucleotide composition. While this has been demonstrated here 

for four viruses, it may likely be true for others. 

Another important observation emerging from our analysis is that the rare 

variants cloud seems to move continuously toward a different dinucleotide 

composition than the main variant, rather than remaining stationary or moving 

at random. The possible constraints governing directionality are not clear besides 

the observed genetic structure and effect of neighboring nucleotides giving 

preference to certain dinucleotides and not others. It is possible that weak positive 

selection is also acting on this component of the population. Nevertheless, this 

bilayered structure of the viral genetic variants cloud could have important 
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implications on the evolvability of the population and predicting the emergence of 

higher frequency variants. Our data suggest that the rare variants cloud may be 

moving ahead of the most frequent sequence, and in a sense spearheading the 

evolution of the consensus sequence and the emergence of new Master sequences. 

We hypothesize that the direction taken by the rare variants cloud may influence 

which high frequency variants will be selected and fixated through classical selection 

processes in the whole population. The rare variants cloud selection could be due to 

maintain the aforementioned genetic structure but some not very strong positive 

selection might be action too. This hypothesis will be further tested in future research. 
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TABLE AND FIGURES LEGENDS 

Fig 1. Mutation number per read and gene. The frequency of mutations from the 

consensus sequence for each sample was calculated per read and reconstructed 

gene (See Methods). (A) Fit of the frequency of mutation number over all reads to 

Poisson distribution. (B) Frequency of mutation number per reconstructed gene over 

time. Error bars depict standard error over genes. A variant that appears in more 

than one independent experiment is considered shared. (C) Frequency of mutations 

per read over time. Error bars depict standard error over reads. (D) Regression 

coefficient of mutation number per read and reconstructed gene by time. Values 

were normalized by average frequency. Error bars depict 95% confident intervals. ** 

represents p-value< 0.01, and * represents p-value < 0.05  

Fig 2. The viral cloud moves slowly but steadily over many generations. (A) 

Nucleotide entropy per position. One sample was used as an example (wild type 

duplicate 1, passage 15). (B) Average entropy per sample over time. Error bars 

depict standard error. Results were smoothed over a window of 5. (C) Average 

nucleotide entropy by nucleotide and codon position. Error bars depict standard error. 

(D) Average nucleotide entropy over time by nucleotide and codon position. Error 

bars depict standard error. (E) Regression coefficient of average nucleotide entropy 

by nucleotide and codon position vs. time. Error bars depict 95% confident intervals. 

(F) Correlations of per position nucleotide entropy between samples from the same 

experiment, at time t and time t + lag. Entropy is normalized by average entropy 

based on the consensus sequence nucleotide and codon position. Error bars depict 

standard error. * p-value< 0.01 

Fig 3. Dinucleotides mutation frequencies are biased. (A) Dinucleotides 

frequencies in the full cloud, and only for mutations. Dinucleotides that are different 
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from the consensus were considered mutations. Error bars depict standard error. 

Same analysis was performed for single nucleotides in the insert. (B) Log of the ratio 

between observed and expected frequency of mutant dinucleotides for each 

dinucleotide (see Methods). Error bars depict standard error.   

Fig 4. Neighboring nucleotides entropy correlations. The correlation between the 

entropy in each position and the entropy in positions k nucleotides away was 

computed for all samples. Error bars depict standard error. (A) First and Second 

neighbors Nt along all codon positions. (B) Entropy correlations over time. (C) 

Normalized entropy correlations over time. The entropy was normalized by the 

average entropy based on the consensus sequence nucleotide and codon position. 

(D) Normalized entropy correlations over time. The entropy was normalized by the 

average entropy based on the consensus sequence nucleotide, its first neighbors 

and codon position. 

Fig 5. Mutation profile is affected by neighboring positions. Probabilities of 

mutations from one nucleotide to another, as a function of the 5’ and 3’ neighboring 

nucleotides were calculated. Error bars depict standard error. (A) Cumulative 

frequencies. (B) Normalized by specific mutation.  

Fig 6. Mutation profile is affected by neighbouring positions in Newcastle 

disease virus.  The same calculations as in figure 5 were performed for NGS data 

from: (A,B) Newcastle disease virus vaccine (LaSota)  (C,D) natural infection of 

Newcastle disease virus. (E,F) Influenza virus. For Newcastle disease vaccine and 

Newcastle disease virus natural infection error bars depict standard error within the 

sample, as there is only one sample each. 
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SUPPORTING INFORMATION 

S1Table. Details and coverage of all samples. 

*Number of samples that passed quality control appears in parenthesis (see 

Methods for further details). 

S1 Fig. Quality control indices before and after cleaning. One sample was used 

as an example (wild type duplicate 2, passage 17). (A) Per base sequence quality 

before cleaning. (B) Per base sequence Nt content before cleaning. (C) Per 

sequence GC content distribution compared to theoretical normal distribution before 

cleaning. (D) Per base sequence quality after cleaning. (E) Per base sequence 

nucleotide content after cleaning. (F) Per sequence GC content distribution 

compared to theoretical normal distribution after cleaning. 

S2 Fig. Frequency of mutation in the cloud over time by virus variant. (A) Full 

cloud (B) Full cloud by virus variant and codon position (C) Synonymous mutations 

cloud. Error bars depict standard error. 

S3 Fig. Nucleotide entropy is reproducible over technical replicates. Per 

position nucleotide entropy of all samples of both technical replicates. 

S4 Fig. The viral synonymous mutations cloud moves slowly but steadily over 

many generations. Identical to figure 2, only for synonymous mutations (see 

Methods).  

S5 Fig. The viral rare variants cloud moves slowly but steadily over many 

generations. Identical to figure 2, only for rare variants cloud (see methods). 
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S6 Fig. Entropy of high frequency variants rises slowly. Average entropy of 

reconstructed high frequency variants over time per gene in sample. Error bars 

describe standard error.  

S7 Fig.  Context dependent mutation variance rises over time. The variance of 

the normalized specific mutation frequencies, as effected by their 5' and 3' 

neighbouring nucleotides over time. Error bars describe standard error. 

S8 Fig. Identical to figure 5, divided to synonymous and nonsynonymous 

mutations. (A,B) Synonymous (C,D) Non-synonymous.  

S9 Fig. Identical to figure 5, divided by codon position. (A,B) first  codon position 

(C,D) second codon position and (E,F) third codon position. 

S10 Fig. High frequency mutation profile is affected by neighboring positions. 

Neighbor nucleotides frequency was calculated per mutation from one nucleotide to 

another in the reconstructed genes, compared to the consensus sequence of each 

sample (see methods), as a function of the 5’ and 3’ neighboring nucleotides, and 

were normalized by specific mutation. (A) High frequency mutations by mutation type 

and neighbor. (B) High frequency normalized mutations plotted against low 

frequency normalized mutations. 
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