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Abstract 
Chimeric antigen receptors (CARs) have recently been approved for the treatment of 
hematological malignancies, but our lack of understanding of the basic mechanisms that 
activate these proteins has made it difficult to optimize and control CAR-based 
therapies. In this study, we use phospho-proteomic mass spectrometry and mechanistic 
computational modeling to quantify the in vitro kinetics of individual tyrosine 
phosphorylation on a variety of CARs. We show that each of the ten tyrosine sites on the 
CD28-CD3ζ CAR is phosphorylated by LCK with distinct kinetics. The addition of CD28 
at the N-terminal of CD3ζ increases the overall rate of CD3ζ phosphorylation. Our 
computational model identifies that LCK phosphorylates CD3ζ through a mechanism of 
competitive inhibition. This model agrees with previously published data in the literature 
and predicts that phosphatases in this system interact with CD3ζ through a similar 
mechanism of competitive inhibition. This quantitative modeling framework can be used 
to better understand CAR signaling and T cell activation.  
 
Introduction  
One of most widely used methods for engineering a patient’s T cells to fight cancer is 
through the expression of chimeric antigen receptors (CARs). CARs are proteins that 
combine an extracellular antibody-derived targeting domain with intracellular T cell 
activating domains derived from the endogenous T cell receptor (1). These engineered T 
cells have emerged as promising treatments for hematopoietic cancers (2,3); however, 
not all patients respond to treatment and it has been difficult to expand these therapies 
to solid tumors (4–7). Significantly, it has been shown that CARs are less effective at 
activating T cells than engineered T cell receptors (TCRs) (8). More work needs to be 
done to better understand the mechanisms through which CAR-engineered T cells 
become activated so that they can be more optimally designed and expanded to a wider 
patient population. In this study, we use quantitative phospho-proteomic mass 
spectrometry and computational modeling to explore the mechanisms that lead to the 
phosphorylation of CAR proteins.  Computational models, like the one developed here, 
provide a unique method to use basic engineering principles to better understand and 
optimize the signaling pathways that activate CAR-engineered T cells.  
 
The CAR-T cell therapy Yescarta was approved by the FDA in October 2017 and 
contains signaling domains derived from the CD3ζ domain of the T cell receptor (TCR) 
and the CD28 co-stimulatory domain (3). These T cell signaling domains are 
phosphorylated by the Src family kinases, the most important of which in endogenous T 
cells is lymphocyte-specific protein tyrosine kinase (LCK) (9–11). CD3ζ contains six 
tyrosine phosphorylation sites, arranged in pairs on three immunoreceptor tyrosine-
based activation motifs (ITAMs) (Figure 1A) (12). When doubly phosphorylated, these 
ITAMs can bind to the adaptor protein ZAP-70, perpetuating downstream signaling and 
also protecting the CD3ζ ITAMs from dephosphorylation (13,14). Importantly, in addition 
to this main form of activation through ZAP-70, the three ITAMs can also bind other 
signaling proteins. Literature data indicates that the ITAMs have different binding 
capabilities and, therefore, can induce different downstream signaling events (15); 
however, more work needs to be done to specifically enumerate how the individual 
ITAMs differ in both their activation and, subsequently, their downstream signaling.  
 
Previous studies have attempted to qualitatively define the order of CD3ζ 
phosphorylation using CD3ζ phospho-tyrosine specific antibodies (16); but, the similarity 
between ITAM sites limited the antibody specificity, preventing reliable conclusions 
regarding the phosphorylation order. In 2003, Housden et al. used synthetic peptides 
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that each contained one ITAM tyrosine to measure the preference of LCK for each site 
through radioactive phosphate incorporation. While they did find differences in the rates 
of tyrosine peptide phosphorylation, their experiments were performed in solution and 
each single tyrosine-bearing peptide was phosphorylated independently. Therefore, this 
study did not account for conformational, steric, and competitive factors that may 
influence the phosphorylation rates at different sites. 
 
A study from Mukhopadhyay and colleagues proposed a mechanism for CD3ζ 
phosphorylation and dephosphorylation based on experimental measurements of total 
protein phosphorylation for CD3ζ with individual ITAM mutations (17,18). In this work, 
wild type or ITAM mutant CD3ζ was co-expressed with LCK and phosphatase CD148 in 
HEK293 cells. Total CD3ζ phosphorylation was measured as a function of phosphatase 
inhibition, and it was found that there is no significant difference between the individual 
ITAMs; however, increasing the number of ITAMs decreased the EC50 value of the 
phosphorylation curve without changing the Hill coefficient. Mukhopadhyay and 
colleagues hypothesized that the addition of phosphate groups on the CD3ζ intracellular 
domain could increase the rigidity of the CD3ζ tertiary structure, making 
unphosphorylated sites more accessible. They modeled this as an exponential increase 
in the association rate of the kinase and phosphatase toward CD3ζ; however, this 
mechanism is not fully validated without site-specific phosphorylation data.  
 
Combining the CD3ζ activating domain and a co-stimulatory domain on the same protein 
adds additional complexity to the CAR. The CD28 co-stimulatory domain has four 
tyrosine sites, which can be phosphorylated by LCK (19), and may also influence the 
catalytic activity of LCK (20,21). Once phosphorylated, CD28 tyrosine sites bind to 
various adaptor proteins that are also phosphorylated downstream of CD3ζ (22). Thus, 
CD28 can tune the response to CD3ζ activation. Additionally, the recruitment and 
competition by CD28 for LCK may alter the phosphorylation of CD3ζ.  
 
All ten of the tyrosine sites on CD3ζ and CD28 work together, in different ways, to affect 
the downstream signaling that controls T cell activation responses such as cytotoxicity, 
cytokine production, proliferation, and survival (23–27). By better understanding how 
these chimeric proteins are phosphorylated, we can identify ways to tune them to create 
more optimal CAR therapies. In this study, we have explored the kinetics of CD3ζ and 
CD28 phosphorylation in detail. We paired a recombinant protein system with phospho-
proteomic mass spectrometry to measure the site-specific phosphorylation of CAR 
proteins by LCK over time. To our knowledge, this is the first study to quantify 
phosphorylation at individual sites on the intact intracellular domain of a CAR protein. 
We then fit this data using a computational model to robustly quantify the differences 
between the phosphorylation kinetics of the ten tyrosine sites. We used the 
computational model to generate new predictions regarding the mechanism with which 
LCK phosphorylates the CD3ζ ITAMs. We can use the novel insights from this study to 
continue expanding our understanding of CAR-mediated T cell activation and better 
engineer future CAR therapies.  
 
Methods 
 
Recombinant protein expression and purification  
His10-KKCK-CD3ζ in the pET28a vector and HIS10-LCK-G2A in the pFastBacHTA vector 
were a kind gift from Dr. Ronald Vale (28). To make the HIS10-CD28-CD3ζ recombinant 
protein, the DNA sequence for the intracellular domain of CD28 (aa 180-220) was codon 
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optimized and constructed by Integrated DNA Technologies (IDT-DNA). This sequence 
was then cloned directly upstream of CD3ζ in the pET28a vector using Gibson 
assembly. All individual point mutations in the CAR vectors were introduced by the 
QuikChange XL site-directed mutagenesis kit (Agilent). 
 
The sequence for HIS10-LCK-G2A was amplified out of the pFastBacHTA vector by PCR 
and cloned into the FUW vector through Gibson assembly. LCK is able to undergo 
autophosphorylation at both activating and inhibitory tyrosine sites (Y394 and Y505, 
respectively). We previously showed that when LCK is phosphorylated at these tyrosine 
residues, it has differential catalytic activity (29). Therefore, to exclude any confounding 
effects due to changes in enzymatic efficiency, we used a constitutively active form of 
LCK containing a tyrosine to phenylalanine mutation at the inhibitory site (Y505F). This 
point mutation was introduced by the QuikChange XL site-directed mutagenesis kit 
(Agilent). 
 
All CAR proteins were expressed in the BL28(DE3) strain of E. coli cells. E. coli cells 
were lysed as described in (30).  His10-LCK-G2A-Y505F was transiently expressed in 
HEK293T cells through a standard calcium phosphate precipitation protocol (31). 48 
hours after transfection, HEK293T cells were lysed in buffer containing 20 mM Tris·HCl, 
pH 7.5, 600 mM NaCl, 2 mM MgCl2, 5 mM immidazole, 10% glycerol, 1% NP-40, 1 mM 
Na3VO4, 10 mM NaF, and 1× complete protease inhibitor (Roche). All HIS10 proteins 
were purified using FPLC, first on a Ni-NTA agarose column followed by gel purification 
using the HiPrep 16/60 Sephacryl S-200 HR column (GE Life Sciences) in HEPES-
buffered saline (HBS) solution containing 50 mM HEPES-NaOH (pH 7.5), 150 mM NaCl, 
and 10% glycerol, as described in (28). Protein monomer fractions were concentrated, 
snap frozen in liquid nitrogen, and stored at −80°C. All purified recombinant proteins 
were quantified by SDS-PAGE and Coomassie staining using BSA as a standard. 
 
Mass spectrometry confirmed that nearly 100% of the purified LCK-Y505 is 
phosphorylated at the activating Y394 site, while 100% of the CAR proteins were 
unphosphorylated after purification. 
 
Liposome preparation  
Synthetic 1,2-dioleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-
glycero-3-phospho-l-serine (POPS), and 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-
carboxypentyl)iminodiacetic acid)succinyl] (nickel salt, DGS-NTA-Ni) were purchased 
from Avanti Polar Lipids and resuspended in chloroform. Liposomes were prepared as 
described in (28). Briefly, phospholipids (80% POPC, 10% POPS, 10% DGS-NTA-Ni) 
were dried as thin films under Ar gas and desiccated overnight. The lipids were then 
resuspended in 1x kinase buffer (50 mM HEPES-NaOH (pH 7.5), 150 mM NaCl, 10 mM 
MgCl2, 1 mM TCEP), and subjected to 5x freeze thaw cycles. The lipid mixture was then 
extruded through 200 nm pore-size polycarbonate filters to produce large unilamellar 
liposomes. As such, we assume that the liposomes have an outer diameter of roughly 
200 nm (28). For liposomes with varying POPS concentration, the amount was 
compensated for by adjusting the POPC concentration. 
 
Protein phosphorylation time courses 
His-tagged LCK and CAR proteins were mixed with Ni-bearing liposomes for 1 hour to 
allow for the proteins to attach to nickel bearing lipids on the surface of the liposome, as 
calculated and described in (28). We used 20,000 molecules/µm2 CAR proteins and 
titrated down LCK to a very low concentration to allow us to distinguish the differences 
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between the CD3ζ site phosphorylation kinetics. The low LCK concentration allows us to 
measure the rapid phosphorylation kinetics of CAR tyrosine sites. Estimation of the final 
LCK concentration is described in the Mechanistic computational modeling section. 
Once the proteins attached to the liposomes, 10x ATP in kinase buffer was added to a 
final concentration of 1 M. Samples were taken at various times and the reaction was 
stopped by adding urea to 8 M and boiling for 5 minutes. Time samples were then frozen 
at -20°C until they were prepared for phospho-proteomic mass spectrometry.  
 
Standard curve preparation 
Because differing ionization efficiencies for each peptide result in different intensities for 
the same amount of peptide on a mass spectrometer (MS), a standard curve is 
necessary to compare between peptide MS intensities in a sample. We constructed our 
standard curves based on a known ratio of phosphorylated:unphosphorylated peptide. 
For each CAR protein, we quantified the amount of protein and aliquoted the same 
volume from a given sample into two vials. To one vial we added LCK and ATP and let 
LCK phosphorylate the CAR overnight at room temperature. To the other vial, we added 
equal volumes of HBS buffer, so that the phosphorylated and unphosphorylated CAR 
proteins would remain at the same concentration. The next morning, urea was added to 
both vials to a final concentration of 8 M. We then combined various volume ratios of the 
two solutions to create a standard curve with known ratios of 
phosphorylated:unphosphorylated peptides. The standard curve samples were stored at 
-20°C until they were ready to be prepared for analysis by mass spec.  
 
Phospho-proteomic sample preparation 
The time course and standard curve samples were thawed to room temperature and 
reduced by the addition of DTT to a final concentration of 5 mM for 1 hr at 37°C. 
Samples were next alkylated with iodoacetamide at a final concentration of 25 mM for 1 
hr at room temperature in the dark. This reaction was quenched by the addition of DTT 
to a final concentration of 10 mM for 30 min. Samples were then diluted to a final urea 
concentration of 2 M with 100 mM Tris, pH 8, and trypsin digested overnight at 37°C. 
The next morning, samples were acidified to a pH<4 with 5% TFA, purified by C18 zip-tip 
(Millipore) according to the manufacturer’s instructions, and eluted into 50% acetonitrile 
solution. Purified samples were then dried and stored at -80°C until they were ready to 
be analyzed.  
 
Phospho-proteomic data collection 
All data samples were run in technical duplicates. Data was collected in three sets, each 
with their own standard curve, shown in Supplemental Figure S1: (1) first biological 
replicate of the wild type ITAM phosphorylation on 10% POPS liposomes, the wild type 
ITAM phosphorylation on 0% and 45% POPS liposomes, and a CD3ζ standard curve, 
(2) the second biological replicate of the wild type ITAM phosphorylation on 10% POPS 
liposomes, the individual tyrosine to phenylalanine CD3ζ ITAM point mutants, and a 
CD3ζ standard curve, (3) all 28ζ proteins, including the Y206F and Y209F mutants, and 
a standard curve for 28ζ, CD28-Y206F-CD3ζ, and CD28-Y209F-CD3ζ. Desalted 
samples were reconstituted in buffer A (0.1% formic acid). The samples were injected 
into an Easy 1200 nanoLC ultra-high pressure liquid chromatography coupled to a Q-
Exactive Plus mass spectrometer (Thermo Fisher Scientific). Peptides were separated 
by reversed-phase chromatography (PepMap RSLC C18, 2µm, 100Å, 75 µm X 15 cm). 
The flow rate was set to 300 nl/min at a gradient starting with 6% buffer B (0.1% FA, 
80% acetonitrile) to 55% B in 25 minutes, followed by an 8 minutes washing step to 
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100% B. The maximum pressure was set to 1180 bar and column temperature was held 
constant at 50 ˚C.  
 
Peptides separated by the column were ionized at 2.0 kV in positive mode. MS1 survey 
scans were acquired at resolution of 70k from 275 to 1500 m/z, with maximum injection 
time of 80 ms and AGC target of 1e6. MS/MS fragmentation of the 10 most abundant 
ions were analyzed at a resolution of 35k, AGC target 1e5, maximum injection time 100 
ms, and normalized collision energy 25. Dynamic exclusion was set to 10 s and ions with 
charge 1, 7, and >7 were excluded.  
 
Mass spec data analysis and normalization 
MS/MS fragmentation spectra were searched with Proteome Discoverer SEQUEST 
(version 1.4, Thermo Scientific) against the recombinant protein sequences (17 entries) 
used in this study. The maximum missed cleavages was set to 2. Dynamic modifications 
were set to oxidation on methionine, phosphorylation on serine, threonine, and tyrosine, 
and acetylation on protein N-terminus. Fixed modification was set to 
carbamidomethylation on cysteine residues. The maximum parental mass error was set 
to 10 ppm and the MS/MS mass tolerance was set to 0.02 Da. False Discovery 
threshold was set to 0.01 using Percolator node validated by q-value. Phosphosite 
localization was confirmed using PhosphoRS (all sites >75% probability).  
 
MS1 peak quantification was performed manually in Skyline (version 3.7) for each 
phosphorylated/unphosphorylated peptide pair. We analyzed only peptides with no 
missed cleavages and no modifications other than tyrosine phosphorylation, which were 
consistently the largest peaks. One exception was made for the CD28 peptide 
containing tyrosine site Y218. The unphosphorylated form of this peptide was smaller 
than the cutoff mass to charge ratio used in our data collection. Therefore, we analyzed 
this site using the peptide with one N-terminal missed cleavage. 
  
To create our peptide standard curves, we calculated the ratio of each 
phosphorylated/unphosphorylated peptide, plotted them against the known ratios and fit 
the resulting linear plots (Supplemental Figure S1). Technical replicates of each 
peptide were combined together to fit the standard curves so that one standard curve 
was used to normalize the phosphorylated/unphosphorylated peptide intensity ratios for 
each set of peptide time course technical replicates. We then used the normalized ratios 
to calculate the percent phosphorylation over time for each time course technical 
replicate and used the two sets to calculate the mean and standard deviation of the data. 
Time courses were only normalized to the standard curve data collected at the same 
time. 
 
Statistical analysis 
All statistical analyses were done using a one-way ANOVA followed by multiple pair-
wise comparisons using the Tukey t-test in Prism (version 7, GraphPad). 
 
Sigmoidal parameter calculations 
Data was fit in Prism (version 7, GraphPad) to a standard sigmoidal curve with plateaus 
at 0 and 100%. 
 
 𝑦 = !""

!!!"(!"# !!!"# !!)∗!"##
 (1) 
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Where x is the time on a log scale, y is the output, thalf is the half maximal time, and Hill is 
the Hill coefficient. For the comparison of thalf and Hill for the random and sequential 
models, the models were first fit to data using MATLAB, as described in the “Mechanistic 
computational modeling” section below. The model responses were then entered into 
Prism as data sets and fit to Equation 1.  
 
Model implementations 
For the sequential and random order models, the ordinary differential equations were 
written using standard Michaelis-Menten kinetics, as shown in Equation 2.   
 

![!!!]
!"

= !!"#∗!"#∗!!
!!,!!!!

       (2) 

 
Where Yi and pYi represent the unphosphorylated and phosphorylated species, 
respectively, for ITAM tyrosine site i. Here, i can be A1, A2, B1, B2, C1 or C2. LCK 
represents the concentration of the kinase LCK, kcat is the catalytic rate, and KM,i is the 
Michaelis-Menten constant for each ITAM site i.   
 
For the phosphate dependent model, we also used random order Michaelis-Menten 
kinetics. However, the Michaelis-Menten constant for each ITAM site, KM,i, was scaled by 
a constant, 𝜆, raised to the power of the number of phosphate groups on the indicated 
CD3ζ molecule, p, resulting in, 𝐾!,!

! , as shown in Equation (3).  
 

𝐾!,!
! = !!,!

!!
           (3) 

 
We started with a 𝜆 value of three, as estimated by Mukhopadhyay et al. (17), and fit the 
kcat, six KM,i values, and the total amount of LCK kinase to the data. We then expanded 
our parameter space to explore other values of 𝜆. We found that 𝜆 values less than one 
were able to significantly improve the fit. However, this inversion of the 𝜆 parameter 
resulted in a mechanism that was deemed physiologically irrelevant based on previous 
work in the literature (17); therefore, 𝜆 was kept at a value of three. 
 
The competitive inhibition model also relied upon Michaelis-Menten kinetics. The 
equation describing the rate of each ITAM phosphorylation is shown in Equation 4.  
 

(4) 
𝑑𝑝𝑌!
𝑑𝑡

=  

𝐾!"#
𝐾!,!  𝑌! 𝐿𝐶𝐾

1 + 𝑌!!
𝐾!,!!

+ 𝑌!!
𝐾!,!!

+ 𝑌!!
𝐾!,!!

+ 𝑌!!
𝐾!,!!

+ 𝑌!!
𝐾!,!!

+ 𝑌!!
𝐾!,!!

+ 𝑝𝑌!!
𝐾!,!!

+ 𝑝𝑌!!
𝐾!,!!

+ 𝑝𝑌!!
𝐾!,!!

+ 𝑝𝑌!!
𝐾!,!!

+ 𝑝𝑌!!
𝐾!,!!

+ 𝑝𝑌!!
𝐾!,!!

 

 
Where all variables are the same as described for Equation 1, and KI,i is the inhibitory 
constant for each ITAM site, i. 
 
In our preliminary exploration of the model parameter space, we identified several 
groups of parameters in this model structure that were correlated: the Michaelis-Menten 
constants, the inhibition constants, and the total LCK concentration and catalytic rate. 
Therefore, to better constrain this system, we made a series of assumptions. First, the 
addition of six inhibition constants greatly over parameterizes the model. To reduce this 
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number, we assume that adding a phosphate group will affect all of the ITAM sites the 
same way. Therefore, we simplified the inhibition constants to a single factor (XI) that 
could be used to scale the Michaelis-Menten constant for each site, as shown in 
Equation 5.  
 

𝐾!,! = 𝐾!,! ∗ 𝑋!           (5) 
 
Second, we fixed the catalytic rate of LCK. The initial conditions for the CAR proteins 
were based on the measured protein densities used in our experiments, 20,000 
molecules/µm2. In order to be able to distinguish between the rapid phosphorylation 
kinetics of CAR tyrosine sites, low concentrations of LCK were used in the experiments. 
This experimental condition also agrees with the assumption of Michaelis-Menten 
kinetics that the enzyme concentration is much less than the substrate concentration. 
However, this low level of LCK made it very difficult to measure the exact concentration 
relative to the experimental errors. Therefore, we held the catalytic rate constant based 
on the average rate of CD3ζ phosphorylation by constitutively active LCK, calculated in 
(28) and fit the initial concentration of LCK.  
 
Third, as all of the KM values varied together in a correlated manner, we chose to hold 
the KM value for site B1, KM,B1, which is phosphorylated at an intermediate rate relative to 
the other sites, equal to the estimated KM value from (28). Through many simulations, 
we confirmed that these parameter assumptions did not significantly affect the model fit 
to the data.  
  
Comparison of model structures   
Our mechanistic computational models were written as a set of rules in BioNetGen (32) 
and implemented in MATLAB (Supplemental Files S1-S5). We used Michaelis-Menten 
kinetics to describe the reaction rate of LCK toward each of the six ITAM sites, as 
described in the previous section. Parameter fitting was performed in an iterative 
manner. For the different model structures, starting values for Michaelis-Menten 
constants were first identified by manually performing parameter sweeps across a wide 
range. For this step, the catalytic rate was held at 360 min-1, based on literature values 
(28), and total LCK concentration was 60 molecules/µm2, as estimated in the 
experimental setup. Once a suitable order of magnitude was identified for the KM values, 
all of the parameters were allowed to vary two-fold up and down, and the parameters 
were fit to all of the data together (wild type CD3ζ, mutant CD3ζ, and liposome 
concentration data) using particle swarm optimization (PSO) (33). Each data set was fit 
a minimum of 10 times. The error between the model fits and experimental data 
(calculated as the sum of the squared residual) was used to characterize the goodness 
of fit.  
 
For model structures that did not fit the data well, we further explored the parameter 
space to see if changing the range of parameters could improve the fit. To do this, we 
manually altered the parameters for which the physiological range is not well defined 
(i.e. the two-dimensional Michaelis-Menten constants, and any scaling factors). If we 
identified a parameter space that better represented the data, we performed another 
round of 10 parameter set fits, using PSO. For the final parameter estimation, all of the 
parameters that were not fixed were allowed to vary two orders of magnitude up and 
down from their baseline values (LCK = 60 molecules/µm2, KM,i = 270 molecules/µm2, 
and XI = 1). The model was fit 100 times using PSO and the 50 best fits were taken as 
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the final parameter ranges.  For all models, the parameter set with the best fit was used 
for model comparison.  
 
Phosphatase model 
To explore the mechanism of phosphatase activity on the model, we implemented 
phosphatase mechanisms with a random order, a phosphate dependent mechanism, or 
a competitive inhibition mechanism. For the phosphate dependent model, we held the 
phosphate dependent scaling factor, 𝜆, equal to three, as estimated by Mukhopadhyay 
et al. In the competitive inhibition model, both phosphorylated and unphosphorylated 
ITAM sites provide competitive inhibition. For each of these mechanisms we manually 
explored ranges of parameter space within one order of magnitude above or below the 
value that was estimated for the LCK phosphorylation parameters. We particularly 
focused on variations in the parameters for which all of the phosphatase Michaelis-
Menten kinetics were (i) all the same between the ITAM sites, (ii) scaled so that they 
maintained the same relative differences as was identified for the LCK parameters. Once 
a mechanism and parameter space with the correct trends for EC50 and Hill coefficients 
were identified, we then further tuned the phosphatase Michaelis-Menten constants to 
better fit the data.  
 
Results  
 
The six tyrosine sites on CD3ζ are phosphorylated by LCK with different kinetics 
 
We first sought to explore how LCK phosphorylates the six tyrosine sites on CD3ζ. To do 
this, we utilized a liposome-based recombinant protein system, developed by Hui and 
Vale (28). In this system, His-tagged proteins are bound to nickel chelating lipids on the 
surface of large unilamellar liposomes, as shown in Figure 1A. Since the CAR and LCK 
proteins are largely membrane bound in T cells, this system allows us to mimic the two-
dimensional protein arrangement and more accurately capture the true kinetics of the 
interactions between these proteins.  
 

 
Figure 1: CD3ζ sites are phosphorylated by LCK with different kinetics. 
(A) Schematic of the experimental liposomal system. CD3ζ and LCK His-tagged proteins were 

purified and allowed to bind to large unilamellar liposomes bearing nickel-chelated lipids. 
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Once proteins were bound, ATP was added, and the proteins were allowed to interact for 
various times before being subjected to phospho-proteomic mass spectrometry for 
quantification. 

(B) Sequence of CD3ζ intracellular domain with trypsin cut sites denoted. Individual ITAM 
tyrosine sites are labeled in different colors. Y64F indicates a tyrosine to phenylalanine 
mutation to ensure that each peptide only has one tyrosine phosphorylation site. This 
mutation does not influence overall phosphorylation kinetics (see Supplemental Figure S2). 

(C) Experimental data (circles) and sigmoidal fit (lines) for CD3ζ ITAM phosphorylation on 
liposomes containing 10% acidic POPS lipids. Error bars represent the standard deviation of 
two technical replicates normalized by site-specific standard curves.  

(D) Half maximal time for each CD3ζ ITAM site. Data represents mean and standard error of the 
mean (SEM) of the fit to a 4-parameter sigmoidal curve.  

(E) Hill coefficient for each CD3ζ ITAM site. Data represents mean and SEM of the fit to a 4-
parameter sigmoidal curve. 

 
The liposome-bound proteins were allowed to react in the presence of ATP, and we 
performed phospho-proteomic mass spectrometry to specifically measure the 
phosphorylation at each ITAM site over time. To quantify the site-specific 
phosphorylation, we needed to directly compare the mass spectrometry intensity of 
phosphorylated and unphosphorylated peptide pairs. To do this, we used a standard 
curve with a known ratio of phosphorylated:unphosphorylated peptide (Supplemental 
Figure S1) (34). Additionally, we needed to ensure that there is only one tyrosine site on 
each tryptic peptide. This is true for all CD3ζ ITAM tyrosine sites except A1 (Figure 1B). 
The peptide containing site A1 also contains a tyrosine at position 64, which is not part 
of an ITAM and is not predicted to play a significant role in CD3ζ phosphorylation based 
on known LCK binding motifs and computational predictions (35–38). Therefore, we 
added a Y64F mutation in the CD3ζ recombinant protein and validated that it does not 
influence the overall phosphorylation kinetics within this system (Supplemental Figure 
S2). In this way, we were able to normalize the phosphorylated:unphosphorylated 
intensity ratios for each ITAM site in our time courses by the standard curves, thus 
calculating the percent phosphorylation over time for each tyrosine site of interest.  
 
Figure 1C (dots) shows the percent phosphorylation of each of the six ITAM sites over 
time on liposomes that contain 10% acidic phosphatidylserine (POPS) lipids, which is 
similar to the concentration of phosphatidylserine on the inner leaflet of the T cell plasma 
membrane (28). Our measurements show that the sites are not phosphorylated at the 
same rate. To quantify the differences, we fit these data to a four-parameter sigmoidal 
curve (Figure 1C, lines), estimating the half maximal time (Figure 1D) and the Hill 
coefficient (Figure 1E) for each site. The half maximal times show that the six sites are 
phosphorylated with different kinetics (A1>B2>B1≥A2≥C2>C1). In comparison, the Hill 
coefficients for all tyrosine phosphorylation sites are close to one. 
 
CD3ζ ITAM mutations 
 
We next wanted to explore the influence that individual tyrosine sites have over the 
phosphorylated kinetics of other sites. Specifically, we wanted to identify if there are any 
binding or competitive effects that influence the kinetics at distant sites. Therefore, we 
individually mutated each tyrosine site to a phenylalanine and measured the percent 
phosphorylation of the other sites over time.  
 
We also investigated the effect of the liposome membrane acidity. Several T cell 
receptor proteins, including the closely related CD3ε and CD28 proteins, have been 
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shown to have basic residues in their intracellular domains that can interact with acidic 
lipids on the inner leaflet of the T cell membrane (39–41). These interactions are thought 
to help limit tyrosine accessibility, thus controlling aberrant phosphorylation in 
unstimulated cells. Therefore, we also tested if CD3ζ interactions with the acidic POPS 
lipids in the liposome membrane were contributing to the different rates of 
phosphorylation seen in the site-specific data.  
 
Figure 2 shows the overlay of all of the phosphorylation time course experiments (six 
individual CD3ζ Y to F point mutations, wild type CD3ζ stimulated on 0% and 45% 
POPS liposomes, and two biological replicates of wild type CD3ζ stimulated on 10% 
POPS liposomes) for each site. Although there is some variability in the phosphorylation 
time courses between the mutations, the trends for all of the site-specific time courses 
are very similar. Additionally, individual site mutations and changes to the acidic lipid 
microenvironment do not significantly affect the order of the phosphorylation kinetics of 
CD3ζ tyrosine sites.  
 

 
Figure 2: Comparison of individual tyrosine site mutations on phosphorylation kinetics. 
Experimental data for each CD3ζ ITAM site for different experimental conditions: WT 1 and 2 - 
biological replicates of CD3ζ with unmutated ITAMs on liposomes containing 10% POPS, XX mut 
(where XX represents the tyrosine to phenylalanine ITAM mutation site for CD3ζ stimulated on 
10% POPS liposomes), and X% PS (where X represents the POPS concentration for liposomes 
bearing CD3ζ with wild type ITAMs). Error bars represent the standard deviation of two technical 
replicates normalized by site-specific standard curves. 
 
To further compare between the sites, we grouped the time course responses together 
for all of the experimental conditions and used the pair-wise Tukey t-test to identify which 
ITAM site phosphorylation levels were significantly different from the others 
(Supplemental Figure S3). We compared the data sets at two different time points 10 
minutes (blue), which is close to the half maximal time of the quickly phosphorylated 
ITAM sites A1 and B2, and 60 minutes (orange), which is close to the half maximal time 
of the majority of the other sites. The 10-minute comparison shows that A2, C1, and C2 
are not significantly different from each other, while site B1 is significantly different from 
A2 and C1 but not C2. From both the 10-minute and 60-minute comparisons, we see 
that sites A1 and B2 are both significantly different from all other sites.  
 
Mechanism of CD3ζ phosphorylation by LCK  
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This data shows us key features of the kinetics of CD3ζ site-specific activation. To 
determine a specific mechanism of interaction between LCK and CD3ζ, we turned to 
computational mechanistic modeling. We explored a variety of different mechanisms 
described in the literature or indicated by the data itself (see Methods for further 
explanation). We fit each of these various models to all of our data (wild type CD3ζ, 
tyrosine to phenylalanine mutant CD3ζ, and changes to the liposome composition) and 
analyzed the results to make a hypothesis about which mechanism best represents the 
system. The model mechanisms were compared based on the overall fit to the data, as 
well as the half maximal time and Hill coefficient of each model predicted 
phosphorylation time course. 
 
Sequential order – The first mechanism we tested was a sequential phosphorylation 
order, in which LCK can phosphorylate the six CD3ζ in a specified order defined by the 
order of the half maximal time from the sigmoidal fit to the data (Figure 1D). These 
reactions are modeled using Michaelis-Menten interactions (best fit parameters are 
listed in the BioNetGen Supplemental File S1). As shown in Figure 3A, this model is 
able to capture the differences in half maximal time well, but it leads to a consistent 
increase in the Hill coefficient for each subsequent tyrosine site in the sequence (A1, B2, 
B1, A2, C2, and C1). This increase in slope, referred to as ultrasensitivity, has been 
described as a characteristic of sequential multi-site phosphorylation previously 
(18,42,43). However, this ultrasensitivity does not match our raw data, which shows a 
consistent Hill coefficient for all sites (Figure 1E) or other data of CD3ζ phosphorylation 
in the literature (17). Additionally, the shape of the model fits does not qualitatively match 
the experimental data. Overall, the modeling results indicate that LCK does not 
phosphorylate CD3ζ sequentially. 
 

 
Figure 3: Comparison of CD3ζ phosphorylation mechanisms. 
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Model analysis for mechanisms of (A) Sequential order phosphorylation, (B) Random order 
phosphorylation, (C) Phosphate dependent phosphorylation rates, and (D) Competitive inhibition 
by unphosphorylated and phosphorylated CD3ζ ITAM sites. (Top) Model fit to experimental data. 
Error represents the residual error between the model and the data for all data sets, including wild 
type, individual tyrosine to phenylalanine mutants, and different liposome concentrations. (Middle) 
Half maximal times of the model predictions. (Bottom) Hill coefficients of the model predictions. 
Black dots indicate the mean values from the sigmoidal fit to the data shown in Figure 1 D and F.  
 
Random order – We next tried a simple mechanism of a random phosphorylation order. 
In this random order model, each of the six ITAM sites interact with LCK independently 
using Michaelis-Menten kinetics (Figure 3B, best fit parameters are listed in the 
BioNetGen Supplemental File S2). With this model structure, each of the sites have 
the same Hill coefficient, which is similar to the experimental data, although the model 
Hill coefficient is slightly higher than that estimated for the data itself. Additionally, the 
random order model has a lower residual error, and thus fits the data better than the 
sequential model. Upon visual inspection, we can see that the random order model 
better captures the overall trends of the data. However, it consistently underestimates 
the level of phosphorylation at early time points and overestimates the gradual approach 
to saturation seen at later time points in the data. Therefore, we continued to explore 
other, more complex, models of random phosphorylation to find a mechanism that could 
better represent our data.  
 
Phosphate dependent – We, therefore, turned to a previously proposed mechanisms in 
the literature, one given by Mukhopadhyay and colleagues and described in the 
introduction. In this mechanism, the addition of phosphate groups to CD3ζ causes an 
increase in the accessibility of unphosphorylated sites (17). In this model, a phosphate 
dependent scaling factor, 𝜆, is used to adjust the Michaelis-Menten constant for each 
ITAM site, 𝐾!,! (see methods). For phosphate groups to increase binding in our model, 
𝜆 , must be greater than one. Using a constant 𝜆  equal to three, predicted by 
Mukhopadhyay and colleagues, the model is not able to fit our data well (Figure 3C, 
best fit parameters are listed in the BioNetGen Supplemental File S3). Although the 
predicted response is able to capture differences in the half maximal time between the 
sites, it does not fit the early or late phosphorylation time courses well. Additionally, the 
Hill coefficients are much higher than those of the data itself, and they show site-specific 
differences. This is because the sites that are phosphorylated later start with higher 
effective Michaelis-Menten constants due to the scaling from sites that are already 
phosphorylated. Upon a wider parameter search, we find that having a 𝜆 value less than 
one will result in a significantly better fit to the data (residual error = 3.72x104), as this 
will increase the KM value for high levels of CD3ζ phosphorylation, allowing for the 
system to slow down at later time points. However, this inversion of the 𝜆 value would 
contradict the biological hypothesis proposed by Mukhopadhyay and colleagues and is, 
therefore, not feasible.  
 
Competitive inhibition – Since the previously described models in the literature do not 
accurately reflect our site-specific data, we sought to identify a new mechanism, which 
could more accurately fit our experimental data while still agreeing with published data, 
including work by Mukhopadhyay et al. Using the random order Michaelis-Menten model 
as a starting point, we modified the equations to address the overestimation at later time 
points. We implemented a mechanism of competitive inhibition, in which the 
unphosphorylated and phosphorylated tyrosine sites could interact to compete with each 
other. Competitive inhibition and product inhibition have been show to play a role in 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/262527doi: bioRxiv preprint 

https://doi.org/10.1101/262527
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
	

other systems with multiple phosphorylation sites (42,44), indicating that it may play a 
role in CD3ζ phosphorylation. 
 
The competitive inhibition model is able to fit the data with the lowest error of all the 
mechanisms we explored (Figure 3D, best fit parameters are listed in the BioNetGen 
Supplemental File S4). Additionally, it is able to capture the differences between the 
half maximal phosphorylation times while maintaining the same Hill coefficient 
throughout the system, matching our experimental data (Figure 1E). We also 
implemented two additional variations of the competitive inhibition model, in which only 
phosphorylated or unphosphorylated CD3ζ tyrosine sites compete for LCK activity. The 
model that only allowed competitive inhibition between the unphosphorylated sites was 
not able to fit the data well (residual error = 1.32x105). On the other hand, only having 
inhibition from the phosphorylated species was better able to fit the data (residual error = 
4.02x104), indicating that product inhibition plays a more significant role in this system. 
Ultimately, the best fit to the data was given by a mechanism including both competitive 
inhibition from the unphosphorylated ITAM sites and product inhibition from 
phosphorylated sites (residual error = 3.47x104). While the effect of competitive inhibition 
from the unphosphorylated sites is less significant than that of the product, 
physiologically, since the sites are in such close proximity, it is clear that all of these 
sites are interacting with LCK together, and this model accounts for that interaction.  
 
To further validate that the competitive inhibition model mechanism gives a better fit than 
the phosphate dependent model, we tested a model structure that combines both of 
these features. This model mechanism did not give a significantly better fit to the data 
than the competitive inhibition model alone. Additionally, the effect of the phosphatase 
inhibition was negligible compared to the competitive inhibition effect, as evidenced by 
the fact that increasing the value of 𝜆 two orders of magnitude did not significantly 
influence the model. Ultimately, we conclude that a model of competitive inhibition by 
both phosphorylated and unphosphorylated sites on CD3ζ is the mechanism that best 
represents the data.  
 
To estimate a final set of physiologically relevant parameter values, the LCK catalytic 
rate and KM value for ITAM site B1, KM,B1, were held constant based on values in the 
literature (28). Additionally, a single scaling factor was used to estimate the inhibitory 
constants such that all of the parameters estimated were identifiable (see methods). The 
final parameter distributions for the 50 best sets are shown in Figure 4. From the 
standard deviation, we can see that the model consistently estimates parameter values 
within a narrow range. The estimated KM values correspond directly with the differences 
in half maximal time between the individual sites. These various parameter sets are able 
to fit all of the data, including CD3ζ mutant and liposome concentration data sets, 
similarly well (Supplemental Figure S4), indicating that the slight variation in the 
phosphorylation rates due to the individual site mutations can be account for by the 
competitive inhibition between sites. The same fits can be achieved by estimating 
different catalytic rates for each ITAM site and keeping the same KM values between the 
ITAM sites as long as the competitive inhibition is still present (results not shown). 
Altogether, the modeling results provide confidence that the mechanism of competitive 
inhibition described here can accurately reflect the way in which LCK is able to 
phosphorylate CD3ζ.  
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Figure 4: Estimated parameter sets. 
Solid bars show the mean and standard deviation of the 50 best fit parameter sets. Shaded bars 
show the value of parameters that were held constant during fitting.  
 
Effects of ITAM mutations can be explained by differences in LCK and 
phosphatase KM parameter values  
 
For this competitive inhibition mechanism of CD3ζ phosphorylation to be validated, it 
must be consistent with other experimental data of CD3ζ phosphorylation. To test this, 
we explored how this new model mechanism is able to reproduce experimental data 
from (17). Since the experimental data from that study indicated that there was no 
significant difference between the phosphorylation states of individual ITAMs, we first 
explored how CD3ζ ITAM mutations affect phosphorylation in the competitive inhibition 
model.  
 
To test this effect, we used the median values of the best fit parameter sets from Figure 
4 and simulated LCK phosphorylation of CD3ζ with single or double ITAM mutations. 
The time course phosphorylation results for the competitive inhibition model are shown 
in Supplemental Figure S5A, while the results of the random order model are shown in 
Supplemental Figure S5B. In comparing these two figures, we see that there is a much 
smaller difference between the individual ITAMs in the competitive inhibition model 
compared to the random order model. This is particularly evident when comparing the 
results of ITAM C to ITAMs A and B in the single ITAM phosphorylation curves (xxC 
compared to Axx and xBx). These small differences in the half maximal time predicted 
by the competitive inhibition model are consistent with the data from (17).  
 
Interestingly, while the competitive inhibition model does show a similar Hill coefficient 
between all of the CD3ζ ITAM mutant curves (Supplemental Figure S5C), there is a 
difference in the half maximal time, with fewer ITAMs resulting in a faster half maximal 
time (Supplemental Figure S5D). This is a similar effect shown by the experimental 
data from (17) in the presence of the phosphatase CD148. In this data, fewer ITAMs 
showed a higher EC50 for phosphatase inhibition. We, therefore, wanted to explore 
which mechanisms of phosphatase activity could allow the model to reproduce these 
results.  
 
Keeping the same mechanism of LCK phosphorylation with competitive inhibition, we 
tried various mechanisms of dephosphorylation using parameters on the same order of 
magnitude as those for LCK phosphorylation. Specifically, we implemented a random 
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order and phosphate dependent model for dephosphorylation. While a few parameter 
sets for the random order dephosphorylation mechanism or phosphate dependent 
dephosphorylation mechanism allowed for the Hill coefficients to be the same between 
all of the CD3ζ mutants, neither gave a clear increase in EC50 for increasing ITAM 
mutations.  
 
On the other hand, with the competitive inhibition dephosphorylation mechanism, we 
were able to identify a defined parameter space that shows the same trends as seen in 
the experimental data for ITAM mutants in the presence of phosphatase inhibition 
(Figure 5, Model BioNetGen Supplemental File S5, equations and parameters 
listed in Supplemental File S6). This parameter space is characterized by 
phosphatase KM values that are lower than those of LCK but follow the same trends in 
terms of the differences between tyrosine sites. A representative parameter set is shown 
in Supplemental File S6. This parameter space does not significantly depend on the 
catalytic rate of dephosphorylation (within an order of magnitude up or down from the 
baseline value) but does require that the competitive inhibition constant of the 
phosphatase (XI) be significantly less than one. Thus, we predict that CD3ζ is 
phosphorylated and dephosphorylated through a mechanism of competitive inhibition in 
which the phosphatase has a stronger binding preference for its substrates than LCK 
and more significant competitive inhibition.  
 

 
Figure 5: Model comparison to literature data of CD3ζ phosphorylation and 
dephosphorylation.   
(A) Predicted phosphorylation profiles for wild type, single, and double ITAM mutant CD3ζ. 

Mutated ITAMs are indicated by (x). The model was implemented using initial conditions 
described in the model from (17): 1 CD3z/µm2, 1000 LCK/µm2, and phosphatase 
concentrations between 10-100,000 molecules/µm2.   

(B) Hill coefficient of the predicted phosphorylation response for each CD3ζ mutant.  
(C) EC50 of the predicted phosphorylation response for each CD3ζ mutant.  
 
CD28 tyrosine sites are phosphorylated more slowly than CD3ζ tyrosine sites 
 
Next, we investigated how the addition of a co-stimulatory domain, like CD28, could 
influence CAR phosphorylation. To test this, we inserted the intracellular domain of 
CD28 at the N-terminal of CD3ζ (28ζ), the same configuration typically used in the CAR 
constructs evaluated in pre-clinical studies and clinical trials (Figure 6A). CD28 has four 
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tyrosine sites, each of which can be phosphorylated by LCK. We again used phospho-
proteomic mass spectrometry to quantify the site-specific phosphorylation levels of 28ζ. 
Supplemental Figure S6A shows the sequence and trypsin cut sites of the CD28 
intracellular domain, in which the second and third tyrosine sites in CD28 (Y206 and 
Y209) are both on the same peptide after trypsin digestion. Therefore, to individually 
measure the phosphorylation rates of these two sites, we made two more proteins with a 
tyrosine to phenylalanine mutation at each of these sites (28ζ-Y206F, and 28ζ-Y209F).  
  
Interestingly, our measurements indicate that Y209 phosphorylation is required for the 
phosphorylation of Y206. Supplemental Figure S6B shows the individual CD28 
tyrosine site phosphorylation time courses for each of the three CD28-CD3ζ recombinant 
proteins. From these graphs, we can see that there is no significant phosphorylation of 
the Y206 site without prior phosphorylation of Y209 (teal lines). In agreement with the 
literature (45), all tyrosine sites on CD28 are phosphorylated more slowly than the CD3ζ 
tyrosine sites. From the Y206F and Y209F mutants, we can see that mutating these 
sites reduces the overall phosphorylation rates of the CD28 protein, with almost no 
detectable CD28 phosphorylation in the Y209F mutant. This indicates that Y209, and to 
a lesser extent Y206, play a significant role in either the recruitment or phosphorylation 
activity of LCK toward CD28. 
 
 

 
Figure 6: CD28 Influences CD3ζ phosphorylation kinetics. 
(A)  Schematic of the His-tagged CD28-CD3ζ recombinant protein.  
(B) Experimental data (circles) and model fit (lines) for CD3z ITAM phosphorylation on wild type 

CD28-CD3ζ, CD28-Y206F-CD3ζ, and CD28-Y209F-CD3ζ. Error bars represent the standard 
deviation of two technical replicates normalized by site-specific standard curves. 

(C) Estimated parameter sets. Solid bars show the mean and standard deviation of the 50 best fit 
parameter sets. Shaded bars show the value of parameters that were held constant during 
fitting.  
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CD28 increases the phosphorylation rate of CD3ζ  
 
CD28 influences the overall phosphorylation rate of CD3ζ, as well as the individual 
phosphorylation rate of site C2. Figure 6B (dots) shows the phosphorylation time 
courses of CD3ζ ITAM sites on the three CD28-CD3ζ recombinant proteins. Wild type 
CD28 increases the overall phosphorylation rate of all CD3ζ tyrosine sites, making it 
difficult to distinguish a specific order of phosphorylation in the 28ζ recombinant protein. 
To explore the mechanism of CD3ζ phosphorylation in the presence of CD28, we 
returned to our model of competitive inhibition. As each of the CD28 mutants show a 
clear change in the kinetics, we fit each of the data sets separately. In order to gain more 
mechanistic insight into the way that CD28 influences the phosphorylation, we attempted 
to independently fit the three types of parameters (i) catalytic rate, (ii) Michaelis-Menten 
constants, and (iii) inhibition constant scaling factor. None of the parameter types were 
able to provide an adequate fit on their own; however, fitting the catalytic rate and 
Michaelis-Menten constants together provided a good fit to the data (Figure 6B, lines). 
This fit was not improved by fitting all three parameters together or by fitting pair-wise 
combinations including the inhibition constant scaling factor.  
 
The presence of CD28 results in a robust increase in the apparent catalytic rate of LCK 
phosphorylation (Figure 6C). This change in the catalytic rate is reduced for the CD28 
mutants. Physiologically, this apparent catalytic rate likely represents a change in the 
local concentration of LCK due to recruitment by CD28. Comparing the changes in 
catalytic rate to those of the KM values, we can see that the change in catalytic rate is 
much more significant, while there are only slight differences in the estimated KM values. 
KM,C2 shows the clearest difference, which accounts for its change in order of C2 now 
being phosphorylated before C1. This parameter fitting data confirms that the main 
mechanism of CD28 on CD3ζ is to increase the catalytic rate of LCK.   
 
Discussion  
 
In this study, we used phospho-proteomic mass spectrometry and computational 
modeling to quantitatively assess the mechanism of CD3ζ and CD28 intracellular 
phosphorylation in a CAR construct. By measuring the phosphorylation of individual 
tyrosine sites on CD3ζ and CD28 over time, we showed that the six sites on CD3ζ and 
four sites on CD28 are phosphorylated at different rates. Individual CD3ζ point mutations 
showed that there is only a small amount of interaction between the CD3ζ ITAM sites, as 
removing one site does not greatly influence phosphorylation at any of the other sites. 
Additionally, attaching CD28 to the N-terminal of CD3ζ increased the overall 
phosphorylation rate of the protein, and particularly increased the relative rate of 
phosphorylation at the C2 ITAM site. 
 
Interestingly, we did not see any effect of acidic lipid concentration on the 
phosphorylation rates of CD3ζ tyrosine sites. Previous studies have reported different 
effects of acidic lipids on CD3-family protein phosphorylation. Several studies have 
indicated that acidic lipids in the plasma membrane can control aberrant phosphorylation 
of CD3ε and CD28 in unstimulated cells through binding of basic residues in the protein 
to acidic lipids in the plasma membrane (39–41). In addition, Hui and Vale saw that ZAP-
70 tandem SH2 domains were able to bind more quickly as CD3ζ became 
phosphorylated in a system containing 10% acidic POPS lipids compared to 0% POPS 
lipids (28). In our system, changing the concentration of acidic POPS lipids on the 
liposome surface (even up to 45% POPS) did not change the rate of phosphorylation of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/262527doi: bioRxiv preprint 

https://doi.org/10.1101/262527
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
	

the protein as a whole or the relative phosphorylation rate order of the individual sites. 
Therefore, we believe that the acidic lipid concentration does not directly affect the 
phosphorylation of CD3ζ; but, as Hui and Vale showed, it may influence the binding 
kinetics of downstream proteins like ZAP-70 by more readily recruiting these proteins to 
membrane regions with acidic lipids.  
 
We constructed a computational model to further investigate the mechanisms that lead 
to CD3ζ phosphorylation. With the model, we were able to identify a robust mechanism 
that accurately reflects the experimental data and calculate site-specific phosphorylation 
parameters, which are difficult to distinguish experimentally. Interestingly, previous work 
to attempt to determine an order for LCK phosphorylation of CD3ζ identified orders that 
differ from each other and from the order indicated by our measurements (16,46). These 
previous studies were performed in solution and with individual tyrosine peptides using 
techniques that limited their physiological relevance. However, in one study, the authors 
did use mass spectrometry to measure full length recombinant protein CD3ζ 
phosphorylation and found that, at intermediate time points, ITAM site A1 was 
significantly more phosphorylated than the other sites, which is consistent with our data 
(46).  
 
To our knowledge, our work is the first study to specifically quantify the individual 
phosphorylation kinetics and phosphorylation mechanism of all six CD3ζ ITAM tyrosine 
sites on the same protein in a two-dimensional lipid-bound setting. We note that this 
recombinant protein system does make some modifications to the endogenous protein 
structure. In this study, we mutated out the CD3ζ tyrosine at site 64, which was shown to 
have no influence on the overall phosphorylation rate on the protein as a whole 
(Supplemental Figure S2). As such, it is unlikely that this mutation significantly changes 
the individual rates in such a way as to keep the total phosphorylation rate constant. One 
change to the protein that may play a more significant role is that the CAR proteins used 
in this liposomal system are not anchored by a transmembrane domain. Interactions 
within the extracellular or transmembrane domains of CAR proteins may play a role in 
the intracellular arrangement of CARs and their accessibility to LCK, thus influencing the 
phosphorylation rates. Despite these limitations, our work provides new mechanistic 
insights into the interplay among CD3ζ ITAM sites and between CD3ζ and CD28.  
 
Our model provides novel insights into the effects of LCK-CD3ζ interactions. Our 
modeling results confirm a random order of LCK phosphorylation of CD3ζ, which 
validates previous studies in the literature based on average CD3ζ protein 
phosphorylation (17). The model also indicates that phosphorylated and 
unphosphorylated tyrosine sites on CD3ζ provide competitive feedback on one another 
and predicts that a similar mechanism is used by phosphatases in this system. This is 
significant as it provides an alternative mechanism to that of phosphate dependence, 
described by (17). Our competitive inhibition model is more robust and is able to 
reproduce a wider set of data. We believe that these two mechanisms are not entirely 
incompatible, as demonstrated by the modeling results including both of these effects 
together. Although, in this system, the effects of the phosphate dependent model were 
masked by the significantly stronger effects of competitive inhibition. Additionally, the 
insights from this modeling work could help inform other hypothesized models of LCK 
interaction with CD3ζ in the literature (14).  
 
CD28 also plays an important role in the CAR structure, both by adding its co-stimulatory 
signaling and modulating the phosphorylation rates of CD3ζ. We showed that adding 
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CD28 to the N-terminal of CD3ζ increases the overall phosphorylation of CD3ζ, and this 
is largely dependent on CD28-Y209. Our computational modeling work indicates that 
this is due to an increase in the effective catalytic rate of LCK. In the model, this 
parameter has the same effect as an increase in the local concentration of LCK. 
Importantly, our predictions agree with published experimental observations, where the 
Y206/Y209 region of CD28 has been implicated in the recruitment of LCK to the 
immunological synapse in endogenous T cells through binding of the SH2 domain on 
LCK (47). Here, we validate the importance of this site as a strong recruiter of LCK and 
its potential role in the strong activation of CD28-bearing CAR proteins.  
 
Interestingly, CD28-Y209 is phosphorylated much more slowly than any of the sites on 
CD3ζ. In fact, when all of the CD3ζ sites are 100% phosphorylated, only about 25% of 
the CD28-Y209 sites are phosphorylated. This leads us to further hypothesize that 
unphosphorylated Y209 plays a role in recruiting LCK to the system. The CD28 
Y206/Y209 sites are surrounded by multiple proline residues, and this proline-rich 
binding domain is likely responsible for LCK recruitment when CD28 Y206 and Y209 are 
unphosphorylated (36). A similar proline-rich region is also thought to help recruit LCK to 
CD3ε and CD2 (35,37). Perhaps this proline-rich Y206/Y209 site on CD28 is able to 
bind and recruit LCK more readily than other sites but, given its lower affinity for the 
catalytic pocket of LCK, it can be outcompeted by other sites on the same protein.  
 
We also used our experimental system to explore the effects of the CD28-dependent 
reordering of CD3ζ ITAM phosphorylation. The data shows that CD28 increases the 
relative rate of site C2. This effect appears to be independent of phosphorylation at 
CD28 site Y209, indicating that another mechanism, such as the folding of the CD3ζ 
protein chain, must contribute to the increased phosphorylation at this particular site. 
More work needs to be done to decouple the binding preferences that lead to LCK 
recruitment from the catalytic activity of the protein-substrate pairs, to better understand 
how CD28 influences the relative order of CD3ζ phosphorylation.  
 
Taken together, this work provides new insights into the activation of CAR-T cells 
through quantitative phospho-proteomic experiments and computational modeling. Our 
model predicts a single mechanism for LCK phosphorylation of CD3ζ ITAMs. In addition 
to producing novel measurements and a modeling framework that explains experimental 
observations, our work generates novel hypotheses regarding protein phosphorylation 
that can inform new experiments. In the future, this mechanistic insight about the CAR 
phosphorylation levels could be applied to better engineer CARs that are phosphorylated 
more quickly and to a greater extent, and hence, more optimally activate T cells for 
therapeutic purposes.  
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Supplemental Information 
 
Figure S1: Standard curves for phosphorylated:unphosphorylated peptide 
intensity normalization.  
Data was collected on the mass spectrometer in three sets, and each set was 
normalized by a standard curve collected at the same time. All of the standard curves 
used are shown here, with each row being used to analyze a separate set of data. Row 
1 was used to analyze the first biological replicate of the wild type ITAM phosphorylation 
on 10% POPS liposomes and the wild type ITAM phosphorylation on 0% and 45% 
POPS liposomes. Row 2 was used to analyze the second biological replicate of the wild 
type ITAM phosphorylation on 10% POPS liposomes as well as the individual tyrosine to 
phenylalanine CD3ζ ITAM point mutants. The third and fourth rows were used to analyze 
all 28ζ proteins, including the Y206F and Y209F mutants.  
 
Figure S2: Comparison of wild type and Y64F CD3ζ phosphorylation rates.  
(A, B) Western blot of CD3ζ phosphorylation time courses. Liposomes bearing ~10,000 
molecules/µm2 of wild type CD3ζ (A) or CD3ζ-Y64F (B) and ~155 molecules/µm2 of LCK-
Y505F were allowed to react in the presence of ATP, as described in the Methods. At 
various times, the reaction was stopped by adding one volume of 10x SDS PAGE 
running buffer (Millipore Sigma) and boiling for 5 minutes. Samples were then analyzed 
by western blotting with anti-phospho-tyrosine antibodies. Blots were analyzed using the 
C-DiGit Western Blot Scanner (Li-Cor Biosciences – U.S.). (C) Quantification of CD3ζ 
phospho-tyrosine western blots. The intensity of the CD3ζ monomer bands (~23 kDa) 
was analyzed using the Image Studio Digits Software (Li-Cor Biosciences – U.S., 
version 3.1). Signal intensities for each protein (wild type and Y64F mutant) were 
normalized by the signal at 60 minutes and a standard sigmoidal curve was fit to the 
data.  
 
Figure S3: Statistical comparison of CD3ζ ITAM site phosphorylation levels.   
(Blue) 10 minute comparison, (Orange) 60 minute comparison. Measured by pairwise 
Tukey t-tests (**** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05, n.s. not significant). 
 
Figure S4: CD3ζ ITAM site phosphorylation model fits. 
(A) The second biological replicate of wild type CD3ζ ITAM protein stimulated on 
liposomes containing 10% POPS lipids, (B) wild type CD3ζ ITAM protein stimulated on 
liposomes containing 0% POPS lipids, (C) wild type CD3ζ ITAM protein stimulated on 
liposomes containing 45% POPS lipids. (D-J) CD3ζ proteins bearing individual tyrosine 
to phenylalanine ITAM point mutations stimulated on liposomes containing 10% POPS 
lipids.  
 
Figure S5: Model predictions for ITAM mutant phosphorylation profiles.  
(A) Predicted phosphorylation profiles for wild type, single, and double ITAM mutant 

CD3ζ with the competitive inhibition model. Mutated ITAMs are indicated by (x). 
Model was implemented using the optimal parameters from the model fitting shown 
in Figure 3D with initial conditions of 20 LCK/µm2 and 2000 CD3z/µm2. 

(B) Predicted phosphorylation profiles for wild type, single, and double ITAM mutant 
CD3ζ with the random order model. Mutated ITAMs are indicated by (x). Model was 
implemented using the optimal parameters from the model fitting shown in Figure 3B 
with initial conditions of 20 LCK/µm2 and 2000 CD3z/µm2. 

(C) Hill coefficient of the phosphorylation response predicted by the model for each 
CD3ζ mutant in the competitive inhibition model. 
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(D) Half maximal time of the predicted phosphorylation response for each CD3ζ mutant 
in the competitive inhibition model.  

 
Figure S6: CD28 phosphorylation profiles.  
(A) Sequence of CD28 intracellular domain with trypsin cut sites denoted. Individual 

tyrosine sites are labeled in different colors.  
(B) Experimental data for CD28 tyrosine site phosphorylation on wild type CD28-CD3ζ, 

CD28-Y206F-CD3ζ, and CD28-Y209F-CD3ζ. Error bars represent the standard 
deviation of two technical replicates normalized by site-specific standard curves. 

 
File S1: RandomOrder.bngl BioNetGen file of CD3ζ LCK sequential order 
phosphorylation model. Mean optimal parameter sets are listed in this file.  
 
File S2: SequentialOrder.bngl BioNetGen file of CD3ζ LCK random order 
phosphorylation model. Mean optimal parameter sets are listed in this file. 
 
File S3: PhosphateDependent.bngl BioNetGen file of CD3ζ LCK phosphate dependent 
phosphorylation model. Mean optimal parameter sets are listed in this file. 
 
File S4: CompetitiveInhibition.bngl BioNetGen file of CD3ζ LCK competitive inhibition 
phosphorylation model. Mean optimal parameter sets are listed in this file. 
 
File S5: CompetitiveInhibition_phosphatase.bngl BioNetGen file of CD3ζ LCK 
phosphatase competitive inhibition model. Mean optimal parameter sets are listed in this 
file. 
 
File S6: LCK-phosphatase competitive inhibition model. List of the model parameters 
and equations used to simulate the competitive inhibition mechanism of LCK and 
phosphatase interaction with CD3ζ.  
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