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ABSTRACT  

Accurate and robust quantification of drug effects is crucial for identifying pharmaceutically 

actionable cancer vulnerabilities. Current cell viability-based measurements often lead to biased 

response estimates due to varying cell growth rates and experimental artifacts, including 

background noise and cell seeding discrepancies, that explain part of the inconsistency in high-

throughput screening results. To address these limitations, we developed an improved drug 

scoring model, normalized drug response (NDR), which accounts for differences in cell growth 

rates and experimental noise, and considers both positive and negative control conditions to 

characterize drug-induced effects. We demonstrate an improved performance of NDR compared 

to existing metrics in assessing drug responses of cancer cells in various culture models. Notably, 

NDR reliably differentiates a wider spectrum of drug behavior, including lethal, growth-

inhibitory and growth-stimulatory modes, based on a single viability readout. The method will 

therefore substantially reduce the time and resources required in cell-based drug sensitivity 

screening. 
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INTRODUCTION  

Cell-based compound profiling plays an important role both in basic biomedical research and in 

drug discovery. The availability of a wide range of approved and investigational compounds 

provides an exciting opportunity for systematic drug positioning and repurposing applications, 

where cellular screening based on phenotypic readouts have become crucial in establishing novel 

therapeutic strategies against cancers1–4. Quantitative assessment of drug efficacies in such large-

scale screening efforts is often based on dose-response measurement datasets, where hundreds or 

thousands of compounds are profiled at several concentrations in a cohort of cancer samples or 

cell types.  

Single parameters or summary metrics based on the end-point dose-response curves are 

commonly being used to score drug responses in high-throughput studies2,5–8. However, due to 

their dependence on the end-point measurement, these metrics are bound to have systematic 

differences when applied to different cell types. For instance, fast-growing cells exhibit different 

response patterns than slow-growing ones, and this difference may be driven by the cell state 

bias rather than the actual selective drug response. In addition, variations in culture conditions 

and seeding density also contribute to differences in drug sensitivity measurements9.  

In the seminal NCI-60 tumor cell line screening project10,11, multiple parameters, such as half- 

growth inhibition (GI50), total growth inhibition (TGI), and half-lethal concentration (LC50), have 

been applied to control for the varying growth rates of cells under normal conditions. Recently, a 

growth rate-based metric (GR) was developed to take into account the variable rate of dividing 

cells12. These approaches are solely based on absorbance/fluorescence differences between drug-

treated wells and negative controls, whereas they neglect the information about background 

noise that can be extracted from positive control. 

Variability in background noise typically occurs due to artifacts in the assay or differences in the 

measurement system, in addition to the seeding differences, signal bleed-through, or other 

experimental factors, and therefore needs to be considered for accurate and consistent drug effect 

scoring. The normalized percent inhibition (PI) metric uses end-point readouts of the positive 

control as a proxy for such background noise to quantify the variability between 

measurements2,13,14. This metric, however, does not model the dynamic changes that occur from 

the start of an experiment after treatment. Along with the drug-treated condition and negative 

control, the positive control readouts can also vary over time and across experimental conditions, 
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which might partly explain the inconsistencies observed in large-scale drug response 

profiling8,9,15,16. Therefore, there is a need for a quantification model that normalizes for the 

effects of background noise that may vary between measurements and includes model 

parameters that can be easily interpreted in terms of the experimental and biological factors. 

To address these limitations, we devised an improved normalized drug response (NDR) metric 

that models the growth rates not only in the drug-treated cells but also in both negative and 

positive control conditions to capture a wide spectrum of drug effects. The metric makes use of 

both the start and end-point of a drug experiment to model the dynamics of experimental 

variability and background noise across various measurement setups. In this study, we show that, 

compared to the other metrics, NDR significantly improves the consistency across measurements 

and it reliably captures the different classes of drug behavior. Further, based on its improved 

drug-response curve fitting in various cell growth rates or tissue origins, NDR shows better 

reproducibility than the existing metrics. We further introduced a summary score (DSSNDR), and 

show how it improves the accuracy of drug effect classification. The application of this metric to 

classify drug-responses based on a single viability readout and using a relatively simple 

measurement setup should make it useful especially in large-scale drug screening efforts. 

 
RESULT 

Development and benchmarking of the NDR metric 

To tackle the experimental challenges posed by high throughput screening, including assay-

dependent background noise and uneven cell seeding, we devised the normalized drug response 

(NDR) metric, which is based on the differences in signals measured at the start and the endpoint 

of an experiment (Fig. 1a). The unique aspect of the NDR is that it models also the dynamic 

behavior of the positive control, which reflects the sources of experimental variability.  

To systematically assess the performance of NDR, we simulated its outcomes under a fixed set 

of control conditions in various growth rates mimicking the drug-treated conditions (Fig. 1b). 

More specifically, we first calculated fold changes for drug-treated and control conditions at a 

specific time point (here, 80 h), and then used these fold changes to calculate the NDR-based 

drug response estimates. We found that the NDR metric captures a wider spectrum of possible 

drug-induced effects, ranging from complete cell death to growth-stimulatory effect (different 

shades of gray in Fig. 1c).  
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Figure 1: A schematic representation of the NDR metric in various drug-treated and control conditions, 
assuming that the negative control has no effect and the positive control is 100% lethal. (a) Dynamic 
change in readout under three simulated settings that reflect negative control condition (green), drug-
treated condition (blue), and positive control condition (red). The expected positive control corresponds to 
the ideal scenario in which the readings of positive control stays at 0, whereas the observed positive 
control corresponds to the real scenarios in which the readings of positive control is often non-zero. 
Computation of NDR is demonstrated at a specific time point (t = 80 h). (b) Dynamic change in readout 
under simulation settings that reflect various drug-induced growth rates. The lower growth rates 
correspond to highly effective drugs or drug concentrations (dark shades of blue). Green and red traces 
show the readouts from negative and positive control conditions, respectively. (c) NDR metric computed 
for different drug-induced growth rates under fixed positive and negative control conditions. The 
spectrum of drug-induced effects as captured by the NDR is illustrated in different shades of gray. 
 

To further investigate how the NDR metric performs under multiple experimental drug-treated 

conditions (Fig. 1b), the growth rate of negative control was kept constant while the positive 

control background was varied to mimic differences in measurement setups (Fig. 2a). For 

comparison, we also calculated the PI-based and GR-based responses. We found that the PI and 

NDR responses vary accordingly (Fig. 2b and 2d), indicating that the same readouts in drug-

treated condition can lead to different responses, depending on the readouts of the positive 

control. However, PI had narrower spectrum compared to that of NDR. On the other hand, the 

GR metric did not capture these changes in the positive control (Fig. 2c), hence ignoring an 

important aspect of drug profiling assays. 
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Figure 2: The performance of the NDR metric in various drug-treated and control conditions, assuming 
that the negative control has no effect and the positive control is 100% lethal. (a) Dynamic change in 
readout for different growth rates in positive control (shades of red) and constant growth in negative 
control (green). (b) Percent inhibition (PI) values computed for the conditions shown in Figure 1b and 
Figure 2a. (c) Growth rate (GR) values computed for the conditions shown in Figure 1b and Figure 2a. (d) 
NDR metric computed for the conditions shown in Figure 1b and Figure 2a. (e) Dynamic change in 
readout for different growth rates in negative control (shades of green) and constant growth rate in 
positive control (red). (f) PI metric computed for the condition shown in Figure 1b and Figure 2e. (g) GR 
metric computed for the condition shown in Figure 1b and Figure 2e. (h) NDR metric computed for the 
condition shown in Figure 1b and Figure 2e. 
 

To study the performance of the NDR in cells with distinct growth characteristics, we next kept 

the positive control background constant while the negative control values were altered to mimic 

differently growing cells (Fig. 2e). We found that the PI responses were very sensitive to such 

changes in negative control (Fig. 2f). In contrast, even though both the GR and NDR reasonably 

accounted for the changes in negative control (Fig. 2g and 2h), NDR remained more stable, 

especially in the simulated slow growth conditions (Fig. 2h). In both simulated conditions, the 

NDR metric captured the wide spectrum of drug effects, even in cells with slower division time. 
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These improvements are due to its capability to take into account for the differences in the 

positive control. 

 

NDR improves consistency in large-scale drug screening 

To investigate the behavior of NDR in drug profiling experiments, we screened MCF-7 and 

MDA-MB-231 cells in two biological replicate experiments, each with two plates containing 131 

oncology drugs in five different concentrations (Supplementary Table S1; see Methods). Since 

the preparation of single cell suspension for MCF-7 is technically challenging and often 

compromises its uniform seeding, there were marked differences in the distributions of 

luminescence intensity readings (RealTime-Glo, Promega) at the start of measurement both 

within and between the two biological replicate drug screens (Supplementary Fig. 1).  

The NDR, GR and PI-based responses were computed for all the wells across the four plates in 

both cell lines separately. Figure 3 shows the consistency of NDR between replicates for a plate 

containing the same drugs as an example in MCF-7 cells. To assess the consistency across 

replicates, we calculated the absolute difference between the response levels at the corresponding 

wells of each replicate. The distribution of such differences with the NDR metric is closer to zero 

compared to those of PI and GI (Fig. 3b; p< 0.005, Wilcoxon rank sum test), implying its 

improved consistency over replicates. Finally, based on the Z’-factor17 as a quality control 

measure (Fig. 3c), we conclude that the drug response quantification using NDR effectively 

reduces technical differences between the measurements, and thus improves the consistency over 

replicated measurements. The differences between the response levels of the corresponding wells 

of each replicate of MDA-MB-231 cells are shown in Supplementary Fig. 2. 

We next investigated the consistency of NDR for different cell seeding densities, using Mia-

PaCa-2 cells seeded differently at the baseline (before treatments). Notably, we found that the 

NDR responses were more consistent between two drug profiling experiments, in which 250 and 

750 cells were seeded per well at the beginning of the experiment (see Supplementary Fig. 3). To 

further investigate the behavior of NDR in drug profiling experiments at various end time points, 

we calculated the difference between the response levels in Pa02C cells screened against 131 

oncology drugs at 4 different time points, namely 20h, 28h, 51h and 72h (see Methods). We 

found the distribution of NDR-based differences was closer to zero, compared to those of PI and 
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GR metrics (p<0.005, Wilcoxon rank sum test; Supplementary Fig. 4), implying an improved 

consistency of NDR over multiple time points. 

 

 
Figure 3: Consistency of the NDR results. (a) PI, GR and NDR values for each well illustrated in plate 
layouts of 2 replicate drug screens (Run1 and Run2) in MCF-7 cell line. For comparison purposes, the PI 
values have been normalized to range between -1 and 1.5.  (b) Distribution of absolute difference of 
identical well positions of the replicate plates. A consistent replicate experiment is expected to result in an 
absolute difference close to zero. The NDR distribution is closer to zero compared to the PI and GR 
metrics. The NDR distribution differ significantly from the PI and GR distributions (p<0.005; 
Kolmogorov-Smirnov test of equality of distributions). (c) Z’-factor for each plate and each replicate 
experiment. A high-quality assay is expected have a Z’-factor above 0.5 (dotted horizontal line). 
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NDR captures both the toxicity and viability readouts 

To further examine the broader behavior of the NDR in drug profiling experiment, we screened 4 

additional cancer cell lines against the same set of 131 oncology drugs. The 3 breast cancer cell 

lines, MDA-MB-231, MDA-MB-361, and HDQ-P1, are known to have different metabolic 

activity that mimics their doubling times7,18. The pancreatic cancer cell line, MIA PaCa-2, was 

chosen to represent a different tissue type19. Furthermore, all these cell lines have been 

extensively profiled as disease models in chemo-sensitivity studies20–24, providing additional 

information to validate our findings. In agreement with the reported metabolic activity of these 

cell lines, we observed marked differences in the fold changes of the readouts in the control 

conditions (Supplementary Fig. 5). 

To validate the reliability of the drug response results, we also measured an independent 

cytotoxicity end-point readout (CellTox Green, Promega). For all the cell lines tested, NDR at 

each drug concentration decreased with the increasing toxicity readout for most of the drugs, 

suggesting that the NDR relates closely to the toxicity measurements. As expected, the average 

NDR-based viability was negatively correlated with the average toxicity readout (p < 0.005; Fig. 

4a). 

The results from 4 representative compounds with different mechanism of action and differential 

response across the 5 cell lines illustrate the resemblance of NDR with toxicity readouts (Fig. 

4b). Filanesib, a kinesin spindle protein inhibitor induced a selective toxic response towards 

MIA-PaCa-2 and MDA-MB-361. The toxicity readings of filanesib in MIA PaCa-2 and MDA-

MB-361 cell lines were well-differentiated with NDR but not with the PI-based response. Based 

on NDR, filanesib treatment seems to only induce cytostatic effect on MIA-PaCa-2 cells, 

whereas cell death readout suggests that it induces cell death as well. Even though filanesib 

treatment halted the cell division of MIA-PaCa-2 cells, there remained some degree of cell 

division, which was balanced out by the cell death, hence imitating the cytostatic effect. This was 

further confirmed by imaging-based drug effect assessment (see Methods section and 

Supplementary Fig. 6). 
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Figure 4: Relationship of NDR with independent toxicity readout (CellTox Green). (a) Scatter plots of 
the average viability values and independent toxicity readouts of drugs across 5 cell lines in ascending 
order of their doubling times (Supplementary Table 2). Coefficient of determination (R2) was calculated 
using Pearson’s correlation. ***p < 0.005, Fisher's z-transformation. (b) Examples of viability-based PI, 
GR and NDR results, and percent toxicity responses based on CellTox Green readout across the 5 
concentrations of 4 representative drugs. The colors correspond to the different cell lines in panel (a). 
Similar agreement between the viability and toxicity readouts for all the other drugs are illustrated in 
Supplementary File 1. 
 
Omacetaxine, a protein synthesis inhibitor, was toxic in all cell lines except for MCF-7. This 

selective behavior was missed by the PI-based readout. Furthermore, NDR was also able to 

capture the cytostatic behavior of omacetaxine against MCF-7 cells, which could neither be 

inferred from PI-based viability or toxicity measurements. Tipifarnib, a farnesyltransferase 
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inhibitor, was largely non-toxic to all the cell lines, which was clearly reflected with the NDR 

but not the PI readout. Finally, pevonedistat, a NEDD8 activating enzyme inhibitor was 

cytotoxic only to the MDA-MB-361 cells, which was reflected in the NDR readout. In this case, 

NDR also revealed a growth-stimulatory (enhanced metabolic-activity) effect in the HDQP1 cell 

line. Based on these results, we conclude that NDR captures the strikingly different behavior of 

different drugs. 

 

NDR improves drug response quantification in large scale screening  

To quantify the drug response for each drug, we generated dose-response curves based on NDR 

at 5 concentrations using drc R-package25.  Based on visual inspection of the dose-response 

curves, we found a consistent improvement in the curve fitting across all 5 cell lines when 

compared to the GR- and PI-based responses (exemplified in Fig. 5c). To quantify the curve-

fitting behavior, we calculated the root mean squared distance (RMSD) between the observed 

and estimated dose-response curves for all the drugs with non-zero response in at least 1 of the 5 

concentrations (illustrated in Supplementary Fig. 7). 

The average RMSD calculated using NDR was lower in the fast-growing cell lines (MIA PaCa-

2, MDA-MB-231 and MCF-7), when compared to both the GR and PI-based responses (p < 

0.005, Wilcoxon rank sum test; Fig. 5a). Notably, in the slow growing cell lines (HDQP1 and 

MDA-MB-361), the GR normalization led to increased RMSD values compared to those 

obtained from the NDR and PI. The simple PI performs better than NDR in the MDA-MB-361 

cells, which is the slowest growing cell line among the cell lines tested here. This suggests that in 

case of slow growing or non-dividing cells (during experimental time), even PI provides 

adequate responses provided there is not considerable differences in cell seeding uniformity. 

However, the PI normalization for these cells is bound to be less effective in detecting cytostatic 

effects (see Supplementary file 1).  

In dose-response curves, the lowest drug concentration is usually expected to have minimal or no 

effect, and any deviation from this baseline behavior can eventually bias the drug sensitivity 

parameters, such as IC50 or EC50 values. We observed that the NDR responses at the lowest drug 

concentration consistently was closer to the negative control level when compared to the GR and 

PI-based responses. To quantify this, we computed the distance of lowest concentration response 

from negative control viability value (100 for PI, 1 for GR and NDR), termed as baseline 
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distance (illustrated in Supplementary Fig. 7). The variability of the baseline distance with NDR 

in the fast-growing cell lines was significantly lower than that obtained using GR and PI (p < 

0.005, F-test for difference in variances; Fig. 5b). In the slow-growing cells, GR led to an 

increased variance of the baseline distances when compared to NDR or PI (see Fig. 5c for 

representative examples). We note that there were also drugs with low baseline distance but high 

RMSD values, implying that the lower baseline distance does not necessarily result in a lower 

RMSD values (see Supplementary Fig. 8).  

Similar NDR-driven improvements in the RMSD values and baseline distances were also found 

when analyzing dose-response curves of MDA-MB-231 in two external datasets, one from 

Cancer Therapeutics Response Portal (CTRPv2)26,27 and the other from Genomics of Drug 

Sensitivity in Cancer (GDSC1000)28 (Supplementary Fig. 9). Furthermore, the NDR metric 

improved the dose-response curve fittings of 131 drugs screened against freshly extracted 

mononuclear cells from the bone marrow of an AML patient (Supplementary Fig. 10), 

demonstrating its benefits also for functional profiling-based precision medicine. 
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Figure 5: Improved curve fitting with NDR. (a) RMSD error computed between the estimated and 
observed dose-response curves obtained using the PI, GR and NDR metric in the 5 cell lines. Only drugs 
that showed non-zero values at least in 1 of the 5 concentrations for all the metrics were considered. **p< 
0.05 and ***p< 0.005; Wilcoxon rank sum test for the difference in location. (b) Baseline distance from 
zero response computed at the lowest drug concentration using the PI, GR and NDR metric in the 5 cell 
lines. **p< 0.05 and ***p< 0.005; F-test for the difference in variance. (c) Dose-response curves obtained 
using PI, GR and NDR metric for 4 representative drugs that show extreme differences in curve fittings. 
The representative drugs illustrate both the improvement in curve-fittings as well as decrease in baseline 
distances. 
 
NDR-based DSS distinguishes a wide spectrum of drug effects 

After confirming that the NDR enables reliable quantification of different drug effects, we 

computed the NDR-based DSS (DSSNDR; see Methods) that summarizes the dose-response 

relationships over the whole concentration range into a single response score. As expected, the 

distributions of DSSNDR showed selective efficacy of only a few drugs in a particular cell line 

(Supplementary Fig. 11). We next investigated whether DSSNDR values could be used to 

uniquely identify the drug-class of all drugs in the screening panel. 

As a ground-truth, we first classified the effects of the drugs into four groups, namely, lethal, 

sub-effective, non-effective and growth-stimulatory, based on their fold change of the viability 

readouts at their highest drug concentration in the 5 cell lines (see Fig. 6a for MDA-MB-361; 

Methods). The viability readout of this classification showed a good overall agreement with the 

independent toxicity readout (Fig. 6b). More specifically, at higher concentrations of lethal 

drugs, the viability readout dropped while the toxicity readout increased. This behavior of the 

two readouts was weaker for sub-effective drugs that comprise either less toxic (not lethal) or 

cytostatic drugs. As expected, the toxicity readout barely changed for non-effective drugs and 

growth-stimulatory drugs. The viability readout, on the other hand, changed negligibly in 

response to non-effective drugs, but increased at higher concentrations of growth-stimulatory 

drugs. We further confirmed that the lethal class included drugs that are known to be toxic in 

these cell lines20,21,29, for example, proteasome and HDAC inhibitors (see Supplementary Table 

S2). Furthermore, most of the anti-mitotic and kinase inhibitors were classified as sub-effective 

(Supplementary Table S2).  
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Figure 6: DSSNDR reliably classifies drugs based on their biological effects. (a) Classification of drugs 
based on the difference between the fold change at final concentration (red) and the fold change in the 
negative control (green) in MDA-MB-361. The drugs with fold change lower than 1 in the final drug 
concentration are classified as “Lethal”. The drugs with fold change between 1 and 2 standard deviation 
(SD) below the growth rate in the negative control (DMSO) are classified as “Sub-effective”. The drugs 
with fold change greater than 2 SD of growth rate in DMSO are classified as “Growth-stimulatory”. The 
remaining drugs, with fold change similar to that in DMSO, are classified as “Non-effective”. (b)  The 
class-specific drug behavior quantified by the average NDR-based viability readout (blue) and average 
toxicity readout (red) in MDA-MB-361. (c) DSSNDR levels of drugs in the four classes. ***p<0.005, 
Wilcoxon rank sum test. 
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The four drug classes showed distinct DSSNDR distributions in MDA-MB-361 cells (p <0.005, 

Wilcoxon rank sum test; Fig. 6c). The lethal drugs were well-separated from the sub-effective 

drugs based on their DSSNDR values. Furthermore, most of the non-effective drugs had a DSSNDR 

close to zero, whereas the growth-stimulatory drugs tend to have a negative DSSNDR. Similar 

distributions for the 4 drug classes were observed when we merged all the drugs across all the 

cell lines (Supplementary Fig. 12a). When comparing the NDR-based findings with those 

computed using the GR and PI metric, we found that even though the distribution of DSS looks 

similar, the overlap between the distributions of adjacent drug classes is smallest when using 

NDR (Supplementary Fig. 12). This suggests that it is possible to reliably infer the effect of a 

drug solely based on its DSSNDR value, reducing the requirement of other validation experiments. 
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DISCUSSION 

In vitro cell-based drug screening is commonly carried out as an end-point cell count surrogate 

assay, and such end-point drug response profiling is being widely applied to quantify the 

sensitivity of drugs in cancer cell lines or patient-derived samples. In these screening efforts, 

robust dose-response curve fitting is pivotal for defining accurate drug vulnerabilities. Due to the 

experimental limitations and noise inherent to high throughput settings, however, it is often 

difficult to obtain smooth dose-response curves using the existing measures, which results in 

significant number of false positive and negative hits. The experimental errors typically originate 

from inconsistent seeding of cells, or their differing growth rates, as well as from different 

readouts, among other technical issues. Due to the scale of these profiling experiments and their 

running costs, it is undesirable and many times even impossible to repeat the whole experiment, 

hence calling for a response metric that effectively normalizes for such experimental errors and 

reduces the false hit rates.  

In this study, we developed and carefully tested a novel NDR metric that reduces the effects of 

experimental inconsistencies, leads to more accurate dose-response curves, and therefore 

improves the reliability of drug profiling results. The metric is based on the comparison of the 

end point readout with that of the initial state of an experiment in the drug-treated condition, as 

well as taking into account both negative and positive control conditions. By means of 

systematic simulations, we first demonstrated how the NDR reliably captures the wide spectrum 

of drug responses under different control conditions. The other metrics, such as GR, do not 

account for the positive control condition, and therefore it fails to capture drug responses in 

slow-dividing cells. This is particularly relevant in experimental models based on primary cells 

or patient samples, which generally grow slower than established cell lines. In studying such 

responses, the NDR was able to capture the various drug effects more accurately, as 

demonstrated by the simulations (Figs. 1 and 2) and in a proof of concept experiment on AML 

patient sample ex vivo drug screening (Supplementary Fig. 10).  

The availability of real-time viability measurement reagents made it possible to test the NDR 

metric in large-scale drug screening setups. MCF-7 replicate drug screening results suggested 

that NDR effectively reduces the experimental variability, and thus significantly improves the 

consistency between different measurements (Fig. 3). This will offer improved solutions to the 

ongoing debate on the inconsistencies in drug response profiling8,15,16. While the existing drug 
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response calculations are prone to the variability between measurements, this improvement is 

likely to lead to more reliable comparison of drug response quantifications across different 

samples as well as across different measurement assays. The NDR might also become valuable 

in 3D-culture models or clonogenic drug screening assays, where uniform cell seeding is crucial. 

The reliability of NDR responses computed for 131 drugs across 5 cell lines with different 

doubling times was further validated by a parallel cell toxicity screen (Fig. 4). The higher 

consistency of NDR over the other metrics was also evident in the improved drug-response curve 

fittings (Fig. 5). As error in a single data point of a dose-response curve fit can result in 

overestimation of drug response, these results demonstrate that the NDR metric does not only 

improve curve fitting and the baseline quantification of drug effects, but consequently also 

reduces false hit callings in large-scale screenings. These enhancements, which were also 

confirmed on the external CCLE and GDSC datasets, highlight its wide-applicability in various 

large-scale screening datasets. The improved results in slow dividing patient-derived primary 

cells further support the usage of NDR as an accurate metric in the emerging functional 

profiling-based personalized medicine applications. 

Viability/metabolic-activity measurements are classically used to assess the drug effect in large-

scale screenings. Even though metabolic activity is considered as representative of the number of 

cells, reduction in viability does not always correspond to lethality21; rather, it may instead 

represent cytostatic, or anti-metabolic effects. Pioneering the concept, we showed here that 

NDR-based DSS can be used to infer the drug behavior from a single viability measurement. 

More specifically, we showed that based on DSSNDR values, one can reliably classify the drugs 

according to their biological effects: lethal, sub-effective, non-effective and growth-stimulatory 

(Fig. 6). This has a significant impact on large-scale high throughput drug profiling efforts as it 

will notably reduce the cost and time of further validation for cytotoxicity. Moreover, detection 

of growth-stimulatory drugs is very important in precision medicine as it provides insights into 

the cellular mechanism of specific cells, tissues or diseases. As drug resistance against 

monotherapies has directed oncology research towards combinatorial approaches, identifying 

growth-stimulatory targets will be valuable for deciphering the disease specific resistance driving 

pathways, and thereby devising novel and effective drug combination strategies.  

One of the main limitations of metabolic readout-based viability measurement is its inability to 

distinguish the concurrent cell growth and cell death since the estimated cell growth with 
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metabolic readout is the sum of growing and dead cells. As a result, metrics implemented for 

high-throughput settings, such as NDR, capture only the beginning and end of a given treatment 

period, but not the complex treatment dynamics. This issue can be addressed utilizing time-lapse 

high-content image-based profiling techniques, such as drug-induced proliferation (DIP) 

metric34. Even though such imaging methods can accurately measure the drug–induced effects, 

however, their translation to high-throughput drug profiling setting still remains a major 

challenge because of need of continuous imaging. Furthermore, as the DIP approach involves 

genetically engineered fluorescently labeled cells, its applications to the primary cells or patient 

samples is not straightforward. More recently, a scalable time-lapse analysis of cell death 

kinetics (STACK) method was introduced to quantify the kinetics of compound-induced cell 

death at the cell population level35. However, this method is based on a single control only. In the 

future, it would be therefore interesting to combine the benefits of NDR with the STACK-based 

methodology. 

Based on the present results, we conclude that NDR accurately portrays a widened spectrum of 

drug-induced effects, as well as results in improved consistency across different measurement 

systems in high-throughput drug profiling setting. The calculation of NDR requires only a minor 

modification in the widely-used experimental setups for high-throughput drug profiling, making 

the NDR-based drug response quantification broadly feasible and beneficial in a wide range of 

applications with cell-based chemical screening.  
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MATERIAL AND METHODS 

Cell lines 

The cell lines used in this study were human breast cancer cell lines MDA-MB-231, MDA-MB-

361, HDQ-P1, MCF-7 and pancreatic ductal adenocarcinoma MIA PaCa-2 (details in 

Supplementary Table S3). All breast cancer cell lines were purchased from ATCC and MIA 

PaCa-2 was a generous gift from Professor Channing Der (University of North Carolina at 

Chapel Hill, NC, USA).  All cells were maintained in DMEM with 2.2 g/L NaHCO3 (Life 

Technologies) at 37°C with 5% CO2 in a humidified incubator, according to provider’s 

instruction. 

 

Drug Screening   

131 oncology compounds library (Supplementary Table S1) was screened against the cell lines 

using Drug Sensitivity and Resistance Testing (DSRT) platform, as previously described2,21 with 

a slight modification. In brief, compounds were added in 384-well plates (Corning) in 5 different 

concentrations covering 10,000-fold concentration range using an Echo 550 Liquid Handler 

(Labcyte). 0.1% dimethyl sulfoxide (DMSO) and 100 µM benzethonium chloride were used as 

negative and positive controls respectively. The pre-dispensed compounds were first dissolved in 

5 µl of complete medium per well containing RealTime-Glo (1:1000 final volume, Promega) and 

CellTox Green (1:2000 final volume, Promega) and then 20 µl of cell suspension per well was 

added maintaining the required final cell densities as listed in Supplementary Table S1. As initial 

point, after 1 h of seeding and as end point, after 72 h of incubation, toxicity (CellTox Green, 

fluorescence) and viability (RealTime-Glo, luminescence) of the treated cells were measured 

using a PHERAstar FS plate reader (BMG Labtech). 

AML patient bone marrow sample was obtained after informed consent with ethical committee 

approval (No. 239/13/03/00/2010, 303/13/03/01/2011) and in accordance with the Declaration of 

Helsinki. Primary AML cells were freshly isolated from patient bone marrow sample, maintained 

in culture overnight and ex vivo DSRT was performed the next day against same 131 compound 

library similarly as described earlier.  
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Drug effect assessment with imaged-based readout 

MIA-PaCa-2 cells expressing nuclear mKate2 (Nuclight Red) were treated with different 

concentrations of filanesib in five replicates. The experiment was carried out in 384 well plate 

seeding 750 cells per well. CellTox Green (Promega) was used to monitor the number of dead 

cells. Changes in the numbers of live (red nuclei) and dead (green nuclei) cells were followed for 

72h (every 6h) in IncuCyte (Sartorius). 

 

Drug response metrics   

NDR metric  
The normalized drug response (NDR) is computed as: 

𝑁𝐷𝑅 = max	 )−1,
1 − 2./012(40/567891:;<=>) /012(40/567891:@ABCD<E⁄ )G

1 − 2./012(40/567891:HI>CD<E) /012(40/567891:@ABCD<E)⁄ G
J 

where the fold change between the readouts at start and end-point of the measurement is given 

as: 

foldChangeTUVWV =
End_ReadoutTUVWV
Start_ReadoutTUVWV

 

The log2 scaling is used merely for the visualization and comparison purposes. The NDR 

calculation is valid for any other logarithm base constants, which will result in quantitatively 

similar results. To make the NDR calculation less sensitive against the effect of outliers in the 

control conditions, we have used median values of the fold changes in our calculations. More 

specifically, the median of readings for BzCl were used as positive control and the median of 

readings for DMSO were used as negative control. From the raw data file 

‘RawData_allCellLines.csv’ (provided at https://github.com/abishakGupta/NDR_results) the 

readings of xBzCl and a drug combination (cytarabine/idarubicin) were ignored in the current 

analysis. 

 

Based on the NDR values, the drug effects can be classified as (see Figure 1): 

𝑁𝐷𝑅 = _

> 1, Proliferative	effect																																						
= 1, Normal	growth	as	in	Negative	control		
= 0, Complete	growth	inhibition																					
= −1,								Complete	killing																																								
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GR metric  
The growth rate (GR) metric, based the work of Hafner and colleagues12, is computed as: 

GR = 2.mUn2(40/567891:;<=>) mUn2(40/567891:oI>_pD<E⁄ )G − 1, 

where the fold change between the readouts at start and end of the measurement is given as: 

foldChangeTUVWV =
End_ReadoutTUVWV
Start_ReadoutTUVWV

 

 

PI normalization 

The percent inhibition (PI), based on the endpoint readouts, is computed as: 

PI =
End_Readoutrsn_Ttum − End_ReadoutWuvn
End_Readoutrsn_Ttum − End_ReadoutwUx_Ttum

 

 

DSS calculation 

Drug sensitivity score (DSS) is a quantitative scoring approach based on the continuous model 

estimation and interpolation to effectively summarize the complex dose-response relationships6. 

More specifically, for a normalized drug-response R(x) at concentration x, the integral response I 

over the dose range that exceeds a given minimum activity level (Amin) is calculated analytically 

as a continuous function of multiple parameters of the non-linear response model, including its 

slope at IC50 as well as the top and bottom asymptotes of the response (Rmax and Rmin). Formally, 

the DSS is computed as 

𝐷𝑆𝑆	 ∝ 	 { 𝑅(𝑥)𝑑𝑥 = 𝐼(𝐼𝐶��, 𝑆𝑙𝑜𝑝𝑒, 𝑅��9, 𝑅�8�, 𝐴��9)
�����H

 

For the DSS-related analyses, we used the DSS R-package freely available at 

https://bitbucket.org/BhagwanYadav/drug-sensitivity-score-dss-calculation. As the input to DSS 

computation R-package, we scaled the metrics as: 

𝑃𝐼��8/:5 = 𝑃𝐼	 × 	100 

𝐺𝑅��8/:5 = 0.5	 ×	 (1 − GR)	× 	100 

𝑁𝐷𝑅��8/:5 = 0.5	 ×	 (1 − NDR)	× 	100 

To compute the negative DSS for the drugs that have negative responses R(x) in all the five 

concentrations tested, we flipped the responses, using 1-R(x) scaling, so that the fitting of the 
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drug-response curves was effectively mirrored. After the DSS values were computed based on 

the mirrored drug- response curves, we set the DSS value to be negative. 

 

Data analysis and statistical tests 

All the data analysis and statistical test were performed in the R statistical programming 

environment (http://R-project.org). All raw data and summary results as well as R function to 

compute and reproduce the NDR calculation are available at: 

https://github.com/abishakGupta/NDR_results. 

Statistical analysis  

To evaluate the association between two response profiles, we used Pearson correlation 

coefficient30. The statistical significance (p-values) of the Pearson correlation coefficient values 

was computed using the Fisher's z-transformation. Shapiro-Wilk test was used to test a normality 

of a distribution. If the normality was established, the difference in means or variances between 

two distributions was assessed using Welch two-sample t-test or F-test, respectively. To assess 

whether two non-normal distributions differ in their location, we used the non-parametric 

Wilcoxon rank sum test31. To compute the overlap between two distributions, we used the 

overlapping coefficient32 as a point estimate of the overlap between two normal densities. 

Root mean squared distance (RMSD) calculation 

To quantify the goodness of dose-response curve fits, we computed the root mean squared 

distance (RMSD) between the observed and estimated values of the response curves. We used 

the conventional formula of RMSD computation given as: 

𝑅𝑀𝑆𝐷 = �
1
𝑁�

(𝑂� − 𝐸�)�
�

�

, 

where N is the number of concentration points, and Oi and Ei are the observed and estimated 

drug response values at concentration i, respectively. 

Simulated drug response data 

To systematically test the NDR metric performance in a fully-controlled ground-truth setup, we 

used simulated data of representative drugs, where the control conditions were varied at different 

realistic rates.  
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For the first simulation model, we set the growth rate of negative control to 0.03 h-1, such that the 

doubling time was ~30 h and the change rate in positive control to -0.01 h-1. We set the growth 

rate of representative drugs to lie in between these rates of the controls. We also added growth 

rates higher than those in the negative control (with doubling time of ~25 h) to emulate the 

growth stimulating effect. We then computed the NDR metric at a specific time point with 

𝑓𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒9:16£¤/ = 4 folds, 𝑓𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒¦0�6£¤/ = 	0.5	folds, and 𝑓𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒§¤¨1 =

0.5	to	8 folds.  

For the second simulation model, with the same representative growth rates of drugs, we set the 

growth rate of negative control to 0.03 h-1 and let the growth rate of positive control to vary from 

-0.015 to -0.005 h-1. We then computed the NDR metric at a specific time point with 

𝑓𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒9:16£¤/ = 4 folds, 𝑓𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒¦0�6£¤/ = 	0.4	to	0.8	folds, and 𝑓𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒§¤¨1 =

0.5	to	8 folds.  

For the third theoretical model, with the same representative growth rates of drugs, we let the 

growth rate of negative control to vary from 0.01 to 0.055 h-1 and set the growth rate in positive 

control to -0.01 h-1. We then computed the NDR metric at a specific time point with 

𝑓𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒9:16£¤/ = 2	to	15 folds, 𝑓𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒¦0�6£¤/ = 	0.5 folds, and 𝑓𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒§¤¨1 =

0.5	to	8 folds.  

 

Drug classification 

The 131 drugs used in the drug sensitivity and resistance testing (DSRT) assay were classified 

into four groups, based on the fold change of the viability readouts at the highest drug 

concentration from the start to the end-point of measurement. The first group of drugs included 

the ones with a fold change less than 1. The final readout for these drugs is smaller than the 

readout at start, and hence these drugs are labeled as “lethal”. As a second group, the drugs with 

fold change above 1 and lower than 1 standard deviation (SD) on the lower side of growth rate in 

the negative control (DMSO) were labeled as “sub-effective” (Supplementary Fig. 12). This 

group of drugs is expected to comprise of cytostatic as well as less toxic drugs. The third set of 

drugs is labeled “non-effective”, since their fold change was similar to the growth rate in the 

negative control condition. The final drug group consists of drugs that result in proliferation 

higher than in 1 SD on the higher side of the growth rate in the negative control, and are labelled 

as “growth-stimulatory”.  
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NDR calculation on CCLE and GDSC datasets 

To test the performance of NDR in independent datasets, we extracted two publicly available 

raw drug sensitivity screening data, namely Cancer Therapeutics Response Portal (CTRPv2)26,27 

from the Broad Institute and Genomics of Drug Sensitivity in Cancer (GDSC1000)28,33 datasets 

from the Sanger Institute. We used MDA-MB-231 cell line data against all drugs and across all 

concentrations (9 concentrations in GDSC1000 and 16 in CTRPv2).  

As measurements at the beginning of the experiments were not available in both datasets, we 

estimated the starting value based on the fold change (3.2) that was observed in our screens for 

MDA-MB-231 cells. As this fold change is also representative of the doubling time of MDA-

MB-2317, we assumed that our estimated start data is close to reality. The estimated values were 

then used in the GR and NDR computation. 
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