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Abstract 16 
The functional networks in human cortex that most flexibly represent cognitive 17 
information are hubs with widespread connectivity throughout the brain. Going beyond 18 
simple hub measures, we hypothesized that the dimensionality of each network's global 19 
connectivity pattern (its global dimensionality) underlies its ability to produce highly 20 
diverse task activation patterns (its representational flexibility). Supporting our 21 
hypothesis, we report that the global dimensionality estimated during resting state 22 
correlates with the representational flexibility estimated across a variety of cognitive 23 
tasks. Demonstrating the robustness of this relationship, each network's global 24 
connectivity pattern could be used to predict its representational flexibility. Additionally, 25 
we found that the frontoparietal cognitive control network had the highest dimensionality 26 
and flexibility, and that individuals with higher network dimensionality had higher 27 
representational flexibility. Together, these findings suggest that a network’s global 28 
dimensionality contributes to its ability to represent diverse cognitive information, 29 
implicating dimensionality as a network mechanism underlying flexible cognitive 30 
representation. 31 
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Introduction  33 
 The human brain’s network organization is thought to contribute to its ability to 34 
process information, but the mechanisms linking network organization to information 35 
processing remain unclear. Recent studies have provided links between the brain’s 36 
intrinsic network architecture and representations of task-related information (in the form 37 
of task activation patterns)1,2, yet the large-scale network properties that underlie the 38 
human brain’s ability to flexibly perform a wide range of tasks remains unknown. 39 
Studies at the single and multi-cell level have begun to elucidate the neurophysiological 40 
mechanisms underlying such cognitive flexibility. For example, neurons with mixed 41 
selectivity (i.e., complex tuning) have been shown to flexibly represent a range of stimuli 42 
and task rules3,4. However, these studies were often limited to specific brain regions 43 
(e.g., dorsolateral prefrontal cortex), rather than identifying the contribution of large-44 
scale network organization. Computational studies have provided abstract models for 45 
how various tasks might be executed5,6, yet such abstract models leave many questions 46 
with regard to biological mechanisms. Thus, it remains unclear how the human brain’s 47 
large-scale network organization might contribute to the flexible implementation of 48 
cognitive tasks. 49 
 Several studies have provided clues that hub connectivity – a large-scale 50 
network property in which regions have extensive connectivity throughout the brain – 51 
supports high cognitive flexibility7–11. For instance, regions within the frontoparietal 52 
cognitive control network (FPN) are hubs7,9,12 that systematically shift their global 53 
functional connectivity patterns across a variety of tasks8. This combination of hub 54 
connectivity that is flexible across tasks led these regions to be termed "flexible hubs". 55 
Critically, however, it has remained unclear whether hub flexibility is only a region-level 56 
or is also a network-level property. Casting doubt on the region-level flexible hub 57 
hypothesis, there is evidence that no cortical regions are "super" hubs in the sense of 58 
individual regions having strong connectivity to all or even most other regions13. This 59 
suggests that regions with widespread connectivity would have to pool their connections 60 
to achieve strong hub status. Further, it is unclear why various flexible hubs would be 61 
integrated within the FPN if they have redundant connectivity patterns. We therefore 62 
hypothesized that strong flexible hub properties emerge at the network level, with each 63 
FPN region contributing limited connectivity and flexibility that is integrated within FPN 64 
to collectively produce strong flexible hub properties. More generally, we hypothesized 65 
that network-level dimensionality – the tendency for individual-region connectivity 66 
patterns to be differentiated – would contribute to network-level representational 67 
flexibility (the tendency for a network's activation patterns to be diverse across tasks). 68 

To test our hypothesis, we developed a network-level graph theoretical property 69 
– global dimensionality. Global dimensionality characterizes how pattern-separated the 70 
global (i.e., out-of-network) connections of a network are (Fig. 1a). Recent evidence has 71 
suggested robust statistical relationships between resting-state network organization 72 
and task-evoked activations2,14, with activity flow – the movement of task-evoked 73 
activations between brain regions – over resting-state connections providing a potential 74 
mechanistic explanation1. We sought to build on these findings to investigate whether 75 
the organizational properties of large-scale intrinsic brain networks play a role in the 76 
production of flexible neural representations. We hypothesized that a hub network with 77 
high intrinsic global dimensionality would have a computational advantage in processing 78 
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task information flexibly, in part by reducing interference between task-relevant 79 
cognitive representations. Providing concrete evidence that links a network’s global 80 
dimensionality with flexible task representation would suggest a role for intrinsic network 81 
organization in providing the space of possible computations (cognitive, or otherwise) 82 
performed by the human brain. Given recent evidence suggesting that the FPN acts as 83 
a flexible hub network for adaptive task control8,10,15,16, we hypothesized that the 84 
dimensionality of the FPN’s global connectivity patterns estimated during resting-state 85 
underlies its ability to flexibly represent a diverse range of tasks. 86 
 We tested this hypothesis using functional magnetic resonance imaging (fMRI) 87 
data collected as part of the Human Connectome Project (HCP). Evidence linking a 88 
network’s global dimensionality estimated during resting-state fMRI and 89 
representational flexibility estimated during task-state fMRI would suggest that such a 90 
network can integrate distributed sets of task-relevant information in an organized 91 
fashion, reducing pattern overlap/interference and producing highly decodable 92 
representations underlying task performance (Fig. 1).  93 
  94 

 95 
Figure 1. Networks with high-dimensional intrinsic connectivity have a computational 96 
advantage over low-dimensional networks. a) A schematic example of a hub network with 97 
high network dimensionality, due to pattern-separated global connections. Regions within the 98 
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hub network are yellow. The high-dimensional connectivity organization allows for information 99 
integration from diverse brain systems in a pattern-separated manner. Activity from local 100 
networks mapped to hub network regions produces decodable patterns of activation. b) A 101 
schematic example of a hub network with low network dimensionality, due to the lack of pattern-102 
separated global connections. Every region in the hub network has the same global connectivity 103 
pattern, leading to low network dimensionality. Activity from local networks mapped to hub 104 
network regions produces a net activity of 0 in each region of the hub network. This is due to the 105 
lack of connectivity separation (low-dimensional connections), leading to an interference of 106 
information-bearing signals. Note that the regions in the hub network in panels a and b have the 107 
same weighted degree centrality.  108 

109 
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Methods 110 
 111 
Data collection 112 
 Data were collected as part of the Washington University-Minnesota Consortium 113 
of the Human Connectome Project (HCP; Van Essen et al., 2013). The data from the 114 
“100 Unrelated Subjects” (n=100) of the greater “500 Subjects” HCP release was used 115 
for empirical analyses. Specific details and procedures of subject recruitment and data 116 
collection can be found in 45. 100 human participants (54 female) were recruited from 117 
Washington University in St. Louis and the surrounding area. The mean age of the 118 
human participants was 29 years of age (range=24 – 36 years of age). Whole-brain 119 
multiband echo-planar imaging acquisitions were collected on a 32-channel head coil on 120 
a modified 3T Siemens Skyra with TR=720 ms, TE=33.1 ms, flip angle=52º, 121 
Bandwidth=2,290 Hz/Px, in-plane FOV=208x180 mm, 72 slices, 2.0 mm isotropic 122 
voxels, with a multiband acceleration factor of 8. Data for each subject were collected 123 
over the span of two days. On the first day, anatomical scans were collected (including 124 
T1-weighted and T2-weighted images acquired at 0.7 mm isotropic voxels) followed by 125 
two resting-state fMRI scans (each lasting 14.4 minutes), and ending with a task fMRI 126 
component. The second day consisted with first collecting a diffusion imaging scan, 127 
followed by a second set of two resting-state fMRI scans (each lasting 14.4 minutes), 128 
and again ending with a task fMRI session. Each of the seven tasks was collected over 129 
two consecutive fMRI runs. Further details on the resting-state fMRI portion can be 130 
found in 46, and additional details on the task fMRI components can be found in 47. 131 
  132 
Task paradigms  133 

The data set was collected as part of the HCP project, which included both 134 
resting-state and seven task fMRI scans45. The seven collected task scans consisted of 135 
an emotion cognition task, a gambling reward task, a language task, a motor task, a 136 
relational reasoning task, a social cognition task, and a working memory task. Briefly, 137 
the emotion cognition task required making valence judgements on negative (fearful 138 
and angry) and neutral faces. The gambling reward task consisted of a card guessing 139 
game, where subjects were asked to guess the number on the card to win or lose 140 
money. The language processing task consisted of interleaving a language condition, 141 
which involved answering questions related to a story presented aurally, and a math 142 
condition, which involved basic arithmetic questions presented aurally. The motor task 143 
involved asking subjects to either tap their left/right fingers, squeeze their left/right toes, 144 
or move their tongue. The reasoning task involved asking subjects to determine whether 145 
two sets of objects differ from each other in the same dimension (e.g., shape or texture). 146 
The social cognition task was a theory of mind task, where objects (squares, circles, 147 
triangles) interacted with each other in a video clip, and subjects were subsequently 148 
asked whether the objects interacted in a social manner. Lastly, the working memory 149 
task was a variant of the N-back task. A complete description of these task paradigms 150 
and scans can be found in 47. 151 
 152 
fMRI Preprocessing 153 
 Minimally preprocessed data for both resting-state and task fMRI were obtained 154 
from the publicly available HCP data. We performed additional preprocessing steps for 155 
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resting-state fMRI, which included removing the first five frames of each run and 156 
performing nuisance regression on the minimally preprocessed data. Nuisance 157 
regression included removing the mean of each run, linear detrending, and regressing 158 
out 12 motion parameters (six motion parameter estimates and their derivatives), the 159 
mean white matter time series and its derivative, the mean ventricle time series and its 160 
derivative, and the mean global signal time series and its derivative.  161 
 Task data for task activation analyses were additionally preprocessed using a 162 
standard general linear model (GLM) for fMRI analysis. The first five frames of each run 163 
were removed prior to fitting the GLM. Nuisance regressors included 12 motion 164 
parameters, regressors for the mean ventricles, white matter, and global signals and 165 
their derivatives. In addition, for each task paradigm, we estimated the task-evoked 166 
activations of each task condition by fitting the task timing for each condition convolved 167 
with the SPM canonical hemodynamic response function. Two regressors were fit for 168 
the emotion cognition task, where coefficients were fit to either the face condition or 169 
shape condition. For the gambling reward task, one regressor was fit to trials with the 170 
punishment condition, and the other regressor was fit to trials with the reward condition. 171 
For the language task, one regressor was fit for the story condition, and the other 172 
regressor was fit to the math condition. For the motor task, six regressors were fit to 173 
each of the following conditions: (1) cue; (2) right hand trials; (3) left hand trials; (4) right 174 
foot trials; (5) left foot trials; (6) tongue trials. For the relational reasoning task, one 175 
regressor was fit to trials when the sets of objects were matched, and the other 176 
regressor was fit to trials when the objects were not matched. For the social cognition 177 
task, one regressor was fit if the objects were interacting socially (theory of mind), and 178 
the other regressor was fit to trials where objects were moving randomly. Lastly, for the 179 
working memory task, 8 regressors were fit to the following conditions: (1) 2-back body 180 
trials; (2) 2-back face trials; (3) 2-back tool trials; (4) 2-back place trials; (5) 0-back body 181 
trials; (6) 0-back face trials; (7) 0-back tool trials; (8) 0-back place trials. Given that all 182 
tasks were block designs, we fit one regressor for each task condition mentioned above.  183 
 184 
FC estimation 185 
 Resting-state FC was estimated using standard Pearson correlations on 186 
preprocessed resting-state fMRI (Fig. 2b). Whole-brain, region-to-region resting-state 187 
FC was estimated by computing the pairwise Pearson correlation between the mean 188 
time series of every pair of regions in the Glasser et al. (2016) atlas. Network 189 
dimensionality and NPS were carried out on the unthresholded, whole-brain FC matrix. 190 
Participation coefficient was computed on three different weighted thresholds: all 191 
positive FC weights, top 10% FC threshold, top 2% FC threshold. 192 

It has been previously shown that resting-state FC estimated with multiple linear 193 
regression better predicts task-evoked activity flow over standard Pearson correlations1. 194 
Thus, when predicting activity flow over resting-state FC), we estimated the resting-195 
state connectivity-based mapping using multiple regression FC. Using ordinary least 196 
squares regression, we calculated whole-brain, region-to-region FC estimates by 197 
obtaining the regression coefficients from the equation 198 

��� � �� � � ������ � ��

���

        	1� 
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for all regions ��. We define ������ as the time series in region ��, �� as the y-intercept of the 199 
regression model, ��� as the FC coefficient for the th regressor/region (which we use as 200 
the element in the th row and the �th column in the FC adjacency matrix), and � as the 201 
residual error of the regression model. � is the total number of regressors included in 202 
the model, which corresponds to the number of all brain regions. This provided an 203 
estimate of the contribution of each source region in explaining unique variance in the 204 
target region’s time series. This approach of estimating FC is also described in1,9. 205 
 206 
Estimating basic network properties 207 
 To first test the integrity of the network partition on the HCP data set, we 208 
estimated the averaged within-network FC for each subject (Supplementary Figure 1). 209 
To ensure that only strong FC values were contributing to our estimate of within-network 210 
connectivity, we applied a 2% FC threshold, a previously used threshold for graph 211 
analyses11. Only 10% of subjects had a non-zero within-network FC for the ORA, and 212 
only 1% of subjects had a non-zero within-network FC for the VMM. In other words, for 213 
the majority of subjects, these networks had no functional connections that survived a 214 
2% FC threshold.  215 

To establish whether a network had the basic property of being a hub (i.e., high 216 
inter-network connectivity), we used several graph-theoretic techniques. We first used 217 
participation coefficient (Supplementary Figure 4), which measures the degree of inter-218 
network connectivity at a given region/node. Given the difficulty in estimating 219 
participation coefficient with an unthresholded FC matrix, we used three different FC 220 
thresholds largely consistent with previous studies11,38,40: weighted positive-only FC 221 
values, 10% FC threshold, and 2% FC threshold. Participation coefficient estimated for 222 
each region was then averaged across regions within a network (for each subject 223 
separately) to obtain network level statistics for participation coefficient. Participation 224 
coefficient was implemented using the python version of Brain Connectivity Toolbox20 225 
(bctpy version 0.5.0).  226 
 We next estimated whether each network had a statistically significant functional 227 
connection (estimated using Pearson correlation during resting state) to every other 228 
network (Supplementary Figure 5). For all subjects, we performed the Fisher’s z-229 
transformation on all FC values, and performed a cross-subject, one-sided t-test for 230 
every functional connection. We then corrected for multiple comparisons using FWE 231 
permutation testing using 1000 permutations48. Statistical significance was assessed 232 
using an FWE-corrected p<0.05. For each network, we counted whether or not that 233 
network contained a statistically significant connection to every other network.  234 
 235 
Network dimensionality measure 236 
 We adapted a previously-developed measure used to study the dimensionality of 237 
activations across space18,49 and applied it in a graph theoretical context. Specifically, 238 
we applied it to the out-of-network connectivity patterns of functional networks estimated 239 
using resting-state fMRI. The network dimensionality measure estimates the 240 
dimensionality of the out-of-network global connectivity space for each functional 241 
network. We first obtain the correlation matrix of the Fisher’s z-transformed out-of-242 
network connectivity space 243 �� � ���� �������,�
���        	2� 
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where ����,�
� is the � x � connectivity matrix (i.e., a subset of a the whole-brain, 244 
region-to-region adjacency matrix), where � refers to all regions within network �, and � 245 
refers to all regions not in network �. � refers to the Fisher’s z- transform, and ���� 246 
performs pairwise Pearson correlations between all rows of ����,�
�, resulting in a ��, 247 
which is the � x � correlation matrix from which we obtain eigenvalues. We then 248 
calculate 249 

�� � � 	∑ "��
�� ��∑ "���
��

        	3� 
where �� � corresponds to the statistical dimensionality of network �, and "� 250 
corresponds to the eigenvalues of the matrix ��

18,49.  251 
 252 
Network pattern separation measure 253 
 We developed a new graph-theoretic measure – network pattern separation 254 
(NPS) – that characterizes the dissimilarity of global connectivity patterns between brain 255 
regions belonging to the same network (i.e., pattern-separated connectivity of a 256 
network). Using a recently defined set of functional network assignments of the Glasser 257 
et al. (2016) parcels19, we measured the NPS for each functional network. 258 
Mathematically, we defined the NPS of a network C as  259 

�$%� � � & � 1 ' (����	)�����,�
� , )�����,�
�� 
���,���

+ /	��
� ' ���

���

      	4� 

where scorr refers to the Spearman’s rank correlation, )�����,�
� refers to the connectivity 260 
vector for brain region i to all other brain regions k not in network C (i.e., the out-of-261 
network connectivity vector), and �� refers to the number of regions in network C. NPS 262 
was computed for each subject separately using the subject’s whole-brain Fisher’s z-263 
transformed FC matrix estimated with Pearson correlation. No threshold was applied to 264 
the matrix prior to computing NPS for each network. We compared the NPS values 265 
between pairs of functional networks by performing cross-subject t-tests for every pair of 266 
networks. We corrected for multiple comparisons using a False Discovery Rate-267 
corrected (FDR) p-value of p<0.0550. 268 
 269 
Decoding task information in functional networks using multivariate pattern analysis 270 

We performed multivariate pattern analysis51 to decode task condition 271 
information for each of the seven HCP tasks. Whole-brain task condition activations 272 
were obtained via task GLM estimates as described above in the fMRI preprocessing 273 
subsection. We then segmented the whole-brain activation pattern for each subject into 274 
separate activation patterns for each functional network.  275 

To estimate how much task information each functional network contained in its 276 
activation pattern, we performed a cross-validated n-way classification for each task 277 
separately, where n refers to the number of experimental conditions within each task 278 
(Supplementary Figure 2; Supplementary Table 1). We employed a leave-one-subject-279 
out cross-validation scheme using random splits of the training set, which has been 280 
shown to produce more stable and robust decoding accuracies23. For each held-out 281 
subject, we used 100 random splits of the training data, each time randomly sampling 282 
with replacement 49 subjects to train on (approximately half of the training data), and 283 
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classifying a held-out subject’s data. Thus, for each held-out subject, we generated 100 284 
x n classification accuracies, from which we calculated a subject’s average decoding 285 
accuracy. This approach had the advantage of allowing us to perform a random effects 286 
cross-subject t-test against chance (given the multiple decoding accuracies from each 287 
random split) rather than a fixed effects binomial test to calculate statistical significance.  288 

Our decoder was trained using logistic regression. For tasks which had n > 2 289 
conditions, we employed a multiclass classification approach with a one versus rest 290 
strategy for each class label. Logistic regression was implemented using the scikit-learn 291 
package (version 0.18) in Python (version 2.7.9). We then performed a cross-subject t-292 
test to test whether the decoder could classify each condition within a task using a 293 
functional network’s activation pattern significantly greater than chance. Since we ran 294 
classifications on all functional networks, we corrected for multiple comparisons using 295 
FDR. Statistical significance was assessed using an FDR-corrected p<0.05. 296 
 297 
Estimating the representational flexibility of each functional network 298 
 The above analysis illustrated that every functional network could decode task 299 
condition information significantly above chance. However, to better quantify the degree 300 
of decodability for each task, we measured the multivariate pattern distance between 301 
the activation patterns for each task condition using Mahalanobis distance22. We used 302 
Mahalanobis distance as opposed to decoding statistics (e.g., accuracy) given the more 303 
intuitive interpretation of distance between activation patterns to infer highly distinct (and 304 
therefore decodable) task representations. 305 
 We used the same cross-validation scheme as the above section for this 306 
analysis. To estimate the pattern distinctness of each condition for a subject using the 307 
distribution of activation patterns from all other subjects, for each task condition 308 . � /��, … , ��1, we calculate the pattern distinctness 23�

�
 of condition �� as 309 23�

�
� 3��4�

�
, 45�

�
�, ' 3��4�

�
, 45����

�
��      	5� 

where 3�	7, 8� is the Mahalanobis distance of observation 7 from the set of 310 
observations 8, 4�

�
 corresponds to the activation pattern during condition �� for the held-311 

out subject, 45�
�
 corresponds to the set of activation patterns during condition �� for all 312 

subjects in the training sample determined by the random split, and 45����
�
� corresponds 313 

to the set of activation patterns in the training sample for all conditions . excluding ��. In 314 
other words, we measured the difference between matched conditions and mismatched 315 
conditions, for a held-out subject and a set of training subjects determined by the 316 
random split. For each subject, we then averaged the pattern distinctness of each 317 
condition across all random splits. This provided us with a single measure of how 318 
distinct the network’s task activation patterns were across task conditions for each 319 
subject. 320 
 We performed this procedure for each task separately. To adjust for differences 321 
in distances across tasks (due to the possibility that certain tasks contain more distinct 322 
task conditions relative to others), we z-normalized the pattern distinctness (i.e., 23) 323 
across networks. This allowed us to compare the pattern distinctness of each network 324 
across tasks, while preserving the relative 23 of each network during a given task. We 325 
then computed the representational flexibility of each network by averaging the 326 
normalized 23 across tasks (Fig. 3a). The representational flexibility for each network 327 
score was calculated within subject.  328 
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 Mahalanobis distance was calculated using SciPy version 1.0.0 (the “cdist” 329 
function) with Python version 2.7.9. 330 
 331 
Mapping whole-brain representations to functional networks via information transfer 332 
mapping  333 
 We recently developed a new procedure to characterize the role of resting-state 334 
FC in transferring task information9. Based on the concept of activity flow – the 335 
movement of activity between areas of the brain – via channels described by resting-336 
state FC1, we constructed a connectivity-based mapping that predicts the activation 337 
pattern of a target network using activity from the rest of the brain. Mathematically, we 338 
define this mapping between a target network and regions outside that network as 339 9:� � ;� • �����         	6� 
where 9:� is a 1 x n vector corresponding to the predicted activation pattern for a target 340 
network (with n regions) for some task condition >, ;� is a 1 x m vector corresponding 341 
to the activation pattern for the rest of the brain (with m regions), ����� corresponds to 342 
the m x n matrix representing the region-to-region resting-state FC (estimated using 343 
multiple linear regression) between all regions outside the target network and regions 344 
inside the target network. Lastly, the operator • refers to the dot product. This 345 
formulation allowed us to project activation patterns to a target network using activity 346 
from regions outside that network (i.e., a spatial transformation represented as matrix 347 
multiplication). 348 
 We tested whether the connectivity-based mapping could predict the transfer of 349 
information from regions outside the target network to the target network (Fig. 4b). This 350 
required a two-step process: (1) generating predicted activation patterns for each 351 
experimental condition in the target network by estimating the activity flow to the target 352 
network from the rest of the brain; (2) training a decoder on the activity flow-predicted 353 
activation patterns of that network, and then subsequently classifying the actual (non-354 
activity flow-predicted) activation patterns of that network using a held-out subject’s 355 
data. Note, the training set did not include any data from the to-be-predicted subject’s 356 
data set, and also were exclusively generated from the activity flow-predicted 357 
activations of the target network using the connectivity-based mapping in equation 6. 358 
This approach ensured that the analyses were not circular and the predictions were 359 
two-fold: (1) predicting a held-out target network’s activity; (2) predicting a held-out 360 
subject’s data. We used the same cross-validation scheme as in the previous section. 361 
This involved a leave-one-subject out cross-validation with random splits on the training 362 
set using logistic regression. Success of this analysis would suggest that the 363 
connectivity-based mapping from out-of-network regions to a target network could 364 
accurately predict the target network’s actual activation patterns for conditions within a 365 
task. This would demonstrate the role of a network’s global connectivity organization in 366 
transferring information between out-of-network regions and a target network. 367 
 To assess the statistical significance of the activity flow-predicted activation 368 
patterns, we performed a one-sided t-test to assess whether decoding accuracies were 369 
greater than chance (where chance is 1/�, and � corresponds to the number of task 370 
conditions). Statistical significance was assessed with an FDR-corrected p<0.05 371 
(Supplementary Figure 3; Supplementary Table 2).  372 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 9, 2018. ; https://doi.org/10.1101/262626doi: bioRxiv preprint 

https://doi.org/10.1101/262626


 11

As in the previous section, we used the scikit-learn package (version 0.18) in 373 
Python (version 2.7.9) to implement these analyses. Visualizations were mapped onto 374 
the parcellated surface using HCP’s Connectome Workbench version 1.2.352.  375 
 376 
Predicting representational flexibility using activity flow estimates 377 
 We wanted to demonstrate a direct relationship between the intrinsic global 378 
connectivity organization of functional networks with representational flexibility across a 379 
variety of tasks. Thus, we used the activity flow predictions of a target network across all 380 
tasks to predict the representational flexibility. In this way, the predicted representational 381 
flexibility was exclusively dependent on the combination of the intrinsic global 382 
connectivity organization of the target network and out-of-network task activations. 383 
 To predict the representational flexibility of a network using activity flow estimates 384 
from out-of-network regions, we first predicted a target network’s activation pattern for 385 
each condition within a task as described above. Then, instead of training a decoder for 386 
classification, we estimated the activity flow-predicted representational flexibility using 387 
the same cross-validated Mahalanobis distance approach as when we calculated the 388 
actual representational flexibility of each network. This was done by calculating the 389 
Mahalanobis distance between a held-out subject’s actual sample and the set of all 390 
other activity flow-predicted samples. In other words, we modified equation 5 and 391 
substituted the set of vectors 45�

�
 and 45����

�
� with the set of activity flow-predictions of the 392 

target network (Fig. 5a).  393 
 To quantify the correspondence between the actual and activity flow-predicted 394 
representational flexibility across networks, we performed a cross-network rank 395 
correlation between the actual and predicted representational flexibility scores for each 396 
subject (Fig. 5b). To test for statistical significance, we performed a Fisher z-397 
transformation on the rho values for each subject and performed a cross-subject t-test 398 
against 0. 399 
 400 
Correlating intrinsic network properties to representational flexibility 401 
 To see if variability in intrinsic network dimensionality could explain variability in 402 
network level representational flexibility, we performed several correlation analyses 403 
relating the two measures. We first evaluated whether cross-network variance in 404 
network dimensionality related to cross-network variance in representational flexibility. 405 
For each subject, we obtained statistics for every network for both network 406 
dimensionality and NPS. In addition, to compare these two measures with a more 407 
traditional graph-theoretic measure of inter-modular connectivity, we obtained network 408 
statistics for participation coefficient20. However, since participation coefficient is 409 
typically used after thresholding the whole-brain FC matrix, we measured the weighted 410 
participation coefficient using three different thresholds: positive threshold (all positive 411 
FC values), 10%, and 2% (Supplementary Figure 4)20. Then, for each subject, we 412 
correlated the cross-network representational flexibility with the cross-network network 413 
dimensionality, NPS, and participation coefficient at each of the FC matrix thresholds 414 
(Supplementary Tables 4 and 5). To test if FC dimensionality was significantly greater 415 
than the other measures, we computed a cross-subject t-test assessing if network 416 
dimensionality was greater than each of the other measures. We corrected for multiple 417 
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comparisons using FDR-correction, and assessed significance using an FDR-corrected 418 
p<0.05. 419 
 We next tested if cross-subject variability in network dimensionality could explain 420 
cross-subject variability in a network’s representational flexibility. Thus, for each 421 
functional network, we performed a cross-subject rank correlation between a network’s 422 
representational flexibility, and each of the graph-theoretic measures mentioned above. 423 
However, to ensure that the correlations were not confounded by mean differences of 424 
any of the graph-theoretic measures (e.g., mean network dimensionality across 425 
networks), we z-normalized the cross-network scores for network dimensionality, NPS, 426 
and participation coefficient within subject. For each graph-theoretic measure, we 427 
obtained a rank correlation and corresponding p-value for each functional network. We 428 
corrected for multiple comparisons using family-wise error correction (FWE) using 429 
permutation testing (with 1000 permutations; Nichols and Holmes, 2002). Statistical 430 
significance was assessed using a FWE-corrected p<0.05. 431 
 432 
Data and code availability 433 

All data is made publicly available through the HCP45. All code related to 434 
analyses conducted in this manuscript will be made publicly available upon publication. 435 
In the interm, code can be made available by request. 436 

Code to compute participation coefficient was implemented by bctpy (version 437 
0.5.0; https://github.com/aestrivex/bctpy)20. 438 

Code to control for FWE rates using permutation tests can be found here: 439 
https://github.com/ColeLab/MultipleComparisonsPermutationTesting 440 
 441 
 442 
  443 
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Results 444 
 445 
Estimating the dimensionality of a network’s global connectivity patterns 446 

We first sought to estimate the specific network properties that we hypothesized 447 
might contribute to flexible cognitive processing. We hypothesized that high-dimensional 448 
hub networks (i.e., networks with high inter-network connectivity containing pattern-449 
separated global connections) would demonstrate high involvement during a wide range 450 
of tasks. We reasoned that the combination of high inter-network connectivity and 451 
pattern-separated global connections would lead to both increased integrative network 452 
function while limiting information interference (Fig. 1a). 453 

We used two complementary graph-theoretic measures to target the theoretical 454 
construct of a network’s global dimensionality. First, we used network dimensionality, 455 
which was adapted from a previously-developed measure to study the dimensionality of 456 
spatial activation patterns in cerebellum18. Network dimensionality measures the 457 
dimensionality of a network’s out-of-network global connections. However, given the 458 
possibility that the network dimensionality statistic could be biased by the size of each 459 
network, we also devised a novel graph-theoretic measure – network pattern separation 460 
(NPS) – that accounts for network size. Briefly, NPS measures the dissimilarity of out-461 
of-network FC patterns between pairs of regions belonging to the same functional 462 
network, and then averages across dissimilarities within a network. Each of these 463 
measures targeted the theoretical concept of global dimensionality in complementary 464 
ways. NPS measures the dissimilarity of global connections between every pair of 465 
regions, and can be biased by smaller, ill-defined networks. In contrast, network 466 
dimensionality looks at the dimensionality of the collective global connections of a 467 
network, and can potentially be biased by the size of the network.  468 

We computed the network dimensionality and NPS for every functional network 469 
(Fig. 2d,e). Though network dimensionality and NPS target a distinct theoretical 470 
construct relative to region-level measures such as participation coefficient, we ran a 471 
control analysis to demonstrate the uniqueness of these measures. We computed the 472 
participation coefficient for each network using weighted participation coefficient for 473 
each subject at three FC thresholds: all positive weights, 10% FC threshold, and 2% FC 474 
threshold (Supplementary Figure 4). To test the relationship between global 475 
dimensionality measures and participation coefficient across networks, we computed 476 
the cross-network rank correlation of network dimensionality and participation 477 
coefficient, as well as NPS and participation coefficient for each subject separately. We 478 
found no significant positive correlation between participation coefficient and either 479 
network dimensionality or NPS (all average rho<0.04; all t99<1.70; all p>0.05), 480 
suggesting that the measures targeting global dimensionality provide distinct 481 
information relative to participation coefficient. 482 

Though we were interested in the broad relationship between global 483 
dimensionality and flexible activity-based representations, we also focused on 484 
differences between the FPN and other networks given our a priori hypothesis of the 485 
FPN as a flexible hub network. When comparing the FPN and other networks for each 486 
of the two graph-theoretic measures, we found that the FPN had the highest network 487 
dimensionality (pairwise t-test for FPN versus other networks, averaged t99=20.12; FDR-488 
corrected p<0.0001) and second highest NPS (pairwise t-test for FPN versus other 489 
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networks, averaged t99=14.08; FDR-corrected p<0.0001, except for FPN versus ORA 490 
FDR-corrected p>0.05). The orbital affective (ORA) network had the highest NPS, but is 491 
a poorly defined network, as evidenced by extremely weak within-network FC 492 
(Supplementary Figure 1). In addition, it has previously been shown to be a poorly 493 
defined network, potentially due to low signal-to-noise ratio19. (In Spronk et al. 2017, the 494 
authors showed that the ORA had a network assignment confidence score that was two 495 
standard deviations below the mean.) Thus, we found that FPN had consistently high 496 
global dimensionality in the form of pattern-separated global connections, which we 497 
hypothesized to be a characteristic network property of an integrative, flexible hub 498 
network.  499 

In addition to high global dimensionality, we wanted to ensure that FPN had the 500 
basic hub property of high inter-network connectivity. Thus, we computed the 501 
participation coefficient for all networks11,20. Using a weighted 2% FC threshold, we 502 
found that FPN had a significantly higher participation coefficient relative to the whole-503 
brain average (t99=15.37; FDR-corrected p<0.0001), indicating that the FPN is indeed a 504 
hub network. To next assess whether FPN’s connectivity was truly global, we calculated 505 
whether FPN had at least one statistically significant functional connection to every 506 
other network. (Note, we define functional connection as a statistically significant 507 
correlation across all subjects.) Indeed, we found that FPN had at least one statistically 508 
significant functional connection to every other network estimated at the group level 509 
(significant connections, averaged r=0.13; t99=13.47; FWE-corrected p<0.05). Further, 510 
when calculating this statistic for all other networks, we found that almost every network 511 
(excluding VIS1, VMM, and PMM) had at least one significant functional connection to 512 
every other network (Supplementary Figure 5). This indicates that most networks are 513 
hub networks, in the simplistic sense that they have a functional connection to every 514 
other network. These findings suggest that simple hub measures alone cannot explain 515 
the dimensionality of a network’s global connectivity patterns; instead, the global 516 
dimensionality of a network collectively emerges as a function of the differences of 517 
node-specific global connectivity patterns, a property not captured by existing network 518 
statistics. 519 
 520 
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 521 
Figure 2. Measuring the intrinsic network dimensionality of human functional brain 522 
networks estimated with resting-state fMRI. a) We used a cortical parcellation atlas 523 
published in21 with 360 parcels and a network partition of 12 functional networks estimated 524 
during resting-state fMRI19. b) A whole-brain, functional connectivity matrix estimated with 525 
standard Pearson correlations for every pair of brain regions. Regions are sorted by functional 526 
networks, and are ordered according to the colored labels along the rows and columns. c)  We 527 
computed the network dimensionality for every functional network in the network partition. We 528 
found that the FPN had the highest network dimensionality relative to all other functional 529 
networks. d) We computed the network pattern separation (NPS) for every functional network in 530 
the network partition. We found that the FPN had the highest NPS of all networks containing 531 
strong within-network connectivity (Supplementary Figure 1). Note that the VMM and ORA 532 
networks were not included since they had especially low within-network connectivity, raising 533 
questions about their status as coherent networks. Asterisks denote that group-level t-statistics 534 
were significantly greater than the cross-network mean. Boxplots represent the cross-subject 535 
distribution and are organized as follows: lower and upper bounds of the box indicate the 536 
quartiles of the distribution; whiskers extend to show the rest of the distribution with outliers 537 
determined by the inter-quartile range; the line indicates the median. The dashed black lines in 538 
panels c and d indicate the cross-network mean. 539 
 540 
Estimating the representational flexibility of functional networks using multivariate 541 
pattern analysis 542 
 We next sought to characterize a network’s ability to flexibly represent task 543 
information (i.e., representational flexibility). To estimate a network’s representational 544 
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flexibility, we rely on the notion that patterns of task-related activity can represent task 545 
information22. We performed multivariate pattern analysis to decode task conditions 546 
within each task using network-level activation patterns. We used a leave-one-subject 547 
out cross-validation scheme with random splits on the training set, allowing us to 548 
generate an averaged decoding accuracy for each subject across the random splits23. 549 
We then performed a cross-subject t-test against chance to assess whether we could 550 
decode task conditions significantly above chance for each task. We found that across 551 
all seven HCP tasks, data from every network could be used to decode task information 552 
significantly above chance (Supplementary Figure 2; FDR-corrected p<0.05 for each 553 
task). This was unsurprising, since we had many subjects (n=100) and trained each 554 
decoding model using distributed regions across large-scale networks. This suggested 555 
task-relevant information was widely distributed across many brain regions and 556 
functional networks, which is consistent with previous findings9,24,25.  557 
 Since all networks could decode task information with respect to statistical 558 
significance, we instead quantified the pattern distinctness of the activation patterns 559 
associated with each task condition. Using the same cross-validation scheme, we 560 
measured the average representational distance of each task condition (relative to the 561 
other task conditions within each task) using Mahalanobis distance26. This provided a 562 
measure for how distinct each network’s task representations were, which allows for 563 
greater decodability. We then took the averaged Z-scored pattern distinctness across all 564 
tasks to obtain the measure of representational flexibility (Fig. 3a). Consistent with our 565 
hypothesis that FPN is a flexible hub network, we found that the FPN had the highest 566 
representational flexibility across all networks (averaged t-statistic for FPN versus each 567 
network t99=11.74; all FDR-corrected p<0.0001; Supplementary Table 3). These 568 
findings suggest FPN can flexibly represent task information, providing highly decodable 569 
task representations across a wide variety of tasks.  570 
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 571 
Figure 3. Network level representational flexibility and its relation to network 572 
dimensionality. Boxplots represent the cross-subject distribution and are organized as follows: 573 
lower and upper bounds of the box indicate the quartiles of the distribution; whiskers extend to 574 
show the rest of the distribution with outliers determined by the inter-quartile range; the line 575 
indicates the median. Asterisks denote that group-level t-statistics were significantly greater 576 
than the cross-network mean. a) Representational flexibility of each functional network across 577 
the seven HCP tasks, sorted by mean from highest to lowest. We calculated the 578 
representational flexibility for each network by averaging the Z-scored Mahalanobis distance 579 
between each task condition within a task, across all seven tasks. This estimates the flexibility 580 
(i.e., pattern separation) of network level activation patterns between task conditions. The 581 
dashed black line indicates the cross-network mean. b) The 7 tasks used from the HCP data 582 
set. All tasks contained two experimental conditions, excluding the motor task (six conditions) 583 
and the working memory task (8 conditions).  c) Cross-network correlation of representational 584 
flexibility with network dimensionality. For each subject, we performed a cross-network rank 585 
correlation between representational flexibility and network dimensionality. The histogram 586 
represents the distribution of correlations across subjects estimated with a Gaussian kernel 587 
density function. Network dimensionality significantly correlated with representational flexibility 588 
(average rho=0.33; t99 vs. 0=10.77; p<0.0001). 589 
 590 
Relating global dimensionality to representational flexibility 591 
 We hypothesized that networks with high-dimensional global connectivity 592 
patterns would produce flexible representations that are highly decodable. The 593 
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preceding results identified these two properties of functional networks using 594 
independent data: resting-state data was used to identify the global dimensionality of 595 
networks, and task data was used to estimate the representational flexibility of 596 
networks. We next sought to determine whether these two independent measures are 597 
related to one another. 598 
 We first performed a simple cross-network rank correlation between network 599 
dimensionality and representational flexibility, and NPS and representational flexibility. 600 
As a comparison, we also correlated representational flexibility and participation 601 
coefficient. We computed the cross-network rank correlation of every subject’s 602 
representational flexibility with each graph-theoretic measure separately (Fig. 3c). We 603 
found that network dimensionality significantly explained cross-network variance in 604 
representational flexibility (cross-subject mean rho=0.33; t-test versus 0, t99=10.77; 605 
p<0.0001; Supplementary Table 4). We further demonstrate that network dimensionality 606 
significantly explains more cross-network variance of representational flexibility than all 607 
other measures (Supplementary Figure 5), including participation coefficient (averaged 608 
t99 across all FC thresholds=9.87; FDR-corrected p<0.05). This suggests that the 609 
dimensionality of a network’s global connectivity patterns can explain a network’s ability 610 
to flexibly represent task information more than a previously method used to infer 611 
integrative network function (i.e., participation coefficient).  612 
 While the above analysis describes a simple correlative relationship between 613 
task-based representational flexibility and the intrinsic network properties estimated 614 
from resting-state fMRI, the analysis does not implicate a network mechanism relating 615 
the two properties. Thus, we next wanted to test whether the organization of a network’s 616 
intrinsic global connectivity patterns could – via a mechanistic model of how connectivity 617 
influences task activations1,9 – predict the representational flexibility of a network. 618 
Explicit prediction of a network’s representational flexibility using the network’s global 619 
connectivity organization would more rigorously test the hypothesis that its global 620 
connectivity organization is critical to its ability to flexibly integrate a wide variety of task-621 
relevant information.  622 

Recent work has demonstrated that the intrinsic FC architecture estimated during 623 
resting-state fMRI accurately describes the routes of activity flow – the movement of 624 
task-evoked activations between regions – during tasks1 (Fig. 4a). We recently 625 
validated a new procedure – information transfer mapping – to infer the transfer of task 626 
information between two brain areas by mapping task representations between those 627 
regions9. Briefly, the procedure involves two steps: (1) mapping estimated activity flow 628 
from a source area to a target area using a resting-state connectivity-based mapping, 629 
and (2) information decoding of the actual activation pattern by a decoder trained on the 630 
activity flow-predicted activation patterns. We sought to build on these findings to 631 
demonstrate that the organization of a network’s intrinsic global connections can explain 632 
a network’s ability to integrate diverse sets of task-evoked information for flexible task 633 
representation. 634 

To map activity to a target network using brain regions outside of that network, 635 
we first estimated a connectivity-based mapping by obtaining the resting-state FC 636 
patterns between regions in the target network and regions outside the network. We 637 
then predicted the task activation pattern in the target network by transforming 638 
activations from out-of-network regions into the spatial dimensions of the target network 639 
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(Fig. 4b). Briefly, this involved calculating the weighted sum of all out-of-network 640 
regions' activations weighted by the to-be-predicted region's connections. To see how 641 
well these connectivity-based mappings preserved task information in the target 642 
network, we trained a decoder using the activity flow-predicted activation patterns, and 643 
tested that decoder with the network’s actual activation pattern for a held-out subject. By 644 
training the decoder using predicted activation patterns and testing on the actual 645 
activation patterns, this approach required that the activity flow-predicted activation 646 
patterns retained representations that were in the same representational geometry as 647 
the original activation pattern. Success with this procedure would suggest that the 648 
network’s intrinsic global connectivity organization was responsible for its ability to 649 
integrate widespread information from the rest of the brain. 650 
 651 

 652 
Figure 4. Network level task activation patterns can be predicted by estimating activity 653 
flow (the movement of task activations) over each network’s intrinsic global connectivity 654 
pattern. a) The basic computational principle of activity flow mapping1. Activity flow to a held-out 655 
region can be estimated by computing the linear weighted sum of a set of regions’ activity 656 
weighted by the resting-state FC to the to-be-predicted region. Figure adapted with permission 657 
from 1. b) Whole-brain to target network activity flow mapping. We predicted a network’s task-658 
evoked activation pattern by estimating the activity flow from each region outside the to-be-659 
predicted network to each region in the network. c) As an example, we illustrate the prediction 660 
of the FPN’s activation pattern for task conditions within the Language task. The activity of each 661 
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FPN region was predicted by computing the linear weighted sum of the activity of all non-FPN 662 
regions weighted by the resting-state FC value to each FPN region. This procedure was 663 
performed to produce a predicted activation pattern for the FPN for each task condition. We 664 
subsequently trained a decoder using the predicted FPN activation patterns, and then classified 665 
the actual FPN activation patterns using a held-out subject’s data. This procedure was repeated 666 
for each network and every HCP task. 667 
 668 
 We performed the information transfer mapping procedure using activations from 669 
out-of-network regions to a target network for every functional network (see Fig. 4c for 670 
an example). We then computed a network’s representational flexibility based on the 671 
predicted activation pattern for that network (Fig. 5a). To see how well the activity flow-672 
predicted representational flexibility scores recapitulated the actual representational 673 
flexibility scores for each network, we performed a cross-network rank correlation 674 
between the actual and predicted representational flexibility scores for each subject 675 
(Fig. 5b). We found that the activity flow-predicted representational flexibility accurately 676 
recapitulated its representational flexibility across networks (mean rho=0.71; t99=22.39; 677 
p<0.0001). These findings suggest that the inter-network variability of representational 678 
flexibility can be explained, in part, by the intrinsic global connectivity organization of 679 
these networks. More broadly, this implicates a network mechanism for flexible 680 
representation, suggesting that the dimensionality of a network’s intrinsic global 681 
connections takes part in determining the flexibility of task representation in large-scale 682 
networks. 683 
 684 

 685 
Figure 5. Predicting a network’s representational flexibility by estimating activity flow 686 
over its intrinsic global network organization. a) The predicted representational flexibility for 687 
each functional network using the estimated activity flow over its global network connections 688 
estimated during resting-state. Using the activity flow approach, we generated predicted 689 
activation patterns for each network. (Note that the actual activation pattern of each functional 690 
network was excluded in generating the predicted activation pattern.) Consistent with our 691 
hypothesis, FPN had the highest predicted representational flexibility across all networks 692 
(pairwise t-test for FPN versus every network, averaged t99=11.74; all FDR-corrected p<0.05). 693 
Asterisks denote that group-level t-statistics were significantly greater than the cross-network 694 
mean. Boxplots represent the cross-subject distribution and are organized as follows: lower and 695 
upper bounds of the box indicate the quartiles of the distribution; whiskers extend to show the 696 
rest of the distribution with outliers determined by the inter-quartile range; the line indicates the 697 
median. The dashed black line indicates the cross-mean network. b) The subject-wise 698 
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distribution of cross-network correlations between the actual and predicted representational 699 
flexibility, estimated with a Gaussian kernel density function. For each subject, we performed a 700 
rank correlation across networks between the actual and predicted representational flexibility. 701 
The average rank correlation across subjects was rho=0.71 (t-test versus 0, t99=22.39; 702 
p<0.0001). 703 
 704 
Global dimensionality of FPN correlates with its representational flexibility across 705 
individuals  706 
 The preceding results demonstrated that across networks, global dimensionality 707 
correlates with representational flexibility. We next sought to better establish this 708 
relationship between global dimensionality and representational flexibility by additionally 709 
testing for individual difference correlations between them. This would demonstrate that 710 
individuals having especially high global dimensionality tend to have especially high 711 
representational flexibility. 712 
 For each network, we performed a cross-subject rank correlation of 713 
representational flexibility with each of the measures targeting global dimensionality, as 714 
well as participation coefficient (Fig. 6a,c,e). For participation coefficient, we used a 2% 715 
thresholded weighted FC matrix, based on previous success using this threshold with 716 
participation11,13. Similar results were found at a 10% threshold and without any 717 
threshold. We found that representational flexibility did not significantly correlate across 718 
individuals with participation coefficient for any network (cross-network average 719 
rho=0.01; all p>0.05; Fig. 6e). However, we found that the FPN’s representational 720 
flexibility significantly correlated across individuals with both its network dimensionality 721 
(rho=0.30; p=0.003; FWE-corrected p=0.014) and NPS (rho=0.34; p=0.0005; FWE-722 
corrected p=0.001), though this relationship did not hold with other networks (all FWE-723 
corrected p>0.05; Fig. 6b,d). In other words, the network dimensionality and NPS of the 724 
FPN, which both target the theoretical concept of global dimensionality (i.e., pattern-725 
separated global connections), relate to the inter-individual variability of the FPN’s 726 
representational flexibility. This suggests that our notion of global dimensionality 727 
accurately provides an explanatory relationship to the network-level representational 728 
flexibility of the FPN.  729 
  730 
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 731 
Figure 6. Individual difference correlation between network-level representational 732 
flexibility and corresponding intrinsic network properties. We performed rank correlations 733 
between a network’s representational flexibility with an intrinsic network property (i.e., network 734 
dimensionality, NPS, and participation coefficient) across individuals. a) Individual difference 735 
rank correlation between representational flexibility and network dimensionality demonstrated a 736 
significant correlation with the FPN. b) Scatter plot and best-fit line between FPN’s 737 
representational flexibility and network dimensionality (rho=0.30; FWE-corrected p=0.014). Data 738 
points represent individual subjects. The translucent blue band around the best-fit line 739 
represents the 95% confidence interval. c) Individual difference correlation between 740 
representational flexibility and NPS across individuals. d) Scatter plot and best-fit line between 741 
FPN’s representational flexibility and NPS (rho=0.34; FWE-corrected p=0.001). e) Individual 742 
difference correlation between representational flexibility and participation coefficient. No 743 
networks had a significant cross-subject correlation.   744 
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Discussion 745 
 Flexible representation of cognitive information likely requires the integration of 746 
diverse signals with minimal interference. Though recent studies have characterized the 747 
neurophysiological mechanisms underlying flexible cognitive control at the single and 748 
multi-cell level4,25,28, it has been unclear what mechanisms might allow for flexible 749 
representation at higher levels of organization. In this study, we identified a theoretical 750 
property of large-scale networks likely involved in the ability to integrate diverse sets of 751 
information with minimal signal interference: high-dimensional, pattern-separated global 752 
connectivity (i.e., high global dimensionality). Related measures of dimensionality have 753 
been previously used to study the complexity of the brain’s activation spaces18,29, and 754 
have also been hypothesized to be related to conscious integration of information30. 755 
Additionally, studies in the hippocampus have demonstrated the importance of pattern-756 
separated representations for episodic recall31. However, a direct relationship between 757 
the human brain’s large-scale network organization and flexible decoding of task-758 
evoked activity has remained elusive. The present results provide a concrete link that 759 
suggests a mechanism of flexible representation of task information via high-760 
dimensional global connectivity. 761 

A recent study provided computational evidence demonstrating that the local 762 
connectivity densities of neuronal ensembles are closely related to their 763 
representational capacity in cerebellum18. Here we demonstrate that analogous 764 
principles also apply at the large-scale network level. However, rather than focusing on 765 
synaptic connectivity densities and cellular mechanisms such as synaptic plasticity, we 766 
used large-scale network analyses using spontaneous fluctuations to target intrinsic 767 
global network properties. Additionally, to study the representational flexibility of these 768 
large-scale networks, we used the decoding of multivariate task representations, which 769 
have been linked to the successful performance of cognitive tasks4,16,32. We reasoned 770 
that networks that had highly decodable activation patterns across a variety of tasks 771 
most flexibly represented task information. By directly related intrinsic network 772 
organization with activation-based representational flexibility, our findings implicate a 773 
network mechanism that contributes to the emergence of flexible hub networks via 774 
intrinsic network organization.  775 

Recent findings have implicated the FPN as a flexible hub network for adaptive 776 
task control8, providing evidence that regions within this network are functionally 777 
flexible15. Further, the intrinsic properties of the FPN have been shown to correlate 778 
across individuals with cognitive ability33–35. Consistent with the flexible hub theory of 779 
the FPN, we found that the FPN contained highly flexible representations across tasks. 780 
However, our results provide a link between the static intrinsic network organization of 781 
the FPN and its ability to flexibly represent cognitive information. This finding suggests 782 
that the flexible nature of the FPN is driven by a static network property, global 783 
dimensionality, which is estimated during a separate cognitive state (resting state). 784 

Previous work has shown that the large-scale network architecture estimated at 785 
rest is largely preserved during task states36,37. Given this strong correspondence of 786 
intrinsic and task-evoked network architectures, the contributions of static resting-state 787 
network properties to flexible cognitive representations (in the form of flexible activation 788 
patterns) has remained unclear. Recent evidence has suggested that the intrinsic 789 
network connections estimated from spontaneous activity likely reflect the channels by 790 
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which task-evoked activity propagates between brain regions1,2,9, providing evidence 791 
that estimated intrinsic functional connections reflect the capacity for inter-region 792 
communication. Building on these findings, the present results provide evidence that a 793 
static property of intrinsic functional networks – global dimensionality – contributes to a 794 
network’s ability to flexibly represent cognitive task information.  795 

The finding that the global dimensionality of networks contributes to their ability to 796 
flexibly represent cognitive information has several broader implications. First, it 797 
suggests that a network’s global dimensionality estimated during resting state reflects 798 
the representational capacity of that network during task states. Second, it provides a 799 
specific property of network organization that can be leveraged to design future network 800 
models and architectures that can maximize representational ability. Lastly, it improves 801 
upon the previously described notion that rich club networks (or diverse club networks) 802 
underlie integrative network function38–40. In contrast to previous studies focusing on rich 803 
and diverse club networks, which typically characterized networks by averaging region-804 
level connectivity properties such as weighted degree centrality12,41,39 or participation 805 
coefficient38,40, we sought to further characterize specific topological features emergent 806 
at the network level that might contribute to flexible representations. Global 807 
dimensionality takes into account the collective global connections of a network and the 808 
degree to which they target distinct sets of regions. Thus, global dimensionality refines 809 
the concept of an integrative hub network by taking into account the collective 810 
dimensionality of all global connections belonging to a network. 811 

Though most studies in cognitive neuroscience are limited to a single 812 
experimental paradigm, we leveraged the HCP’s multi-task dataset to investigate the 813 
brain-behavior relationship underlying flexible cognitive representation. Despite this 814 
advantage, our measure of representational flexibility was still constrained by the seven 815 
cognitive tasks included in the HCP dataset. As a particularly prominent example of a 816 
limitation of this dataset, all but the Language task used only visual stimuli. Thus, while 817 
neuroimaging studies with human participants becomes more difficult as the number of 818 
tasks increases (largely due to the experimental duration), recent advances in 819 
computational modeling has made it tractable to study the computational properties of 820 
models able to perform large number of tasks42. It will thus be important for future work 821 
to find converging evidence from both empirical and computational studies to study the 822 
neural and computational basis of flexible task representation. 823 

Another limitation of this study is that the information transfer mapping procedure 824 
used to link intrinsic FC organization and task activation patterns assumes a linear 825 
relationship between sets of regions. While this provides a simple approach to 826 
approximate the flow of activity between brain regions with minimal assumptions, neural 827 
processing is typically thought to rely on nonlinear information transformation through a 828 
sequence of processing pipelines, such as in the ventral visual stream43. Further, 829 
transformation of information via recurrent network connections is also thought to be 830 
crucial for many cognitive tasks42,44, as well as for pattern completion in hippocampal 831 
networks17. Thus, future work elucidating the contribution of nonlinear neural 832 
transformations through either feedforward or recurrent network architectures will be 833 
important to understand how information is transformed between brain systems. 834 
 In summary, we used graph-theoretic analysis of resting-state networks and 835 
information decoding across a wide range of tasks to show the co-occurrence of a 836 
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network’s global dimensionality and its ability to flexibly represent task information. We 837 
then demonstrated that information from the whole brain can be mapped to specific 838 
networks by inferring the transfer of information over a network’s global connectivity 839 
organization. These results demonstrate the close relationship between global 840 
dimensionality and representational flexibility at the large-scale network level, 841 
implicating a network mechanism underlying flexible representation for adaptive task 842 
control. We expect these findings to prompt further research into the relationship 843 
between network properties and their ability to produce cognitive representations, 844 
providing a deeper insight into the mechanisms underlying flexible cognitive control. 845 
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