New Results
KrakenHLL: Confident and fast metagenomics classification using unique k-mer counts
View ORCID ProfileFP Breitwieser, View ORCID ProfileSL Salzberg
doi: https://doi.org/10.1101/262956
FP Breitwieser
1Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
SL Salzberg
1Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
2Departments of Biomedical Engineering, Computer Science and Biostatistics, Johns Hopkins University, Baltimore, MD, United States
Article usage
Posted February 09, 2018.
KrakenHLL: Confident and fast metagenomics classification using unique k-mer counts
FP Breitwieser, SL Salzberg
bioRxiv 262956; doi: https://doi.org/10.1101/262956
Subject Area
Subject Areas
- Biochemistry (12746)
- Bioengineering (9624)
- Bioinformatics (31137)
- Biophysics (16050)
- Cancer Biology (13120)
- Cell Biology (18758)
- Clinical Trials (138)
- Developmental Biology (10147)
- Ecology (15140)
- Epidemiology (2067)
- Evolutionary Biology (19342)
- Genetics (12840)
- Genomics (17722)
- Immunology (12850)
- Microbiology (30077)
- Molecular Biology (12547)
- Neuroscience (65542)
- Paleontology (485)
- Pathology (2030)
- Pharmacology and Toxicology (3502)
- Physiology (5427)
- Plant Biology (11239)
- Synthetic Biology (3105)
- Systems Biology (7748)
- Zoology (1749)