
KrakenHLL: Confident and fast metagenomics classification using 1 

unique k-mer counts 2 

Breitwieser FP1 and Salzberg SL1,2 3 

1 Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns 4 

Hopkins School of Medicine, Baltimore, MD, United States 5 

2 Departments of Biomedical Engineering, Computer Science and Biostatistics, Johns Hopkins 6 

University, Baltimore, MD, United States 7 

 8 

Abstract 9 

False positive identifications are a significant problem in metagenomic classification. We present 10 

KrakenHLL, a novel metagenomic classifier that combines the fast k-mer based classification of 11 

Kraken with an efficient algorithm for assessing the coverage of unique k-mers found in each 12 

species in a dataset. On various test datasets, KrakenHLL gives better recall and F1-scores than 13 

other methods, and effectively classifies and distinguishes pathogens with low abundance from 14 

false positives in infectious disease samples. By using the probabilistic cardinality estimator 15 

HyperLogLog (HLL), KrakenHLL is as fast as Kraken and requires little additional memory. 16 

 17 

Keywords: metagenomics, microbiome, metagenomics classification, pathogen detection, 18 

infectious disease diagnosis 19 

Background 20 

Metagenomic classifiers attempt to assign a taxonomic identity to each read in a data set. 21 

Because metagenomics data often contain tens of millions of reads, classification is typically 22 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/262956doi: bioRxiv preprint 

https://doi.org/10.1101/262956
http://creativecommons.org/licenses/by/4.0/


done using exact matching of short words of length k (k-mers) rather than alignment, which 23 

would be unacceptably slow. The results contain read classifications but not their aligned 24 

positions in the genomes [as reviewed by 1]. However, read counts can be deceiving. Sequence 25 

contamination of the samples–introduced from laboratory kits or the environment during sample 26 

extraction, handling or sequencing–can yield high numbers of spurious identifications [2, 3]. 27 

Having only small amounts of input material can further compound the problem of 28 

contamination. When using sequencing for clinical diagnosis of infectious diseases, for example, 29 

less than 0.1% of the DNA may derive from microbes of interest [4, 5]. Additional spurious 30 

matches can result from low-complexity regions of genomes and from contamination in the 31 

database genomes themselves [6].  32 

 33 

Such false-positive reads typically match only small portions of a genome; e.g., if a species' 34 

genome contains a low-complexity region, and the only reads matching that species fall in this 35 

region, then the species was probably not present in the sample. Reads from microbes that are 36 

truly present should distribute relatively uniformly across the genome rather than being 37 

concentrated in one or a few locations. Genome alignment can reveal this information. However, 38 

alignment is resource intensive, requiring the construction of indexes for every genome and a 39 

relatively slow alignment step to compare all reads against those indexes. Some metagenomics 40 

methods do use coverage information to improve mapping or quantification accuracy, but these 41 

methods require results from much slower alignment methods as input [7]. Assembly-based 42 

methods also help to avoid false positives, but these are useful only for highly abundant species 43 

[8]. 44 

 45 
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Here, we present KrakenHLL, a novel method that combines very fast k-mer based classification 46 

with a fast k-mer cardinality estimation. KrakenHLL is based on the Kraken metagenomics 47 

classifier [9], to which it adds a method for counting the number of unique k-mers identified for 48 

each taxon using the efficient cardinality estimation algorithm HyperLogLog [10-12]. By 49 

counting how many of each genome’s unique k-mers are covered by reads, KrakenHLL can 50 

often discern false positive from true positive matches. Furthermore, KrakenHLL implements 51 

additional new features to improve metagenomics classification: (a) searches can be done against 52 

multiple databases hierarchically, (b) the taxonomy can be extended to include nodes for strains 53 

and plasmids, thus enabling their detection, and (c) the database build script allows the addition 54 

of >100,000 viruses from the NCBI Viral Genome Resource [13]. KrakenHLL provides a 55 

superset of the information provided by Kraken while running equally fast or slightly faster, and 56 

while using very little additional memory during classification. 57 

Results 58 

KrakenHLL was developed to provide efficient k-mer count information for all taxa identified in 59 

a metagenomics experiment. The main workflow is as follows: As reads are processed, each k-60 

mer is assigned a taxon from the database (Figure 1A). KrakenHLL instantiates a HyperLogLog 61 

data sketch for each taxon, and adds the k-mers to it (Figure 1B and Supplementary 62 

Information). After classification of a read, KrakenHLL traverses up the taxonomic tree and 63 

merges the estimators of each taxon with its parent. In its classification report, KrakenHLL 64 

includes the number of unique k-mers and the depth of k-mer coverage for each taxon that it 65 

observed in the input data (Figure 1C). 66 

 67 

[FIGURE 1] 68 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/262956doi: bioRxiv preprint 

https://doi.org/10.1101/262956
http://creativecommons.org/licenses/by/4.0/


Figure 1. Overview of the KrakenHLL algorithm and output. (A) An input read is shown as a 69 

long gray rectangle, with k-mers shown as shorter rectangles below it. The taxon mappings for 70 

each k-mer are compared to the database, shown as larger rectangles on the right. For each taxon, 71 

a unique k-mer counter is instantiated, and the observed k-mers (K7, K8, and K9) are added to 72 

the counters. (B) Unique k-mer counting is implemented with the probabilistic estimation 73 

method HyperLogLog (HLL) using 16KB of memory per counter, which limits the error in the 74 

cardinality estimate to 1% (see main text). (C) The output includes the number of reads, unique 75 

k-mers, duplicity (average time each k-mer has been seen) and coverage for each taxon observed 76 

in the input data.  77 

 78 
 79 
Efficient k-mer cardinality estimation using the HyperLogLog algorithm 80 

Cardinality is the number of elements in a set without duplicates; e. g. the number of distinct 81 

words in a text. An exact count can be kept by storing the elements in a sorted list or linear 82 

probing hash table, but that requires memory proportional to the number of unique elements. 83 

When an accurate estimate of the cardinality is sufficient, however, the computation can be done 84 

efficiently with very small amount of fixed memory. The HyperLogLog algorithm (HLL) [10], 85 

which is well suited for k-mer counting [14], keeps a summary or sketch of the data that is 86 

sufficient for precise estimation of the cardinality, but requires only a small amount of constant 87 

space to estimate cardinalities up to billions. The method centers on the idea that long runs of 88 

leading zeros, which can be efficiently computed using machine instructions, are unlikely in 89 

random bitstrings. For example, about every fourth bitstring in a random series should start with 90 

012 (one 0-bit before the first 1-bit), and about every 32nd hash starts with 000012. Conversely, if 91 

we know the maximum number of leading zeros k of the members of a random set, we can use 92 
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2k+1 as a crude estimate of its cardinality (more details in the Suppl. Methods). HLL keeps m=2p 93 

one-byte counts of the maximum numbers of leading zeros on the data (its data sketch), with p, 94 

the precision parameter, typically between 10 and 18 (see Figure 2). For cardinalities up to m/4, 95 

we use the sparse representation of the registers suggested by Heule et al. [11] that has the much 96 

higher effective precision p’ of 25 by encoding each index and count in a vector of four-byte 97 

values. To add a k-mer to its taxon’s sketch, the k-mer (with k up to 31) is first mapped by a hash 98 

function to a 64-bit hash value. Note that k-mers that contain non-A, C, G or T characters (such 99 

as ambiguous IUPAC characters) are ignored by KrakenHLL. The first p bits of the hash value 100 

are used as index i, and the later 64-p=q bits for counting the number of leading zeros k. The 101 

value of the register M[i] in the sketch is updated if k is larger than the current value of M[i].  102 

  103 

When the read classification is finished, the taxon sketches are aggregated up the taxonomy tree 104 

by taking the maximum of each register value. The resulting sketches are the same as if the k-105 

mers were counted at their whole lineage from the beginning. KrakenHLL then computes 106 

cardinality estimates using the formula proposed by Ertl [12], which has theoretical and practical 107 

advantages and does not require empirical bias correction factors [10, 11]. In our tests it 108 

performed better than Flajolet’s and Heule’s methods (Suppl. Figures 1 and 2).  109 

 110 

The expected relative error of the final cardinality estimate is approximately 1.04/sqrt(2p) [10]. 111 

With p=14, the sketch uses 2"# one-byte registers, i.e. 16 KB of space, and gives estimates with 112 

relative errors of less than 1% (Figure 2). An exact counter would require about 40 MB per 113 

million distinct k-mers when implemented using an unordered set; i. e. about 40 GB for the 114 

pathogen identification samples with an average of one billion distinct k-mers per sample. 115 
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However, unordered sets have worst case insertion time complexity linear to the container size 116 

(and require re-hashes on resize), while it is constant for HLL. 117 

 118 

[FIGURE 2] 
p m=2p 

Space 
(kB) 

Rel. 
Error 

10 1024 1 3.25% 
11 2048 2 2.23% 
12 4096 4 1.63% 
13 8192 8 1.15% 
14 16384 16 0.81% 
15 32768 32 0.57% 
16 65536 64 0.41% 
17 131072 128 0.29% 
18 262144 256 0.20% 
25   0.02% 

Figure 2: Cardinality estimation using HyperLogLog for randomly sampled k-mers from 119 

microbial genomes.  Left: standard deviations of the relative errors of the estimate with precision 120 

p ranging from 10 to 18. No systematic biases are apparent, and, as expected, the errors decrease 121 

with higher values of p. Up to cardinalities of about 2p/4, the relative error is near zero. At higher 122 

cardinalities, the error boundaries stay near constant. Right: the size of the registers, space 123 

requirement, and expected relative error for HyperLogLog cardinality estimates with different 124 

values of p. For example, with a precision p=14, the expected relative error is 0.81% and the 125 

counter only requires 16 KB of space, which is three orders of magnitude less than that of an 126 

exact counter (at a cardinality of one million). Up to cardinalities of 2p/4, KrakenHLL uses a 127 

sparse representation of the counter with a higher precision of 25 and an effective relative error 128 

rate of about 0.02%. 129 

 130 
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Results on twenty-one simulated and ten biological test datasets 131 

We assessed KrakenHLL’s performance on the 34 datasets compiled by McIntyre et al. [15] (see 132 

Suppl. Table 3). We place greater emphasis on the eleven biological datasets, which contain 133 

more realistic laboratory and environmental contamination. In the first part of this section, we 134 

show that unique k-mer counts provide higher classification accuracy than read counts, and in 135 

the second part we compare KrakenHLL with the results of eleven metagenomics classifiers. We 136 

ran KrakenHLL on three databases: ‘orig’, the database used by McIntyre et al., ‘std’, which 137 

contains all current complete bacterial, archaeal and viral genomes from RefSeq plus viral 138 

neighbor sequences and the human reference genome, and ‘nt’, which contains all microbial 139 

sequences (including fungi and protists) in the non-redundant nucleotide collection nr/nt 140 

provided by NCBI (see Suppl. Methods Section 2 for details). The ‘std’ database furthermore 141 

includes the UniVec and EmVec sequence sets of synthetic constructs and vector sequences; and 142 

low-complexity k-mers in microbial sequences were masked using NCBI’s dustmasker with 143 

default settings. We use two metrics to compare how well methods can separate true positives 144 

and false positives: (a) F1 score, i. e. the harmonic mean of precision p and recall r, and (b) recall 145 

at a maximum false discovery rate (FDR) of 5%. For each method, we compute and select the 146 

ideal thresholds based on the read count, k-mer count or abundance calls. Precision p is defined 147 

as the number of correctly called species (or genera) divided by the number of all called species 148 

(or genera) at a given threshold. Recall r is the proportion of species (or genera) that are in the 149 

test dataset and that are called at a given threshold. Higher F1 scores indicate a better separation 150 

between true positives and false positives. Higher recall means that more true species can be 151 

recovered while controlling the false positives. 152 

 153 
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Because the NCBI taxonomy has been updated since the datasets were published, we manually 154 

updated the "truth" sets in several datasets (see Suppl. Methods Section 2.3 for all changes). Any 155 

cases that might have been missed would result in a lower apparent performance of KrakenHLL. 156 

Note that we exclude the over ten-year-old simulated datasets simHC, simMC and simLC from 157 

Mavromatis et al. (2007), as well as the biological dataset JGI SRR033547 which has only 100 158 

reads. 159 

Data 
Type Rank Statistic 

orig std nt 

Reads Kmers Diff Reads Kmers Diff Reads Kmers Diff 

Bio 
Genus 

Recall 0.90 0.93 +4.0% 0.89 0.94 +6.2% 0.91 0.99 +8.9% 

F1 0.95 0.96 +1.8% 0.95 0.97 +2.6% 0.96 0.99 +3.4% 

Species 
Recall 0.85 0.87 +2.6% 0.70 0.78 +11.8% 0.95 0.98 +3.1% 

F1 0.94 0.94 +0.7% 0.90 0.92 +2.5% 0.97 0.99 +1.6% 

Sim 

Genus 
Recall 0.96 0.94 -2.1% 0.95 0.97 +2.5% 0.98 0.99 +0.8% 

F1 0.98 0.98 -0.0% 0.98 0.98 +0.3% 0.99 0.99 +0.3% 

Species 
Recall 0.92 0.93 +0.6% 0.88 0.88 +0.3% 0.90 0.90 -0.1% 

F1 0.97 0.97 +0.3% 0.94 0.94 +0.5% 0.96 0.96 -0.1% 

 160 

Table 1: Performance of read count and unique k-mer thresholds on 10 biological and 21 161 

simulated datasets against three databases (‘orig’, ‘std’, ‘nt). Unique k-mer count thresholds give 162 

up to 10% better recall and F1 scores, particularly for the biological datasets. 163 

 164 

Unique k-mer versus read count thresholds 165 

We first looked at the performance of the unique k-mer count thresholds versus read count 166 

thresholds (as would be used with Kraken). The k-mer count thresholds worked very well, 167 

particularly for the biological datasets (Table 1 and Suppl. Table 3). On the genus level, the 168 

average recall in the biological datasets increases by 4-9%, and the average F1 score increases 2-169 

3%. On the species level, the average increase in recall in the biological sets is between 3 and 170 

12%, and the F1 score increases by 1-2%. 171 
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 172 

On the simulated datasets, the differences are less pronounced and vary between databases, even 173 

though on average the unique k-mer count is again better. However, only in two cases (genus 174 

recall on databases ‘orig’ and ‘std’) the difference is higher than 1% in any direction. We find 175 

that simulated datasets often lack false positives with a decent number of reads but a lower 176 

number of unique k-mer counts, which we see in real data. Instead, in most simulated datasets 177 

the number of unique k-mers is linearly increasing with the number of unique reads in both true 178 

and false positives (Suppl. Figure 4). In biological datasets, sequence contamination and lower 179 

read counts for the true positives make the task of separating true and false positives harder.  180 

 181 

Comparison of KrakenHLL with eleven other methods 182 

Next, we compared KrakenHLL’s unique k-mer counts with the results of eleven metagenomics 183 

classifiers from McIntyre et al. [15], which include the alignment-based methods Blast + Megan 184 

[16, 17], Diamond + Megan [17, 18] and MetaFlow [19], the k-mer based CLARK [20], 185 

CLARK-S [21], Kraken [9], LMAT [22], NBC [23] and the marker-based methods GOTTCHA 186 

[24], MetaPhlAn2 [25], PhyloSift [26]. KrakenHLL with database ‘nt’ has the highest average 187 

recall and F1 score across the biological datasets, as shown in Table 2. As seen before, using 188 

unique k-mer instead of read counts as thresholds increases the scores. While the database 189 

selection proves to be very important (KrakenHLL with database ‘std’ is performing 10% worse 190 

than KrakenHLL with database ‘nt’), only Blast has higher average scores than KrakenHLL with 191 

k-mer count thresholds on the original database. On the simulated datasets, KrakenHLL with the 192 

‘nt’ database still ranks at the top, though, as seen previously there is more variation (Suppl. 193 
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Table 4). Notably CLARK is as good as KrakenHLL, but Blast has much worse scores on the 194 

simulated datasets. 195 

 196 
 Genus Species  
  F1 Recall F1 Recall Avg 
KrakenHLL nt kmers 0.99 0.99 0.99 0.98 0.99 
KrakenHLL nt reads 0.96 0.91 0.97 0.95 0.95 
BlastMeganFilteredLiberal 0.97 0.94 0.97 0.89 0.94 
BlastMeganFiltered 0.97 0.93 0.96 0.87 0.93 
KrakenHLL orig kmers 0.96 0.93 0.94 0.87 0.93 
ClarkM4Spaced 0.95 0.90 0.94 0.88 0.92 
KrakenHLL orig reads 0.95 0.90 0.94 0.85 0.91 
Kraken 0.95 0.90 0.94 0.84 0.91 
KrakenHLL std kmers 0.97 0.94 0.92 0.78 0.90 
DiamondMegan_sensitive 0.98 0.93 0.92 0.74 0.89 
KrakenFiltered 0.95 0.91 0.90 0.75 0.88 
ClarkM1Default 0.94 0.85 0.91 0.77 0.87 
KrakenHLL std reads 0.95 0.89 0.90 0.70 0.86 
LMAT 0.97 0.93 0.91 0.60 0.85 
DiamondMegan 0.94 0.87 0.91 0.66 0.85 
Gottcha 0.91 0.84 0.87 0.67 0.82 
NBC 0.87 0.76 0.85 0.73 0.80 
Metaphlan 0.94 0.89 0.83 0.55 0.80 
MetaFlow 0.66 0.53 0.65 0.51 0.59 
PhyloSift 0.68 0.29 0.78 0.54 0.57 
PhyloSift90pct 0.68 0.30 0.77 0.52 0.57 

 197 

Table 2: Performance of KrakenHLL (with unique k-mer count thresholds) compared to 198 

metagenomic classifiers [15] on the biological datasets (n=10). F1 and Recall show the average 199 

values over the datasets. Note that ‘KrakenHLL reads’ would be equivalent to standard Kraken. 200 

 201 
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Generating a better test dataset, and selecting an appropriate k-mer threshold  202 

In the previous section we demonstrated that KrakenHLL gives better recall and F1-scores than 203 

other classifiers on the test datasets, given the correct thresholds. How can the correct thresholds 204 

be determined on real data with varying sequencing depths and complex communities? The test 205 

datasets are not ideal for that: The biological datasets lack complexity with a maximum of 25 206 

species in some of the samples, while the simulated samples lack the features of biological 207 

datasets. 208 

 209 

We thus generated a third type of test dataset by sampling reads from real bacterial isolate 210 

sequencing runs, of which there are tens of thousands in the Sequence Read Archive (SRA). That 211 

way we created a complex test dataset for which we know the ground truth, with all the features 212 

of real sequencing experiments, including lab contaminants and sequencing errors. We selected 213 

280 SRA datasets from 280 different bacterial species that are linked to complete RefSeq 214 

genomes (see Suppl. Methods Section 2.4). We randomly sampled between one hundred and one 215 

million reads (logarithmically distributed) from each experiment, which gave 34 million read 216 

pairs in total. Furthermore, we sub-sampled five read sets with between one to twenty million 217 

reads. All read sets were classified with KrakenHLL using the ‘std’ database.  218 

 219 

[FIGURE 3] 220 

Figure 3: Unique k-mer count separates true and false positives better than read counts in a 221 

complex dataset with ten million reads sampled from SRA experiments. Each dot represents a 222 

species, with true species in orange and false species in black. The dashed and dotted lines show 223 

the k-mer thresholds for the ideal F1 score and recall at a maximum of 5% FDR, respectively. In 224 
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this dataset, a unique k-mer count in the range 10000–20000 would give the best threshold for 225 

selecting true species. 226 

 227 

Consistent with the results of the previous section, we found that unique k-mer counts provide 228 

better thresholds than read counts both in terms of F1 score and recall in all test datasets (e.g. 229 

Figure 3 on ten million reads – species recall using k-mers is 0.85, recall using reads 0.76). With 230 

higher sequencing depth, the recall increased slightly - from 0.80 to 0.85 on the species level, 231 

and from 0.87 to 0.89 on the genus level. The ideal values of the unique k-mer count thresholds, 232 

however, vary widely with different sequencing depths. We found that the ideal thresholds 233 

increase by about 2000 unique k-mers per one million reads (see Figure 4). McIntyre et al. [15] 234 

found that k-mer based methods show a positive relationship between sequencing depths and 235 

misclassified reads. Our analysis also shows that with deeper sequencing depths higher 236 

thresholds are required to control the false-positive rate.  237 

 238 

[FIGURE 4] 239 

No. of 
reads 

  Genus Species 
Fraction Threshold Recall Threshold Recall 

1 million 0.03 2555 0.87 3682 0.80 
2 million 0.06 4483 0.86 6152 0.81 
5 million 0.15 12723 0.87 10459 0.85 

10 million 0.3 21896 0.88 21201 0.85 
20 million 0.6 43417 0.88 43417 0.84 

34.3 million 1 69847 0.89 688842 0.85 
 240 

Figure 4: Deeper sequencing depths require higher unique k-mer count thresholds to control 241 

false-positive rate and achieve the best recall. A minimum threshold of about 2000 unique k-mer 242 

per a million reads gives the best results in this dataset (solid line in plot). 243 
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 244 

In general, we find that for correctly identified species, we obtain up to approximately L-k 245 

unique k-mers per each read, where L is the read length, because each read samples a different 246 

location in the genome. (Note that once the genome is completely covered, no more unique k-247 

mers can be detected.) Thus the k-mer threshold should always be several times higher than the 248 

read count threshold. For the discovery of pathogens in human patients, discussed in the next 249 

section, a read count threshold of 10 and unique k-mer count threshold of 1000 eliminated many 250 

background identifications while preserving all true positives, which were discovered from as 251 

few as 15 reads. 252 

 253 

Results on biological samples for infectious disease diagnosis 254 

Metagenomics is increasingly used to find species of low abundance. A special case is the 255 

emerging use of metagenomics for the diagnosis of infectious diseases [27, 28]. In this 256 

application, infected human tissues are sequenced directly to find the likely disease organism. 257 

Usually, the vast majority of the reads match (typically 95-99%) the host, and sometimes fewer 258 

than 100 reads out of many millions of reads are matched to the target species. Common skin 259 

bacteria from the patient or lab personnel and other contamination from sample collection or 260 

preparation can easily generate a similar number of reads, and thus mask the signal from the 261 

pathogen.  262 

 263 

To assess if the unique k-mer count metric in KrakenHLL could be used to rank and identify 264 

pathogen from human samples, we reanalyzed ten patient samples from a previously described 265 

series of neurological infections [4]. That study sequenced spinal cord mass and brain biopsies 266 
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from ten hospitalized patients for whom routine tests for pathogens were inconclusive. In four of 267 

the ten cases, a likely diagnosis could be made with the help of metagenomics. To confirm the 268 

metagenomics classifications, the authors in the original study re-aligned all pathogen reads to 269 

individual genomes.  270 

 271 

Table 3 shows the results of our reanalysis of the confirmed pathogens in the four patients, 272 

including the number of reads and unique k-mers from the pathogen, as well as the number of 273 

bases covered by re-alignment to the genomes. Even though the read numbers are very low in 274 

two cases, the number of unique k-mers suggests that each read matches a different location in 275 

the genome. For example, in PT8, 15 reads contain 1570 unique k-mers, and re-alignment shows 276 

2201 covered base pairs. In contrast, Table 4 shows examples of identifications from the same 277 

datasets that are not well-supported by k-mer counts. We also examined the likely source of the 278 

false positive identifications by blasting the reads against the full nt database, and found rRNA of 279 

environmental bacteria, human RNA and PhiX-174 mis-assignments (see Suppl. Methods for 280 

details). Notably, the common laboratory and skin contaminants PhiX-174, Escherichia coli, 281 

Cutibacterium acnes and Delftia were detected in most of the samples, too (see Suppl. Table 6). 282 

However, those identifications are solid in terms of their k-mer counts - the bacteria and PhiX-283 

174 are present in the sample, and the reads cover their genomes rather randomly. To discount 284 

them, comparisons against a negative control or between multiple samples is required (e.g. with 285 

Pavian [29]). 286 

 287 

Table 3: Validated pathogen identifications in patients with neurological infections have high 288 

numbers of unique k-mers per read. The pathogens were identified with as few as 15 reads, but 289 
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the high number of unique k-mers indicates distinct locations of the reads along their genomes. 290 

Re-alignment of mapped reads to their reference genomes (column “Covered Bases”) 291 

corroborates the finding of the unique k-mers (see also Suppl. Figure 5). Interestingly, the k-mer 292 

count in PT5 indicates that there might be multiple strains present in the sample since the k-mers 293 

cover more than one genome. Read lengths were 150-250 bp.  294 

 295 
 296 

Sample Matched microorganism Reads K-mers Covered Bases  

PT5 Human polyomavirus 2 9,650 7,129 5,130 / 5,130 

PT7 Elizabethkingia genomosp. 3 403 20,724 53,256 / 4,433,522 

PT8 Mycobacterium tuberculosis 15 1,570 2,227 / 4,411,532 

PT10 Human gammaherpesvirus 4 20 2,084 2,822 / 172,764 

 297 

Table 4: False positive identifications have few unique k-mers. Using an extended taxonomy, the 298 

identifications in PT4 and PT10 were matched to single accessions (instead of to the species 299 

level). The likely true source of the mapped sequences was determined by subsequent BLAST 300 

searches and included 16S rRNA present in many uncultured bacteria, human small nucleolar 301 

RNAs (snRNAs), and phiX174. 302 

Sample Matched microorganism Reads K-mers Source 

PT3 Clostridioides difficile 122 126 16S rRNA 

PT4 Hepatitis C virus 
JF343788.1 Recombinant Hepatitis C virus 

101 3 Human 
snRNA 

PT5 Akkermansia muciniphila 936 136 16S rRNA 

PT10 Human betaherpesvirus 5 
JN379815.1 Human herpesvirus 5 strain 
U04, partial genome 

63 5 phiX174 

 303 

 304 
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Further extensions in KrakenHLL 305 

KrakenHLL adds three further notable features to the classification engine. 306 

1. Enabling strain identification by extending the taxonomy: The finest level of granularity 307 

for Kraken classifications are nodes in the NCBI taxonomy. This means that many strains 308 

cannot be resolved, because up to hundreds of strains share the same taxonomy ID. 309 

KrakenHLL allows extending the taxonomy with virtual nodes for genomes, 310 

chromosomes and plasmids, and thus enabling identifications at the most specific levels 311 

(see Suppl. Methods Section 3) 312 

2. Integrating 100,000 viral strain sequences: RefSeq includes only one reference genome 313 

for most viral species, which means that a lot of the variation of viral strain is not covered 314 

in a standard RefSeq database. KrakenHLL sources viral strain sequences from the NCBI 315 

Viral Genome Resource that are validated as ‘neighbors’ of RefSeq viruses, which leads 316 

to up to 20% more read classifications (see Suppl. Methods Section 4).  317 

3. Hierarchical classification with multiple databases. Researcher’s may want to include 318 

additional sequence sets, such as draft genomes, in some searches. KrakenHLL allows to 319 

chain databases and match each k-mer hierarchically, stopping when it found a match. 320 

For example, to mitigate the problem of host contamination in draft genomes, a search 321 

may use the host genome as first database, then complete microbial genomes, then draft 322 

microbial genomes. More details are available in Suppl. Method Section 5. 323 

 324 

Timing and memory requirements 325 

The additional features of KrakenHLL come without a runtime penalty and very limited 326 

additional memory requirements. In fact, due to code improvements, KrakenHLL often runs 327 
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faster than Kraken, particularly when most of the reads come from one species. On the test 328 

dataset, the mean classification speed in million base-pairs per minute increased slightly from 329 

410 to 421 Mbp/m (see Suppl. Table 3). When factoring in the time needed to summarize 330 

classification results by kraken-report, which is required for Kraken but part of the classification 331 

binary of KrakenHLL, KrakenHLL is on average 50% faster. The memory requirements increase 332 

on average by 0.5 GB from 39.5 GB to 40 GB. 333 

 334 

On the pathogen Id patient data, where in most cases over 99% of the reads were either assigned 335 

to human or synthetic reads, KrakenHLL was significantly faster than Kraken (Suppl. Table 5). 336 

The classification speed increased from 467 to 733 Mbp/m. The average wall time was about 337 

44% lower, and the average additional memory requirements were less than 1GB, going from 338 

118.0 to 118.4 GB. All timing comparisons were made after preloading the database and running 339 

with 10 parallel threads. 340 

 341 

Discussion 342 

In our comparison, KrakenHLL performed better in classifying metagenomics data than many 343 

existing methods, including the alignment-based methods Blast [16], Diamond [30], and 344 

MetaFlow [19]. Blast and Diamond results were post-processed by Megan [31], which assigns 345 

reads to the lowest-common ancestor (LCA), but ignores coverages when computing the 346 

resulting taxonomic profile. Thus, the taxonomic profile (with read counts as abundance 347 

measures) is sensitive to over-representing false positives that have coverage spikes in parts of 348 

the genome in the same way as non-alignment based methods. Coverage spikes may appear due 349 

to wrongly matched common sequences (e.g. 16S rRNA), short amplified sequences floating in 350 
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the laboratory, and contamination in database sequences. MetaFlow, on the other hand, 351 

implements coverage-sensitive mapping, which should give better abundance calls, but it did not 352 

perform very well in our tests. Going from alignments to a good taxonomic profile is difficult 353 

because coverage information cannot be as easily computed for the LCA taxon and summarized 354 

for higher levels in the taxonomic tree. In comparison, reads and unique k-mer counts can be 355 

assigned to the LCA taxa, and summed to higher levels. Notably, KrakenHLL’s k-mer counting 356 

is affected by GC biases in the sequencing data the same way as other read classifiers and 357 

aligners [32], and may underreport GC-rich or GC-poor genomes. 358 

 359 

Conclusions 360 

KrakenHLL is a novel method that combines fast k-mer based classification with an efficient 361 

algorithm for counting the number of unique k-mers found in each species in a metagenomics 362 

dataset. When the reads from a species yield many unique k-mers, one can be more confident 363 

that the taxon is truly present, while a low number of unique k-mers suggests a possible false 364 

positive identification. We demonstrated that using unique k-mer counts provides improved 365 

accuracy for species identification, and that k-mer counts can help greatly in identifying false 366 

positives. In our comparisons with multiple other metagenomics classifiers on multiple 367 

metagenomics datasets, we found that KrakenHLL consistently ranked at the top. The strategy of 368 

counting unique k-mer matches allows KrakenHLL to detect that reads are spread across a 369 

genome, without the need to align the reads. By using a probabilistic counting algorithm, 370 

KrakenHLL is able to match the exceptionally fast classification time of the original Kraken 371 

program with only a very small increase in memory. The result is that KrakenHLL gains many of 372 

the advantages of alignment at a far lower computational cost. 373 
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For each taxon a data sketch records its k-mers for cardinality estimation

reads   kmers     dup          cov   taxID   rank                    name 
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 9650     7129     74.5      0.192   10632  species               Human polyomavirus 2 
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