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Modern microscopy modalities create a data deluge with gigabytes of data gen-

erated each second, or terabytes per day. Storing and processing these data is

a severe bottleneck. We argue that this is an artifact of the images being rep-

resented on pixels. To address the root of the problem, we here propose the

Adaptive Particle Representation (APR) as an image-content-aware represen-

tation of fluorescence microscopy images. The APR replaces pixel images to

overcome computational and memory bottlenecks in storage and processing

pipelines for studying spatiotemporal processes in biology using fluorescence

microscopy. We present the ideas, concepts, and algorithms and validate them

using noisy 3D image data. We show how the APR adapts to the information

content of an image without reducing image quality. We then show that the
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adaptivity of the APR provides orders of magnitude benefits across a range

of image-processing tasks. Therefore, the APR provides a simple, extendable,

and efficient content-aware representation of images that could be useful for

many imaging modalities in order to relax current data and processing bottle-

necks.

(less than 15000 words, 6 Figures)

Introduction New developments in fluorescence microscopy (1–3), labeling chemistry (4),

and genetics (5) provide the potential to capture and track biological structures at high resolution

in both space and time. Such data is vital for understanding many spatiotemporal processes in

biology (6). Unfortunately, fluorescence microscopes do not directly output the shapes and

locations of objects through time. Instead, they produce raw data, potentially terabytes of 3D

images (7), from which the desired spatiotemporal information must be extracted by image

processing. Handling the large image data and extracting information from the raw microscopy

images presents the main bottleneck (7–9). We propose that at the core of the problem is not

the amount of information contained in the images, but how the data encodes this information

– usually as pixels on a uniform grid.

The uniform grids of pixels in the images contain information on labeled objects quantifying

local intensity variations of the fluorescence signal. These local intensity variations are a mea-

surement of the spatial localization of fluorescent molecules. Inferring information about the

shape and location of labeled structures is complicated by structures of equal interest showing

different imaged intensities, hence defining locally different scales of intensity variation across

the image. The wide range of spatial and temporal scales in biological processes often requires

imaging a large field of view at both high spatial and temporal resolution. This uniformly high

resolution exacerbates the data problem and amplifies the processing bottleneck.
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Data and processing bottlenecks are effectively avoided by the human visual system, which

solves a similar problem of inferring object shapes and locations from photon accounts. In

part, the human visual system achieves this by adaptively sampling the scene depending on its

content (10), while adjusting to the dynamic range of intensity variations (11). This adaptive

sampling works by selectively focusing the attention of the eyes on areas with potentially high

information content (10). This selective focus then enables the efficient inference of information

about the scene at a high effective resolution by directing the processing capacity of the retina

and visual cortex. As in fluorescence microscopy, the information in different areas of a scene

is not encoded in absolute intensity differences, but in relative differences compared to the local

brightness. The human visual system maintains effective adaptive sampling across up to nine

orders of magnitude of brightness levels (11) by using local gain control mechanisms that adjust

to, and account for, changes in the dynamic range of intensity variations. Together, adaptation

and local gain control enable the visual system to provide a high rate of information content

using as little as 1 MB/s of data from the retina (12). In contrast, the rate of information in pixel

representations of fluorescence microscopy images is much lower and is defined by the spatial

and temporal resolution of the images rather than by their contents.

Inspired by the adaptive sampling and local gain control of the human visual system, we

propose a novel representation of fluorescence microscopy images – the Adaptive Particle Rep-

resentation (APR). The APR adaptively resamples an image, guided by local information con-

tent, while taking into account an effective local gain control. Figure 1A illustrates the basic

idea of adaptive sampling. The top panel shows a pixel representation of a fluorescence image

acquired from a specimen of Danio rerio, with labeled cell nuclei. The pixel representation

places the same computational and storage costs in areas containing labeled cell nuclei and in

areas with only background signal. This uniform sampling results in processing costs that are

proportional to the spatial and temporal resolution of the acquisition, rather than the actual in-
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formation content of the image. The main difficulty in adaptation, however, is to give equal

importance to imaged structures across a wide range of intensity scales. This is achieved by

local gain control as illustrated in Figure 1B. Without local gain control, adapting effectively

to both bright and dim regions in the same image is not possible (centre left). The APR pro-

vides local gain control by guiding the adaptation by a Local Intensity Scale (center right). As

seen in Figure 1B (right), this samples dim and bright objects at comparable resolution, giving

them equal importance. Combining adaptive sampling and local gain control, the APR shares

two key features of the human visual system to alleviate processing and storage bottlenecks in

current fluorescence microscopy.

While the APR also reduces data rates, its main intention is to facilitate downstream image

processing, storage, analysis, and visualization across a wide range of applications. We posit

that any image representation aiming to achieve this should fulfill the following representation

criteria (RC):

RC1: It must guarantee a user-controllable representation accuracy for noise-free images and

must not reduce the signal-to-noise ratio of noisy images.

RC2: Memory and computational cost of the representation must be proportional to the infor-

mation content of an image, and independent of the number of pixels.

RC3: It must be possible to rapidly convert a given pixel image into that representation with a

computational cost at most proportional to the number of input pixels.

RC4: The representation must reduce the computational and memory cost of image-processing

tasks without resorting to the original pixel representation.

None of the existing multi-resolution and adaptive sampling approaches meets all of these

criteria, mainly because they were developed for different applications. However, most do
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Figure 1: Spatially adaptive representation of fluorescence microscopy images. A. Exam-
ple image of fluorescently labeled zebrafish cell nuclei (Dataset 7 from STable 3, courtesy of
Huisken Lab, MPI-CBG & Morgridge Institute for Research), represented on a regular grid
of pixels (top). In the right half of the image, the pixels are explicitly shown as points with
color corresponding to local fluorescence intensity. The bottom panel shows the same image
represented using the APR. Particles are shown as dots with their color indicating fluorescence
intensity and their size reflecting local image structure. B. Adaptively representing objects of
different intensity requires accounting for the local brightness levels. The panel compares two
regions of labeled cell nuclei (Dataset 6 from STable 3, courtesy of Tomancak Lab, MPI-CBG)
with different brightnesses (left). The center left panel shows adaptive representations based on
the absolute intensity. The right panel shows the APR accounting for the Local Intensity Scale
of the image as shown in the center right panel. Using the Local Intensity Scale, objects are
correctly resolved across all brightness levels, without over-resolving the background.
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share similar goals and use related concepts to achieve them. These approaches include super-

pixels (13, 14), wavelet decompositions (15–17), error equidistribution methods (18–20), and

dimensionality reduction (21, 22), as we discuss below. In contrast, we propose that the APR

meets all of the above criteria. It provides a general framework combining concepts from

wavelets, super-pixels, and equidistribution methods. Here, we present the APR for the first

time and show that it fulfills all of the above representation criteria, making it an ideal candidate

to replace pixel images in fluorescence microscopy.

1 The Adaptive Particle Representation

We illustrate the ideas and concepts behind the APR using a 1D Gaussian function as a didactic

example. All of the concepts introduced extend to higher dimensions and to general continuous

functions, as shown in the Supplement.

The APR takes an input pixel image and resamples it in a spatially adaptive way, represent-

ing it as a set of Particle Cells V and intensity values stored at particle locations P . Particles, a

generalization of pixels, are collocation points in space that carry properties, such as intensity,

but are not restricted to sit on an evenly spaced grid and may have different sizes. The Parti-

cle Cells partition space and implicitly define the particle locations and a piecewise constant

Implied Resolution Function R∗(y) at all locations y in the image. Importantly, the Implied

Resolution Function R∗(y) also defines how the image is to be reconstructed at off-pixel and

off-particle locations. It defines neighbor interactions between particles and specifies a local

minimum resolution. From the APR, an image can be reconstructed at any location y by taking

a non-negative weighted combination of particles that are within R∗(y) distance of y. Formu-

lated in this way, a pixel image is a set of particles placed on a regular grid with a constant

Implied Resolution Function R∗(y) = h, where h is the pixel size (as shown in Figure 2A,

right). In contrast to uniform pixel representations, the APR adaptively represents an original
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image with particles whose locations, density, and sizes vary across the image (Figure 2A, left).

As a result, computational and storage costs scale with the number of particles and no longer

with the number of pixels. Therefore, reducing the number of particles by adjusting the resolu-

tion to the image content, the APR can reduce storage and computational costs and increase the

information-per-data ratio. This is optimally achieved by minimizing the number of particles

required to represent a given image. However, the APR and any results computed from it must

still reflect the content of the original pixel image.

1.1 Reconstruction Condition

For the APR to optimally represent a given image, the Implied Resolution Function should

be set as large as possible at every location, while still guaranteeing that the image can be

reconstructed within a user-specified relative error E scaled by the Local Intensity Scale σ(y).

The Local Intensity Scale σ(y) is an estimate of the range of intensities present locally in the

image. Considering an arbitrary Resolution Function R(y), we can formulate the problem as

finding the largest R(y) everywhere that satisfies

|I(y)− Î(y)| ≤ Eσ(y), (1)

where Î(y) is the reconstructed intensity calculated by a non-negative weighted average over

particles within R(y) distance of y. We call this the Reconstruction Condition and illustrate it

in Figure 2B. For the 1D example shown in Figure 2, a constant local intensity scale σ(y) = 1

is used. We therefore focus solely on maximizing R(y) at each location. Maximizing R(y)

minimizes 1
R(y)

, which is proportional to the locally required sampling density. Therefore, max-

imizing R(y) results in the minimum number of particles used. Unfortunately, finding the opti-

mal R(y) that satisfies the Reconstruction Condition for arbitrary images requires a number of

compute operations that scales with the square of the number of pixels N . This computational
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cost is prohibitive even for modestly sized images. We therefore propose two conservative re-

strictions on the problem and show that the optimal solution to the restricted problem can be

computed with a total number of operations that is proportional to N .

1.2 APR Solution

Next, we outline the two problem restrictions, and how they are used to formulate an efficient

linear-time algorithm for creating the APR.

Resolution Bound The first restriction on the Resolution Function R(y) requires that for all

original pixel locations y it satisfies the inequality

R(y) ≤ L(y∗), (2)

where |y − y∗| ≤ R(y), and L(y) = Eσ(y)
|∇I| . Here |∇I| is the magnitude of the image intensity

gradient, which in 1D is |dI
dy
| and can be computed directly from the image. We call this inequal-

ity the Resolution Bound, and L(y) the Local Resolution Estimate. If we assume the continuous

intensity distribution underlying the image to be differentiable everywhere and the Local Inten-

sity Scale σ(y) to be sufficiently smooth (See SuppMat 2.1 for 1D and SuppMatEq 19 for nD),

satisfying the Resolution Bound guarantees satisfying the Reconstruction Condition (See Supp-

Mat 2 for 1D, and SuppMat 3 for nD). In Figure 2C, we illustrate that the Resolution Bound

in 1D requires that a box centered at y of height R(y) and width 2R(y) does not intersect any-

where with the graph of L(y). Since the Resolution Bound represents a tighter bound than the

Reconstruction Condition, the optimal solution to the Resolution Bound Rb(y) is always less

than or equal to the optimal solution to the Reconstruction ConditionRc(y), therefore providing

the same or a higher image representation accuracy. The dashed lines in Figure 2D illustrates

this for the 1D example. As mentioned above, solving for the optimal Resolution Function has

a worst-case complexity in O(N2). However, we show next that the Resolution Bound can
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Figure 2: Concepts and definitions of the Adaptive Particle Representation (APR) il-
lustrated in 1D. See main text for explanations. A. APR (left, E = 0.1, σ(y) = 1)
and uniform pixel (right, h = 0.0078) representation of the shifted 1D Gaussian I(y) =

exp
[
−(y−0.01)2

0.009

]
+ 0.1. The bottom plots show the corresponding Resolution Functions R(y)

with the set of particles P shown as dots above. B. Illustration of the Reconstruction Condi-
tion, requiring that for all original pixel locations y, any non-negative weighted average of the
particles (green dots) within R(y) distance of y reconstructs an intensity value with a deviation
less than Eσ(y) (red dashed interval). C. Illustration of the Resolution Bound, requiring for all
locations y that a rectangle centered at y with width 2R(y) and height R(y) does not intersect
the curve of the Local Resolution Estimate L(y). For the choices shown in the figure, fulfilling
the Resolution Bound guarantees fulfilling the Reconstruction Condition, given assumptions
on σ. D. Comparison of the optimal (largest everywhere) Resolution Function satisfying the
Reconstruction Condition Rc(y) (blue dashed) with the optimal Rb(y) satisfying additionally
also the Resolution Bound (green dashed) and with the optimal Implied Resolution Function
R∗(y) (bold black) for the 1D Gaussian example from A. The Implied Resolution Function is
composed of blocks called Particle Cells (gray). They never intersect the optimal Resolution
Function (Rb), therefore providing a conservative approximation. E. Definition of a 1D Particle
Cell as described by its level l and location i. F. The set of all possible Particle Cells can be
represented as a binary tree reaching down to single-pixel resolution. G. The Local Particle
Cell set L is constructed from L(y). The link between sections of L(y) and a Particle Cells in L
are shown in with braces and dotted lines. All possible Particle Cells are shown as blocks and
those belonging to L are shaded blue (Ω = |Ω| in labeled axis for brevity).
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be found optimally with a linear complexity in N if we restrict the Resolution Function to be

composed of square blocks.

Finding the Resolution Function with Particle cells The second restriction is that the blocks

constituting the Resolution Function must have edge lengths that are powers of 1/2 of the image

edge length. The piecewise constant Resolution Function defined by the uppermost edges of

these blocks is called the Implied Resolution FunctionR∗(y) and is shown in black in Figure 2D.

The blocks we call Particle Cells. They have sides of length |Ω|
2l

, where |Ω| is the edge length

of the image, measured in pixels. The number l is a positive integer we call the Particle Cell

Level. Each Particle Cell ci,l, is therefore uniquely determined by its level l and location i.

Figure 2E illustrates these definitions for a single Particle Cell (See SuppMat 4 for the nD

formal definition). The size of the blocks on the lowest level is half the size of the image

(lmin = 1), and the highest level of resolution lmax contains boxes the size of the original pixels.

For image edge lengths that are not powers of 2, |Ω| is rounded upwards to the nearest power

of two.

Using these two restrictions, the problem of finding the optimal Resolution Function can

be reduced to finding the smallest set V of blocks that defines an Implied Resolution Function

R∗(y) that satisfies the Resolution Bound (SuppMat 4.1). We call this set V of Particle Cells

the Optimal Valid Particle Cell (OVPC) set.

In order to construct an algorithm that efficiently finds the OVPC set for a given Local

Resolution Estimate L(y), we first formulate the Resolution Bound in terms of Particle Cells.

This formulation requires arranging the set C of all possible Particle Cells ci,l by level l and

location i in a tree structure, as shown in Figure 2F. In 1D this is a binary tree, in 2D a quad-

tree, and in 3D an oct-tree. When arranged as a tree structure, we can naturally define children

and neighbor relationships between Particle Cells, as respectively shown in green and blue in
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the example. Also, we define the descendants of a Particle Cell as the set of all children and

children’s children up to the maximum resolution level lmax. Given these definitions, the Local

Resolution Estimate L(y) can be represented as a set of Particle Cells L by iterating over each

pixel y∗, and adding the Particle Cell with level l = dlog2
|Ω|
L(y)
e and location i = b2ly∗

|Ω| c to L

if it is not already in L (assuming the lower-left boundary of the image is at zero). Figure 2G

illustrates how L relates to L(y), with L also represented in Figure 2F in the tree structure. We

call this set of Particle Cells the Local Particle Cell (LPC) set L (See SuppMat 4.2).

We can then represent the Resolution Bound in terms of L. A set of Particle Cells V will

define an Implied Resolution Function that satisfies the Resolution Bound for L(y), if and only

if the following statement is true: for every Particle Cell in V , none of its descendants, or

neighbors’ descendants, are in the LPC set L (SuppTheorem 1). We call any set of Particle

Cells satisfying this statement valid. The OVPC set V is then defined as the valid set for which

replacing any combination of Particle Cells with larger Particle Cells would result in V no longer

being valid (SuppTheorem 2).

Pulling Scheme We present an efficient algorithm for finding the OVPC set V called the

Pulling Scheme. The name is motivated by the way a single Particle Cell in L pulls the resolu-

tion function down to enforce smaller Particle Cells across the image. The Pulling Scheme finds

the OVPC set V directly, without explicitly checking for validity or optimality. The result is by

construction guaranteed to be valid and optimal. In order to derive the algorithm, we leverage

three properties of OVPC sets:

1. Predictable and self-similar structure: Neighboring Particle Cells never differ by more

than by one level and are arranged in a fixed pattern around the smallest Particle Cells in

the set. This local structure is independent of absolute level l and endows the set with a

self-similar structure. Using this structural feature, the OVPC set V for a LPC set L with
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rithm 1), and 3D processing pipeline. A. The Pulling Scheme computes the local Optimal
Valid Particle Cell (OVPC) set V for a given Local Particle Cell (LPC) set L. Due to the separa-
bility property (see main text), this can be done separately for each Local Particle Cell (top and
middle). The complete result for the combined set is then formed by taking the smallest Particle
Cell at each location (bottom). B. Illustration of the steps for creating the APR of an example
2D fluorescence image (Dataset 10 in STable 3, courtesy of Lemaire lab, CRBM (CNRS) and
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generate the APR (bottom panel). The top half of the bottom panel shows the particles of the
APR with color encoding intensity. The bottom half shows a piecewise constant reconstruction
Î(y) of the image for visualization.
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only one Particle Cell ci,l can be generated directly for any i and l.

2. Separability: We can find the OVPC set given a LPC set L by considering each cell in

L separately and then combining the smallest Particle Cells from all sets that cover the

image (see SuppLemma 1). Figure 3A illustrates this separability property.

3. Redundancy: The redundancy property tells us that when constructing V we can ignore

all Particle Cells in L that have descendants in L. This is because descendants provide

equal or tighter constraints on the resolution function than their parent Particle Cells (see

SuppLemma. 2 for the proof).

These properties enable us to efficiently construct V by propagating solutions from individual

Particle Cells in L, one level at a time, starting from the highest level (lmax) of the smallest

Particle Cells in L. Here we use a simple implementation that explicitly represents all possible

Particle Cells in an image pyramid structure1. The Pulling Scheme is summarized in Algo-

rithm 1, and Figure 3B illustrates the steps for each level. SuppMat 5.5 and SuppMat 12.5

provide additional details. The computational complexity of the neighbor operations in the al-

gorithm scales with the number of Particle Cells in V and guarantees validity and optimality by

construction. Computing the OVPC set V using the Pulling Scheme incurs a computational cost

that is at most proportional to the number of pixels N .

The computational and memory performance of the Pulling Scheme is reduced by a factor

of 2d, where d is the image dimensionality, while obtaining the same solution and algorithm as

above, using the Equivalence Optimization (See SuppMat 5.4 and SuppMat 5.7). This restricts

calculations on the full image to filtering operations for the gradient magnitude and greatly im-

proves memory and computational efficiency of the method. A second optimization restricts

the neighborhood of particle cells to further reduce computational cost, as described in Supp-

1Alternative implementations are possible that do not require the explicit storage of the full tree structure.
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Mat 5.6. We use both optimizations for results presented in this paper.

Placing the Particles P Given the Implied Resolution Function computed by the Pulling

Scheme, the last step of forming the APR is to determine the locations of the particles P . This

must be done such that around each pixel location y there is at least one particle within a distance

of R∗(y). This is most easily achieved by placing one particle at the center of each Particle

Cell in V . Specifically, for each Particle Cell ci,l in V , we add a particle p to P with location

yp = |Ω|
2l

(i + 0.5). For each particle p we store the image intensity at that location Ip = I(yp)

interpolated from the original pixels as described in SuppMat 6. This way of arranging the

particles has the advantage that the particle positions do not need to be stored, as they can be

directly computed from V .

Although simple, this sampling is optimal for a given Implied Resolution Function, in the

sense that the number of particles is equal to the integral of the minimally required particle

density over the whole image. The required particle density at y is given by 1/R∗(y). Hence, in

addition to providing an optimal Implied Resolution Function, the APR also uses the smallest

number of particles on average (see SuppMat 6.1).

Forming the APR={V ,P} In Figure 3B we outline the steps required to form the APR from

an input image. The APR can be stored as the combination of {V ,P}. We represent the OVPC

set V by storing the integer level l and the integer location i for each Particle Cell. V then

defines the Implied Resolution Function R∗(y) for all y in the image. The second component,

the particle set P , stores the properties of each particle p, i.e., its intensity and type. Since the

particle positions do not need to be stored, the APR is efficiently represented in memory.

Practical Considerations Determining L(y) requires computing the intensity gradient ∇I

over the input image. In practice, the pixel intensities are noisy, which leads to uncertainty in
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Data: Local Particle Cell set L
Result: Optimal Valid Particle Cell set V(L)

Function pulling scheme(L)
Represent all possible Particle Cells C from lmax to lmin in a multi-resolution pyramid
and set all Particle Cells type to EMPTY;

forall Particle Cells c ∈ C where c ∈ L do
c.type = SEED

end
for lc = lmax : lmin do

/* Fill neighbors (Step 1) */
forall neighbors n of c ∈ C(lc) where c.type is (SEED or PROPAGATE) do

if n.type is EMPTY then
n.type = BOUNDARY

end
/* Set Parents (Step 2) */
forall parents p of c ∈ C(lc) where c.type is (SEED, PROPAGATE, or
ASCENDANT) do
p.type = ASCENDANT

end
if lc > lmin then

/* Set Ascendant Neighbors (Step 3) */
forall neighbors n of c ∈ C(lc − 1) where c.type is ASCENDANT do

if n.type is EMPTY then
n.type = ASCENDANT NEIGHBOR

if n.type is SEED then
n.type = PROPAGATE

end
/* Set Fillers (Step 4) */
forall children d of c ∈ C(lc − 1) where c.type is (ASCENDANT NEIGH or
PROPAGATE) do

if (d.type is EMPTY then
d.type = FILLER

end
end
return all type SEED, BOUNDARY and FILLER Particle Cells in C as V;

Algorithm 1: The Pulling Scheme algorithm. The Pulling Scheme efficiently computes the
OVPC set V from the Local Particle Cell setL using a temporary pyramid mesh data structure.
C(l) denotes all Particle Cells on level l. See SuppMatAlgorithm 1 for detailed pseudocode,
and SFigure 6 for a schematic of the main steps.
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the computed L(y). In SuppMat 7, we provide theoretical results how this uncertainty imposes a

lower bound on the achievableE. However, errors inL(y) can be compensated for by increasing

E (SuppMat 7.2). Moreover, the gradient estimate converges at the optimal statistical rate

(SuppMat 7.4). In the next section, we confirm these theoretical results by direct benchmarking

of the APR under noisy and noise-free conditions.

Data structures Appropriate data structures must be used to efficiently store and process

on the APR. Ideally, these structures allow direct memory access at low overhead. Here, we

propose a multi-level data structure for the APR, as described in SuppMat 17. Each APR level

is encoded similar to sparse matrix schemes. These data structures efficiently encode V and

P by explicitly encoding only one spatial coordinate per Particle Cell, while allowing random

access. We call this data structure the Sparse APR (SA). It relies on storing one red-black tree

per x, z and level, caching access information for contiguous blocks of Particle Cells. When

storing image intensity using 16 bits, the SA data structure requires approximately 50% more

memory than the intensities alone.

APR image file format We store the APR using the HDF5 file format (23) and the BLOSC

HDF5 plugin (24) for lossless Zstd compression of the Particle Cell and intensity data.

Summary The APR resamples an image by optimally adapting a set of particles to the content

of the image. This results in an image representation that has a computational and memory cost

that scales with image content, while guaranteeing a representation error below a user-defined

threshold E (RC1, RC2). Using the Particle Cell formulation and Pulling Scheme, the APR

can be formed rapidly and efficiently, scaling to large 3D images and extending to arbitrary

dimensions (RC3).
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3D Fluorescence APR Implementation

We assess the properties of the APR for noisy 3D images. We do this by first outlining a specific

3D implementation and then benchmarking the APR using synthetic data. Illustrative results

in 1D are given in SuppMat 11 (code available from github.com/cheesema/APR 1D demo).

Figure 3B illustrates the main steps of the implementation using a 2D example.

When implementing the APR, three design choices have to be made. First, one has to decide

how to calculate the gradient magnitude |∇I(y)|. Second, one has to decide how to compute

the Local Intensity Scale σ(y). Third, one has to decide how to interpolate the image intensity

at particle locations Ip = I(yp). We describe our choices briefly below, with full details and

descriptions of parameters given in SuppMat 12. All design decisions are made to optimize

robustness against imaging noise and computational efficiency.

To calculate the gradient magnitude over the input image we use smoothing cubic B-Splines

(25), as they provide robust gradient estimation in the presence of noise. They require the setting

a smoothing parameter λ depending on the noise level. Using a recursive implementation (25),

however, renders the computational cost independent of the choice of λ.

For the Local Intensity Scale σ(y), we use a smooth estimate of the local dynamic range

of the image, as described in SuppMat 12.3. Examples are shown in Figures 1B and 3B, and a

schematic in SFigure 19. The size of the smoothing window is set by a coarse estimate of the

standard deviation of the point-spread function (PSF) of the microscope. Further, a minimum

threshold is introduced to prevent resolving background noise (SFigure 21).

We find that the method is relatively insensitive to the choice of these parameters and a

discussion on parameter selection for real datasets and their impact on the APR is given in

Suppmat 13 and parameters used for real datasets are given in STable 3.

This form of the local intensity scale accounts for variations in the intensities of labeled
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objects, similar to gain control in the human visual systems. We ensure that σ is sufficiently

smooth (See SuppMat 4.4) by computing it over the image downsampled by a factor of two.

Two methods are combined to interpolate pixel intensities to particle locations. For particles

in Particle Cells at pixel resolution, the intensities are directly copied from the respective pixels.

For particles in larger particle cells, we assign the average intensity of all pixels in that Particle

Cell (26).

Because we intend to benchmark the APR by comparing with pixel images, we also need a

method to reconstruct a pixel image from an APR. Note that this is only done for benchmarking.

In real applications, all downstream processing and visualization happens directly in the APR

without ever going back to pixels. As described above, a pixel image satisfying the Reconstruc-

tion Bound can be reconstructed from the APR using any non-negative weighted average of

particles within R∗(y) of pixel y. In SuppMat 10 we discuss possible weight choices, provid-

ing examples of smooth, piecewise constant, and worst-case reconstructions. The worst-case

reconstruction produces the worst point-wise error of all reconstruction methods and is there-

fore useful for some benchmarking tasks, but not for practical use. For displaying figures, and

benchmarking, unless otherwise stated, we use the piecewise constant reconstruction. This re-

construction sets the pixels inside every Particle Cell equal to the intensity of the particle in that

cell and thus has the best computational efficiency, and surprising visual quality. SFigure 23

provides an example of the comparison of a smooth and piecewise constant reconstruction with

an original image.

Validation

All benchmarks use the open-source C++ APR software library libAPR (github.com/cheesema/LibAPR)

compiled with with gcc 5.4.0 and OpenMP shared-memory parallelism on a 10-core Intel Xeon

E5-2660 v3 (25 MB cache, 2.60 GHz, 64 GB RAM) running Ubuntu Linux 16.04. SuppMat 15
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provides a detailed description of each benchmark and the parameters used.

Benchmarks on synthetic data

We first assess the performance of the APR using synthetic benchmark data. SuppMat 14

and SFigure 22 outline the synthetic data generation pipeline. The key advantage of synthetic

data is that all relevant image parameters can be varied and the ground-truth image is known.

Synthetic images are generated by placing a number of blurred objects into the image domain

and corrupting with modulatory Poisson noise. We study the influence of image size, content,

and noise level on the performance of the APR. Spherical objects are used for simplicity unless

otherwise indicated.

Reconstruction Bound We experimentally confirm that the APR satisfies the Reconstruction

Condition in the absence of noise, illustrating the theoretical results presented above. Figure 4A

shows the empirical relative error E∗ = |I(y) − Î(y)|∞ for increasing imposed error bounds

E. In all cases, E∗ < E (dashed line), as required by the Reconstruction Condition. As ex-

pected, we find that the number of particles used by the APR to represent the image decreases

with increasing E (right axis). The results are unchanged when using more complex objects

than spheres (SFigure 25) and using different reconstruction methods (SFigure 25). Figure 4C

provides examples of the quality of APR reconstruction at different levels of E compared to

ground truth. Hence, in the absence of noise, the APR satisfies the Reconstruction Condition

everywhere, guaranteeing a reconstruction error below the user-specified threshold, hence ful-

filling the first part of RC1.

Robustness against noise In real applications, images are corrupted by noise. We find that

the introduction of noise introduces a lower limit on the relative error E∗ that can be achieved

(see first plot in SFigure 26). This observation agrees with theoretical analysis (SuppMat 7.3).
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Figure 4: Benchmarking the APR on synthetic data. All results are shown as mean (lines)
and standard deviation (bands). A. Effectively observed reconstruction errorE∗ (solid lines, left
axis) between the ground truth and the piecewise constant APR reconstruction (SuppMat. 15.2)
for noise-free images. Number of particles used by the APR (dashed lines, right axis) for
different user-defined error thresholds E. Results are shown for images of different sharpness
(inset legend). The APR reconstruction error is below the specified threshold in all cases. More
accurate APRs require more particles. B. Peak signal-to-noise ratio (PSNR) of the APR relative
to the PSNR of the original pixel image for different error thresholds E and image noise levels
(inset legend) (SuppMat. 15.3). For low E and noisy images, the APR has a better PSNR than
the input images. C. Examples of test images of spherical objects with different noise level
and E used in the benchmarks. The top row shows the APR reconstruction of the medium-blur
noise-free test image at different E compared to the ground truth. The bottom rows compare
the original image with the APR reconstructions of noisy images for E = 0.1 and illustrate
the inherent denoising property of the APR. D. PSNR ratio (solid lines, left axis and number
of particles used (dashed lines, right axis) for images containing different numbers of objects,
i.e., different information content, for E = 0.1. (SuppMat. 15.4). In all cases, the PSNR of the
APR is better than that of the input image, and the number of particles scales at most linearly
with image information content. E. Number of APR particles (solid line, left axis and input
image pixel (dashed line, right axis) for images of different width W containing a fixed number
of objects (SuppMat. 15.5). The number of particles of the APR plateaus once the objects in
the image are well resolved. F. Visual comparison of a medium-blur, medium-noise image I
containing six objects (left) with its APR reconstruction Î (right) for E = 0.1.
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This lower bound is entirely due to the noise in the pixel intensity values, while the adaptation

of the Implied Resolution Function R∗(y) is robust to noise. This is demonstrated in the second

plot in SFigure 26, where noisy particle intensities are replaced with ground-truth values for

the reconstruction step. Adaptation is still done on the noisy pixel data. Again, E∗ can be

made arbitrarily small, indicating that the construction of the APR is robust against imaging

noise. This result also agrees with the theoretical analysis of the impact of errors in L(y) on the

Implied Resolution Function (SuppMat 7.2).

To understand how to best set E in the presence of noise, we compute the observed peak

signal-to-noise ratio (PSNR) of the reconstructed image and compare with the PSNR of the

original image. Figure 4B shows that decreasing E to zero does not maximize the PSNR.

Instead, for medium to high quality input images, the PSNR is highest between an E of 0.08

and 0.15. For low-quality input images, we find a monotonic relationship between the PSNR

and E, as de-noising from downsampling dominates. Also, for E < 0.2 the reconstruction

error is always less than the noise in the input image, reflected in a PSNR ratio greater than

one. Therefore, for noisy images with medium to high quality, there is an optimal range for E

between 0.08 and 0.15. In this range, the reconstruction errors are less than the imaging noise,

and the signal-to-noise ratio of the APR is better than that of the input pixel image, fulfilling

also the second part of RC1.

Response to image content In Figure 4D we show how the APR adapts to image content.

This adaptation is manifested in the linear relationship between the number of objects (spheres)

randomly placed in the image and the number of particles used by the APR (right axis). Adap-

tion is linear despite the brightness of the objects randomly varying over an order of magnitude

(see SuppMat 15.4). Image quality is maintained throughout (left axis). Figure 4C shows an

example of a medium-quality input image and its APR reconstruction. Figure 4E shows that
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the number of particles used by the APR to represent a fixed number of objects becomes in-

dependent of image size. Also, if pixel resolution and image size are increased proportionally,

the APR approaches a constant number of particles (SFigure 27). Together, these results show

that the APR adapts proportional to image content, independent of the number of pixels. hence

fulfilling RC2.

Evaluation of the Local Intensity Scale So far, we have not directly assessed the validity of

the Local Intensity Scale σ. In order to do this, we need a ground-truth reference. In Supp-

Mat 14.5 we introduce the perfect APR, and the Ideal Local Intensity Scale σideal that can be

calculated for synthetic data. This ground-truth representation is then used to benchmark the

APR.

The results in STables 1 and 2 show that the local intensity scale we use is effective over wide

range of scenarios. However, for crowded images with large contrast variations (two orders of

magnitude or more), we find that the Local Intensity Scale over-estimates the dynamic range

of dim regions that are close to bright regions. This effect is most pronounced in high-quality

images, where alternative formulations of the Local Intensity Scale could provide better results.

Computational cost Due to the adaptivity of the APR, its computational cost depends on

image content through the number of particles, and not on the input image size N . For a given

input image, we define the Computational Ratio (CR) as:

CR =
number of input pixels

number of output particles
. (3)

We assess the performance of the APR for synthetic images with numbers of objects roughly

corresponding to CR = 5, 20, 100, representing high, medium, and low complexity images

(SFigure 28, SuppMat 16.1). The results are given in Table 1. The APR achieved effective CR

values of 5.63, 19.7, and 93.9, respectively.
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Computational
Ratio (CR)

Raw Image
Size (GB)

Compressed
APR (GB)

MCR
(APR)

MCR
(APR-WNL)

MCR
(Pixels pbzip2)

Pipeline
Time (s)

Pulling Scheme
Runtime (s)

CR5 5.63 (0.02) 1.024 0.129 (0.0006) 7.9 (0.04) 15.95 (0.07) 2.03 (0.001) 2.34 (0.086) 0.104 (0.002)

CR20 19.7 (0.13) 1.024 0.036 (.0002) 28.4 (0.19) 54.4 (0.36) 2.072 (0.0001) 2.01 (0.07) 0.04 (0.003)

CR100 93.9 (1.6) 1.024 0.007 (0.0001) 139.9 (2.1) 265.2 (3.4) 2.092 (0.007) 1.87 (0.08) 0.027 (0.005)

Exemplars Mean 51.1 (89.3) 1.869 (1.38) 0.051 (0.053) 129.5 (284) 191.4 (347) 32.306 (87.2) 3.65 (2.19) 0.10 (0.08)

Exemplars Median 22.7 1.258 0.027 36.8 79.8 3.061 2.19 0.066

Table 1: Summary statistics of the APR benchmarks on synthetic and real-world images.
Results are shown for synthetic images with fixed CR=5,20,100 and for 19 real-world exemplar
datasets (see STable 3). For the exemplars, we report the means, standard deviation (brackets),
and medians of the values over all exemplar images. For the synthetic fixed-CR benchmarks,
the effective CR and the Memory Compression Ratios (MCR) are averaged over image sizes
from 2003 to 10003 and the values for absolute runtimes and storage requirements are given for
images of size 8003. For comparison, we also report the MCR using within-noise-level (WNL)
compression (27) of the APR and the size of the losslessly compressed pixel images using
pbzip2. We also show the time taken to transform the images to the APR on the benchmark
machine, and the runtime of the Pulling Scheme alone.

Benchmarks on real data

We present results for a corpus of 19 exemplar volumetric fluorescence microscopy datasets

of different content, size, and imaging modality. The datasets are described in STable 3. The

APR parameters used are given in STable 4 and discussed in SuppMat 16.2. The exemplar

images range in size from 160 MB to 4GB. SFigure 29 shows a cross-section of the APR for

exemplar dataset 7 of labeled cell nuclei in a developing Zebrafish. Summary statistics for the

exemplar datasets are given in Table 1. SVideo 1 illustrates the adaptation of exemplar dataset 1

by Particle Cell level and compares a piecewise constant reconstruction with the original image.

Memory requirements Calculation of the APR from an image requires approximately 2.7

times (for 16-bit images) the size of the original image in memory. Further, the maximum size

is only limited by available main memory (RAM) of the machine and by the ability to globally

index the particles using an unsigned 64-bit integer. Our pipeline has been successfully tested

on datasets exceeding 100 GB.
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Execution time In SuppMat 18 we provide more detailed analysis of the time taken to pro-

duce the APR for the exemplar datasets. On our benchmark system, we find linear scaling in N

and an average datarate of 507 MBs per second for processing. This rate corresponds to taking

3.9 seconds to form the APR from an input image of size N = 10003. In STable 3 we provide

execution times of the exemplar datasets. The execution times range from 0.37 seconds to 8.14

seconds, with an average of 3.65 seconds. Table 1 summarizes the results. The pipeline can

be further accelerated using additional CPU cores showing efficient parallel scaling (Amdahl’s

Law, parallel fraction = 0.95) on up to 47 cores, achieving a data rates of up to 1400 MB/second

(SFigure 31). This enables real-time conversion of images to the APR, as it is faster than the

acquisition rate of the microscope (28, 29). The computation of the gradient magnitude using

smoothing B-splines dominates the execution time, taking up to 59% of the total time (STa-

ble 4). In contrast, determining the Implied Resolution Function using the Pulling Scheme on

average takes less than 3.5% of the total time (STable 4). The relatively high cost of the pixel fil-

ter operations is not a consequence of expensive filters, as all filters are simple and use efficient

implementations. Instead, it is a reflection of the low cost of the Pulling Scheme and use of the

Equivalence Optimization. Given that the Pulling Scheme is the novel algorithmic contribution

here, we provide additional benchmarks in SuppMat 18.2. We confirm the worst-case linear

scaling in N (SFigure 32) and find on average sub-linear scaling as the size of the image N and

the size of the Local Particle Cell set L are varied.

We conclude that images can be rapidly converted into the APR with a cost that scales at

most linearly with image size N , fulfilling RC3.

Storage requirements For the fixed-CR datasets, we observe an average Memory Compres-

sion Ratio (MCR) = (Size of the input image in Bytes)/(Size of the compressed APR in Bytes)

of 1.4 times the CR. STable 3 gives the MCR for the exemplar datasets. The median MCR of
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the exemplars is 36.8, and the mean is 129.5. This corresponds to an average size of the input

images of 1.87 GB and the compressed APR of 51 MB. Table 1 summarizes the results, addi-

tionally showing MCR for pixel images stored using lossless pbzip2 compression. In the APR

files, on average 89% of the Bytes are used to store the particle intensities. Implying that the

overhead introduced by the APR data structures is 11% on average. In the limiting case where

the number of particles is equal to the number of input pixels, the particle intensities account for

99.99% of the storage, indicating that the APR adds virtually no overhead in this case. These

compression ratios are comparable to custom lossy compression methods designed specifically

for storing of fluorescence microscopy images (27, 30). Additionally, the APR particle inten-

sities can be further compressed in a lossy manner. As an example, in Table 1 we also give

the MCR using the within-noise-level (WNL) compression algorithm (27) applied to particles

at pixel resolution, achieving an additional 1.4. . .4 compression factor. Hence, the APR can be

efficiently compressed with a file size proportional to the image content, fulfilling RC2. Unlike

compression techniques, however, the APR is an image representation that can be leveraged in

downstream processing tasks without going back to the original full pixel image.

Image Processing on the APR

We show how the APR reduces the memory and computational cost of downstream image-

processing tasks (RC4). Once we have transformed the input image into an APR, the input

image is no longer needed. All processing, storage, and visualization can be done directly on

the APR.

Image-processing methods are always developed using a certain interpretation of images.

Just like pixels, one can also interpret and use the APR in different ways depending on the pro-

cessing task. These interpretations align with those commonly used in pixel-based processing.

Figure 5A-D outlines the four main interpretations of the APR.
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Figure 5: Interpretations of the APR for image processing. A. The APR can be interpreted as
a spatial partition defined by the Particle Cells in V , or by the set of particles P with positions
xp. This interpretation relates to the concept of super-pixels (13). B. The APR can be inter-
preted as a continuous function approximation where the intensity value can be reconstructed
at each location y, also between particles and pixels, relating to smooth particle function ap-
proximations (31).C. The APR can be interpreted as a graph, where the particles are nodes and
edges link neighboring particles (SuppMat 20). This relates the APR to graphical models often
used on pixel images (32). D. The APR can be interpreted as a pruned binary tree (quad-tree in
2D, oct-tree in 3D) with links between parent and child Particle Cells. This relates the APR to
wavelet decompositions (33), image pyramids (26), and tree-based methods (34). E-H. While
particles store local fluorescence intensity, just like pixels (E), they also provide additional in-
formation that is not available on the pixels. This includes the Particle Cell level containing
information about the local level of detail in the image (F), the Particle Cell type encoding the
structure of the image (G), and the Particle Cells naturally decomposing the image domain in a
content-adaptive way (H).
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Performance metrics

The APR can accelerate existing algorithms in two ways: First, by decreasing the total pro-

cessing time through reducing the number of operations that have to be executed. Second, by

reducing the amount of memory required to run the algorithm. The relative importance of the

two, and the degree of reduction, depends on the specific algorithm and its implementation. We

use quantitative metrics to evaluate the improvements for different algorithms and input images.

The first evaluation metric relates to the computational performance of the algorithm. For a

given algorithm and implementation, we define the speed-up (SU) as:

SU =
Processing time of the algorithm on pixels
Processing time of the algorithm on APR

. (4)

It is insightful to relate the SU to the CR by SU = CR * (Pixel-Particle Speed Ratio) (PP),

where PP = (Time to compute the operation on one pixel)/(Time to compute the operation on

one particle). The value of PP depends on many factors, including memory access patterns,

data structures, hardware, and the absolute size of the data in memory. Consequently, even for

a given algorithm running on defined hardware, the PP is a function of the input image size N .

Therefore, for tasks where PP<1, as in most low-level vision tasks, there is a minimum value

of CR for which the algorithm is faster on the APR than on pixels.

The second evaluation metric relates to memory usage. We define the Memory Reduc-

tion Ratio (MRR) = (Memory used for pixel algorithm)/(Memory used for APR algorithm).

Expressed using the CR, we define: MRR=CR*(Pixel-Particle Memory Cost) (MPP). Where

MPP=(Memory required per pixel)/(Memory required per particle). For an algorithm run on a

pixel image, the Memory Cost (MC) in Bytes usually scales linearly with the number of pix-

els N and algorithm variables, as MC=(Number of variables)*(Data type in Bytes)*N . The

APR additionally requires storing particle locations and neighbor-access data structures. The

memory cost of the APR MC = (Number of variables)*(Data type in Bytes)*Np + (Cost of data

27

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2018. ; https://doi.org/10.1101/263061doi: bioRxiv preprint 

https://doi.org/10.1101/263061
http://creativecommons.org/licenses/by-nc-nd/4.0/


structure per particle)*Np, whereNp is the number of particles, and the cost of the data structure

per particle depends on N . We find an estimated average of 8 bits per particles overhead for the

SA data structure SuppMat 17. Therefore, as the number of algorithm variables increases, the

overhead of the APR is amortized so that the MPP approaches 1, and the MRR approaches the

CR.

Speed Up (SU) Time APR (s) Time Pixels (s) PP Memory Pixels (GB) Memory APR (GB) MRR

Linear Neighbor Iteration

CR5 0.55 (0.02) 1.86 (0.07) 1.02 (0.0002) 0.097 (0.003) 3.072 0.599 (2.7) 5.12 (0.02)

CR20 1.9 (0.09) 0.54 (0.03) 1.02 (0.002) 0.096 (0.004) 3.072 0.181 (1.0) 16.9 (0.09)

CR100 7.1 (0.5) 0.14 (0.009) 1.02 (0.007) 0.076 (0.005) 3.072 0.053 (0.0005) 60.2 (2.3)

Exemplars Mean 4.06 (5.7) 0.86 (0.5) 1.83 (1.3) 0.094 (0.01) 5.61 (4.2) 0.278 (0.28) 37.5 (56)

Random Neighbor Access

CR5 0.71 (0.03) 15.4 (0.2) 11.0 (0.4) 0.126 (0.005) 3.072 0.599 (2.7) 5.12 (0.02)

CR20 3.52 (0.3) 3.23 (0.05) 11.4 (0.8) 0.178 (0.01) 3.072 0.181 (1.0) 16.9 (0.09)

CR100 24.8 (0.8) 0.44 (0.01) 11.01 (0.3) 0.26 (0.007) 3.072 0.053 (0.0005) 60.2 (2.3)

Exemplars Mean 11.57 (23.6) 7.29 (10.1) 21.4 (16) 0.17 (0.05) 5.61 (4.2) 0.278 (0.28) 37.5 (56)

Image Filtering

CR5 7.36 (1.2) 1.36 (0.009) 8.02 (0.2) 1.26 (0.2) 4.10 0.93 (0.003) 4.38 (0.04)

CR20 14.82 (3.7) 0.76 (0.01) 8.07 (0.3) 0.77 (0.2) 4.10 0.30 (0.002) 12.82 (0.9)

CR100 31.10 (13) 0.57 (0.003) 7.96 (0.3) 0.35 (0.15) 4.10 0.09 (0.0002) 36.85 (6.7)

Exemplars Mean 12.27 (3.0) 1.24 (0.93) 14.13 (9.8) 0.51 (0.33) 7.48 (5.5) 0.36 (0.28) 24.49 (19)

Image Segmentation

CR5 5.10 (0.7) 1.87 (0.02) 8.86 (0.09) 0.86 (0.04) ≈68.5∗ 12.57 (0.08) 5.51 (0.14)

CR20 18.30 (2.6) 0.48 (0.003) 8.83 (0.08) 0.95 (0.07) ≈68.5∗ 3.75 (0.02) 18.18 (0.3)

CR100 85.3 (12) 0.10 (0.001) 8.78 (0.09) 0.97 (0.06) ≈68.5∗ 0.80 (0.003) 84.09 (2.9)

Exemplars Mean N/A 6.99 (5.9) N/A N/A ≈385∗ (286) 13.54 (11.7) 39.72 (40)

Table 2: Summary statistics of the image-processing benchmarks on synthetic and real-
world images. For the exemplars, we report the means (standard deviation in brackets) of the
values over all exemplar images. For the synthetic fixed-CR datasets, the speed-up (SU), Pixel-
Particle Speed Ratio (PP), and Memory Reduction Ratio (MRR) are averaged over image sizes
from 2003 to 10003; absolute timings and memory requirements are given for images of size
8003. Graph-cut segmentation on pixels was not possible for 8003 images as the memory re-
quirement exceeded the 64 GB available on the benchmark machine. The corresponding entries
in the table (marked with ∗) are extrapolations from benchmarks run on smaller images and
the SU, PP, and pixel timing for the exemplars could not be determined in this case (N/A). See
SuppMat 21 for a detailed descriptions of the benchmarks.
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Figure 6: Image processing using the APR. A. Comparison of an example image (left, ex-
emplar dataset 7) with its piecewise constant APR reconstruction (right), showing that they are
visually indistinguishable. B. Comparison of the maximum-intensity projection of a direct 3D
APR ray-cast (top) with the maximum projection of the pixels (bottom) for exemplar dataset 17
(full image see SFigure 40), showing that they are visually indistinguishable. C. Comparison of
the intensity-gradient magnitude estimated using the Adaptive APR Filter (left, SuppMat 21.4)
and central finite differences over the pixels (right) for exemplar dataset 6 (Tomancak Lab,
MPI-CBG). The result computed on the APR has a higher signal-to-noise ratio because the fil-
ter adapts to image contents and does not amplify noise as finite differences do. D. Direct 3D
particle rendering of Zebrafish nuclei (exemplar dataset 7) using a custom, scenery-based (35)
renderer. Even without image segmentation, the nuclei are visible as dense clusters of particles.
E. APR Volume rendering of a 3D image-segmentation result, colored by depth, computed using
graph-cut segmentation directly on the APR, as described in SuppMat 21.3.3 (exemplar dataset
13, cf. B). Image segmentation can exploit the additional information provided by the APR
to obtain higher-quality results at a lower computational cost. Segmenting this image on the
APR took 5.5 seconds, and was not possible on the original pixel image using our benchmark
machine. (A,B,D,E courtesy of Huisken Lab, MPI-CBG & Morgridge Institute for Research.)
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Image Processing Performance Benchmarks

We analyze two low-level and one high-level image-processing task. These are neighbor access

and filtering as low-level tasks, and image segmentation as high-level task. The low-level tasks

represent a lower bound on the benefits of the APR due to their simple operations and access

patterns, which are best suited for processing on pixels. The segmentation task in contrast

provides a representative practical example of microscopy image analysis.

For these three benchmarks, we provide results for the computational and memory metrics

for three fixed-CR datasets with input images fromN = 2003 up toN = 10003, and for all real-

world exemplar datasets. The results of all benchmarks are summarized in Table 2. SuppMat 21

describes the benchmark protocols.

Neighbor Access For each pixel or particle, the task involves averaging the intensities of all

face-connected neighbors (see SuppMat 21.1 for details). In the APR, neighbors are defined by

the particle graph, as shown in Figure 5C and described in SuppMat 20. We benchmark two

forms of neighbor access: Linear iteration loops over all neighbors in sequential order. Random

access visits neighbors in random order, irrespective of how they are stored in memory.

For linear iteration, the APR shows low speed-ups. It is even slower than pixel operations

for images with CR=5 and for four of the exemplar datasets (Table 2, group 1). This is because

linear iteration is optimally suited to pixel images. However, the APR provides consistently

higher speed-ups for random neighbor access, especially for high CRs. This is likely due to the

smaller overall size of the APR improving cache efficiency.

The total memory cost of the APR reflects the CR of the dataset. This provides significant

memory cost reductions across all benchmark datasets for both the linear and random neighbor

access patterns.
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Image filtering We consider the task of filtering the image with a Gaussian blur kernel (see

SuppMat 21.2). We exploit the separability of the kernel and perform three consecutive filtering

steps using 1D filters in each direction. On the APR, this requires locally evaluating the func-

tion reconstruction. For simplicity, we use the piecewise constant reconstruction method (see

SuppMat 10). The benchmark results are shown in Table 2, group 3. Directly filtering the APR

consistently outperforms the pixel-based pipeline, both in terms of memory cost and execution

time.

In SuppMat 21.2.2 we analyze the results in detail and find that the APR is most appropriate

if the filtering result looks similar to the original image, such that the same set of content-

adapted particles is also suitable to represent the filtered image. SFigure 35 illustrates this,

showing how for a small blur the APR filter has higher PSNR than the pixel filter. For larger

blurs this is reversed, because the specific APR adapted to the input image is no longer suit-

able to represent the filtered image. Care must be taken when designing algorithms, as not all

approaches are equally suited to the APR.

Image segmentation We perform binary image segmentation using graph cuts (see Supp-

Mat 21.3). We use the method and implementation of Ref. (32) to compute the optimal fore-

ground/background segmentation for both APR and pixel images. When computing the cut

energies, we directly exploit the additional information provided by the particle cell level, type,

and local min-max range. To allow direct comparison with the pixel-based segmentation, we

interpolate all energies calculated on the APR to pixels and then determine the cuts over the

pixel image using the same energies. For both APR and pixel images, a face-connected neigh-

borhood graph is used. Given the energy calculations are identical, we benchmark the execution

time and memory cost of the graph-cut solver. The results are shown in Table 2, group 4. For

the APR we find speed-ups directly reflecting the CR. Due to high memory requirements of

31

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2018. ; https://doi.org/10.1101/263061doi: bioRxiv preprint 

https://doi.org/10.1101/263061
http://creativecommons.org/licenses/by-nc-nd/4.0/


the graph-cut solver, pixel images can only be segmented for sizes N ≤ 5503 on our bench-

mark machine with 64 GB RAM. Using the APR, also larger images can be segmented without

problems, illustrating the benefits of the reduced memory cost of the APR.

We validate the APR segmentations, in SuppMat 21.3.2 by comparing both the APR and

pixel-based segmentations to ground truth using the Dice coefficient (36). SFigure 36 provides

an illustrative comparison. Across datasets, we find that the Dice coefficients are not statistically

significantly different (p-value: 0.92, Welch’s t-test).

We provide a representative example in SVideo 2 and show a 3D rendering of a segmentation

in Figure 6E.

Novel Algorithms

The APR provides additional information about the image that is not contained in pixel rep-

resentations. This information can be exploited in image-processing algorithms, as illustrated

in the segmentation example above. In addition, it can also be used to design entirely novel,

APR-specific algorithms, as demonstrated in the following example.

Adaptive APR filter We define a discrete filter over neighboring particles in the APR particle

graph. Since the distance between neighboring particles varies across the image depending on

image content, this amounts to spatially adaptive filtering with the filter size automatically ad-

justing to the content of the image. On the APR, this only requires linear neighbor iteration. In

contrast, an adaptive pixel implementation would be significantly more involved. SuppMat 21.4

describes the adaptive APR filter in detail. SFigure 37 shows synthetic results for an adaptive

blurring filter, and SFigure 38 for a filter that adaptively estimates the intensity gradient magni-

tude. In both examples, the adaptive APR-filtered results have significantly higher PSNR than

results from corresponding non-adaptive pixel filters. This is significant, as shown in Figure 6C
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and SFigure 39 for a partial and full slice from an exemplar image. Across exemplars, the adap-

tive APR filter shows superior robustness to noise. The computational and memory costs are

identical to those of the linear neighbor iteration benchmark above.

Visualization

Images represented using the APR can directly be visualized without going back to pixels.

The APR image can be visualized using both traditional and novel visualization methods. We

provide examples of visualization methods and refer to SuppMat 21.5 for details.

Visualization by slice First, visualization can be done using a slice-by-slice function recon-

struction, never having to reconstruct the entire image. Figure 6A and SVideo 1 show examples

of the APR reconstruction in comparison with the pixel image. The piecewise constant re-

construction used here is computationally efficient and works well for near-isotropic images.

However, as shown in SFigure 24, piecewise constant reconstructions may show blocking ar-

tifacts in low-content areas of the image, which is avoided when using higher-order smooth

function reconstructions at a higher computational cost.

Visualization by ray-casting A second method, allowing for direct 3D visualization of an

APR, is ray-casting as described in SuppMat 21.5.2. Figure 6B (full image in SFigure 40)

and SVideo 3 show a perspective maximum-intensity projection in comparison with the same

ray-cast of the original pixel image. The resulting visualizations are largely indistinguishable

SFigure 41 shows a contrast-adjusted version to highlight the differences. APR ray-casting only

requires storing and computing on the APR, therefore reducing memory and computational

costs proportionally to the CR of the image. Thus, APR ray-casting is useful for visualizing

large images, such as those exemplars over 2 GB, which cannot be rendered at full resolution

by state-of-the-art pixel-based software (37).
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Visualization by particle rendering Lastly, we can directly visualize the particles of the APR

as glyphs (see SuppMat 21.5.3). This can be done both in 2D (Figure 3) and in 3D (Figure 5).

Figure 6D and SVideo 4&5 show examples of particle renderings in 3D using open-source ren-

dering toolkit scenery (35). These direct visualization techniques natively allow visualizations

that decouple the observing of the structure of the image content from the information displayed

using coloring and size of particles.

Image Processing Summary

Across all benchmarks and exemplar datasets other than the worst-case example of linear neigh-

bor access, processing directly on the APR resulted in smaller execution times and memory

costs. In most cases, the reductions are directly proportional to the computational ratio (CR),

hence fulfilling RC4. Moreover, in the examples of visualization and segmentation, the memory

cost reduction of the APR enabled processing of data sets that would not otherwise have been

possible on our benchmark machine. The APR has a range of interpretations that align with

those of pixel images, allowing direct application of established image-analysis frameworks to

the APR.

In addition, we highlight that the APR may simplify processing tasks by providing addi-

tional information about the structure of the image through the Particle Cell level and type.

This structural information can be leveraged in existing algorithms, as shown for segmentation,

or it can be used to design novel algorithms, such as the adaptive APR filter and APR ray-casting

visualization.

Discussion and Conclusion

We have introduced a novel content-adaptive image representation for fluorescence microscopy,

the Adaptive Particle Representation (APR). The APR is inspired by how the human visual
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system effectively avoids the data and processing bottlenecks that plague modern fluorescence

microscopy, particularly for 3D imaging. The APR combines aspects of previous adaptive-

resolution methods, including wavelets, super-pixels, and equidistribution principles in a way

that fulfills all representation criteria set out in the introduction. The APR is computationally

efficient, suited for real-time applications at acquisition speed, and easy to implement.

We presented the ideas and concepts of the APR in 1D for ease of illustration, with all

naturally extending to higher dimensions. The APR resamples an image by adapting a set of

Particle Cells V and a set of particles P to the content of an image, taking into account the Local

Intensity Scale σ similar to gain control in the human visual system. The main theoretical and

algorithmic contribution that made this possible with a computational cost that scales linearly

with image contents is the Pulling Scheme. The Pulling Scheme guarantees sub-optimal image

representations within user-specified relative intensity deviations.

We verified accuracy and performance of the APR using synthetic benchmark images. The

analysis showed that all theoretical results hold in practice, and that the number of particles

used by the APR scales with image content while maintaining image quality (RC1). Further,

we showed that although image noise places a limit on representation accuracy, there exists

an optimal range for the relative error threshold E. In this range, the reconstruction error for

noisy images is always well within the imaging noise level (RC1). Moreover, we found that the

number of particles is independent of the original image size, with computational and memory

costs of the APR proportional to the information content of the image (RC2). We showed how

pixel images can rapidly be transformed to the APR, and efficiently stored both in memory and

in files (RC3). We have demonstrated that the APR benefits both in terms of execution time

and memory requirements can be leveraged for a range of image-processing tasks without ever

returning to a pixel image (RC4). Finally, we showed how the adaptive sampling and structure

of the APR inspires the development of novel, content-adaptive image-processing algorithms.
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Taken together, the APR meets all four Representation Criteria (RC) set out in the intro-

duction. We believe that the gains of the APR will in many cases be sufficient to alleviate the

current processing bottlenecks. In particular, image-processing pipelines using the APR would

be well suited for high-throughput experiments and real-time processing, e.g., in smart micro-

scopes (9, 38). However, the APR is sub-optimal with respect to the number of particles used.

This sub-optimality results from the conservative limiting assumptions required to derive the

efficient Pulling Scheme. It is easily seen by the fact that the APR particle properties could be

represented by a Haar wavelet transform (33) with non-zero coefficients whose number is either

equal to, or less than, the number of particles in the APR while allowing exact reconstruction

of the APR particle properties.

The use of adaptive representations of images (39–41) and its motivation by the human

visual system (13,42) are not new. The APR shares several principles and ideas with established

adaptive representations. The Resolution Function R(y) of the APR, e.g., is related to the

oracle adaptive regression method (43) and the derivation and form of the Resolution Bound

are related to ideas originally introduced in equidistribution methods for splines (18, 44, 45),

which also inspired the work here (20). The Reconstruction Condition for a constant Local

Intensity Scale relates to infinity norm adaptation (46) for wavelet thresholding in adaptive

surface representations. Further, the use of a powers-of-two decomposition of the domain is

central to many adaptive-resolution methods (26, 33, 34, 47) and its use here was particularly

inspired by Ref. (48). Despite its similarity to existing methods, the APR uniquely fulfills

all representation criteria and extends many of the previous concepts. Core novelties include

the spatially varying Local Intensity Scale, the fact that the APR works with a wider class of

reconstruction methods, provides theoretical bounds on arbitrary derivatives of the represented

function, and enables integration of additional spatial constraints with no changes to the Particle

Cell formulation or the Pulling Scheme algorithm.
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Outlook

The APR has the potential to completely replace pixel-based image-processing pipelines for the

next generation of fluorescence microscopes. We envision that the APR is immediately formed,

possibly after image enhancement (49), on the acquisition computer or even on the camera it-

self. Following this, all data transfer, storage, visualization, and processing can be done using

the APR, providing memory and computational gains across all tasks. Although, there are also

contexts when the exact pixel noise distribution of the original image conveys information, and

therefore the APR is not appropriate. In addition, the realization of such pipelines requires

further algorithm and software development including integration with current microscope sys-

tems, image databases (50), and image-processing tools (51).

Here, we presented a particular realization of an APR pipeline. We foresee alternative

pipelines, e.g., using deep learning approaches (52) to provide improved estimation of the Lo-

cal Intensity Scale, the image intensity gradient, and the smooth image reconstruction. Just as

in space, the APR can also be used to adaptively sample time. Such temporal adaptation can

lead to a multiplicative reduction in memory and computational costs compared to those pre-

sented here, allowing even faster APR computations. Further, the APR can be extended to allow

for anisotropic adaptation using rectangular particle cells and anisotropic particle distributions

within each cell.

Given the wide success of adaptive representations in scientific computing, the unique fea-

tures of the APR could be useful also in non-imaging applications. This includes applications

to time-series data, where the APR could provide an adaptive regression method (43), and to

surface representation in computer graphics (46). Further, the APR could be used in numerical

simulations for efficient mesh generation or as an adaptive mesh-free collocation method for

numerically solving partial differential equations (20, 53–55).

37

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2018. ; https://doi.org/10.1101/263061doi: bioRxiv preprint 

https://doi.org/10.1101/263061
http://creativecommons.org/licenses/by-nc-nd/4.0/


References and Notes

1. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. Stelzer, Science 305, 1007 (2004).

2. P. J. Keller, A. D. Schmidt, J. Wittbrodt, E. H. Stelzer, Science 322, 1065 (2008).

3. B.-C. Chen, et al., Science 346, 1257998 (2014).

4. D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, M. J. Cormier, Gene 111,

229 (1992).

5. M. Jinek, et al., Science 337, 816 (2012).

6. A. C. Oates, N. Gorfinkiel, M. Gonzalez-Gaitan, C.-P. Heisenberg, Nature Reviews Genet-

ics 10, 517 (2009).

7. E. G. Reynaud, J. Peychl, J. Huisken, P. Tomancak, Nature methods 12, 30 (2015).

8. M. Weber, J. Huisken, Current opinion in genetics & development 21, 566 (2011).

9. N. Scherf, J. Huisken, Nature biotechnology 33, 815 (2015).

10. P. Reinagel, A. M. Zador, Network: Computation in Neural Systems 10, 341 (1999).

11. S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, M. Meister, Nature 386, 69 (1997).

12. K. Koch, et al., Current Biology 16, 1428 (2006).

13. R. Achanta, et al., IEEE transactions on pattern analysis and machine intelligence 34, 2274

(2012).

14. F. Amat, E. W. Myers, P. J. Keller, Bioinformatics 29, 373 (2012).

38

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2018. ; https://doi.org/10.1101/263061doi: bioRxiv preprint 

https://doi.org/10.1101/263061
http://creativecommons.org/licenses/by-nc-nd/4.0/


15. S. G. Mallat, IEEE transactions on pattern analysis and machine intelligence 11, 674

(1989).

16. I. Daubechies, Communications on pure and applied mathematics 41, 909 (1988).

17. A. Harten, Journal of Computational Physics 115, 319 (1994).

18. C. de Boor, Spline functions and approximation theory (Springer, 1973), pp. 57–72.

19. V. Pereyra, E. Sewell, Numerische Mathematik 23, 261 (1974).

20. S. Reboux, B. Schrader, I. F. Sbalzarini, Journal of Computational Physics 231, 3623

(2012).

21. B. Schmid, et al., Nature communications 4 (2013).

22. I. Heemskerk, S. J. Streichan, Nature methods 12, 1139 (2015).

23. The HDF Group, Hierarchical Data Format, version 5 (1997-2017).

Http://www.hdfgroup.org/HDF5/.

24. F. Alted, Blosc, an extremely fast, multi-threaded, meta-compressor library (2017).

25. M. Unser, A. Aldroubi, M. Eden, IEEE transactions on signal processing 41, 834 (1993).

26. E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, J. M. Ogden, RCA engineer 29, 33

(1984).

27. B. Balazs, J. Deschamps, M. Albert, J. Ries, L. Hufnagel, bioRxiv p. 164624 (2017).

28. B. Schmid, J. Huisken, Bioinformatics 31, 3398 (2015).

29. Y. Afshar, I. F. Sbalzarini, PloS one 11, e0152528 (2016).

39

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2018. ; https://doi.org/10.1101/263061doi: bioRxiv preprint 

https://doi.org/10.1101/263061
http://creativecommons.org/licenses/by-nc-nd/4.0/


30. F. Amat, et al., Nature protocols 10, 1679 (2015).

31. J. J. Monaghan, SIAM Journal on Scientific and Statistical Computing 3, 422 (1982).

32. Y. Boykov, V. Kolmogorov, IEEE transactions on pattern analysis and machine intelligence

26, 1124 (2004).

33. A. Haar, Mathematische Annalen 69, 331 (1910).

34. D. Meagher, Computer graphics and image processing 19, 129 (1982).

35. scenerygraphics/scenery: scenery 0.2.3-1, https://doi.org/10.5281/zenodo.1111824 (2017).

36. L. R. Dice, Ecology 26, 297 (1945).

37. L. A. Royer, et al., Nature methods 12, 480 (2015).

38. L. A. Royer, et al., Nature biotechnology 34, 1267 (2016).

39. L. Demaret, A. Iske, Curve and Surface Fitting: Saint-Malo 2003, 107 (2002).

40. Y. Wang, O. Lee, A. Vetro, IEEE Transactions on circuits and systems for video technology

6, 647 (1996).

41. Y. Yang, M. N. Wernick, J. G. Brankov, IEEE transactions on image processing 12, 866

(2003).

42. A. Witkin, Acoustics, Speech, and Signal Processing, IEEE International Conference on

ICASSP’84. (IEEE, 1984), vol. 9, pp. 150–153.

43. D. L. Donoho, I. M. Johnstone, biometrika pp. 425–455 (1994).

44. C. De Boor, Conference on the numerical solution of differential equations (Springer,

1974), pp. 12–20.

40

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2018. ; https://doi.org/10.1101/263061doi: bioRxiv preprint 

https://doi.org/10.1101/263061
http://creativecommons.org/licenses/by-nc-nd/4.0/


45. H. G. Burchard, Applicable Analysis 3, 309 (1974).

46. R. A. DeVore, B. Jawerth, B. J. Lucier, Computer Aided Geometric Design 9, 219 (1992).

47. R. Zhao, T. Tao, M. Gabriel, G. G. Belford, Proc. SPIE (2002), vol. 4925, p. 180.
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