
  

Abstract. We describe the use of Markov chain models for the 
purpose of quantitative forecasting of metastatic cancer 
progression. Each site (node) in the Markov network (directed 
graph) is an organ site where a secondary tumor could develop with 
some probability. The Markov matrix is an N x N matrix where 
each entry represents a transition probability of the disease 
progressing from one site to another during the course of the 
disease. The initial state-vector has a 1 at the position 
corresponding to the primary tumor, and 0s elsewhere (no initial 
metastases). The spread of the disease to other sites (metastases) is 
modeled as a directed random walk on the Markov network, 
moving from site to site with the estimated transition probabilities 
obtained from longitudinal data. The stochastic model produces 
probabilistic predictions of the likelihood of each metastatic 
pathway and corresponding time sequences obtained from 
computer Monte Carlo simulations. The main challenge is to 
empirically estimate the N^2 transition probabilities in the Markov 
matrix using appropriate longitudinal data.  

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER  

Predictive mathematical models of cancer progression for 
the purposes of quantitative forecasting rely heavily on the 
ability to obtain appropriate longitudinal data of cohorts of 
patients with different tumor types whose disease progresses 
over time (say 5-20 years depending on the cancer type) 
undergoing different treatment modalities all of whom start 
out with non-metastatic disease. These data are then used to 
determine parameters (transition probabilities in a Markov 
matrix) in a dynamical (typically stochastic) progression 
model that can then be used (i) to make forward quantitative 
predictions and to quantify the uncertainty of the predictions; 
(ii) develop Monte Carlo simulations to create distributions 
of computer generated patients with correct statistical 
properties; (iii) run computational clinical trials to test 
hypotheses and pin down causality. The relevant 
mathematical modeling techniques are much further 
developed in financial prediction settings [1] and in weather 
forecasting modeling [2, 3] but lag considerably farther 
behind in disease forecasting applications, partly because of 
insufficient and low-quality data (by comparison) and partly 
because the relevant biological mechanisms are not as well 
understood [4]. One area where recent progress has been 
made is in the development of Markov chain predictive 
models [5-9] of cancer metastasis, where the underlying 
driver of the dynamics is an N x N transition matrix made up 
of N^2 transition probabilities which serve as the main 
parameters that must be estimated [10, 11] with appropriate 
data. 
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Figure 1 is a spatiotemporal progression diagram which 
organizes a longitudinal data set (as described in [9]) in a 
form useful for the estimation of the various transition 
probabilities that populate a Markov matrix. The inner most 
ring represents the primary tumor (breast), the second ring 
out shows the distribution of first metastatic sites, with  

sector sizes corresponding to the percentage of patients with 
first metastases at each of the given sites. Each of the 
subsequent concentric rings represents the distribution of 
additional metastatic tumors. The black sector at the end of a 
given ray indicates that the patient is deceased. Following 
along a given ray from the center of the diagram lays out a 
particular metastatic pathway (chronological sequence of 
metastatic tumors) for a given patient. By computing the 
probabilities of transitioning from site-to-site in these 
spatiotemporal diagrams, we can estimate the transition 
probability of the cancer spreading from any given site to 
another in one step [9]. This information gives rise to a 
Markov transition matrix which forms the dynamic driver of 
the model. Markov models have been used extensively in 
other medical settings both for survival estimation [12, 13], 
as well as for tumor progression [14-19] and more general 
applications [20]. Network models of disease progression 
and spread have also been developed in other contexts [21, 
22].  

 

Figure 1.  Spatiotemporal progression diagram of 446 primary breast 
cancer patients [9]. The innermost to outermost rings show progression 
patterns from primary breast (pink ring) to distant metastatic sites 
(subsequent rings). Circular arc length of each sector represents the 
percentage of patients with a metastatic tumor in that location. 
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II. ILLUSTRATIVE RESULTS OF APPLICATION OF METHODS 

Once the transition probabilities from site to site are 
obtained via appropriate interpretation of the data in Figure 1 
(the main approximation is the Markov assumption of using 
all data in the diagram associated with patients that progress 
from site A to site B regardless of the ring number), the 
probabilities of each of the patients’ metastatic pathways can 
be computed by multiplying the appropriate sequence of 
transition probabilities. A common pathway for metastatic 
breast cancer, for example, is breast à bone à liver à 
deceased, as represented by the pink inner ring, followed by 
the yellow (bone) second ring sector, then the green (liver) 
third ring sector, and finally by the black (deceased) sector. 
Calculating the probabilities of each of the sequences 
present in the data set allows us to rank order each pathway 
by likelihood, and thereby make a cutoff as to how many of 
the most likely pathways to use in the model. Figure 2, for 
example, shows a reduced Markov diagram associated with 
the top 30 two-step pathways, aggregating all of the breast 
cancer subtypes and treatment modalities into one group. 
Each site can be categorized as a potential spreader site (red) 
or a sponge site (blue) based on the ratios of the probabilities 
of the paths out compared to the paths in [6, 9]. For 
metastatic breast cancer, bone is the predominant spreader 
site, while lung/pleura is the predominant sponge site. We 
can further subdivide the data into the four common breast 
cancer sub-types, which largely determines treatment 
modality and survival: ER+/HER2+; ER+/HER2-; ER-
/HER2+; ER-/HER2-. Figure 3 depicts the reduced Markov 
diagrams associated with each of these sub-types.  

 
 

 

 

Figure 2.  Reduced Markov models showing the top 30 two-step pathways 
emanating from primary breast (pink ring) [9]. Pathway probabilities are 
shown at the end of the second step, designated by an arrow pointing into a 
node. Nodes are classified as “spreader” (red) or “sponge” (blue) based on 
the ratio of their cumulative incoming and outgoing two-step probabilities.  
Spreader and sponge factors are listed inside each respective node’s oval. 

 

Figure 3.  Reduced Markov models showing the top 30 two-step pathways 
of hormonal subgroups of primary breast cancer [9]. Lower number 
indicates the % that the 30 pathways capture.  (a) ER+/HER2+ breast 
cancer, (b) ER+/HER2-, (c) ER-/HER2+, and (d) ER-/HER2-. 

Markov models of complex dynamical processes, despite 
their step-to-step simplified assumptions (i.e. no history 
dependence), retain their appeal as a first approach to 
modeling spatiotemporal dynamics because of their ease of 
interpretability, the clarity of the resulting dynamics, and 
their use in isolating phenomena on which to invest more 
effort into building more elaborate models involving 
nonlinear systems of ordinary differential equations, partial 
differential equations, or hybrid systems. 

III. QUICK GUIDE TO THE METHODS (1 PAGE) 

A discrete Markov chain dynamical system is governed 
by the equation: 

𝑣!!! = 𝑣!𝐴           𝑘 = 0, 1, 2,… . 

A is an N x N transition matrix comprised of transition 
probabilities, 𝑃!", that give the probability of going from state 
i to state j at each step. The matrix is row stochastic: 

𝑃!"

!

!!!

= 1. 

The state vector, 𝑣!, contains the probabilities of metastatic 
tumors developing at specific locations (summing to 1) at a 
given time step k. An initial state vector, 𝑣!, (k=0) is 
represented with a 1 in the position for the primary tumor 
location and 0’s elsewhere. Then: 
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𝑣!!! = 𝑣!𝐴!          (𝑘 = 0, 1, 2,… ) 

indicating that the underlying dynamics that defines disease 
progression is interpreted as a weighted, random walk on 
directed graph defined from the transition matrix. A more 
detailed description can be found in [11,20]. 
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