
LinearFold: Linear-Time Prediction of RNA
Secondary Structures
Dezhong Denga, Kai Zhaob,1, David Hendrixc,a, David H. Mathewsd, and Liang Huanga,*

aSchool of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR; bGoogle, Inc., New York, NY; cDept. of Biochemistry & Biophysics, Oregon
State University, Corvallis, OR; dDept. of Biochemistry & Biophysics, Center for RNA Biology, and Department of Biostatistics & Computational Biology, University of Rochester
Medical Center, Rochester, NY

This manuscript was compiled on February 9, 2018

Predicting the secondary structure of an RNA sequence with speed
and accuracy is useful in many applications such as drug design.
The state-of-the-art predictors have a fundamental limitation: they
have a run time that scales with the third power of the length of the
input sequence, which is slow for longer RNAs and limits the use of
secondary structure prediction in genome-wide applications. To ad-
dress this bottleneck, we designed the first linear-time algorithm for
RNA secondary structure prediction, which can be used with both
thermodynamic and machine-learned scoring functions. Our algo-
rithm, like previous work, is based on dynamic programming (DP),
but with two crucial differences: (a) we incrementally process the
sequence in a left-to-right rather than in a bottom-up fashion, and
(b) because of this processing, we can further employ beam search
pruning to ensure linear run time in practice (with the cost of ex-
act search). Even though our search is approximate, surprisingly, it
results in even higher overall accuracy on a diverse database of se-
quences with known structures. In particular, it leads to significantly
more accurate predictions on the longest sequence families in that
database (16S and 23S Ribosomal RNAs), as well as improved accu-
racies for long-range base pairs (500+ nucleotides apart).

RNA | secondary structure prediction | linear-time | dynamic programming | beam search

R ibonucleic acid (RNA) is involved in numerous cellular pro-
cesses. While many RNAs encode proteins (messenger RNAs,

mRNAs), noncoding RNAs (ncRNAs) have intrinsic functions without
being translated to proteins (1). ncRNA sequences catalyze reactions
(2, 3), regulate gene expression (4–6), provide site recognition for
proteins (7, 8) and serve in trafficking of proteins (9). The recent
discovery and characterization of diverse classes of long noncoding
RNAs, i.e. ncRNAs longer than 200nt (10), present new opportunities
and challenges in determining their functions and mechanisms of ac-
tion. Furthermore, the dual nature of RNA as both a genetic material
and functional molecule led to the RNA World hypothesis, that RNA
was the first molecule of life (11), and this dual nature has also been
utilized to develop in vitro methods to evolve functional sequences
(12). Finally, RNA is an important drug target and agent (13–18).

Predicting the secondary structure of an RNA sequence, defined as
the set of all canonical base pairs (A–U, G–C, G–U), is an important
and challenging problem (19, 20). Knowing structures reveals cru-
cial information about the RNA’s function, which is useful in many
applications ranging from ncRNA detection (21–23) to the design
of oligonucleotides for knockdown of message (24, 25). Being able
to rapidly determine the structure is useful given the overwhelming
increase in genomic data (about 1021 base-pairs per year) (26) and
given the small percentage of sequences that have experimentally
determined structure. Experimental assays can provide information
that can improve the accuracy of RNA secondary structure prediction
(27), and these assays can now be used transcriptome-wide and in vivo
(28–30). Recent studies focused on improved accuracy of prediction

G
C
G
G
G
A
A

U

A

GCUC

AG
U

U

G

G
U A

G A G C

A

C
G
A
C
C

U

U

G
C C

A

A
G
G
U
C
G

G
G

G

U

C

G C G A G

U U
C

G

A
GU

CUCGUU
U
C
C
C
G
C U C C A1

10

20

30 40

50

60

70 76

G
5’

CG
G

G
5

A
A

U
A

G
10

C
U
C
A
G15

U
U
G
G
U20
A
G
A
G
C

25 A
C
G
A
C

30 C
U U G C

35
C A A G G

40

U C G GG
45

G
U
C
G
C
50

G
A
G
U
U 55

C
G
A
G
U 60
C
U
C
G
U

65U
U

C
C

C
70G

C
U

CC
75

A
3’

5’ 3’
GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

−−→
1 our linear-time algorithm scans left-to-right n

efficiency systems
time memory machine-learned thermodynamic

baseline cubic quadratic CONTRAfold Vienna RNAfold
our work linear linear LinearFold-C LinearFold-V

Fig. 1. RNA secondary structure and high-level idea of our work. Top left: secondary
structure of E. coli tRNAGly; Top right: the corresponding circle plot; Central: the cor-
responding dot-bracket format. Bottom: schematic view of our work. In a nutshell, our
algorithm scans the sequence left-to-right, and tags each nucleotide as “.” (unpaired),
“(” (to be paired with a future nucleotide) or “)” (paired with a previous nucleotide).

Significance Statement

Fast and accurate prediction of RNA secondary struc-
tures (the set of canonical base pairs) is an important
problem, because RNA structures reveal crucial infor-
mation about their functions. Existing approaches can
reach a reasonable accuracy for relatively short RNAs but
their running time scales almost cubically with sequence
length, which is too slow for longer RNAs. We develop
the first linear-time algorithm for RNA secondary struc-
ture prediction. Surprisingly, our algorithm not only runs
much faster, but also leads to higher overall accuracy on
a diverse set of RNA sequences with known structures,
where the improvement is significant for long RNA fami-
lies such as 16S and 23S Ribosomal RNAs. More interest-
ingly, it also more accurate for long-range base pairs.

Author contributions: L.H. conceived the idea based on D.H.’s suggestion. L.H., D.D., and K.Z. de-
signed the algorithm. L.H. and D.D. implemented a prototype in Python. D.D. and K.Z. implemented
the fast version in C++. D.H.M. and D.H. supervised testing of the algorithm. D.D. carried out testing
and plotted figures. D.D., L.H., and D.H.M. wrote the manuscript; D.H. revised it.

The authors declare no conflict of interest.

1K.Z.’s contribution was done at School of EECS, Oregon State University.

*To whom correspondence should be addressed. E-mail: liang.huang.sh@gmail.com

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | February 9, 2018 | vol. XXX | no. XX | 1–??

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263509doi: bioRxiv preprint

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/263509
http://creativecommons.org/licenses/by-nc-nd/4.0/

(31–35) , but there is not enough attention on the speed of prediction.
While there are two major approaches to modeling RNA secondary

structures, namely the classical thermodynamic methods (36, 37) and
the more recent machine learning-based methods (38, 39) , all these
efforts use virtually the same dynamic programming (DP) algorithm
(40) to find the best-scoring structure. However, this algorithm, bor-
rowed from computational linguistics (41, 42), has a running time
of O(n3) that scales cubically with the sequence length n. This is
slow for long RNAs (n>1, 000), and in practice, many researchers
resort to running this algorithm on short regions within the whole
sequence, which inevitably ignores base pairs across segments (43).
Computational and experimental studies demonstrate that base pairing
between the ends of natural RNA sequences is expected.

In this paper, we design the first linear-time RNA secondary struc-
ture prediction algorithm, LinearFold, inspired by our previous work
on linear-time natural language parsing (44). While the classical
O(n3) dynamic programming is bottom-up, solving the best substruc-
ture for each span, our algorithm is left-to-right, incrementally tagging
each nucleotide in the dot-bracket format (unpaired “.”, opening “(”,
or closing “)”). While this naive version runs in exponential time
O(3n), we use an efficient merging approach borrowed from compu-
tational linguistics (45) that reduces the running time back to O(n3).
On top of this left-to-right algorithm, we further apply beam search, a
popular heuristic to prune the search space (44), which keeps only the
top b highest-scoring states at each nucleotide, resulting in an O(n)
time approximate search algorithm. Even though our search is not
exact, empirically, with a reasonable beam size (such as b = 100) it is
close to exact search, and actually leads to better prediction accuracies
than exact search.

Our algorithm can be used with both thermodynamic and machine
learned models. In particular, we implemented two versions of Lin-
earFold, LinearFold-V using the thermodynamic free energy model
from Vienna RNAfold (37), and LinearFold-C using the machine
learned model from CONTRAfold (38) (see Fig. 1 (bottom)). We
evaluate our systems on a diverse dataset of RNA sequences with
well-established structures, and show that while being substantially
more efficient, LinearFold leads to higher average accuracies over
all families, and somewhat surprisingly, LinearFold is significantly
more accurate than the exact search methods on the longest families
16S and 23S Ribosomal RNAs. More interestingly, LinearFold is
also more accurate on long-range base pairs that are more than 500
nucleotides apart, which is well known to be a challenging problem
for the current models (46).

Results

Efficiency and Scalability of LinearFold. To demonstrate the effi-
ciency of our linear-time prediction algorithm, we compare its run-
ning time with the conventional cubic-time prediction algorithms
used in the baseline systems, CONTRAfold and Vienna RNAfold.
Figure 2 shows the results on two datasets: (a) the ArchiveII dataset
(47), a diverse set of RNA sequences with known structures (see
details in the Methods section and Table ??), and (b) a (sampled)
subset of RNAcentral (48), a comprehensive set of ncRNA sequences
from many databases. While the ArchiveII set contains sequences of
length 3,000 or less, the RNAcentral set has many much longer se-
quences, with the longest being 244,296 nt (Homo Sapiens Transcript
NONHSAT168677.1, from the NONCODE database (49)). We use a
machine with 3.40GHz Intel Xeon CPUs and 32G memory, running
Linux; all programs are written in C/C++ compiled by GCC 4.9.0.

Figure 2 A confirms that LinearFold’s running time scales linearly
with the sequence length, while the two baseline systems scale super-

A

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 1000nt 2000nt 3000nt

C
O

N
T
R

A
fo

ld
 M

F
E
, ~

n
2.

6

V
ie

n
n
a
 R

N
A

fo
ld

,
~
n

2
.6

LinearFold b=100, ~n
1.0

LinearFold b=50, ~n
1.0

ru
n
n
in

g
 t
im

e
 p

e
r

s
e
q
u
e
n
c
e
 (

s
e
c
)

B

 1

 10

 100

 1000

10
3
nt 10

4
nt 10

5
nt

Vienna RNAfold: n
2.6

CONTRAfold MFE: n
2.6

LinearFold b=100: n
1.0

LinearFold b=050: n
1.0

C

10MB

100MB

1GB

10GB

10
3
nt 10

4
nt 10

5
nt

CONTRAfold M
FE, ~

n
2.0

Vienna R
NAfold: ~

n
2.0

LinearFold b=100, ~n
1.0

LinearFold b=50, ~n
1.0

m
e

m
o

ry
 u

s
e

d
Fig. 2. A: runtime comparisons on ArchiveII dataset: LinearFold-C (with beam sizes
100 and 50) vs. two baselines, CONTRAfold MFE & Vienna RNAfold (LinearFold-V
have identical running time with LinearFold-C). B: runtime comparisons on RNAcentral
dataset (log-log). C: memory usage comparisons (RNAcentral set, log-log).

 40

 50

 60

 70

 80

tR
N
A

5S rR
N
A

SR
P

R
N
aseP

tm
R
N
A

G
roup I Intron

telom
erase R

N
A

16S rR
N
A

23S rR
N
A

 *

 *

P
P

V

CONTRAfold MFE
LinearFold-C b=100

**

 *

**

Vienna RNAfold
LinearFold-V b=100

 *

 *

 *

 40

 50

 60

 70

 80

tR
N
A

5S rR
N
A

SR
P

R
N
aseP

tm
R
N
A

G
roup I Intron

telom
erase R

N
A

16S rR
N
A

23S rR
N
A

 *

 *S
e

n
s
it
iv

it
y

CONTRAfold MFE
LinearFold-C b=100

 *

 *

**

Vienna RNAfold
LinearFold-V b=100

 *

 *

shortest (77.3)
Average Sequence Length by Family

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ longest (2927.4)

mean CONTRAfold LinearFold-C ViennaRNA LinearFold-V
MFE b=100 RNAfold b=100

PPV 54.80 56.86 (+2.1) 50.70 50.92 (+0.2)
Sensitivity 55.69 57.13 (+1.4) 59.32 59.52 (+0.2)

Fig. 3. PPV and Sensitivity (by family) on the ArchiveII dataset, comparing LinearFold
with the corresponding baselines, CONTRAfold MFE and Vienna RNAfold. Each
column represents a family accuracy, averaged over all sequences in that family. The
overall accuracies are reported in the table, averaging over all families. Statistical
significance is marked as *(0.01≤ p< 0.05), and **(p< 0.01). See Table ?? for
detailed accuracy numbers. See the Methods section for details of the PPV/Sensitivity
metrics and the significance testing method.

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Dezhong Deng et al.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263509doi: bioRxiv preprint

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/263509
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

-83

-81

-79

-77

 20 100 200 300

-24

-23

-22

-21

a
v
e
ra

g
e
 f
re

e
 e

n
e
rg

y

a
v
e
ra

g
e
 m

o
d
e
l
c
o
s
t

beam size

Vienna RNAfold

LinearFold-V

CONTRAfold MFE

LinearFold-C

B

 57

 60

 63

 66

 69

 72

 20 100 200 300

n
u

m
b

e
r

o
f

p
a

ir
s
 p

re
d

ic
te

d

beam size

Vienna RNAfold
LinearFold-V
Ground Truth

CONTRAfold MFE
LinearFold-C

E

 0

 10

 20

 30

 40

 50

 60

 70

1-200

201-500

>500

P
P

V

base pair distance

CONTRAfold MFE
LinearFold-C b=100

LinearFold-C b=50

C

 49

 52

 55

 58

 20 100 200 300
 49

 52

 55

 58

P

P
V

S
e

n
s
it
iv

it
y

beam size

CONTRAfold MFE

LinearFold-C

CONTRAfold MFE

LinearFold-C

D

 50

 51

 52

 53

 54

 55

 56

 57

 58

 51 52 53 54 55 56 57 58

S
e
n
s
it
iv

it
y

PPV

CONTRAfold MFE

LinearFold-C

b=20

b=50

b=75

b=300

 56.8

 57

 57.2

 57.4

 56.2 56.4 56.6 56.8 57

b=150
b=120
b=100

F

 0

 10

 20

 30

 40

 50

 60

 70

1-200

201-500

>500

S
e
n
s
it
iv

it
y

base pair distance

CONTRAfold MFE
LinearFold-C b=100

LinearFold-C b=50

Fig. 4. Impact of beam size. A-D illustrate the trends of different variables when beam size increases. A: the internal cost, namely averaged free energy / model cost of two
versions of LinearFold; B: the number of pairs predicted (averaged by sequence) of these methods, comparing with Ground Truth; C: change of both PPV and Senstivity
with the increasing of beam size; D: PPV-Sensitivity tradeoff when varying beam size; E-F: PPV and Sensitivity against pair distance in the ArchiveII dataset, comparing
LinearFold-C with CONTRAfold MFE. Each point represents the overall PPV/Sensitivity of all base pairs in a certain length range.

linearly, with an empirical runtime of O(n2.6) determined by curve
fitting. Figure 2 B reconfirms this fact on much longer sequences (in
log-scale), and for a sequence of ∼10,000 nt (e.g., the HIV genome),
LinearFold (with the default beam size of b=100) takes only 7 seconds
while the baselines take 4 minutes. For sequences of length 32,753,
our LinearFold takes only 23 seconds while CONTRAfold takes 2
hours and RNAfold 1.7 hours. This clearly shows the advantage of
our linear-time prediction algorithm on very long ncRNAs.

More importantly, LinearFold also has an advantage on memory
usage that leads to better scalability on extremely long sequences.
The baseline cubic-time algorithms require memory space that scales
quadratically with sequence length, because intuitively they need
to figure out the best scoring or minimum free energy structure for
every substring [i, j] of the entire sequence. This means you need 4x
memory if your sequence length doubles. In addition, due to a design
deficiency, neither CONTRAfold MFE or Vienna RNAfold runs on
any sequence longer than 32,767 nt. On the other hand, LinearFold
not only takes linear time, but also uses linear memory, without
the need for the two-dimensional table of size O(n2). As a result,
LinearFold is able to process the longest sequence in RNAcentral
(244,296 nt), taking less than 3 minutes. In fact, LinearFold even
scales to sequences of 10,000,000 nt on our 32GB-memory machine.

Accuracy of LinearFold. We next compare the prediction accuracies
of LinearFold and the two baseline systems, reporting both Positive
Predictive Value (PPV; the fraction of predicted pairs in the known
structure) and Sensitivity (the fraction of known pairs predicted) on
each RNA family in ArchiveII dataset. We also tested statistical signif-

icance using a paired, two-tailed t-test, following previous work (50).
Figure 3 shows that LinearFold-C improves PPV and Sensitivity over
CONTRAfold by +2.1%/+1.4% (absolute)when averaged across all
families. This is surprising because LinearFold produces more accu-
rate structures using a fraction of runtime. Individually, LinearFold-C
is significantly more accurate in both PPV/Sensitivity on three fam-
ilies: Group I Intron, 16S and 23S ribosomal RNAs, with the last
two being the longest families in this dataset. 16S rRNAs have an
average length of 1548 nt and +3.89%/+3.08% absolute improvement
in PPV/Sensitivity, and 23S rRNAs have an average length of 2927 nt
and +14.00%/+9.98% absolute improvement. Even more surprising,
LinearFold’s improvement in accuracy is more pronounced on longer
sequences. Accuracies are also improved by LinearFold-V over Vi-
enna RNAfold, but the difference is smaller (overall +0.2%/+0.2%
absolute improvement in PPV/Sensitivity). Individually, the improve-
ment is significant on both PPV/Sensitivity on two families, Group I
Intron and 16S rRNA.

Impact of Beam Size. Above we used b=100 as the default beam
size. Now we investigate the impact of different beam sizes. We first
study the impact of search quality. Since our LinearFold algorithm
uses approximate search instead of exact search, we use the difference
between exact search free energy and our returned free energy as the
measure of search quality – the closer they are, the better our search
quality. We can see from Figure 4 A that the search quality is getting
closer when the beam size increases, and LinearFold achieves similar
model cost / free energy using the default beam size.

Similarly, Figure 4 B plots the number of pairs predicted, at each

Dezhong Deng et al. PNAS | February 9, 2018 | vol. XXX | no. XX | 3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263509doi: bioRxiv preprint

https://doi.org/10.1101/263509
http://creativecommons.org/licenses/by-nc-nd/4.0/

Group I Intron C. Mirabilis (526nt, 143 pairs) 16S rRNA A. Pyrophilus (1564nt, 468 pairs) 23S rRNA E. coli (2904nt, 830 pairs)
C

O
N

TR
A

fo
ld

M
FE

5’

50

100

150

200

250

300

350

400

450

500

3’
5’

50

100

150

200

250

300

350

400

450

500

550

600

650

700
750800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

3’ 5’
50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250
1300

1350
1400145015001550

1600
1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

2650

2700

2750

2800

2850

3’

PPV: 38.96, Sensitivity: 41.96, pairs: 154. PPV: 53.20, Sensitivity: 58.55, pairs: 515. PPV: 47.49, Sensitivity: 48.92, pairs: 855.

Li
ne

ar
F o

ld
-C
b=

10
0

5’

50

100

150

200

250

300

350

400

450

500

3’
5’

50

100

150

200

250

300

350

400

450

500

550

600

650

700
750800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

3’ 5’
50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250
1300

1350
1400145015001550

1600
1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

2650

2700

2750

2800

2850

3’

PPV: 67.74, Sensitivity: 73.43, pairs: 155. PPV: 61.49, Sensitivity: 65.17, pairs: 496. PPV: 69.94, Sensitivity: 67.83, pairs: 805.

Fig. 5. Circular plots of 3 RNA sequences (selected from 3 different RNA families) comparing CONTRAfold MFE with LinearFold-C. A blue arc represents a correctly predicted
pair, a red arc represents an incorrectly predicted pair, while a light gray arc represents a based pair miss predicted. Each plot uses the clockwise order of the RNA sequence
from the top. These 3 examples are picked from 3 different RNA families that the performance of LinearFold-C is improved significantly comparing to CONTRAfold MFE.

beam size. It shows that ViennaRNA model tends to overpredict,
while the CONTRAfold model underpredicts. Also, although our
algorithm always underpredicts compared to exact predictions in
either model, we predict almost the same number of base pairs as
each model when using the default beam size. The mean difference is
0.29(CONTRAfold)/0.01(ViennaRNA) pairs when b = 100.

Figure 4 C plots PPV and Sensitivity as a function of beam size b.
LinearFold-C outperforms CONTRAfold MFE in both PPV and Sen-
sitivity with b ≥ 75 (though it will converge to CONTRAfold MFE
when b→ +∞), and LinearFold-C’s PPV/Sensitivity are stable with
b ∈ [100, 150].

Figure 4 D shows the tradeoff of PPV and Sensitivity of Linear-
Fold, with the change of the beam size. It starts with the increasing of
both PPV and Sensitivity, reaches the peak at b=120, and falls until
converging to exact search. Although the peak happens when beam
size is 120, we can see that the performance LinearFold is consistent
when its beam size is in [100,150], as both PPV/Sensitivity stays
almost the same.

Accuracy Improvements on Long-Range Base Pairs. We fur-
ther evaluated the effect of the distance between base paired-
nucleotides on prediction performance. As shown in Figure 4 E and
F, when predicting long-distance pairs, LinearFold can outperform
previous approaches in both PPV and Sensitivity. Contrary to the con-
cern that LinearFold would not predict as accurately for long-distance
pairs, it continues to outperform previous methods even at pairing

distances over 500 nt. Detailed comparisons between LinearFold-V
and Vienna RNAfold in PPV, Sensitivity, and prediction quality, are
in the Supporting Information.

Example Predictions: Group I Intron, 16S and 23S rRNAs. We
visualized the predicted secondary structure of 3 examples from dif-
ferent RNA families, Group I Intron C. Mirabilis, 16S rRNA A. Py-
rophilus, 23S rRNA E. coli, comparing LinearFold-C with CON-
TRAfold MFE (Figure 5). The circular plots show our performance
improvement, by both predicting more base pairs correctly, and re-
ducing incorrect predictions. This visualization also demonstrates
LinearFold’s improved prediction of long-distance base pairs than the
baseline, as shown in Group I Mirabilis (bottom half, pair distance
250), 16S A. Pyrophilus (left part, 550), 23S E. coli (left part, 600).
Fig. ?? shows the corresponding results comparing LinearFold-V with
Vienna RNAfold. We also built a web demo visualizing results from
all sequences in these three families.*

Discussion

RNA structure prediction is important for inferring RNA function and
has many applications including drug design. The existing algorithms
for RNA secondary structure prediction run in time that scales cubi-
cally with the sequence length, which is too slow for long non-coding

*http://web.engr.oregonstate.edu/~liukaib/demo_json+canvas.html

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Dezhong Deng et al.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263509doi: bioRxiv preprint

http://web.engr.oregonstate.edu/~liukaib/demo_json+canvas.html
http://web.engr.oregonstate.edu/~liukaib/demo_json+canvas.html
www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/263509
http://creativecommons.org/licenses/by-nc-nd/4.0/

RNAs; e.g., the baseline systems in this work, CONTRAfold and Vi-
enna RNAfold, which are two of the most popular prediction software,
take 2 hours and 1.7 hours, respectively, for a sequence of 32,753 nt.
Furthermore, the existing algorithms also need memory space that
scales quadratically with the sequence length, and as a result, both
baseline systems fail to run on sequences beyond 32,767 nt. In reality,
the longest RNA sequence in the RNAcentral dataset is 244,296 nt,
which is 7× of that limit.

We design the first linear-time, linear-memory prediction algo-
rithm, LinearFold, using dynamic programming plus beam search,
and apply this algorithm to both machine-learned and thermodynamic
models. The linearity in both time and memory is confirmed in Fig. 2.
What is more interesting is the following three surprising findings:

1. Even though LinearFold uses only a fraction of runtime and
memory compared to the existing algorithms in the baseline
systems, our predicted structures are overall more accurate in
both PPV and Sensitivity and on both machine-learned and ther-
modynamic models (see Fig. 3).

2. The accuracy improvement of LinearFold is more pronunced on
longer families such as 16S and 23S rRNAs (see Figs. 3 and 5).

3. Even more surprisingly, LinearFold is also more accurate than
the baselines on long-range base pairs that are more than 500
nt apart (Fig. 4 (e)(f)), which is well known to be a challenging
problem for the current models (46).

4. Although the model depends on the beam size, the number
of base pairs and the accuracy of prediction is very robust to
changes in the beam size.

Our algorithm has several potential extensions. First of all, it
should be possible to extend LinearFold to calculate the partition
function and base pair probabilities, since the classical method for
that task, the McCaskill algorithm (51), is similar to the cubic-time
structure prediction algorithms which are used as baselines in this
paper. Secondly, this linear-time algorithm to calculate base pair prob-
abilities should facilitate the linear-time identification of pseudoknots,
by replacing the cubic-time McCaskill algorithm with a linear-time
one in those pseudoknot-prediction programs (52, 53). Thirdly, being
linear-time, LinearFold also facilitate easier and faster training of
parameters than the cubic-time CONTRAfold using structured pre-
diction methods (54), and we envision a retrained model tailored to
linear-time prediction should be even more accurate.

Methods
LinearFold is a linear-time prediction algorithm predicting RNA secondary structures.
This approach is presented in four steps, starting from the most naive but easy-to-
understand exhautive version, and gradually build it up to the linear-time version, using a
graph-structured stack and beam search.

The basic idea of linear-time prediction is to predict incrementally from left-to-right,
inspired by human sentence processing. To adapt it to RNA sequences, we view the
problem as incrementally converting the RNA sequence into the dot-bracket format, such
that each nucleotide can be labeled as unpaired “.”, opening “(”, or closing “)”. This
makes the dot-bracket format equivalent to the pseudoknot-free RNA secondary structures

Given an input RNA sequence x = x1x2 . . . xn where xi ∈ {A, C, G, U}, our
algorithm aims to find the best structure y = y1y2 . . . yn where yi ∈ {“.”, “(”, “)”}
with minimum free energy:

f (x) = argmin
y∈Y(x)

c(x, y; w). [1]

Here Y(x) is the set of all possible structures, i.e., {y | y has balanced parentheses}, c
is the cost function (i.e., free energy function), and w is a model.

Naive exhaustive incremental prediction: O(3n) time. By exhaustively predicting
y from left-to-right, we traverse all the possible structures in Y(x), and pick the one
with minimum free energy. In this prediction process, we formalize each state at step
j (j ∈ {0, . . . , n}) as a triple, s = 〈σ, j〉 : y′, where σ is a stack consisting of
unmatched openings so far, and y′ is the corresponding labeled dot-bracket sequence,

A 1 2 3 4 5
C CC CCA CCAG CCAGG no DP

..(...(O(3n)
3 0 4 0

ε
0 0 0 0 0 0 0 0 0 0 0 0

.(.(. .(.. .(..)
2 0 2 0 2 0 0 0

.((.(.) .(.).
2 3 0 0 0 0

((. (.. (... (...)
1 0 1 0 1 0 1 0 0 0

(.((..) (..).
1 3 0 0 0 0

((((. ((.) ((.))
1 2 1 2 1 0 0 0

B C CC CCA CCAG CCAGG DP
ε(.. O(2n2)

0 0 0 0 0 0 0 0 2 0

.(.(. .(.) ((.))
2 0 2 0 0 0 0 0

((. (.. ((.)
1 0 1 0 1 0 1 0

((((.
1 2 1 2

C C CC CCA CCAG CCAGG DP+GSS
ε ?(.. O(n3)

0 0 0 0 0 0 0 0 .. 2

(?(?(. .(.) ((.))
.. 1 .. 2 .. 2 0 0 0 0

(. (.. ((.)
.. 1 .. 1 .. 1

D C CC CCA CCAG CCAGG LinearFold
ε . ?(?(. .(.) ((.)) O(n)

0 0 0 0 .. 2 .. 2 0 0 0 0

((. (.. ((.) (approx. DP)
.. 1 .. 1 .. 1 .. 1

× ×

×

×

.

(

(

.

.

(

.

.

.

.

(

(

(

.

.

)

.

)

)

(

.

)

.

)

.

)

(

. .

(

.

(

.

.

.

.

.

.
)

.

)

)

)

.

)

.

(

.

(

(

.

.

.

.

.

.
)

).)

)

.

)

.

(

(

(.

.

.

)

)
)

.

)

+fullstack
m

erge
+G

SS
+beam

Fig. 6. Four-step demonstration of LinearFold, simply finding the max number of pairs
instead of the actual MFE model. Each node represents a predicted prefix of the
structure, with a stack showing the unpaired openings; each arrow corresponds to an
action (push, skip, and pop); dead-end states are with a red x. Nodes with the same
color are merged by the Graph-Structured Stack, while the colored arrows show a
packing-unpacking process of the GSS, in version 3. Nodes with borders represent
the ground truth path.

y′ = y′
1y

′
2 . . . y

′
j . For each state, it can transition to a subsequent state, taking one

of three actions, push (labels the current nucleotide as a left bracket “(”, and puts it on
top of the stack), skip (labels as a dot “.”, leaving the stack unchanged), and pop(labels
as a right bracket “)”, matches the current nucleotide with xTOP, the top of the stack,
removing xTOP from the stack). The full deduction system is described in Table ?? (a).
This algorithm takes O(3n) time to exhaustively traverse all possible structures (see
Figure 6 A).

Incremental Parsing with Dynamic Programming via Full Stack: O(2
n
2) time.

Now we apply dynamic programming on top of this exhaustive method to exploit shared
computations. Consider a simple case that two states can be merged: if there are two
states in one step, sharing the same positions of all the unpaired openings, means that they
have identical stacks, 〈σ, j〉 : y0 and 〈σ, j〉 : y1, we conclude that these two states
consist exactly the same information. Thus, these two states are called “equivalent” and
we merge them. A merged state can be represented as 〈σ, j〉. Figure 6 B demonstrates
the merging process.

Although we merge to reduce the number of states, it is still exponential, since there
could be exponentially many different number of stacks in each step. This algorithm takes
O(2

n
2) time for every possible stack 〈σ, j〉 considered in the prediction process.

Incremental Parsing with Dynamic Programming via Graph Structured Stack:
O(n3) time. To avoid considering exponential number of states, we further apply the
Graph-Structured Stack (GSS, (45)) to the dynamic programming. Consider two states
in the same step sharing the same last unpaired openings i, 〈σ0|i, j〉, and 〈σ1|i, j〉
(where i is the same top of the stack). We call these states “temporarily equivalent”, since
they can be treated as exactly the same until the unpaired opening i has been closed. We
simply define 〈i, j〉 as a merged state instead. The corresponding derivation system could
be found in Table ?? (b).

Dezhong Deng et al. PNAS | February 9, 2018 | vol. XXX | no. XX | 5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263509doi: bioRxiv preprint

https://doi.org/10.1101/263509
http://creativecommons.org/licenses/by-nc-nd/4.0/

The idea behind the merging process is to combine the left structure information of
different states merged together in the push action, and this structure is later unpacked
in the future pop action. Basically, if state r generates state s by a push action, then
r is added onto π(s), a set of predictor states. When two equivalent pushed states get
merged, we combine their predictor states. For example, if rx = 〈tx, j〉 predicts
s = 〈j, j + 1〉 for x ∈ {0, . . . , k}, then π(s) = {rx|x = 0 . . . k}. To pop state
s = 〈i, j〉, we combine it with each of its predictor states r ∈ π(s) to make a resulting
state t. t inherits the predictor states from r, i.e., π(t) = π(r). An example of the
merged prediction process is shown in Figure 6 C.

In our dynamic programming prediction algorithm, we maintainO(n2) number of
states 〈i, j〉 in the prediction process, while a pop action requiresO(n) time due to the
graph-structured stack. Thus the overall time complexity isO(n3).

However, the emperical running time of our algorithm is better than cubic. As
we restrict only three types of allowed pairs (AU, CG, GU) in the prediction, the pop
action happens only if (xi, xj+1) is one of the allowed pairs. Thus, in the skip action,
we can skip nucleotides until the next one xj+1 can be paired with xi. We observe
this emperical running time is approximately O(n2.6), similar to previous bottom-up
dynamic programming methods(36–38).

Similar to previous methods, we avoid sharp turns as well. All base-pairs in the
predicted RNA secondary structures must be with a distance≥ 4.

Dynamic Programming via Beam Search: O(n) time. In practice, the exact search
algorithm still runs in O(n3) time. We further employ beam search pruning (54) to
reduce the complexity to linear time. Generally, we only keep the b top-scoring states
〈i, j〉 for each step. This way all the lower-scoring states are pruned, and if a structure
survives to the end, it must have been one of the top b states in every step. This pruning
also means that a state can have at most b left pointers, i.e., a pop action can produce
at most b subsequent states. Instead of generating b2 new states from all pop action
from a step j, we use cube pruning(55) to generate the best b states, which would
take O(b log(b)) time. Thus the overall running time over a length-n sequence is
O(nb log(b)), see Figure 6 D for a demonstration of the beam process.

Dataset, Evaluation Metrics and Significance Testing. We choose the ArchiveII
dataset (47), a diverse set of over 3,000 RNA sequences with known secondary structures.
But since the current CONTRAfold machine-learned model (v2.02) is trained on the
S-Processed dataset (56) we removed those sequences appeared in the S-Processed dataset.
The resulting dataset we used contains 2,889 sequences over 9 families, with an average
length of 222.2 nt.

Due to the uncertainty of base-pair matches existing in comparative analysis, we
consider a base pair to be correctly predicted if it is also slipped by one nucleotide on a
strand, accordingly((47)). Generally, if a pair (i, j) is in the predicted structure, we claim
it’s correct if one of (i, j), (i− 1, j), (i+ 1, j), (i, j− 1), (i, j+ 1) is in the ground
truth structure. We report both Sensitivity and Positive Predictive Value (PPV), where

Sensitivity =
true positives

true positives + false negatives
, PPV =

true positives
true positives + false positives

We use the paired two-tailed t-test to calculate the statistical significance, with the type I
error rate, consistent with the previous methods (50).

ACKNOWLEDGMENTS. This work was partially supported by NSF
grant 1656051 and a Google Faculty Award to L.H., NIH grants R56
AG053460 and R21 AG052950 to D.H., and NIH grant R01GM076485 to
D.H.M. We thank James Cross for help in the linear-time algorithm, Kaibo
Liu for designing the web demo, and Juneki Hong for proofreading.

1. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nature Reviews Ge-
netics 2(12):919–929.

2. Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature
418(6894):222–228.

3. Scott WG (2007) Ribozymes. Current opinion in structural biology 17(3):280–286.
4. Storz G, Gottesman S (2006) 20 versatile roles of small RNA regulators in bacteria. Cold

Spring Harbor Monograph Archive 43:567–594.
5. Wu L, Belasco JG (2008) Let me count the ways: mechanisms of gene regulation by miRNAs

and siRNAs. Molecular cell 29(1):1–7.
6. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152(1):17–24.
7. Bachellerie JP, Cavaillé J, Hüttenhofer A (2002) The expanding snoRNA world. Biochimie

84(8):775–790.
8. Wahl MC, Will CL, Lührmann R (2009) The spliceosome: design principles of a dynamic rnp

machine. Cell 136(4):701–718.
9. Walter P, Blobel G (1982) Signal recognition particle contains a 7s RNA essential for protein.

Nature 299:21.
10. Johnsson P, Lipovich L, Grandér D, Morris KV (2014) Evolutionary conservation of long non-

coding RNAs; sequence, structure, function. Biochimica et Biophysica Acta (BBA)-General
Subjects 1840(3):1063–1071.

11. Gilbert W (1986) Origin of life: The RNA world. Nature 319(6055).
12. Joyce GF (1994) In vitro evolution of nucleic acids. Current opinion in structural biology

4(3):331–336.
13. Sazani P, et al. (2002) Systemically delivered antisense oligomers upregulate gene expres-

sion in mouse tissues. Nature biotechnology 20(12):1228–1233.
14. Crooke ST (2004) Antisense strategies. Current molecular medicine 4(5):465–487.
15. Childs-Disney JL, Wu M, Pushechnikov A, Aminova O, Disney MD (2007) A small molecule

microarray platform to select RNA internal loop- ligand interactions. ACS chemical biology
2(11):745–754.

16. Gareiss PC, et al. (2008) Dynamic combinatorial selection of molecules capable of inhibiting
the (cug) repeat RNA- mbnl1 interaction in vitro: discovery of lead compounds targeting
myotonic dystrophy (dm1). Journal of the American Chemical Society 130(48):16254–16261.

17. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeu-
tics. Nature 457(7228):426–433.

18. Palde PB, Ofori LO, Gareiss PC, Lerea J, Miller BL (2010) Strategies for recognition of stem-
loop RNA structures by synthetic ligands: Application to the hiv-1 frameshift stimulatory se-
quence. Journal of medicinal chemistry 53(16):6018–6027.

19. Seetin MG, Mathews DH (2012) RNA structure prediction: an overview of methods. Bacterial
Regulatory RNA: Methods and Protocols pp. 99–122.

20. Hofacker IL, Lorenz R (2014) Predicting RNA structure: advances and limitations. RNA
Folding: Methods and Protocols pp. 1–19.

21. Gruber A, Findeiss S, Washietl S, Hofacker I, Stadler PF (2010) RNAz 2.0: improved noncod-
ing RNA detection in Pacific Symposium on Biocomputing. Vol. 15, pp. 69–79.

22. Washietl S, et al. (2012) Computational analysis of noncoding RNAs. Wiley Interdisciplinary
Reviews: RNA 3(6):759–778.

23. Fu Y, Xu ZZ, Lu ZJ, Zhao S, Mathews DH (2015) Discovery of novel ncRNA sequences in
multiple genome alignments on the basis of conserved and stable secondary structures. PloS
one 10(6):e0130200.

24. Lu ZJ, Mathews DH (2008) Efficient siRNA selection using hybridization thermodynamics.
Nucleic acids research 36(2):640–647.

25. Tafer H, et al. (2008) The impact of target site accessibility on the design of effective sirnas.
Nature biotechnology 26(5):578–583.

26. Stephens ZD, et al. (2015) Big data: astronomical or genomical? PLoS Biol 13(7):e1002195.
27. Sloma MF, Mathews DH (2015) Chapter four-improving RNA secondary structure prediction

with structure mapping data. Methods in enzymology 553:91–114.
28. Ding Y, et al. (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel

regulatory features. Nature 505(7485):696–700.
29. Flynn RA, et al. (2016) Transcriptome-wide interrogation of RNA secondary structure in living

cells with icshape. Nature protocols 11(2):273–290.
30. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS (2014) Genome-wide probing of

RNA structure reveals active unfolding of mrna structures in vivo. Nature 505(7485):701–705.
31. Ouyang Z, Snyder MP, Chang HY (2013) Seqfold: genome-scale reconstruction of RNA sec-

ondary structure integrating high-throughput sequencing data. Genome research 23(2):377–
387.

32. Spasic A, Assmann SM, Bevilacqua PC, Mathews DH (2017) Modeling RNA secondary struc-
ture folding ensembles using shape mapping data. Nucleic acids research.

33. Wu Y, et al. (2015) Improved prediction of RNA secondary structure by integrating the free
energy model with restraints derived from experimental probing data. Nucleic acids research
43(15):7247–7259.

34. Cheng CY, Kladwang W, Yesselman JD, Das R (2017) RNA structure inference through chem-
ical mapping after accidental or intentional mutations. Proceedings of the National Academy
of Sciences p. 201619897.

35. Tian S, Das R (2016) RNA structure through multidimensional chemical mapping. Quarterly
reviews of biophysics 49.

36. Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy mini-
mization. Current opinion in structural biology 16(3):270–278.

37. Lorenz R, et al. (2011) ViennaRNA package 2.0. Algorithms for Molecular Biology 6(1):1.
38. Do CB, Woods DA, Batzoglou S (2006) Contrafold: RNA secondary structure prediction with-

out physics-based models. Bioinformatics 22(14):e90–e98.
39. Rivas E, Lang R, Eddy SR (2012) A range of complex probabilistic models for RNA secondary

structure prediction that includes the nearest-neighbor model and more. RNA 18(2):193–212.
40. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermo-

dynamics and auxiliary information. Nucleic acids research 9(1):133–148.
41. Kasami T (1965) An efficient recognition and syntax analysis algorithm for context-free lan-

guages, (Air Force Cambridge Research Lab), Technical Report AFCRL-65-758.
42. Younger DH (1967) Recognition and parsing of context-free languages in time n3 . Informa-

tion and Control 10:189–208.
43. Lange SJ, et al. (2012) Global or local? predicting secondary structure and accessibility in

mrnas. Nucleic acids research 40(12):5215–5226.
44. Huang L, Sagae K (2010) Dynamic programming for linear-time incremental parsing in Pro-

ceedings of ACL 2010. (Uppsala, Sweden).
45. Tomita M (1988) Graph-structured stack and natural language parsing in Proc. ACL.
46. Amman F, et al. (2013) The trouble with long-range base pairs in RNA folding in Brazilian

Symposium on Bioinformatics. (Springer), pp. 1–11.
47. Sloma M, Mathews D (2016) Exact calculation of loop formation probability identifies folding

motifs in RNA secondary structures. RNA, In Press.
48. RNAcentral Consortium, , et al. (2017) RNAcentral: a comprehensive database of non-coding

RNA sequences. Nucleic acids research 45(D1):D128–D134.
49. Zhao Y, et al. (2016) Noncode 2016: an informative and valuable data source of long non-

coding rnas. Nucleic acids research 44(D1):D203–D208.
50. Xu Z, Almudevar A, Mathews DH (2011) Statistical evaluation of improvement in RNA sec-

ondary structure prediction. Nucleic acids research 40(4):e26–e26.
51. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for

RNA secondary structure. Biopolymers 29(6-7):1105–1119.
52. Bellaousov S, Mathews DH (2010) Probknot: fast prediction of RNA secondary structure

including pseudoknots. Rna 16(10):1870–1880.
53. Sato K, Kato Y, Hamada M, Akutsu T, Asai K (2011) Ipknot: fast and accurate prediction

of RNA secondary structures with pseudoknots using integer programming. Bioinformatics
27(13):i85–i93.

54. Huang L, Fayong S, Guo Y (2012) Structured perceptron with inexact search in Proc. NAACL.
55. Huang L, Chiang D (2007) Forest rescoring: Fast decoding with integrated language models

in Proceedings of ACL 2007.
56. Andronescu M, Condon A, Hoos H, Mathews D, Murphy K (2007) Efficient parameter estima-

tion for RNA secondary structure prediction. Bioinformatics, ISMB/ECCB 2007.

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Dezhong Deng et al.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263509doi: bioRxiv preprint

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/263509
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supporting Information
LinearFold: Linear-Time Prediction of RNA Secondary Structures

Dezhong Deng, et al.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263509doi: bioRxiv preprint

https://doi.org/10.1101/263509
http://creativecommons.org/licenses/by-nc-nd/4.0/

of sequences avg. CONTRAfold MFE LinearFold-C b=100 Vienna RNAfold LinearFold-V b=100
Family total used length PPV Sensitivity ∆PPV ∆Sensitivity PPV Sensitivity ∆PPV ∆Sensitivity
tRNA 557 74 77.3 69.32 70.84 +0.00 +0.00 63.80 73.25 -0.13 +0.00

5S rRNA 1,283 1,125 118.8 76.48 76.62 +0.13 +0.01 60.12 66.62 +0.01 +0.04
SRP 928 886 186.1 64.24 63.88 -0.03 -0.03 60.93 66.66 (*)+0.38 (*)+0.29

RNaseP 454 182 344.1 49.34 48.10 -0.15 -0.17 47.78 55.79 +0.03 -0.19
tmRNA 462 462 366.0 46.50 39.70 (*)-0.62 (*)-0.76 42.09 47.58 (*)-0.96 (*)-1.00

Group I Intron 98 96 424.9 52.50 50.78 (**)+1.30 (*)+0.94 47.02 57.96 (*)+0.80 (*)+0.94
telomerase RNA 37 37 444.6 46.12 59.96 -0.07 -0.05 41.87 58.77 -0.01 -0.14

16S rRNA 22 22 1,547.9 40.46 41.48 (*)+3.89 (*)+3.08 37.63 44.60 (*)+1.46 (*)+1.56
23S rRNA 5 5 2,927.4 48.29 49.85 (**)+14.00 (**)+9.98 55.09 62.67 +0.40 +0.25

Overall 3,846 2,889 222.2 54.80 55.69 +2.06 +1.44 50.70 59.32 +0.22 +0.20

Table SI 1. Detailed information of the ArchiveII dataset and the prediction accuracies of CONTRAfold MFE, LinearFold-C, Vienna RNAfold and
LinearFold-V. Statistical significance are marked by *(0.01 ≤ p < 0.05) and **(p < 0.01).

 49

 50

 51

 52

 20 50 100 200 300
 57

 58

 59

 60

P

P
V

S
e

n
s
it
iv

it
y

beam size

Vienna RNAfold

LinearFold-V

Vienna RNAfold

LinearFold-V

 57

 57.5

 58

 58.5

 59

 59.5

 60

 49 49.5 50 50.5 51 51.5 52

S
e

n
s
it
iv

it
y

PPV

Vienna RNAfold

LinearFold-Vb=50

b=75

b=100

b=120b=150
b=200

b=300

Fig. SI 1. This figure corresponds to Figure 4(c)(d) but with the ViennaRNA version, running on the ArchiveII dataset. Left: trend of both PPV and Sensitivity with the increasing
of beam size; right: PPV and Sensitivity of LinearFold by beam size.

 0

 10

 20

 30

 40

 50

 60

 70

1-200

201-500

>500

P
P

V

base pair distance

Vienna RNAfold
LinearFold-C b=100

LinearFold-C b=50

 10

 20

 30

 40

 50

 60

 70

1-200

201-500

>500

S
e

n
s
it
iv

it
y

base pair distance

Vienna RNAfold
LinearFold-C b=100

LinearFold-C b=50

Fig. SI 2. This figure corresponds to Figure4(c)(d), with the ViennaRNA version, running on the ArchiveII dataset. It shows PPV and Sensitivity of LinearFold-V by pair length in
the Mathews dataset, comparing to Vienna RNAfold. Each bar represents the overall PPV/Sensitivity of all the base pairs in a length range.

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Dezhong Deng et al.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263509doi: bioRxiv preprint

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/263509
http://creativecommons.org/licenses/by-nc-nd/4.0/

Group I Intron C. Mirabilis (526nt, 143 pairs) 16S rRNA A. Pyrophilus (1564nt, 468 pairs) 23S rRNA E. coli (2904nt, 830 pairs)

V
ie

nn
a

R
N

A
fo

ld

5’

50

100

150

200

250

300

350

400

450

500

3’
5’

50

100

150

200

250

300

350

400

450

500

550

600

650

700
750800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

3’ 5’
50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250
1300

1350
1400145015001550

1600
1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

2650

2700

2750

2800

2850

3’

PPV: 45.61, Sensitivity: 54.55, pairs: 171. PPV: 56.12, Sensitivity: 63.68, pairs: 531. PPV: 52.34, Sensitivity: 57.83, pairs: 917.

Li
ne

ar
F o

ld
-V
b=

10
0

5’

50

100

150

200

250

300

350

400

450

500

3’
5’

50

100

150

200

250

300

350

400

450

500

550

600

650

700
750800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

3’ 5’
50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250
1300

1350
1400145015001550

1600
1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

2650

2700

2750

2800

2850

3’

PPV: 56.63, Sensitivity: 65.73, pairs: 166. PPV: 55.81, Sensitivity: 62.61, pairs: 525. PPV: 56.14, Sensitivity: 62.44, pairs: 928.

Fig. SI 3. Circular plots of 3 RNA sequences (corresponding to Figure 5) comparing Vienna RNAfold with LinearFold-V.

input x1 . . . xn

state 〈σ, j〉 : y′

axiom 〈σε, 0〉 : ε

goal 〈σε, n〉 : y

push
〈σ, j〉 : y′

〈σ |j, j+1〉 : y′◦(

skip
〈σ, j〉 : y′

〈σ, j+1〉 : y′◦.

pop
〈σ | i, j〉 : y′

〈σ, j+1〉 : y′◦)

x1 . . . xn

〈i, j〉

〈⊥, 0〉

〈⊥, n〉

〈i, j〉
〈j, j+1〉
〈i, j〉
〈i, j+1〉
〈k, i〉 〈i, j〉
〈k, j+1〉

(a) exhaustive, O(3n) (b) DP with GSS, O(n3)

Fig. SI 4. Deductive system comparing the exhaustive search algorithm and Dynamic Programming with Graph Structured Stack.

Dezhong Deng et al. PNAS | February 9, 2018 | vol. XXX | no. XX | 3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263509doi: bioRxiv preprint

https://doi.org/10.1101/263509
http://creativecommons.org/licenses/by-nc-nd/4.0/

