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Predicting the secondary structure of an RNA sequence with speed
and accuracy is useful in many applications such as drug design.
The state-of-the-art predictors have a fundamental limitation: they
have a run time that scales cubically with the length of the input se-
quence, which is slow for longer RNAs and limits the use of sec-
ondary structure prediction in genome-wide applications. To ad-
dress this bottleneck, we designed the first linear-time algorithm
for this problem. which can be used with both thermodynamic and
machine-learned scoring functions. Our algorithm, like previous
work, is based on dynamic programming (DP), but with two crucial
differences: (a) we incrementally process the sequence in a left-to-
right rather than in a bottom-up fashion, and (b) because of this in-
cremental processing, we can further employ beam search pruning
to ensure linear run time in practice (with the cost of exact search).
Even though our search is approximate, surprisingly, it results in
even higher overall accuracy on a diverse database of sequences
with known structures. More interestingly, it leads to significantly
more accurate predictions on the longest sequence families in that
database (16S and 23S Ribosomal RNAs), as well as improved accu-
racies for long-range base pairs (500+ nucleotides apart).
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R ibonucleic acid (RNA) is involved in numerous cellular pro-
cesses. While many RNAs encode proteins (messenger RNAs,

mRNAs), noncoding RNAs (ncRNAs) have intrinsic functions without
being translated to proteins (1). ncRNA sequences catalyze reactions
(2, 3), regulate gene expression (4–6), provide site recognition for
proteins (7, 8) and serve in trafficking of proteins (9). The recent
discovery and characterization of diverse classes of long noncoding
RNAs, i.e. ncRNAs longer than 200nt (10), present new opportunities
and challenges in determining their functions and mechanisms of ac-
tion. Furthermore, the dual nature of RNA as both a genetic material
and functional molecule led to the RNA World hypothesis, that RNA
was the first molecule of life (11), and this dual nature has also been
utilized to develop in vitro methods to evolve functional sequences
(12). Finally, RNA is an important drug target and agent (13–18).

Predicting the secondary structure of an RNA sequence, defined as
the set of all canonical base pairs (A–U, G–C, G–U), is an important
and challenging problem (19, 20). Knowing structures reveals cru-
cial information about the RNA’s function, which is useful in many
applications ranging from ncRNA detection (21–23) to the design
of oligonucleotides for knockdown of message (24, 25). Being able
to rapidly determine the structure is useful given the overwhelming
increase in genomic data (about 1021 base-pairs per year) (26) and
given the small percentage of sequences that have experimentally
determined structure. Experimental assays can provide information
that can improve the accuracy of RNA secondary structure prediction
(27), and these assays can now be used transcriptome-wide and in vivo
(28–30). Recent studies focused on improved accuracy of prediction
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Fig. 1. RNA secondary structure and high-level idea of our work. Top left: secondary
structure of E. coli tRNAGly; Top right: the corresponding circle plot; Central: the cor-
responding dot-bracket format. Bottom: schematic view of our work. In a nutshell, our
algorithm scans the sequence left-to-right, and tags each nucleotide as “.” (unpaired),
“(” (to be paired with a future nucleotide) or “)” (paired with a previous nucleotide).
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Fast and accurate prediction of RNA secondary struc-
tures (the set of canonical base pairs) is an important
problem, because RNA structures reveal crucial infor-
mation about their functions. Existing approaches can
reach a reasonable accuracy for relatively short RNAs but
their running time scales almost cubically with sequence
length, which is too slow for longer RNAs. We develop
the first linear-time algorithm for RNA secondary struc-
ture prediction. Surprisingly, our algorithm not only runs
much faster, but also leads to higher overall accuracy on
a diverse set of RNA sequences with known structures,
where the improvement is significant for long RNA fami-
lies such as 16S and 23S Ribosomal RNAs. More interest-
ingly, it also more accurate for long-range base pairs.
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(31–35) , but there is not enough attention on the speed of prediction.
While there are two major approaches to modeling RNA secondary

structures, namely the classical thermodynamic methods (36, 37) and
the more recent machine learning-based methods (38, 39) , all these
efforts use virtually the same dynamic programming (DP) algorithm
(40, 41) to find the best-scoring structure. However, this algorithm,
borrowed from computational linguistics (42, 43), has a running time
of O(n3) that scales cubically with the sequence length n. This is
slow for long RNAs (n>1, 000), and in practice, many researchers
resort to running this algorithm on short regions within the whole
sequence, which inevitably ignores base pairs across segments (44).
Computational and experimental studies demonstrate that base pairing
between the ends of natural RNA sequences is expected.

In this paper, we design the first linear-time RNA secondary struc-
ture prediction algorithm, LinearFold, inspired by our previous work
on linear-time natural language parsing (45). While the classical
O(n3) dynamic programming is bottom-up, solving the best substruc-
ture for each span, our algorithm is left-to-right, incrementally tagging
each nucleotide in the dot-bracket format (unpaired “.”, opening “(”,
or closing “)”). While this naive version runs in exponential time
O(3n), we use an efficient merging approach borrowed from compu-
tational linguistics (46) that reduces the running time back to O(n3).
On top of this left-to-right algorithm, we further apply beam search, a
popular heuristic to prune the search space (45), which keeps only the
top b highest-scoring states at each nucleotide, resulting in an O(n)
time approximate search algorithm. Even though our search is not
exact, empirically, with a reasonable beam size (such as b = 100) it is
close to exact search, and actually leads to better prediction accuracies
than exact search.

Our algorithm can be used with both thermodynamic and machine
learned models. In particular, we implemented two versions of Lin-
earFold, LinearFold-V using the thermodynamic free energy model
from Vienna RNAfold (37), and LinearFold-C using the machine
learned model from CONTRAfold (38) (see Fig. 1 (bottom)). We
evaluate our systems on a diverse dataset of RNA sequences with
well-established structures, and show that while being substantially
more efficient, LinearFold leads to higher average accuracies over
all families, and somewhat surprisingly, LinearFold is significantly
more accurate than the exact search methods on the longest families
16S and 23S Ribosomal RNAs. More interestingly, LinearFold is
also more accurate on long-range base pairs that are more than 500
nucleotides apart, which is well known to be a challenging problem
for the current models (47).

Results

Efficiency and Scalability of LinearFold. To demonstrate the ef-
ficiency and scalability of LinearFold, we compare its running time
with the conventional cubic-time prediction algorithms used in the
baseline systems, CONTRAfold and Vienna RNAfold. Figure 2
shows the results on two datasets: (a) the ArchiveII dataset (48), a
diverse set of RNA sequences with known structures (see details in
the Methods section and Table SI 1), and (b) a (sampled) subset of
RNAcentral (49), a comprehensive (meta-)set of ncRNA sequences
from many databases. While the ArchiveII set contains sequences of
length 3,000 or less, the RNAcentral set has many much longer se-
quences, with the longest being 244,296 nt (Homo Sapiens Transcript
NONHSAT168677.1, from the NONCODE database (50)). We use a
machine with 3.40GHz Intel Xeon CPUs and 32G memory, running
Linux; all programs are written in C/C++ compiled by GCC 4.9.0.

Figure 2 A confirms that LinearFold’s running time scales linearly
with the sequence length, while the two baseline systems scale super-
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Fig. 2. A: runtime comparisons on ArchiveII dataset: LinearFold-C (with beam sizes
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dataset (log-log). C: memory usage comparisons (RNAcentral set, log-log).
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mean CONTRAfold LinearFold-C ViennaRNA LinearFold-V
MFE b=100 RNAfold b=100

PPV 54.80 56.86 (+2.1) 50.70 50.92 (+0.2)
Sensitivity 55.69 57.13 (+1.4) 59.32 59.52 (+0.2)

Fig. 3. PPV and Sensitivity (by family) on the ArchiveII dataset, comparing LinearFold
with the corresponding baselines, CONTRAfold MFE and Vienna RNAfold. Each
column represents a family accuracy, averaged over all sequences in that family. The
overall accuracies are reported in the table, averaging over all families. Statistical
significance is marked as *(0.01≤p<0.05), and **(p<0.01). See Table SI 1 for
detailed accuracy numbers. See the Methods section for details of the PPV/Sensitivity
metrics and the significance testing method.
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Fig. 4. Impact of beam size. A-D illustrate the trends of different variables when beam size increases. A: the internal cost, namely averaged free energy / model cost of two
versions of LinearFold; B: the number of pairs predicted (averaged by sequence) of these methods, comparing with Ground Truth; C: change of both PPV and Senstivity
with the increasing of beam size; D: PPV-Sensitivity tradeoff when varying beam size; E-F: PPV and Sensitivity against pair distance in the ArchiveII dataset, comparing
LinearFold-C with CONTRAfold MFE. Each point represents the overall PPV/Sensitivity of all base pairs in a certain length range.

linearly, with an empirical runtime of O(n2.6) determined by curve
fitting. Figure 2 B reconfirms this fact on much longer sequences (in
log-scale), and for a sequence of ∼10,000 nt (e.g., the HIV genome),
LinearFold (with the default beam size of b=100) takes only 7 seconds
while the baselines take 4 minutes. For sequences of length 32,753,
our LinearFold takes only 23 seconds while CONTRAfold takes 2
hours and RNAfold 1.7 hours. This clearly shows the advantage of
our linear-time prediction algorithm on very long ncRNAs.

In addition, LinearFold also has an advantage on memory usage
that leads to better scalability on extremely long sequences. The
baseline cubic-time algorithms require memory space that scales
quadratically with sequence length, because intuitively they need
to figure out the best scoring or minimum free energy structure for
every substring [i, j] of the entire sequence. This means you need 4x
memory if your sequence length doubles. In addition, due to a design
deficiency, neither CONTRAfold MFE or Vienna RNAfold runs on
any sequence longer than 32,767 nt. On the other hand, LinearFold
not only takes linear time, but also uses linear memory, without
the need for the two-dimensional table of size O(n2). As a result,
LinearFold is able to process the longest sequence in RNAcentral
(244,296 nt), taking less than 3 minutes. In fact, LinearFold even
scales to sequences of 10,000,000 nt on our 32GB-memory machine.

Accuracy of LinearFold. We next compare the prediction accura-
cies of LinearFold and the two baseline systems, reporting both Posi-
tive Predictive Value (PPV; the fraction of predicted pairs in the known
structure) and Sensitivity (the fraction of known pairs predicted) on
each RNA family in ArchiveII dataset. We also tested statistical signif-

icance using a paired, two-tailed t-test, following previous work (51).
Figure 3 shows that LinearFold-C improves PPV and Sensitivity over
CONTRAfold by +2.1%/+1.4% (absolute)when averaged across all
families. This is surprising because LinearFold produces more accu-
rate structures using a fraction of runtime. Individually, LinearFold-C
is significantly more accurate in both PPV/Sensitivity on three fam-
ilies: Group I Intron, 16S and 23S ribosomal RNAs, with the last
two being the longest families in this dataset. 16S rRNAs have an
average length of 1548 nt and +3.89%/+3.08% absolute improvement
in PPV/Sensitivity, and 23S rRNAs have an average length of 2927 nt
and +14.00%/+9.98% absolute improvement. Even more surprising,
LinearFold’s improvement in accuracy is more pronounced on longer
sequences. Accuracies are also improved by LinearFold-V over Vi-
enna RNAfold, but the difference is smaller (overall +0.2%/+0.2%
absolute improvement in PPV/Sensitivity). Individually, the improve-
ment is significant on both PPV/Sensitivity on two families, Group I
Intron and 16S rRNA.

Impact of Beam Size. Above we used b=100 as the default beam
size. Now we investigate the impact of different beam sizes. We
first study the impact of search quality. Since our LinearFold algo-
rithm uses approximate search instead of exact search, we use the
difference between exact search free energy and our returned free
energy as the measure of search quality – the closer they are, the
better our search quality. We can see from Figure 4 A that the search
quality is getting closer when the beam size increases, and Linear-
Fold achieves similar model cost / free energy using the default beam
size. Similarly, Figure 4 B plots the number of pairs predicted, at
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Group I Intron C. Mirabilis (526nt, 143 pairs) 16S rRNA A. Pyrophilus (1564nt, 468 pairs) 23S rRNA E. coli (2904nt, 830 pairs)
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Fig. 5. Circular plots of 3 RNA sequences (selected from 3 different RNA families ) comparing CONTRAfold MFE with LinearFold-C. A blue arc represents a correctly predicted
pair, a red arc represents an incorrectly predicted pair, while a light gray arc represents a based pair miss predicted. Each plot uses the clockwise order of the RNA sequence
from the top. These 3 examples are picked from 3 different RNA families that the performance of LinearFold-C is improved significantly comparing to CONTRAfold MFE.

each beam size. It shows that ViennaRNA model tends to overpre-
dict, while the CONTRAfold model underpredicts. Also, although
our algorithm always underpredicts compared to exact predictions
in either model, we predict almost the same number of base pairs as
each model when using the default beam size. The mean difference is
0.29(CONTRAfold)/0.01(ViennaRNA) pairs when b = 100.

Figure 4 C plots PPV and Sensitivity as a function of beam size b.
LinearFold-C outperforms CONTRAfold MFE in both PPV and Sen-
sitivity with b ≥ 75 (though it will converge to CONTRAfold MFE
when b→ +∞), and LinearFold-C’s PPV/Sensitivity are stable with
b ∈ [100, 150]. Figure 4 D shows the tradeoff of PPV and Sensitivity
of LinearFold, with the change of the beam size. It starts with the
increasing of both PPV and Sensitivity, reaches the peak at b=120,
and falls until converging to exact search. Although the peak happens
when beam size is 120, we can see that the performance LinearFold is
consistent when its beam size is in [100,150], as both PPV/Sensitivity
stays almost the same.

Accuracy Improvements on Long-Range Base Pairs. We fur-
ther evaluated the effect of the distance between base paired-
nucleotides on prediction performance. As shown in Figure 4 E and
F, when predicting long-distance pairs, LinearFold can outperform
previous approaches in both PPV and Sensitivity. Contrary to the con-
cern that LinearFold would not predict as accurately for long-distance
pairs, it continues to outperform previous methods even at pairing
distances over 500 nt. Detailed comparisons between LinearFold-V

and Vienna RNAfold in PPV, Sensitivity, and prediction quality, are
in the Supporting Information.

Example Predictions: Group I Intron, 16S and 23S rRNAs. We
visualized the predicted secondary structure of 3 examples from dif-
ferent RNA families, Group I Intron C. Mirabilis, 16S rRNA A. Py-
rophilus, 23S rRNA E. coli, comparing LinearFold-C with CON-
TRAfold MFE (Figure 5). The circular plots show our performance
improvement, by both predicting more base pairs correctly, and re-
ducing incorrect predictions. This visualization also demonstrates
LinearFold’s improved prediction of long-distance base pairs than the
baseline, as shown in Group I Mirabilis (bottom half, pair distance
250), 16S A. Pyrophilus (left part, 550), 23S E. coli (left part, 600).
Fig. SI 3 shows the corresponding results comparing LinearFold-V
with Vienna RNAfold. We also built a web demo visualizing results
from all sequences in these three families.*

Discussion

RNA structure prediction is important for inferring RNA function and
has many applications including drug design. The existing algorithms
for RNA secondary structure prediction run in time that scales cubi-
cally with the sequence length, which is too slow for long non-coding
RNAs; e.g., the baseline systems in this work, CONTRAfold and Vi-
enna RNAfold, which are two of the most popular prediction software,

*http://web.engr.oregonstate.edu/~liukaib/demo_json+svg.html
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take 2 hours and 1.7 hours, respectively, for a sequence of 32,753 nt.
Furthermore, the existing algorithms also need memory space that
scales quadratically with the sequence length, and as a result, both
baseline systems fail to run on sequences beyond 32,767 nt. In reality,
the longest RNA sequence in the RNAcentral dataset is 244,296 nt,
which is 7× of that limit.

We design the first linear-time, linear-memory prediction algo-
rithm, LinearFold, using dynamic programming plus beam search,
and apply this algorithm to both machine-learned and thermodynamic
models. The linearity in both time and memory is confirmed in Fig. 2.
What is more interesting is the following three surprising findings:

1. Even though LinearFold uses only a fraction of runtime and
memory compared to the existing algorithms in the baseline
systems, our predicted structures are overall more accurate in
both PPV and Sensitivity and on both machine-learned and ther-
modynamic models (see Fig. 3).

2. The accuracy improvement of LinearFold is more pronunced on
longer families such as 16S and 23S rRNAs (see Figs. 3 and 5).

3. Even more surprisingly, LinearFold is also more accurate than
the baselines on long-range base pairs that are more than 500
nt apart (Fig. 4 E–F), which is well known to be a challenging
problem for the current models (47).

4. Although the model depends on the beam size b, the number
of base pairs and the accuracy of prediction are very robust to
changes in beam size (when b is in the range of 100–200).

Why our beam search algorithm, even though being approximate,
outperforms the exact search baselines in terms of accuracy (esp. in
16S and 23S rRNAs)? First, current thermodynamic and machine
learned models are far from perfect, so it is totally possible that a
suboptimal structure (in terms of free energy or model score) is more
accurate (in terms of PPV/Sensitivity) than the optimal structure.
For example, for sequences of about 400 nucleotides, a structure
about 80% correct can be found with a free energy within 5% of the
optimal structure (52). But how does our algorithm systematically
pick a more accurate suboptimal structure without seeing the ground
truth? We suspect that it is because beam search prunes lower-scoring
(sub)structures at each step, requiring the surviving (sub)structures to
be highly scored at each prefix. This extra constraint might compen-
sate for the inaccuracy of the model.

Our algorithm has several potential extensions. First of all, it might
be possible to extend LinearFold to calculate the partition function
and base pair probabilities, since the classical method for that task,
the McCaskill algorithm (53), is similar to the cubic-time structure
prediction algorithms which are used as baselines in this paper. Sec-
ondly, this linear-time algorithm to calculate base pair probabilities
should facilitate the linear-time identification of pseudoknots, by re-
placing the cubic-time McCaskill algorithm with a linear-time one
in those pseudoknot-prediction programs (54, 55). Thirdly, being
linear-time, LinearFold also facilitate easier and faster training of
parameters than the cubic-time CONTRAfold using structured pre-
diction methods (56), and we envision a retrained model tailored to
linear-time prediction should be even more accurate.

Methods
Our LinearFold approach is presented in four steps, starting from the most naive but
easy-to-understand exhaustive search version (Fig. 6 A), and gradually build it up to the
linear-time version (Fig. 6 D), using a graph-structured stack and beam search.

The basic idea of linear-time prediction is to predict incrementally from left to right,
labeling each nucleotide as unpaired “.”, opening “(”, or closing “)”. We require this
dot-bracket string to be well-balanced as we only consider pseudoknot-free structures.
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Fig. 6. Four-step demonstration of LinearFold, simply finding the max number of pairs
instead of the actual MFE model. Each node represents a predicted prefix of the
structure, with a stack showing the unpaired openings; each arrow corresponds to an
action (push, skip, and pop); dead-end states are with a red×. In C, nodes with the
same color are merged by the Graph-Structured Stack. Nodes with borders represent
the ground truth path.

Given an input RNA sequence x = x0x1 . . . xn−1 where xi ∈ {A, C, G, U},
our algorithm aims to find the best structure y = y0y1 . . . yn−1 where yi ∈
{“.”, “(”, “)”} with minimum free energy (or minimum model cost):

f(x) = argmin
y∈Y(x)

c(x,y; w). [1]

Here Y(x) is the set of all possible structures, i.e., {y | y has balanced parentheses}, c
is the cost function (i.e., free energy function), and w is the model (and parameters).

Naive exhaustive incremental prediction: O(3n) time. By exhaustively predicting
y from left-to-right, we traverse all the possible structures in Y(x), and pick the one
with the minimum free energy or model cost. We formalize each state at step j (j ∈
{0, . . . , n}) to be a triple, s = 〈σ|i, j〉 : y, where σ|i is a stack consisting of
unmatched openings so far where i is the top of the stack, meaning xi is the last
unmatched opening nucleotide. y is the corresponding dot-bracket (sub)sequence up
to xj−1. For each state, it can transition to a subsequent state, taking one of the three
actions: push, which labels the current nucleotide xj as a left bracket “(”, putting it on
top of the stack, skip, which labels xj as a dot “.”, leaving the stack unchanged, and pop,
which labels xj as a right bracket “)”, if it matches xi and popping i from the stack. See
Fig. SI 4 (a) for the deductive system. This algorithm takesO(3n) time to exhaustively
traverse all possible structures (see Figure 6 A).

Dynamic Programming via Full Stack Merging: O(2
n
2 ) time. Now we apply dy-

namic programming on top of this exhaustive method to exploit shared computations.
Consider a simple case that two states can be merged: if there are two states in the same
step j, 〈σ, j〉 : y and 〈σ, j〉 : y′, sharing the exact same stack σ but with different
dot-bracket strings y and y′, we say that these two states are “equivalent” and we can
merge them (and only keep the better scoring between y and y′). Fig. 6 B illustrates this
merging. Although we merge to reduce the number of states, it is still exponential time,
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since there could be exponentially many different stacks in each step. This algorithm
takesO(2

n
2 ) time.

Dynamic Programming via Graph Structured Stacks: O(n3) time. To avoid con-
sidering exponentially many states, we further merge states with different stacks. Consider
two states in the same step j, 〈σ0|i, j〉 and 〈σ1|i, j〉, which share the last unpaired
opening i (i.e., stack top). We call these states “temporarily equivalent”, since they can be
treated as exactly the same until the unpaired opening xi is closed (and thus popped from
the stack). In other words we can represent both stacks σ0|i and σ1|i as ...i where ...
denotes part of the history that we do not care at this moment. This factorization of stacks
is called “Graph-Structured Stacks” (GSS) by Tomita (46). After merging, we define the
new state to be 〈i, j〉 and therefore we maintain O(n2) states. For each state 〈i, j〉, the
pop action can take worst-case O(n) time because 〈i, j〉 can combine with every 〈k, i〉
from step i. Thus the overall time complexity isO(n3). See Fig. 6 C for an example of
the merging process and Fig. SI 4 (b) for the deductive system.

Dynamic Programming via Beam Search: O(n) time. In practice, the exact search
algorithm still runs in O(n3) time. But this left-to-right O(n3) search is easily “lin-
earizable” unlike the traditional bottom-upO(n3) search used by all existing systems
for RNA structure prediction. We further employ beam search pruning (56) to reduce
the complexity to linear time. Generally, we only keep the b top-scoring states 〈i, j〉 for
each step. This way all the lower-scoring states are pruned, and if a structure survives to
the end, it must have been one of the top b states in every step. This pruning also means
that in a pop action, a state (i, j) can combine with at most b states (k, i) from step i.
Thus the overall time complexity is O(nb2). However, instead of generating b2 new
states from a pop action, we use cube pruning (57) to generate the best b states, which
would takeO(b log b) time. Thus the overall running time over a length-n sequence is
O(nb log b), see See Figure 6 D for beam search.

Dataset, Evaluation Metrics and Significance Testing. We choose the ArchiveII
dataset (48), a diverse set of over 3,000 RNA sequences with known secondary structures.
But since the current CONTRAfold machine-learned model (v2.02) is trained on the
S-Processed dataset (58) we removed those sequences appeared in the S-Processed dataset.
The resulting dataset we used contains 2,889 sequences over 9 families, with an average
length of 222.2 nt. Due to the uncertainty of base-pair matches existing in comparative
analysis, we consider a base pair to be correctly predicted if it is also slipped by one
nucleotide on a strand, accordingly((48)). Generally, if a pair (i, j) is in the predicted
structure, we claim it’s correct if one of (i, j), (i − 1, j), (i + 1, j), (i, j − 1),
(i, j + 1) is in the ground truth structure. We report both Sensitivity and PPV where

Sensitivity =
true positives

true positives + false negatives
, PPV =

true positives
true positives + false positives

We use the paired two-tailed t-test to calculate the statistical significance, with the type I
error rate, consistent with the previous methods (51).
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# of sequences avg. CONTRAfold MFE LinearFold-C b=100 Vienna RNAfold LinearFold-V b=100
Family total used length PPV Sensitivity ∆PPV ∆Sensitivity PPV Sensitivity ∆PPV ∆Sensitivity
tRNA 557 74 77.3 69.32 70.84 +0.00 +0.00 63.80 73.25 -0.13 +0.00

5S rRNA 1,283 1,125 118.8 76.48 76.62 +0.13 +0.01 60.12 66.62 +0.01 +0.04
SRP 928 886 186.1 64.24 63.88 -0.03 -0.03 60.93 66.66 (*)+0.38 (*)+0.29

RNaseP 454 182 344.1 49.34 48.10 -0.15 -0.17 47.78 55.79 +0.03 -0.19
tmRNA 462 462 366.0 46.50 39.70 (*)-0.62 (*)-0.76 42.09 47.58 (*)-0.96 (*)-1.00

Group I Intron 98 96 424.9 52.50 50.78 (**)+1.30 (*)+0.94 47.02 57.96 (*)+0.80 (*)+0.94
telomerase RNA 37 37 444.6 46.12 59.96 -0.07 -0.05 41.87 58.77 -0.01 -0.14

16S rRNA 22 22 1,547.9 40.46 41.48 (*)+3.89 (*)+3.08 37.63 44.60 (*)+1.46 (*)+1.56
23S rRNA 5 5 2,927.4 48.29 49.85 (**)+14.00 (**)+9.98 55.09 62.67 +0.40 +0.25

Overall 3,846 2,889 222.2 54.80 55.69 +2.06 +1.44 50.70 59.32 +0.22 +0.20

Table SI 1. Detailed information of the ArchiveII dataset and the prediction accuracies of CONTRAfold MFE, LinearFold-C, Vienna RNAfold and
LinearFold-V. Statistical significance are marked by *(0.01 ≤ p < 0.05) and **(p < 0.01).
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Group I Intron C. Mirabilis (526nt, 143 pairs) 16S rRNA A. Pyrophilus (1564nt, 468 pairs) 23S rRNA E. coli (2904nt, 830 pairs)
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Fig. SI 3. Circular plots of 3 RNA sequences (corresponding to Figure 5) comparing Vienna RNAfold with LinearFold-V.

input x0 . . . xn−1

state 〈σ, j〉 : y

axiom 〈σε, 0〉 : ε

goal 〈σε, n〉 : y

push
〈σ, j〉 : y

〈σ |j, j+1〉 : y◦‘(’

skip
〈σ, j〉 : y

〈σ, j+1〉 : y◦‘.’

pop
〈σ | i, j〉 : y

〈σ, j+1〉 : y◦‘)’
if (xi, xj) match

x0 . . . xn−1

〈i, j〉 : y

〈−1, 0〉 : ε

〈−1, n〉 : y

〈i, j〉 : y

〈j, j+1〉 : y◦‘(’

〈i, j〉 : y

〈i, j+1〉 : y◦‘.’

〈k, i〉 : y′ 〈i, j〉 : y

〈k, j+1〉 : y′◦y◦‘)’
if (xi, xj) match

(a) exhaustive, O(3n) (b) DP with GSS, O(n3)

Fig. SI 4. Deductive system comparing the exhaustive search algorithm and Dynamic Programming with Graph Structured Stack. Here ◦ denotes string concatenation. We say
(a, b) “matches” if (a, b) is one of the allowed pairs (C-G, A-U, G-U).
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