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Abstract: Many scientific fields currently face the daunting task of studying the dynamics of 

complex networks.  For example, while we know that the rich mental phenomena of humans and 

other animals are mediated by complex systems of neural circuits in the brain, the mechanistic 

links between these biological networks and the functions that they mediate are poorly 

understood.  Here we present a novel class of methods, termed multivariate directed connectivity 

analysis, to investigate network dynamics via patterns of directed interactions between network 

nodes.  We validate these methods using simulated data and apply them to three real-world 

datasets, two neuroscientific and one investigating the 2016 US presidential candidates’ 

influence on the social media service Twitter.  We find that these methods enable novel 

understanding of how information processing is distributed across networks.  The methods are 

generally applicable to the study of dynamic information networks in biological, computational, 

and other fields of research. 
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Introduction 

Myriad phenomena currently at the forefront of scientific investigation emerge from 

interactions in complex networks.  Examples of such networks can be found in molecular 

signaling and metabolic pathways in cells (Guimera and Amaral, 2005), the nervous systems of 

organisms as simple as the nematode C. elegans or as complex as humans and other mammals 

(Sporns, 2014; Towlson et al., 2013), social networks on the Internet (Ahn et al., 2007; Borge-

Holthoefer et al., 2015), ecological systems (Montoya et al., 2006; Sugihara et al., 2012), and 

planetary climate (Mosedale et al., 2006).  In particular, the hundreds of trillions of connections 

among tens of billions of neurons in the human neocortex constitute what may be the most 

complex network in the known universe (Bassett and Gazzaniga, 2011; Pakkenberg et al., 2003).  

While neuroscientists are confident that mental phenomena are realized via interactions among 

such neural connections, empirical investigation of mechanistic links between these interactions 

and the mind has proven difficult. 

Over the last 25 years, new research tools such as functional magnetic resonance imaging 

(fMRI) (Haxby et al., 2014), multi-electrode recording arrays (Mante et al., 2013), and two-

photon imaging (Peron et al., 2015) have allowed brain activity to be measured at unprecedented 

levels of detail and complexity.  These tools have helped to revolutionize our conception of 

information processing in the brain:  While neurons represent a low level unit of information 

processing, higher level representations and processes may emerge fundamentally at multiple 

levels and timescales of interaction between hierarchical networks of these units.  Population 

coding (Mante et al., 2013), distributed representational spaces (Haxby et al., 2014), and cortex-

wide functional networks (Schlegel et al., 2016; Turk-Browne, 2013) are examples of this 

interaction-based conception of information. 
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Recent promising work has combined these new measurement tools with graph 

theoretical measures to describe neural interactions at a ―connectome‖-wide level of analysis.  

But this bird’s eye view of the brain leaves our understanding of the functional roles of specific 

network connections murky at best (Bullmore and Sporns, 2009; Hagmann et al., 2008; Zuo et 

al., 2012).  Measures have also been developed to analyze multivariate information carried by 

brain-wide functional connectivity patterns (Richiardi et al., 2011; Shirer et al., 2012), but these 

methods do not resolve the information processing roles of specific network nodes, nor the 

direction of their influence.  A full understanding of any information processing network requires 

a description of the mechanistic roles played by specific, directed network interactions. 

Several analytical measures have been developed to investigate directed influence 

between the nodes of information networks.  Some measures, such as Granger-causality (Barnett 

and Seth, 2014) and transfer entropy (Lizier et al., 2011), define influence via the statistical 

ability of the past of one signal to predict the future of another signal.  Other measures such as 

dynamic causal modeling (Friston, 2011) and convergent cross mapping (Sugihara et al., 2012) 

attempt to move beyond statistical prediction by uncovering the underlying causal structures in a 

network.  However, each of these measures exhibits two properties that limit its usefulness in 

understanding the functions of specific interactions in a complex network: 

First, existing applications of these directed connectivity (DC) measures are concerned 

primarily with determining whether one node exerts influence over another.  This is an important 

question to ask of networks that exhibit relatively sparse, well-organized connection profiles.  

However, an emerging view of the brain as a densely connected, highly distributed network 

makes this approach less relevant, since the nodes in such a network will likely exert a complex 

pattern of control over many if not all other nodes.  More relevant to understanding the behavior 
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of complex networks such as these would be to study the specific information processing 

contributions of network node pairs. 

Second, much like the univariate analyses that dominated the early fMRI literature, 

existing DC measures can detect coarse changes in the univariate level of influence between 

nodes but are insensitive to subtle, complex patterns of connectivity that may differ between the 

states of highly dynamic networks (Haxby et al., 2001).  Even nominally ―multivariate‖ DC 

measures such as multivariate Granger-causality (MVGC) (Barnett and Seth, 2014) and 

multivariate transfer entropy (MVTE) (Lizier et al., 2011) still yield only a single scalar quantity 

to characterize the directed influence between two (multivariate) spaces.  Important questions 

can be asked using these existing methods; for example, whether cortico-cerebellar connectivity 

is modulated by the difficulty of a visuomotor task (Lizier et al., 2011).  However, such methods 

would in general be unable to resolve information-based questions; for example, if multivariate 

patterns of cortico-cerebellar connectivity can be used to decode whether a patient is typing or 

playing the piano.  Answering the latter kind of question may prove more important for the 

development of technologies such as brain-computer interfaces (Nicolelis, 2001). 

 To address the need for information-based approaches to network interactions, here we 

develop and validate a new class of methods, termed multivariate directed connectivity analysis 

(MDCA), that extend existing DC measures by allowing informational differences to be decoded 

in specific directed network interactions.  Figure 1 presents a schematic overview of MDCA.  

First, two multidimensional spaces (or ―nodes‖) within a network—labeled the source and the 

destination—are defined, the goal being to evaluate information processing carried out via 

directed connectivity from the source to the destination.  Examples of such spaces are regions of 

interest (ROIs) in fMRI data, electrode groups in electroencephalogram (EEG) or 
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electrocorticogram (ECoG) data, or groups of users in a social media network.  Because these 

two spaces are multidimensional, the interactions between them have a multivariate structure.  

Thus, we may use any existing DC measure (e.g. Granger-causality or transfer entropy) to 

compute the directed influence from every component of the source space to every component of 

the destination space.  This process yields a pattern (or ―graph‖) of connectivity between the 

source and destination, and multiple instances of these patterns can be computed and labeled 

(e.g. one for each condition and run of an fMRI experiment).  This treatment of source-

destination interactions as multivariate then creates the potential for a large set of multivariate 

methods to be applied in order to probe the information associated with those interactions.  For 

example, multivariate classification between experimental conditions can be performed using 

source-destination connectivity as the input pattern (Norman et al., 2006), or representational 

similarity analysis can evaluate the relationship between source-destination connection profiles 

over a range of behaviors (Kriegeskorte et al., 2008).  A key advance of this approach is that it 

enables the measurement of differences in the pattern of directed connectivity between two 

spaces, even when the overall direction and magnitude of connectivity remain fixed.  As an 

analogy, one might consider telecommunications cables that transmit roughly the same amount 

of data at any instant, while the informational content of those data transmissions changes 

considerably from moment to moment. 
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Below, we first simulate data for a standard fMRI experiment to validate MDCA as a 

method that can resolve differences between experimental conditions to which several other 

standard analytical methods are insensitive.  We then apply MDCA to three real-world 

datasets—one from an fMRI study of the manipulation of visual imagery, one from an EEG 

study of action preparation, and a final dataset measuring the influence of the 2016 Republican 

U.S. presidential candidates on the social media service Twitter.  The results of these three 

analyses demonstrate the wide ranging potential for application of MDCA.  Our fMRI analysis 

provides evidence that highly distributed processing mediates the manipulation of visual 

imagery, arguing against standard, anatomically modular models of working memory (Baddeley, 

2003; Postle, 2006).  Our EEG analysis suggests that distributed patterns of processing between 

posterior and anterior cortical regions contain rich information about the preparation and 

execution of actions and may therefore be useful in the development of brain-computer 

interfaces (Nicolelis, 2001).   Finally, our Twitter dataset demonstrates that MDCA’s potential 

applications extend beyond the brain into a range of other complex networks such as social 

interactions on the Internet. 

 

Materials & Methods 

Simulated fMRI Dataset: 

Data generation.  Here we simulated an experiment in which 15 subjects each completed 

10 runs of a block-design fMRI experiment.  In each run, 10 TR blocks of two experimental 

conditions were presented in counterbalanced order, interleaved with 5 TR rest periods, with five 

repetitions of each condition during the run. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263665doi: bioRxiv preprint 

https://doi.org/10.1101/263665
http://creativecommons.org/licenses/by-nd/4.0/


  Multivariate directed connectivity analysis 

8 of  50 

 

The simulated data for this experiment consisted of fMRI time courses collected with 2-

second TR measured from two 100-voxel regions of interest (ROIs). Crucially, these data 

simulate a situation in which information processing in two brain regions differs between the two 

experimental conditions, but in a way that existing methods would not detect.  Specifically, mean 

activity and multivariate activity patterns in each region and even mean directed connectivity 

between the two ROIs do not differ significantly between the two conditions.  Thus, existing 

univariate, multivariate, and directed connectivity measures would find no differences in the 

ROIs between conditions.  However, patterns of directed connectivity between the two regions 

do differ systematically between the two conditions.  This type of behavior could be expected in 

networks that continuously mediate an array of complex processes differing only in the kind of 

information processing rather than the amount of information processing that occurs within and 

between nodes.  Our question here is:  Can MDCA resolve these pattern-level differences and 

thus find evidence that the two ROIs interact to process the two conditions differently?  

Data were first generated in a hypothetical functional space before being mixed linearly 

into the voxel space that would be measured by an fMRI scanner.  Each functional space time 

course was generated according to the following equations: 

gtsi )(  (1) 

 

    gttstctd i

j

jjii  )(1)1()()( ,   (2) 

 

1)()( , 
j

jii tct  (3) 

where s(t) and d(t) are the values of the multidimensional source and destination signals at 

integer sampling time t (in TRs), si(t) is the ith component of s(t), g is a Gaussian noise process, 

di(t) is the ith component of d(t), ci,j(t) is the i,jth component of the DC matrix C(t) which defines 
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the pattern of directed influence by the source over the destination at time t, and γi(t)—the sum of 

the ith row of C(t)—controls the relative influence of the source signals and the Gaussian process 

to the variance in the ith destination signal (i.e. higher values of γ lead to a greater causal 

coupling strength between the source and destination).  Note that the value of ci,j(t) determines 

the influence of the jth source signal at time (t - 1) on the ith destination signal at time t. 

In this simulation, C(t) alternates between three values according to the block design in 

Figure 2A:  CA (active during blocks of condition A), CB (active during blocks of condition B) 

and Crest (active during rest periods).  Each DC matrix is sparse so that only a subset of source 

processes exerts influence over only a subset of destination processes, while the remaining 

processes are not causally linked.  Here 10 of the 100 source processes are potentially linked to 

10 of the 100 destination processes (i.e. ci,j(t) = 0 for i > 10 or j > 10), with the additional 

constraint that ¾ of the remaining values are 0.  This constraint was used in order to simulate a 

situation in which each causally linked source process was linked to some, but not all, of the 

causally linked destination processes.  As a final constraint, the non-zero values of each DC 

matrix are generated randomly while holding γi(t) constant for all values of i and t.  Because of 

this constraint on the DC matrices, the source space exerts a constant magnitude of influence 

over the destination space throughout the experiment, while only the pattern of this influence 

depends on the condition.  Note that the only aspect of the data that differs between conditions is 

the DC matrix CK that is active during each of those conditions. 

The signal-to-noise ratio (SNR) of the data was controlled via the ratio of the total power 

of the causally-linked signals to that of the non-linked signals.  The magnitudes of the non-zero 

values of C(t) were scaled to give a causal coupling strength of 0.5, with coupling strength 

defined as the ratio of the variance in the destination signals contributed by the source processes 
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to the variance contributed by the Gaussian processes.  In other words, the random Gaussian 

processes had twice as much influence over the causally linked destination signals as did the 

source processes.  We additionally scaled the magnitudes of the signals in order to achieve a 

signal-to-noise ratio (SNR) of 0.3, with SNR defined as the ratio of the total variance of the 10 

causally linked signals to the total variance of the 90 unlinked signals. 

Finally, the functional space signals generated as described above were mixed linearly, 

using randomly generated matrices of mixing weights, into voxel-based source and destination 

ROIs that represent the data that would actually be measured in an fMRI experiment. 

 Data analysis.  For each simulated subject, data for each ROI were first concatenated 

across runs and then analyzed in one of five different ways, as follows: 

Univariate ROI analysis.  For each subject and condition, the mean signal amplitude 

across voxels and runs was computed, and the difference in these mean amplitudes between 

conditions was evaluated using a paired t-test across subjects. 

Multivariate ROI classification.  For each subject, run, condition, and ROI, a voxel-based 

pattern was constructed by computing the mean signal amplitude of each voxel during that 

condition.  For each subject and ROI, we then performed a standard multivariate classification 

analysis using leave-one-run-out cross-validation in which we tested whether a machine 

classifier (here a linear support vector machine with C = 1) could be trained to distinguish 

between conditions A and B based on the voxel-based patterns constructed for each run, 

condition, and ROI.  A group-level one-tailed t-test then compared the subject-wise classification 

accuracies to chance, which was 50%. 
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Univariate directed connectivity analysis.  Data were analyzed as in the multivariate 

directed connectivity classification (described below), except that instead of computing GC-

graphs, either the multivariate Granger-causality (MVGC) (Barnett and Seth, 2014) with lag = 1 

TR or multivariate transfer entropy (MVTE) (Lizier et al., 2011) using a Kraskov estimator with 

K = 4 and lag = 1 TR was calculated from the source ROI to the destination ROI for each subject 

and condition.  These scalar values were then compared between conditions using a paired t-test 

across subjects. 

Multivariate directed connectivity classification (see Figure 2B).  For each subject, 

concatenated data were transformed using principal components analysis, and all but the top 10 

components from each ROI were discarded.  We performed this transformation for two reasons:  

First, it attempts to ―unmix‖ the measured voxel-based signals in order to recover a space similar 

to the original functional space in which each component represents a statistically separable 

process.  Second, it allows us to control the dimensionality of our source and destination spaces 

and thus the size of the estimated DC patterns we will construct. 

For each run and condition, a new signal was then constructed for each ROI by extracting 

and concatenating data from that run and condition only.  A 1 TR time lagged version of this 

signal was also constructed, and these signals were used to compute a graph of Granger-causality 

(GC-graph) from each source signal to each destination signal.  Granger-causality is a method 

for measuring directed functional connectivity between signals that has been shown to be a valid 

and powerful tool for analyzing a range of data modalities, including fMRI (Barnett and Seth, 

2014; Brovelli et al., 2004; Cadotte et al., 2008; Keil et al., 2009; Sato et al., 2006; Seth, 2010; 

Wen et al., 2013).  This process yielded a graph of Granger-causality (GC-graph) from the 

source to the destination for each subject, run, and condition. 
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A multivariate classification analysis as described above was then performed to test 

whether these GC-graphs could be used to distinguish between the two experimental conditions. 

SNR plots.  The plots in Figure 3A-D were generated by running multiple simulations 

while varying the SNR and one other parameter (either number of subjects, number of runs, 

number of data samples per DC pattern estimation, or causal coupling strength between source 

and destination).  For each tested SNR value, each plot shows the best-fit estimate of the 

parameter value needed to achieve a significant DC classification result (p ≤ 0.05). 

 

Real fMRI dataset: 

Participants.  40 participants (29 females, aged 18-32 years) with normal or corrected-to-

normal vision gave informed written consent according to the guidelines of the Committee for 

the Protection of Human Subjects (CPHS) at Dartmouth College prior to participating (IRB 

#15822).  Participation consisted of two 1.75 hour fMRI scanning sessions. 

Experimental design.  We replicated the protocol used in Schlegel et al. (2016).  

Participants completed 15 fMRI runs, each of which consisted of 16 trials interleaved with 8 sec. 

of rest.  In each trial, participants performed one of four mental operations on one of four 

abstract visual shapes.  The four mental operations were: 90° clockwise rotation, 90° 

counterclockwise rotation, horizontal flip, and vertical flip.  The four abstract shapes are shown 

in Figure 4A:  two shapes were constructed from a 4x4 rectangular grid, and two were 

constructed from an analogous polar grid.  To equate the visual presentation between conditions, 

we did not display the shape or operation to use in a given trial.  Instead, each shape was mapped 

to one of the letters A, B, C, or D, and each operation was mapped to one of the numbers 1, 2, 3, 
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or 4.  At the start of each trial, a 2-second-long prompt screen displayed four letter/number pairs 

(e.g. ―C3‖).  An arrow pointed to one of these pairs to indicate the shape and operation to use for 

the current trial.  This screen was replaced by a fixation dot for 6 sec. during which the 

participant performed the indicated mental operation on the indicated shape.  After this period, a 

2-second-long test screen displayed each of the four shapes at various orientations relative to the 

starting orientations learned by the participants.  The participant was instructed to identify the 

current trial’s shape on the screen and indicate via a button press within that 2 sec. period 

whether it was in the orientation that would result from the trial’s indicated operation.  In half of 

the trials the shape was in the correct orientation, and in the other half it was in a random, 

incorrect orientation.  Operations and shapes were counterbalanced across all trials, and 

correct/incorrect trials and display positions were randomized.  In order to encourage 

attentiveness, participants were paid based on their performance (receiving money for correct 

responses and losing money for incorrect responses, with a minimum base rate of 

reimbursement).    Each stimulus and operation occurred four times per run (60 times in total 

during the experiment), and 240 trials were administered over each scanning session. 

MRI acquisition.  MRI data were collected using a 3.0-Tesla Philips Achieva Intera 

scanner with a 32-channel sense head coil located at the Dartmouth Brain Imaging Center.  One 

T1-weighted structural image was collected using a magnetization-prepared rapid acquisition 

gradient echo sequence (8.176ms TR; 3.72ms TE; 8° flip angle; 240x220mm FOV; 188 sagittal 

slices; 0.9375x0.9375x1mm voxel size; 3.12 min acquisition time).  T2*-weighted gradient echo 

planar imaging scans were used to acquire functional images covering the whole brain (2000ms 

TR, 20ms TE; 90° flip angle, 240×240mm FOV; 3×3×3.5mm voxel size; 0mm slice gap; 35 

slices). 
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MRI data preprocessing.  High-resolution anatomical images were processed using the 

FreeSurfer image analysis suite (Dale et al., 1999).  Standard preprocessing of fMRI data was 

carried out:  data were motion and slice-time corrected, high pass filtered temporally with a 100-

s cutoff, and smoothed spatially with a 6mm full-width-at-half-maximum Gaussian kernel, all 

using FSL (Smith et al., 2004).  Data from each run were concatenated temporally for each 

participant after aligning each run using FSL’s FLIRT tool and demeaning each voxel’s time 

course.  Data were then prewhitened using FSL’s MELODIC tool (i.e. principal components 

were extracted using MELODIC’s default dimensionality estimation method with a minimum of 

10 components per ROI). 

fMRI analysis.  The six regions of interest (ROIs) were defined as in Schlegel et al. 

(2016) (PPC [posterior parietal cortex], PCU [precuneus], LOC [lateral occipital cortex], DLPFC 

[dorsolateral prefrontal cortex], and FEF [frontal eye fields] were defined functionally, while 

OCC [occipital cortex] was defined anatomically).  For each directed pair of ROIs, GC-graphs 

were estimated as in the simulation, using the first 5 TRs of each correct-response trial, shifted 

by 1 TR to account for the hemodynamic response function (HRF) delay.  Note that, while HRFs 

typically take longer to reach their peak, shifting by only 1 TR here allowed us to include more 

data that could potentially show condition-specific effects of interaction between areas.  The 

exact shift used is not crucial, since including too much data would only decrease our effective 

SNR, and multivariate classification methods are in general effective at separating out signal 

from noise.  The most important consideration here is to make sure that the period of signal used 

to construct the GC-graphs could not be contaminated by data from other conditions. 

We used the multivariate classification analysis described above for the simulation.  We 

performed the analysis twice for every directed pair of nodes in the network:  once with trials 
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labeled based on shape, and once with trials labeled based on operation.  Our input data to the 

analysis were the GC-graphs estimated separately for each condition and run using the PCA-

transformed data of a given pair of ROIs and a lag of 1 TR (2 sec).  Figure 4C shows a schematic 

of one GC-graph for the PPC to DLPFC connection.  Because of the hierarchical relationships 

among our shapes and operations, we evaluated the classifier using a variant of a representational 

similarity analysis in which our measure of classifier performance was the Fisher’s Z-

transformed correlation between the confusion matrices derived from the cross-validation 

procedure and the model similarity structures from Figure 4A.  This measure is more sensitive 

than classification accuracy because it allows one to take advantage of both correct and incorrect 

predictions by the classifier and therefore to test for similarities in informational structure 

between the neural data and the experimental task itself.  A higher Z-value indicates a greater 

match between the task structure and the informational structure of the communication between 

the two tested regions.  For each participant, shape or operation labeling scheme, and directed 

pair of ROIs, this cross-validation procedure yielded a single Fisher’s Z-transformed correlation.  

A one-tailed t-test then compared these Z values to 0 across participants.  See Schlegel et al. 

(2016) for more details of this approach to multivariate classification. 

 

 EEG dataset: 

Participants.  9 participants (3 females, aged 19-28 years) with normal or corrected-to-

normal vision gave informed written consent according to the guidelines of the Committee for 

the Protection of Human Subjects (CPHS) at Dartmouth College prior to participating (IRB 

#22950).  Participation consisted of a 1.5 hour EEG session. 
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Experimental design.  The experiment used a variation of a study by Donchin and 

colleagues to investigate action preparation (Donchin et al., 1972).  Each participant completed 

four blocks of trials.  In each trial, a rapid serial visual presentation (RSVP) stream of letters 

appeared.  The letters were initially blue in color and gradually filled in to become yellow over 

the 3 second ―warning‖ period.  At the end of this period, an imperative stimulus was presented 

that instructed the participant to perform an action.  In block one, the ―Go‖ block, participants 

knew that the imperative stimulus would always instruct them to move.  Participants were paid 

based on their reaction time.  In block two, the ―Go/No-go‖ block, participants were instructed 

either to move (―Go‖) or to withhold a movement (―No Go‖).  They were paid based on their 

reaction time and lost half of their earnings above a baseline amount if they responded before the 

imperative stimulus or during a no-go trial.  In block three, participants merely anticipated a 

stimulus without an associated motor task.  In this ―Predict‖ block, participants predicted before 

each trial began whether the imperative stimulus would be the letter ―L‖ or the letter ―R‖.  They 

indicated their prediction with a button press and then merely watched the RSVP stream.  

Participants were paid only if they guessed correctly.  In the fourth ―Compute‖ block, the 

imperative stimulus was a green or red number that participants were instructed to add to or 

subtract from, respectively, a running total that they maintained in working memory.  

Participants were paid based on the difference between their reported total and the true total.  

Each block consisted of 80 trials, totaling 320 trials during the session. 

EEG acquisition and preprocessing.  EEG data were recorded at 2048 Hz using BioSemi 

Ag/AgCl high impedance active electrodes located at 32 scalp locations according to the 10-20 

system (Jasper, 1958) and on the left and right mastoids.  Scalp data were referenced offline to 

the average mastoid signal, bandpass filtered from 0.1-150 Hz, discrete Fourier transform filtered 
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to remove line noise at 60, 120, and 180 Hz, and time locked to the imperative stimulus.  Each 

epoch was then demeaned, and epochs in which the signal amplitude of either channel FP1 or 

FP2 exceeded 80µV were discarded. 

EEG analysis.  Multivariate directed connectivity classification.  For a given window 

start time and time lag (see Figure 5C), DC patterns were estimated for each trial using Granger-

causality and a 250ms window of data.  The two spaces for DC pattern estimation were a group 

of the 10 most posterior EEG electrodes (Oz, Pz, O1, PO3, P3, P7, O2, PO4, P4, and P8) and a 

group of the 10 most anterior EEG electrodes (AF3, F3, F7, FC1, FC5, AF4, F4, F8, FC2, and 

FC6).  Each group served as both the source and the destination in separate multivariate 

classification analyses between the four trial types, carried out as described for the simulation 

above. 

In an initial analysis we explored how our classifier performed over a range of 250ms 

time windows starting at the beginning of the preparation period of the trial and continuing in 

50ms increments until 500ms after the imperative stimulus had appeared.  We also performed the 

analysis using a range of lag values for the Granger-causality calculation, in order to test whether 

the influence of the source space over the destination space peaked at particular time lags. 

Univariate directed connectivity analyses.  For a fixed lag of 50ms, either MVGC or 

MVTE was calculated for each window and trial.  These values were then averaged across each 

condition and participant, and one-way ANOVAs evaluated whether the univariate directed 

connectivity differed significantly between conditions at each time point.  Analyses were 

performed using both posterior-anterior connectivity and anterior-posterior connectivity. 
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Twitter dataset: 

 Twitter is an Internet-based social media service that allows users to follow other users in 

order to engage in dialog on a massive scale.  Not only has Twitter become highly influential in 

shaping public dialog, it also provides a rich measure of social interaction on a national and 

worldwide scale (Borge-Holthoefer et al., 2015).  In particular, the service has begun to play a 

significant role in U.S. presidential campaigns.  The dataset used here considered the influence 

of 15 2016 Republican U.S. presidential candidates on the social media service Twitter.  User 

names of each of the candidates are shown in Table S7. 

 The Twitter API (https://dev.twitter.com/overview/api) was used to collect information 

about the activity of the candidates and their followers.  In an initial analysis of 14 of these 

candidates (excluding John Kasich, who had not yet declared his candidacy), only activity on 

Twitter from on or before 04 July 2015 was considered.  For this period, the users who followed 

each candidate’s Twitter account were collected.  Of these users, those who followed fewer than 

13 of the candidates were discarded, leaving 1744 users.  Of these remaining users, those who 

replied to or retweeted fewer than half of the candidates were discarded, leaving 214 users.  The 

50 of these users who replied to or retweeted candidates the most were selected.  This selection 

procedure was carried out in order to identify a set of users who actively engaged in candidate-

related discussion on Twitter.  We chose the dimensionality of this final set of users so that a 

reasonably sized 50-dimensional DC pattern could be constructed, but we did not evaluate 

whether this dimensionality was optimal.  After this initial selection procedure, a 50-dimensional 

vector was then calculated for each candidate based on his or her influence over each of the 

selected users.  The influence of a candidate over a Twitter user was defined here as the number 

of times that user replied to or retweeted the candidate over the time period of interest. 
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We then performed a representational similarity analysis (RSA) as described by 

Kriegeskorte and colleagues (Kriegeskorte et al., 2008), in which we compared the candidates’ 

patterns of Twitter influence to five other measures.  The first of these was a multidimensional 

measure of the candidates’ political positions, based on data compiled by the website 

ontheissues.org (retrieved 16 July 2015; Table S1).  This measure recorded a candidate’s degree 

of support or opposition to 20 political issues based on public record (abortion, requirements to 

hire women and minorities, same sex marriage, public displays of God, expansion of the 

Affordable Care Act, privatizing Social Security, school vouchers, environmental regulations, 

strict punishment for crimes, rights to gun ownership, taxing the wealthy, citizenship for illegal 

immigrants, free trade, US sovereignty, military expansion, easing voter registration rules, 

foreign intervention, green energy, marijuana, and economic stimulus programs).  The second 

measure recorded the mean polling numbers of the candidates based on five national polls 

conducted in late June 2015 (Table S2).  The third measure was a market prediction of each 

candidate’s election probability from the website predictit.org (retrieved 17 July 2015; Table S3).  

The fourth measure was the geographical location of the candidate’s base (Table S4).  The fifth 

measure was the candidate’s age (Table S5). 

In the initial step of the RSA, we used Spearman correlation to calculate a dissimilarity 

matrix (DSM) for the candidates based on their patterns of Twitter influence computed above.  

This DSM represented the similarity between each pair of candidates based on their influence 

over the selected users on Twitter.  We then computed DSMs for each of the five other measures.  

For political position, we used Spearman correlation distance.  For the four remaining univariate 

measures, we used Euclidean distance.  These DSMs represented the dissimilarity between each 

pair of candidates based on each of these four measures (e.g. a low value for a pair of candidates 
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in the age DSM indicates that those two candidates were of similar age).  In the final step of the 

RSA, the Twitter influence DSM was then correlated with each of the other measures’ DSMs.  

This step allowed us to evaluate whether the informational structure of candidates’ relationships 

based on Twitter influence matched the informational structures of their relationships based on 

the other measures. 

A second analysis repeated the procedure above for Twitter activity in between 04 July 

2015 and 12 October 2015.  This analysis included John Kasich, who by then had declared his 

candidacy, and excluded Rick Perry, who had dropped out of the race.  We also used updated 

measures of polling percentages (Table S2), market predictions (Table S3), and age. 

 

Results 

 fMRI Simulation.   The simulated experiment follows a standard block design, in which 

15 subjects each complete 10 scanning runs consisting of five repetitions each of two conditions 

(―A‖ and ―B‖) interleaved with rest periods.  The goal of such experiments is to identify brain 

activity that differs systematically between the two conditions. Results are summarized in Figure 

2. Figure 2A describes how our simulated data are constructed using a design with parameter 

values that are representative of real-world fMRI experiments.  Figure 2C presents the results of 

this simulation.  The classifier was able to use DC patterns to predict the condition well above 

the chance level of 50% [mean 67.7% accuracy (SEM 0.0223); t(14) = 7.93, p = 7.63 x 10
-7

], 

even with a relatively low SNR of 0.3.  In contrast, none of four standard methods currently used 

to analyze neuroimaging data showed any difference between the two conditions.  Because the 

signals do not vary in amplitude across conditions, a univariate analysis in which the mean signal 

is compared between conditions across all subjects showed no significant effect for either ROI 
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[for source:  t(14) = 0.575, p = 0.574; for destination:  t(14) = -1.13, p = 0.276].  Likewise, 

because no multivariate activity pattern difference exists between conditions in either ROI 

individually, standard ROI-based multivariate classification analyses failed to distinguish 

between the conditions [for source:  mean 54.3% accuracy (SEM 0.0345); t(14) = 1.13, p = 

0.115; for destination:  mean 52.0% accuracy (SEM 0.0337); t(14) = 0.593, p = 0.281].  Finally, 

because the overall magnitude of the influence of the source space over the destination space is 

constant during the experiment, existing directed connectivity measures such as MVGC and 

MVTE also failed to distinguish between the conditions [for MVGC:  t(14) = 0.0389, p = 0.970; 

for MVTE:  t(14) = -0.746, p = 0.468]. 

Figures 3A and 3B show the results of an analysis comparing the sensitivity of MDCA to 

the other four methods at a range of SNRs, with 100 simulations run at each SNR value.  For 

SNR values as low as 0.2, MDCA reliably detects differences between the two conditions, while 

no other method detects these differences at any SNR value.  Note additionally that the false 

positive rate for MDCA (i.e. at SNR = 0) is at the 5% level expected for our significance 

threshold choice of p = 0.05.  Thus, MDCA provides a highly sensitive analytical tool to reveal 

network interactions which occur independently of phenomena such as within-region processing 

or average connectivity levels that are targeted by existing techniques. 
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To further investigate the sensitivity of MDCA, we conducted additional simulations of 

the above experiment to determine the minimum number of subjects, number of runs, number of 

data samples per DC matrix estimate, and causal strength between source and destination needed 

at various SNRs in order to achieve significant results.  Results of these simulations are 

presented in Figure 3C-F.  Each plot shows, for a range of SNR values, the minimum parameter 

value needed to achieve significance (expected p ≤ 0.05), while holding all other parameters 

fixed at the values from our first simulation.  These simulations reveal that, even at SNRs below 

0.3, significant results can be achieved using reasonable parameter values that could easily be 

incorporated into real-world experimental designs. 

Figure 3G shows the results of a final simulation in which we evaluated classification 

accuracy in the above experimental design for a range of block durations (30 simulations per 

value), holding the total amount of data collected per DC matrix estimate fixed at 60 samples.  

Analysis results were stable whether conditions were presented in long, contiguous blocks, as is 

traditionally advised for directed connectivity analyses, or as isolated samples, as occurs in 

event-related experimental designs.  A linear regression analysis of these simulation results 

showed no significant relationship between block duration and classification accuracy [F(1,358) 

= 0.475, p = 0.491].  Thus, our simulations suggest that MDCA is applicable to a range of 

existing experimental designs.  In particular, resolving these network interactions does not 

appear to depend on whether data are collected contiguously or spread over many small, 

noncontiguous blocks. 

fMRI dataset.  Our first real-world application of MDCA comes from an fMRI 

experiment that implemented a straightforward extension of the standard block design used in 

the above simulation.  Figures 4A and 4B present a schematic of the experiment, which 
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replicates an earlier investigation into visual imagery manipulation (Schlegel et al., 2016).  In a 

series of trials over 15 scanning runs, subjects imagined one of four abstract visual shapes and 

performed one of four mental operations on that shape (Figure 4A). 

Each trial was labeled based on either the imagined shape or the mental operation that 

was performed, and MDCA was performed between each pair of ROIs for each labeling scheme. 

Figure 4D presents the analysis results.  Each arrow represents a significant DC classification 

result, false discovery rate (FDR) corrected for multiple comparisons across the 30 directed 

connections for each analysis.  Dashed arrows were significant but did not pass FDR correction.  

The thickness of each arrow represents the effect size of the t-test.  The analyses reveal 

distributed but distinct patterns of network interactions that support information about both 

mental representations (red arrows) and mental manipulations (blue arrows).  In particular, 

information about mental representations was supported by bidirectional communication 

pathways between every pair of ROIs that we tested. 

To evaluate the reliability of our MDCA method, we retested all 40 participants one 

month after their initial session.  Figure S1 shows the results of the same analysis applied to this 

second dataset.  The vast majority of connections appearing in Figure 4D remained significant in 

this new analysis.  Across all 60 tests (30 directed ROI pairs and two classification labeling 

schemes), we found a highly significant correlation between the first and second session results 

(Figure 4E; [r = 0.769, t(58) = 9.16, p = 2.55x10
-13

]).  This replication further validates our 

MDCA technique, showing high test-retest reliability for these data. 
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Because of the low temporal resolution of fMRI data, our findings were limited to 

interactions that occurred on the scale of seconds.  MDCA applied to data with millisecond 

temporal resolution might have revealed further communication pathways to which fMRI data 

are insensitive.  To evaluate this possibility, we next applied MDCA to an EEG dataset. 

EEG dataset.  Our second real-world application comes from a replication of an EEG 

study by Donchin and colleagues of the neural basis of action preparation (Donchin et al., 1972).  

In our replication of this experiment, participants completed a series of trials in which they were 

cued to an upcoming imperative to perform an action, waited for a period of time until the 

imperative stimulus appeared, and then performed the action (see Figure 5A for a trial 

schematic). 

Our question here was whether the posterior-anterior (forward) and/or the anterior-

posterior (backward) directed connectivity profile of the cortex depended on the particular action 

that the participant was preparing for or performing.  Thus, our two ―nodes‖ in this analysis were 

a group of the 10 most posterior EEG electrodes and a group of the 10 most anterior electrodes 

(Figure 5B).  Each electrode group served as both the source and the destination space, 

depending on the direction of connectivity being investigated, and our DC matrix estimates were 

constructed based on the Granger-causality from each source component to each destination 

component, after data were PCA transformed independently for each electrode group.  Because 

of the high temporal resolution of EEG data, we were able to estimate these DC matrices at 

several time windows throughout each trial. 
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Similarly to the previous datasets, we asked whether we could use patterns of directed 

connectivity to classify which of the four actions were being prepared or performed.  Figure 5C 

presents the results of both forward and backward directed connectivity analyses.  Each two-

dimensional plot shows classification accuracy as a function of window start time and lag value.  

As can be seen in the warm colored regions of this plot, the classifier showed highest 

classification accuracy for windows that included data at or after the appearance of the 

imperative stimulus (t = 0), indicating that action information peaked in both forward and 

backward cortical connectivity profiles as that action was performed.  However, the classifier 

performed significantly above chance in every test, including windows that started at the 

beginning of the warning period three seconds before the imperative stimulus to perform an 

action (chance level was 25%, while the lowest classification accuracies were around 35%).  

These results indicate that the cortical connectivity profiles in each direction reflected the action 

even during the preparation period, when participants were performing no overt action.  Finally, 

classification results were robust regardless of the lag value used, suggesting that the action-

specific influence by each electrode group over the other extended through a range of time. 

To compare how our multivariate directed connectivity method performed relative to 

existing directed connectivity measures, we next conducted a more traditional analysis in which 

we asked whether mean forward or backward connectivity depended on the action performed.  

Since we saw little effect of lag in our previous analysis, here we used only a single lag value of 

50ms (we did not evaluate other values).  Figure 5D shows the time course of classification 

accuracy for this lag value, taken from the analysis in Figure 5C.  Figure 5E shows mean time 

courses of MVGC and MVTE for each of the four action types individually.  At no point in these 

time courses did a one-way ANOVA find a significant difference between the four conditions.  
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Figure 5F presents p-value time courses for each analysis, showing that the multivariate directed 

connectivity analysis (blue) is above the significance threshold (light blue line) at all points 

tested, while neither of the two traditional directed connectivity measures (red and orange) reach 

the threshold at any point.  In other words, as far as traditional directed connectivity methods can 

resolve, neither forward nor backward connectivity in the brain were modulated by action type.  

Interestingly, MVGC does not even show that connectivity is modulated when the action is 

performed (see the absence in Figure 5E of a peak in the MVGC time courses around t = 0).  

However, MDCA finds that patterns of both forward and backward connectivity in the cortex are 

modulated by the specific action that is prepared and performed.  The high sensitivity of the 

novel method used here suggests that it may prove useful in the development of future brain-

computer interfaces. 

Twitter dataset.  The previous two datasets showed that MDCA can be used to 

investigate complex, directed patterns of connectivity in neural networks.  However, nothing 

about these methods necessarily restrict their application to questions about the brain.  To 

demonstrate the generality of MDCA, our final dataset comes from a quite different domain and 

uses an entirely different definition of directed connectivity.  As of October 2015, each of the 14 

Republican presidential candidates in the 2016 primary season maintained an active Twitter 

presence.  Here we ask whether their patterns of influence over other Twitter users predict any of 

several variables relevant to the election cycle. 

From 4 July 2015 to 12 October 2015, there were 4,231 users who followed at least 13 of 

the 14 declared Republican candidates on Twitter, and these followers wrote messages or 

―tweeted‖ 1,454,314 times using the service.  19,368 of these messages were replies to or 

―retweets‖ of tweets by Republican candidates (example shown in Figure 6A).  Here we define 
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our measure of directed connectivity from Twitter user A to user B to be the number of times B 

replied to or retweeted A over a given period of time.  In general, we can compute this measure 

from user A to a range of other users in order to construct the pattern of influence of user A over 

a set of other Twitter users (Figure 6B).  We did this for each of the 14 candidates, first selecting 

from the above set of followers only those users who had replied to or retweeted at least half of 

the candidates, and then taking as our destination space the 50 of these users who made the 

highest total volume of replies to or retweets of the candidates.  Thus, for each candidate we 

constructed a 50-dimensional pattern of their influence over highly active Twitter users. 

We performed our initial analysis using only tweets made before 4 July 2015 and 

selecting our space of followers by applying the procedure described in Materials & Methods to 

these tweets.  This period represented a relatively quiet time in the election cycle, before many 

people had begun to pay attention to the presidential election or the field of candidates.  We 

therefore hypothesized that the character of interactions on Twitter during this period would 

differ qualitatively from later periods in which the campaign experienced greater public attention 

and media coverage.  Following a standard representational similarity analysis procedure, we 

first used Spearman correlation distance to compute a dissimilarity matrix (DSM) between the 

candidates based on their estimated patterns of Twitter influence constructed as described above.  

This DSM is presented at the top of Figure 6C and represents the collective relationships among 

the candidates based on their influence on Twitter.  Cool colors reflect small distances (i.e. 

highly similar patterns of influence) and warm colors reflect large distances (i.e. highly 

dissimilar patterns of influence).  The dendrogram to the right shows a hierarchical clustering of 

the candidates based on these Twitter influence-based relationships. 
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Next, we constructed DSMs in a similar manner for five other measures.  The first was a 

multidimensional measure of each candidate’s political views based on data compiled by the 

website ontheissues.org (retrieved 16 July 2015; Table S1).  This measure recorded a candidate’s 

degree of support or opposition to 20 political issues (see Materials & Methods).  The second 

measure recorded the mean polling numbers of the candidates based on five national polls 

conducted in late June 2015 (Table S2).  The third measure was a market prediction of each 

candidate’s election probability from the website predictit.org (retrieved 17 July 2015; Table S3).  

The fourth measure was the geographical base of the candidate (Table S4).  The fifth measure 

was the candidate’s age (Table S5).  DSMs for each measure are shown in Figure 6C and 6D. 

To evaluate whether any of these five measures predicted a candidate’s Twitter influence, 

we tested for correlations between the Twitter influence DSM and the DSMs derived from the 

measures (lower diagonal of each matrix only).  The Twitter influence DSM correlated 

significantly with the political view DSM [r = 0.297, t(89) = 2.93, p = 0.00213], indicating that 

the candidates’ patterns of influence on Twitter related significantly to their political positions.  

The DSM based on each candidate’s geographical base also showed a marginally significant 

positive correlation with Twitter influence [r = 0.147, t(89) = 1.40, p = 0.0826].  No other 

correlations were significant. 

However, when we performed this analysis again using data from the later period of 4 

July 2015 to 12 October 2015, we no longer found a significant correlation between Twitter 

influence and political position [r = -0.0461, t(89) = -0.436, p = 0.668].  However, we did now 

observe a significant correlation between Twitter influence and polling numbers [r = 0.186, t(89) 

= 1.79, p = 0.0385].  Market predictions now also showed a marginally significant positive 

correlation with Twitter influence [r = 0.138, t(89) = 1.31, p = 0.0968].  These results suggest 
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that candidate-related discourse on Twitter may have become less influenced by discussion of 

policy issues and more influenced by electability of the candidates as the election cycle became 

more active.  Note that one candidate (John Kasich) entered the race and one candidate (Rick 

Perry) dropped out of the race in between the two analyses.  All analysis results are presented in 

Table S6. 

 

Discussion 

Here we have introduced a new class of methods, termed multivariate directed 

connectivity analyses (MDCA).  We validated the method using a simulated fMRI dataset and 

applied it successfully to three real-world datasets (fMRI, EEG, and Twitter), showing MDCA to 

yield highly sensitive and repeatable effects that no previously existing analytical method can 

provide.  We additionally showed that MDCA can be used to help resolve scientific debates 

concerning the role of network interactions in cognition, may be useful in the development of 

technologies such as brain-computer interfaces, and applies to a range of data modalities in and 

beyond neuroscience. 

Our simulated fMRI dataset adopted a standard block design that contrasted two 

experimental conditions.  This type of design is used widely in the field to investigate a range of 

questions.  Importantly, our two conditions differed only in the patterns of directed connectivity 

that they induced between two regions.  Such situations might be expected to occur in real-world 

scenarios during complex cognitive processes that entail relatively constant overall mean levels 

of neural activity and bidirectional interregional interactions, but in which complex patterns of 

interaction change dynamically as a process unfolds.  Thus, while existing methods such as 

univariate directed connectivity and ROI-based multivariate classification analyses could not 
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detect any differences between the neural activity induced by the two conditions, MDCA was 

highly sensitive to differences between the two conditions based on changes in the patterns of 

directed connectivity that occurred.  In further simulations, we showed that MDCA is highly 

sensitive even at low SNRs and works for a range of designs and parameter values used in 

typical fMRI experiments. 

Note that our simulation was simplified in several important respects from real-world 

fMRI data.  We did not:  convolve our generated data with an HRF; correct for that HRF when 

analyzing the simulated data; construct our data in a spatially realistic manner; simulate 

movement artifacts; or simulate noise processes based on empirical measurements of fMRI data.  

This simulation was not intended to provide a high-fidelity evaluation of MDCA’s applicability 

to fMRI data specifically, but instead was intended to evaluate in a general manner whether the 

method could recover multivariate patterns of directed connectivity from time series data when 

other methods failed.  This choice to construct a simple but general evaluation of the method 

using simulated data makes its evaluation on real-world fMRI (and other) data necessary. 

The analyses of our real-world fMRI data were able to probe the distributed nature of 

information processing in a cortex-wide network to a degree of specificity not previously 

possible.  Specifically, we showed that both the representation and manipulation of mental visual 

images entails a dense network of bidirectional connectivity throughout the cerebral cortex.  

Several standard models of working memory postulate that it is mediated by a network of 

informationally segregated anatomical modules, including a ―central executive‖ that resides in 

DLPFC and a ―visuospatial sketchpad‖ that resides in posterior visual cortex (Baddeley, 2003; 

Postle, 2006).  However, MDCA reveals evidence that information about both ―executive‖ and 

―sketchpad‖ aspects of a working memory task occurs in a dense flow of information between 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/263665doi: bioRxiv preprint 

https://doi.org/10.1101/263665
http://creativecommons.org/licenses/by-nd/4.0/


  Multivariate directed connectivity analysis 

36 of  50 

 

many overlapping cortical regions.  This finding calls for more distributed models of working 

memory and is consistent with recent work in monkeys showing that information quickly 

becomes highly distributed in the brain during cognitive tasks (Siegel et al., 2015). 

Of particular note is the high correlation between analysis results in our initial and 

followup scans of each of the original 40 participants.  This high test-retest reliability further 

validates MDCA as a technique that can be used in practice to analyze fMRI data (Figure S1). 

Note, however, that fMRI places constraints on the processes that can be studied using 

functional connectivity-based analyses.  Because of its low temporal resolution, fMRI is limited 

to resolving processes that play out over a number of seconds, as in the visual imagery 

manipulation task used here.  In other words, MDCA applied to fMRI data cannot be used to 

resolve information transfer at the level of neuron-to-neuron communication.  Indeed, no 

technique could accomplish this even in theory when applied to fMRI data, since the blood flow-

related changes measured by fMRI are fundamentally too coarse for such resolution.  Rather, 

with fMRI data, MDCA should be limited to the investigation of distributed processes that occur 

far higher in the hierarchy of information processing and that play out over seconds rather than 

milliseconds.  The key point here is that directed causal interactions in the cortex occur at a range 

of timescales, from milliseconds for low-level neuronal interactions, to potentially seconds (or 

years) at higher levels of the information processing hierarchy, and different techniques will be 

sensitive to different scales of interaction.  Thus, researchers planning to use MDCA in their 

research should consider the temporal characteristics of the phenomena they wish to study. 

EEG data, however, do not suffer from the temporal limitations of fMRI.  To illustrate, 

our EEG analysis revealed that information about the preparation of specific actions is accessible 

to MDCA in a time-resolved way, potentially starting seconds before an action is performed.  
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Existing, univariate measures of directed connectivity were insensitive to these action-preceding 

processes.  Our analysis suggests that MDCA can be combined with existing technologies to 

provide a powerful tool to predict and respond to cognitive processes that precede action.  This 

technique could be used, for instance, to predict the intentions of patients and use these 

predictions to control a range of instruments including computer mouse cursors or artificial limbs 

(Nicolelis, 2001). 

We used Granger-causality (Barnett and Seth, 2014) as a directed connectivity measure 

in our fMRI and EEG datasets.  It should be noted, however, that Granger-causality does not 

measure causation directly.  Instead, Granger-causality is a statistical method for evaluating the 

ability of a source signal to predict the future of a destination signal beyond the predictive power 

provided by the destination signal’s own past.  While the validity of Granger-causality for fMRI 

data recently came under scrutiny, subsequent computational and empirical work has shown that 

it is a viable technique when proper precautions such as those used in the present study are taken 

(Barnett and Seth, 2014; Friston et al., 2013; Wen et al., 2013).  In particular, we investigated 

differences in patterns of Granger-causality between conditions rather than attempting to 

establish ―ground-truth‖ connectivity between regions.  However, when MDCA employs 

directed connectivity measures based on statistical predictability rather than causality, it cannot 

be used to make strong conclusions about causation per se.  In situations in which direct 

measures of causality are available (such as our Twitter dataset), MDCA can then make stronger 

causal conclusions by using those causal measures rather than statistical measures such as 

Granger-causality or transfer entropy. 

Finally, our Twitter dataset demonstrated that MDCA can reveal the underlying 

informational structure of complex patterns of interactions in a range of networks.  Our data 
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suggest that the 2016 Republican presidential candidates’ influence on the social media network 

Twitter was shaped initially by their political positions and later by their electability.  Our 

analysis of these data additionally demonstrated that MDCA can be applied using a wide range 

of definitions of directed connectivity and a large class of existing multivariate methods.  Thus 

MDCA may be applicable to a range of fields in biology, computer science, Earth science, and 

beyond that demand the characterization of complex network interactions. 

While many important phenomena in nature arise out of complex interactions within 

information networks, the empirical study of such network dynamics has until recently suffered 

from both a lack of tools to collect data about these networks and a lack of analytical methods to 

study what data were available.  The recently launched BRAIN Initiative in the U.S. attempts to 

address this issue, largely through the development of new tools for measuring brain activity and 

connectivity at unprecedented levels of spatial and temporal detail (Insel et al., 2013).  However, 

the increase in our capacity to measure the brain’s complexity brings with it a new class of ―Big 

Data‖ (Turk-Browne, 2013) problems for neuroscience:  How do we make sense of all these 

data?  In other words, how can we translate measurements of the structure and dynamics of a 

complex network such as the brain into a mechanistic understanding of that network’s functions?  

We believe that MDCA will provide an important addition to the growing set of tools available 

to answer these questions. 

Here we show that using MDCA to treat network interactions as multidimensional and 

information-rich leads to the possibility of new mechanistic insights into network dynamics.  In 

our real-world data, MDCA provides evidence for highly distributed processing during the 

mental manipulation of visual imagery, can predict with high sensitivity the particular action 

being prepared by a subject even seconds before that action is performed, and reveals patterns of 
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influence on the social media network Twitter that reflect an evolving presidential political 

landscape.  Thus, multivariate directed connectivity analyses can reveal behavior in networks 

that traditional methods fail to detect.  These methods are sensitive and reliable, can be 

incorporated into existing experimental designs, and apply to networks across a range of fields of 

study.  New analytical methods such as these may prove vital to efforts such as the BRAIN 

Initiative that seek to understand deep, complex contemporary scientific problems including the 

biological basis of the mind. 
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Supplementary Figures 

 

Fig. S1.  MDCA Test-retest reliability.  DC classification results for one-month retest of 

participants from the fMRI experiment in Figure 4. 
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Supplementary Tables 

Table S1.  Candidate political views, as compiled by ontheissues.org (retrieved 16 July 2015). 
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require hiring of woman 

& minorities 
2 5 -3 0 -3 2 2 5 -3 -3 2 0 2 -3 2 

same sex marriage -3 -3 0 -5 -3 -5 -5 -5 -5 5 -3 -5 -5 -5 -3 

public displays of God -5 -5 2 -5 0 -5 -5 -3 -5 -3 -5 -5 -5 -5 -5 
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rights to gun ownership 2 2 -3 5 5 5 5 5 5 -3 5 5 5 2 2 

taxing the wealthy 5 5 5 2 5 5 2 5 5 2 5 5 5 5 0 

citizenship for illegal 

immigrants 
2 -5 2 -5 -3 2 -3 -5 0 -3 2 -3 -3 -5 -5 

free trade 2 -5 2 5 -3 -3 -3 -5 5 2 5 2 5 5 -3 

US sovereignty 0 5 -3 5 2 5 5 5 -5 0 -3 -3 2 5 5 

military expansion -5 2 -5 -5 -3 -5 -3 -3 2 -3 2 -5 -5 -5 -5 

ease voter registration -5 0 2 -3 2 0 -5 2 2 0 5 -3 2 -2 0 

foreign intervention -3 2 -3 -3 -3 -5 -5 -5 -3 -3 2 -5 -5 -5 2 

green energy 2 2 -5 5 2 5 2 5 2 -3 5 2 2 5 5 

marijuana -5 -3 2 0 0 -5 -3 -3 -5 -3 5 -3 -5 -5 0 

economic stimulus 2 5 5 5 5 2 2 2 0 5 2 5 5 5 5 
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Table S2.  Polling percentage source and values. 
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First analysis:                

13-15 June 2015 

Economist/YouGov 
14 9 3 4 6 2 6 3 N/A 0 11 2 10 1 11 

14-18 June 2015 

NBC/WSJ 
17 8 3 3 1 1 5 2 N/A 0 8 4 7 4 12 

20-22 June 2015 

Economist/YouGov 
10 10 2 9 3 2 6 0 N/A 0 11 2 11 2 11 

26-28 June 2015 

CNN 
22 11 4 4 2 1 9 0 N/A 0 7 5 14 0 1 

27-29 June 2015 

Economist/YouGov 
14 9 4 3 6 0 7 1 N/A 0 9 7 10 3 2 

Second analysis:                

17-19 Sept. 2015 

CNN 
10 17 2 7 6 1 4 1 4 1 2 N/A 13 2 27 

17-21 Sept. 2015 

Quinnipiac 
8 24 2 6 9 0 2 1 4 0 3  N/A 11 0 17 

18-21 Sept. 2015 

Bloomberg 
8 13 1 6 13 1 2 1 2 0 2  N/A 9 0 23 

20-22 Sept. 2015 

Fox News 
4 16 1 6 8 1 2 0 1 0 2  N/A 8 0 25 

20-24 Sept. 2015 

NBC/WSJ 
7 20 3 5 11 0 2 1 6 0 3  N/A 11 1 21 

22-27 Sept. 2015 

Pew 
7 18 5 8 9 0 3 0 4 1 2  N/A 9 0 26 

24 Sept. 2015 

USA Today 
13 16 4 5 11 0 3 1 4 0 2  N/A 8 1 21 

26 Sept. – 2 Oct. 

2015, Investor’s 

Business Daily 

10 17 2 7 12 0 2 0 2 1 1  N/A 9 0 25 

1-4 October 2015 

Public Policy 

Polling 

9 14 3 6 15 0 6 0 2 0 4  N/A 11 1 24 
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Table S3.  Market prediction of candidate election probability, according to the website 

predictit.org. 

 

1
st
 analysis 

(retrieved 17 July 

2015) 

2
nd

 analysis 

(retrieved 7 

October 2015) 

Bush 47 31 

Carson 9 13 

Christie 8 7 

Cruz 11 12 

Fiorina 7 13 

Graham 8 2 

Huckabee 10 4 

Jindal 10 4 

Kasich N/A 11 

Pataki 3 2 

Paul 12 7 

Perry 11 N/A 

Rubio 27 40 

Santorum 6 4 

Trump 15 17 
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Table S4.  Geographical location of each candidate’s base. 

 Location latitude longitude 

Bush Tallahassee, FL 30.4550 -84.253 

Carson Baltimore, MD 39.2833 -76.617 

Christie Trenton, NJ 40.2237 -74.764 

Cruz Houston, TX 29.7604 -95.370 

Fiorina Sacramento, CA 38.5556 -121.470 

Graham Columbia, SC 34.0298 -80.897 

Huckabee Little Rock, AR 34.7361 -92.331 

Jindal Baton Rouge, LA 30.4500 -91.140 

Kasich Columbus, OH 39.9833 -82.983 

Pataki Albany, NY 42.6525 -73.757 

Paul Bowling Green, KY 36.9817 -86.444 

Perry Austin, TX 30.2500 -97.750 

Rubio Miami, FL 25.7753 -80.209 

Santorum Pittsburgh, PA 40.4397 -79.976 

Trump New York, NY 40.7127 -74.006 
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Table S5.  Candidate dates of birth. 

 DOB 

Bush 11 Feb. 1952 

Carson 18 Sept. 1951 

Christie 6 Sept. 1962 

Cruz 22 Dec. 1970 

Fiorina 6 Sept. 1954 

Graham 9 July 1955 

Huckabee 24 Aug. 1955 

Jindal 10 June 1961 

Kasich 13 May 1952 

Pataki 24 June 1945 

Paul 7 Jan. 1963 

Perry 4 Mar. 1950 

Rubio 28 May 1971 

Santorum 10 May 1958 

Trump 14 June 1946 
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Table S6.  Results of correlation analyses between Twitter influence DSM and other DSMs. 

 r t(89) p 

First analysis:    

political position 0.297 2.93 0.00213 

polling percentage -0.00942 -0.0889 0.535 

market prediction -0.0288 -0.272 0.607 

geographical location 0.147 1.40 0.0826 

age -0.00715 -0.0675 0.527 

Second analysis:    

political position -0.0461 -0.436 0.668 

polling percentage 0.186 1.79 0.0385 

market prediction 0.138 1.31 0.0968 

geographical location 0.101 0.963 0.169 

age 0.0711 0.672 0.252 
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Table S7.  Candidates’ Twitter user names. 

 user name(s) 

Bush JebBush 

Carson RealBenCarson 

Christie GovChristie, GovChristie16, ChrisChristie 

Cruz Tedcruz, SenTedCruz 

Fiorina CarlyFiorina 

Graham LindseyGrahamSC, GrahamBlog 

Huckabee GovMikeHuckabee 

Jindal BobbyJindal 

Kasich JohnKasich, GovernorKasich 

Pataki GovernorPataki 

Paul RandPaul, DrRandPaul 

Perry GovernorPerry 

Rubio marcorubio, senmarcorubio 

Santorum RickSantorum 

Trump realDonaldTrump 
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