- 1 miRNA profiling of primate cervicovaginal lavage and extracellular vesicles reveals miR-
- 2 **186-5**p as a potential retroviral restriction factor in macrophages
- 3 Zezhou Zhao^{1,#}, Dillon C. Muth^{1,3,#}, Kathleen Mulka¹, Bonita H. Powell¹, Grace V. Hancock^{1,&},
- 4 Zhaohao Liao¹, Kelly A. Metcalf Pate¹, Kenneth W. Witwer^{1,2,3,*}
- ⁵ ¹Department of Molecular and Comparative Pathobiology, ²Department of Neurology, and
- ³Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine,
- 7 Baltimore, MD, USA.
- 8 [#]These authors contributed equally to this work
- 9 [&]Currently at Molecular Biology Institute, University of California, Los Angeles, Los Angeles,
- 10 California, USA.
- 11 *Address correspondence to:
- 12 Kenneth W. Witwer, PhD
- 13 733 N. Broadway
- 14 Miller Research Building 829
- 15 Baltimore, MD 21205
- 16 Phone: 1-410-955-9770
- 17 Fax: 1-410-955-9823
- 18 Email: kwitwer1@jhmi.edu

- 20 Keywords: extracellular vesicle, exosome, microvesicle, microRNA, biomarker, HIV-1,
- 21 cervicovaginal lavage, SIV, restriction factor

22 Abstract

Introduction: The goal of this study was to characterize extracellular vesicles (EVs) and
miRNA profiles of primate cervicovaginal lavage (CVL) during the menstrual cycle and simian
immunodeficiency virus (SIV) infection, and to determine if CVL-associated miRNAs might
influence replication of retroviruses.

Methods: CVL and peripheral blood were collected for five weeks from two uninfected and four
SIV-infected macaques. EVs were enriched by stepped ultracentrifugation and characterized by
population-level and single vesicle analyses. miRNA profiles were assessed with a mediumthroughput stem-loop/hydrolysis probe qPCR platform and validated by targeted qPCR assays.
Influence of miR-186-5p ("miR-186") on HIV protein and RNA production was monitored in
monocyte-derived macrophages.

33 Results: Although menstrual hormone cycling was abnormal in infected subjects, EV 34 concentration increased with progesterone in uninfected subjects. miRNAs were present 35 predominantly in the EV-depleted supernatant fraction of CVL. Few changes in miRNA levels 36 correlated with the menstrual cycle or SIV infection. miR-186, depleted in retroviral infection, 37 was investigated for a possible role in controlling retroviral infection. miR-186 inhibited HIV 38 production when transfected into monocyte-derived macrophages.

39 Conclusions: We report profiles of a targeted set of miRNAs in CVL fractions. The menstrual 40 cycle may affect quantity of EVs recovered from CVL, but has only minor effects on abundance 41 of the miRNAs we examined. miR-186 decline appears to be associated with SIV infection, and 42 miR-186 inhibits HIV replication in macrophages in vitro. Further studies are required to 43 characterize the role of EVs and small RNAs as biomarkers of disease in the reproductive tract.

44 Introduction

53

45 The cervicovaginal canal is a potential source of biological markers in forensics investigations 46 [1–4] and reproductive tract cancers [5] and infections [6]. Cervicovaginal secretions may be 47 collected by swab, tampon, or other methods, or secretion components may be liberated by a 48 buffered wash solution and collected as cervicovaginal lavage (CVL). Beyond utility as 49 biomarkers, constituents of cervicovaginal secretions including proteins [7] and certain microbes 50 [8] may have protective roles, for example in wound healing and against HIV-1 infection [9–16]. 51 Secreted components may also change quantitatively or qualitatively during the menstrual cycle 52 [17].

Compared with secreted proteins and the microbiome, several components of cervicovaginal

54 fluids are less well understood, including extracellular RNAs (exRNAs) and their carriers, such 55 as extracellular vesicles (EVs) and ribonucleoprotein complexes (exRNPs). EVs are potential 56 regulators of cell behavior in paracrine and endocrine fashion due to their reported abilities to 57 transfer proteins, nucleic acids, sugars, and lipids between cells [18]. EVs comprise a wide array 58 of double-leaflet membrane extracellular particles, including exosomes and microvesicles [19], 59 and range in diameter from 30 nm to well over one micron (large oncosomes) [20]. EV 60 macromolecular composition tends to reflect, but is not necessarily identical to, that of the cell of 61 origin [21]. EVs have been isolated from most cells, as well as biological fluids [18, 22], 62 including cervicovaginal secretions of humans [23] and rhesus macaques [24]. 63 microRNAs (miRNAs) are one of the most studied classes of exRNA. These noncoding RNAs 64 average 22 nucleotides in length and, in some cases, fine-tune the expression of target transcripts 65 [25, 26]. Released from cells by several routes, miRNAs are among the most frequently 66 examined biomarker candidates in biofluids and are reported to be transmitted via EVs. miRNAs

67 are found not only in EVs, but also in free Argonaute-containing protein complexes; the latter 68 may outnumber the former, at least in blood [27, 28]. miRNAs are also highly conserved [26], 69 and abundant species typically have 100% identity in humans and nonhuman primates [29]. (For 70 this reason, we will refer to hsa- (Homo sapiens) and mml- (Macaca mulatta) miRNAs without 71 the species designation unless otherwise warranted by sequence disparity.) While miRNAs have 72 been profiled in cervicovaginal secretions and menstrual blood, mostly in the forensics setting [4, 73 30, 31], their associations with EV and exRNP fractions require further study. A recent 74 publication reported that EVs from healthy vaginal secretions inhibited HIV-1 infection [23]. 75 Another report found that CVL EVs (termed "exosomes") were present at higher concentrations 76 in cervical cancer, and that two miRNAs were also upregulated [5]. Our group described a 77 reduction of CVL EVs in a severe endometriosis case compared with reproductively healthy primates [24]. However, our study, along with others, was limited by the absence of molecular 78 79 profiling of EV cargo [24]. 80 Here, we performed targeted miRNA profiling of EV-enriched and -depleted fractions of CVL 81 and vaginal secretions collected from healthy and retrovirus-infected rhesus macaques. We 82 queried how CVL EVs and miRNAs are affected by the menstrual cycle, an important potential 83 confounder of biomarker studies. Similarly, we assessed possible associations with simian 84 immunodeficiency virus (SIV) infection. We report an association of miR-186 levels with SIV 85 infection and find that this miRNA also appears to act in an antiretroviral fashion in HIV 86 infection of macrophages. These studies provide baseline information for easily accessed CVL

87 markers including EVs and miRNAs that may become useful tools in the clinic.

88 METHODS

89 Sample Collection

- 90 CVL and whole blood samples were collected weekly for five weeks from two uninfected
- 91 (control) and four SIVmac251-infected (infected) rhesus macaques (Macaca mulatta) as
- 92 previously described [24]. All macaques were negative for simian T-cell leukemia virus and
- 93 simian type D retrovirus and were inoculated intravenously. Animals were sedated with
- 94 ketamine at a dose of 7-10 mg/kg prior to all procedures. CVL was performed by washing the
- 95 cervicovaginal cavity with 3 mL of phosphate buffered saline (PBS, Thermo Fisher Scientific,
- 96 Waltham, MA, USA) directed into the cervicovaginal canal and re-aspirated using the same
- 97 syringe. Materials and procedures for sample collection are depicted in Supplemental Figure 1.
- 98 Volumes of CVL yield across collection dates were documented in Supplemental Table 1. Whole
- 99 blood (3 mL) was collected by venipuncture into syringes containing acid citrate dextrose
- 100 solution (ACD) (Sigma Aldrich, St. Louis, MO, USA).

101

102 Study Approvals

- 103 All animal studies were approved by the Johns Hopkins University Institutional Animal Care and
- 104 Use Committee (IACUC) and conducted in accordance with the Weatherall Report, the Guide
- 105 for the Care and Use of Laboratory Animals, and the USDA Animal Welfare Act.

106

107 Sample Processing

108	Sample processing began within a maximum of 60 minutes of collection and utilized serial
109	centrifugation steps to enrich EVs as described previously [32], based on a standard EV isolation
110	protocol [33]. Specifically, fluids were centrifuged: (1) $1,000 \times g$ for 15mins at 4°C in a tabletop
111	centrifuge; (2) $10,000 \times g$ for 20 mins at 4°C; and (3) $110,000 \times g$ for 2 hours at 4°C with a
112	Sorvall Discovery SE ultracentrifuge (Thermo Fisher Scientific) with an AH-650 rotor (k factor:
113	53.0) (Supplemental Figure 1B). Following each centrifugation step, most supernatant was
114	removed, taking care not to disturb the pellet. After each step, supernatant was set aside for
115	nanoparticle tracking analysis (NTA; 200 μ L), and RNA isolation (200 μ L) following the second
116	and third steps. The pellet was resuspended in 400 μ L of PBS after each centrifugation step.
117	After the final step, the remaining ultracentrifuged supernatant was concentrated to
118	approximately 220 μ L using Amicon Ultra-2 10 kDa molecular weight cutoff filters (Merck
119	KGaA, Darmstadt, Germany). 200 μ L of the concentrate was used for RNA isolation and the
120	remainder was retained for NTA. All samples reserved for RNA isolation were mixed with 62.6
121	μ L of RNA isolation buffer (Exiqon, Vedbaek, Denmark) containing three micrograms of
122	glycogen and 5 pg of synthetic cel-miR-39 as previously described [34]. Processed samples were
123	analyzed immediately or frozen at -80°C until further use.
124	For plasma, whole blood was centrifuged at $800 \times g$ for 10 mins at 25°C. Supernatant was
125	centrifuged twice at 2,500 \times g for 10 mins at 25°C. The resulting platelet-poor plasma was
126	aliquoted and frozen at -80°C.

127

128 Hormone Analysis

Levels of progesterone (P4) and estradiol-17b (E2) were measured in plasma samples	(P4) and estradiol-17b (E2) were measured in plasma samples sh	aippe	bed
--	--	-------	-----

- 130 overnight on dry ice to the Endocrine Technology and Support Core Lab at the Oregon National
- 131 Primate Research Center, Oregon Health and Science University.

132

133 Nanoparticle Tracking Analysis

134 Extracellular particle concentration was determined using a NanoSight NS500 NTA system

135 (Malvern, Worcestershire, UK). Cervicovaginal lavage samples were diluted as needed and

136 specified in Supplemental Table 2 to ensure optimal NTA analysis. At least five 20-second

137 videos were recorded for each sample at a camera setting of 12. Data were analyzed at a

138 detection threshold of two using NanoSight software version 3.0.

139

140 Western Blot

141 Western blot was used to detect the presence of EV protein markers and the absence of calnexin

142 (endoplasmic reticulum marker) in CVL and enriched CVL EVs. Because of low quantities, both

143 CVL and enriched EVs were pooled as indicated in Supplemental Table 3. 20 µL of pooled

samples were lysed with 5 µL 1:1 mixture of RIPA buffer (Cell Signaling Technology, Danvers,

145 MA. Cat #: 9806S) and protease inhibitor (Santa Cruz Biotechnology, Dallas, TX. Cat #:

146 sc29131). 8 μL of Laemmli 4X sample buffer (BioRad, Hercules, CA. Cat #:161-0747 Lot #:

147 64077737) was added per sample, and 30 µL of each was loaded into a Criterion TGX 10% gel

148 (BioRad, Hercules, CA. Cat #: 5671034 Lot #: 64115589) after 5 mins of 95°C incubation. The

149 gel was electrophoresed by application of 100V for 100 mins. The proteins were then transferred

to a PVDF membrane (BioRad, Hercules, CA), which was blocked with 5% milk (BioRad,

151	Hercules, CA. Cat #: 1706404. Lot #: 64047053) in PBS+0.1% Tween®20 (Sigma-Aldrich, St.
152	Louis, MO Cat #: 274348 Lot #: MKBF5463V) for 1 hour. The membrane was subsequently
153	incubated with mouse anti-human CD63 (BD Biosciences, San Jose, CA Cat #: 556019 Lot #:
154	6355939) and mouse monoclonal IgG_2b CD81 (Santa Cruz Biotechnology, Dallas, TX Cat #:
155	166029 Lot #: L1015) primary antibodies, at a concentration of 0.5 μ g/mL for 1 h. After washing
156	the membrane, it was incubated with a goat anti-mouse IgG-HRP secondary antibody (Santa
157	Cruz Biotechnology, Dallas, TX Cat #: sc-2005 Lot #: B1616) at a 1:10,000 dilution for 1 h. The
158	membrane was then incubated with a 1:1 mixture of SuperSignal West Pico Stable Peroxide
159	solution and Luminol Enhancer solution (Thermo Scientific, Rockford, IL Cat #: 34080 Lot #:
160	SD246944) for 5 min. The membrane was visualized on chemiluminescence film (Denville
161	Scientific, Holliston, MA Cat #: E3018 Lot #:79608091) for up to 150 seconds. The second blot
162	was done in a reducing environment using 10mM DTT (Promega, Madison, WI Cat #: P1171
163	Lot #: 0000198991). Same procedures were followed with rabbit anti-human TSG101 (Cat #:
164	ab125011 Lot #:GR180132-14), rabbit anti-syntenin (Abcam, Cambridge, MA Cat #: ab133267
165	Lot #: GR89146-10), and rabbit anti-calnexin (Abcam, Cambridge, MA Cat #: ab22595 Lot
166	#:GR243392-3) primary antibodies. Subsequent incubation with goat anti-rabbit IgG-HRP
167	secondary antibody (Abcam, Cambridge, MA Cat #: sc-2204 Lot #: B2216). All antibodies were
168	used at the same concentration as the first blot. Film was exposed to the membrane for up to 8
169	mins for visualization.

170

171 Electron Microscopy

Gold grids were floated on 2% paraformaldehyde-fixed CVL-derived samples for two minutes,
then negatively stained with uranyl acetate for 22 seconds. Grids were observed with a Hitachi

174 7600 transmission electron microscope in the Johns Hopkins Institute for Basic Biomedical

175 Sciences Microscope Facility.

176

177 Total RNA Isolation and Quality Control

178 RNA isolation work flow is shown in Supplemental Figure 1C. RNA lysis buffer was added into

179 each sample as described above prior to freezing (-80 °C). Total RNA was isolated from thawed

180 samples using the miRCURY RNA Isolation Kit-Biofluids (Exiqon) per manufacturer's protocol

- 181 with minor modifications as previously described (10). Total RNA was eluted with 50 µL
- 182 RNase-free water and stored at -80°C. As quality control, expression levels of several small
- 183 RNAs including snRNA U6, miR-16-5p, miR-223-3p, and the spiked-in synthetic cel-miR-39
- 184 were assessed by TaqMan miRNA assays (Applied Biosystems/ Life Technologies, Carlsbad,

185 California, USA) [35].

186

187 miRNA Profiling by TaqMan Low-Density Array

188 A custom 48-feature TaqMan low-density array (TLDA) (11) was ordered from Thermo Fisher,

189 with features chosen based on results of a human CVL pilot study (G. Hancock and K.W.

190 Witwer, unpublished data). Stem-loop primer reverse transcription and pre-amplification steps

191 were conducted using the manufacturer's reagents as previously described [36] but with 14

192 cycles of pre-amplification. Real time quantitative PCR was performed with a QuantStudio 12K

193 instrument (Johns Hopkins University DNA Analysis Facility). Data were collected using SDS

194 software and Cq values extracted with Expression Suite v1.0.4 (Thermo Fisher Scientific,

195	Waltham, MA USA). Raw Cq values were adjusted by a factor determined from the geometric
196	mean of 10 relatively invariant miRNAs. The selection process for these invariant miRNAs was
197	to 1) rank miRNAs by coefficient of variation; 2) remove miRNAs with high average Cq (>30),
198	non-miRNAs, and those with low amplification score; 3) select the lowest-CV member of
199	miRNA families (e.g., the 17/92 clusters); and 4) pick the top 10 remaining candidates by CV:
200	let-7b-5p, -miR-21-5p, -27a-3p, -28-3p, -29a-3p, -30b-5p, -92a-3p, -197-3p, -200c-3p, and -
201	320a-3p.

202

203 **Individual RT-qPCR Assays**

204 Individual TaqMan miRNA qPCR assays were performed as previously described [36] for miRs-

205 19a-3p (Thermo Fisher Assay ID #000395), -186-5p (Thermo Fisher Assay ID #002285), -451a-

206 5p (Thermo Fisher Assay ID #001105), -200c-3p (Thermo Fisher Assay ID #002300), -222-3p

207 (Thermo Fisher Assay ID #002276), -193b-3p (Thermo Fisher Assay ID #002367), -181a-5p

208 (Thermo Fisher Assay ID #000480), and -125b-5p (Thermo Fisher Assay ID #00449). We also

209 measured miR-375-3p (Thermo Fisher Assay ID #00564), which was not included on the array.

210 Data were adjusted to Cqs of miR-16-5p and miR-19a-3p, but conclusions were robust to

211 different normalization methods.

212

213 **Blood Cell Isolation and Monocyte-Derived Macrophage Culture**

214 Total PBMCs were obtained from freshly drawn blood from human donors under a Johns

- 215 Hopkins University School of Medicine IRB-approved protocol (JHU IRB #CR00011400).
- 216 Blood was mixed with 10% Acid Citrate Dextrose (ACD) (Sigma Aldrich, St. Louis, MO Cat #:

217	C3821 Lot #: SLBQ6570V) with gentle mixing by inversion. Within 15 minutes of draw, blood
218	was diluted with equal volume of PBS+ 2% FBS, gently layered onto room temperature Ficoll
219	(Biosciences AB, Uppsala, Sweden Cat #:17-1440-03 Lot #: 10253776) in Sepmate-50 tubes
220	(STEMCELL Technologies, Vancouver, BC, Canada Cat #: 15450 Lot #: 06102016) and
221	centrifuged for 10 minutes at $1200 \times g$. Plasma and PBMC fractions were removed, washed in
222	PBS+ 2% FBS, and pelleted at $300 \times g$ for 8 minutes. Pellets from 5 tubes were combined by
223	resuspension in 10 mL RBC lysis buffer (4.15 \Box g NH ₄ Cl, 0.5 \Box g KHCO ₃ , 0.15 \Box g EDTA in
224	450 \square mL H ₂ O; pH adjusted to 7.2–7.3; volume adjusted to 500 \square mL and filter-sterilized); total
225	volume was brought to 40 mL with RBC lysis buffer. After incubation at 37 °C for 5 mins, the
226	suspension was centrifuged at $400 \times g$ for 6 mins at room temperature. The cell pellet was
227	resuspended in Macrophage Differentiation Medium with 20% FBS (MDM20) to a final
228	concentration of 2×10^6 cells/mL. PBMCs were plated at 4×10^6 cells per well in 12-well plates
229	and cultured in MDM20 for 7 days. One half of the total volume of medium was replaced on day
230	3. On day 7, cells were washed 3 times with PBS to remove non-adherent cells. The medium was
231	replaced with Macrophage Differentiation Medium with 10% serum (MDM10) and cultured
232	overnight prior to transfection.

233

234 miRNA Mimic Transfection

Differentiated macrophages were transfected with 50 nM miRNA-186-5p using Lipofectamine
2000 (Invitrogen/Life Technologies, Carlsbad, CA Cat #: 11668-019 Lot #:1467572) diluted in

237 OptiMEM Reduced Serum Medium (Gibco, Grand Island, NY Cat #: 31985-070 Lot #:

238 1762285). Controls included mock transfections and transfection of 50 nM siRNA oligo labeled

with Alexa Fluor 555 (Invitrogen, Fredrick, MD Cat #: 14750-100 Lot #: 1863892). Plates were

240	incubated for 6 hours at 37 °C. After incubation, successful transfection was confirmed by
241	examining uptake of labeled siRNA with an Eclipse TE200 inverted microscope (Nikon
242	Instruments, Melville, NY). Transfection medium was removed. The plates were washed with
243	PBS and refed with 2 mL fresh MDM10 medium.
244	
245	HIV Infection
246	HIV-1 BaL stocks were generated from infected PM1 T-lymphocytic cells and stored at $-80\square$ °C.
247	24 hours after mimic or mock transfections, macrophages were infected with HIV BaL and
248	incubated overnight (stock, 80 μ g p24/mL, diluted to 200 ng p24/mL). At days 3, 6, and 9 post-
249	infection, 500 μ L supernatant was collected for p24 release assays and cells were lysed with 600
250	µL mirVana lysis buffer for subsequent RNA isolation and analysis.
251	
252	HIV p24 Antigen ELISA
253	Supernatant samples were lysed with Triton-X at a final concentration of 1%. The DuPont HIV-1
254	p24 Core Profile ELISA kit (Perkin Elmer, Waltham, MA Cat #: NEK050B001KT Lot #: 990-
255	17041) was used per manufacturer's instructions to measure p24 concentration based on the
256	provided standard.
257	
258	Total RNA Isolation
259	Total RNA was isolated using the mirVana miRNA Isolation Kit per manufacturer's protocol
260	(Ambion, Vilnius, Lithuania Cat #: AM1560 Lot #: 1211082). Note that this procedure yields
261	total RNA, not just small RNAs. After elution with 100 μ L RNase-free water, nucleic acid

262	concentration was measured using a NanoDrop 1000 spectrophotometer (Thermo Fisher
263	Scientific, Wilmington, DE). RNA isolates were stored at -80 °C.
264	

265 HIV Gag RNA RT-qPCR

- 266 Real-time one-step reverse transcription quantitative PCR was performed with the QuantiTect
- 267 Virus Kit (Qiagen, Foster City, CA Cat #:211011 Lot #: 154030803). Each 25 μl reaction
- 268 mixture contained 15 µl of master mix containing HIV-1 RNA standard, 100 µM of FAM dye
- and IBFQ quencher labeled Gag probe (5' ATT ATC AGA AGG AGC CAC CCC ACA AGA
- 270 3'), 600 nM each of Gag1 forward primer (5'TCA GCC CAG AAG TAA TAC CCA TGT 3')
- and Gag2 reverse primer (5' CAC TGT GTT TAG CAT GGT GTT T 3'), nuclease-free water,

and QuantiTect Virus RT mix, and 10 µL serial-diluted standard or template RNA. No-template

273 control and no reverse transcriptase controls were included. Linear standard curve was generated

- by plotting the log copy number versus the quantification cycle (C_{α}) value. Log-transformed Gag
- 275 copy number was calculated based on the standard curve.
- 276

277 Macrophage Viability Assessment by MTT Cell Proliferation Assay

2785 mg 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) (Vybrant MTT cell

proliferation assay kit, Invitrogen, Eugene, OR Cat #: V13154 Lot #: 1897699) was dissolved in

280 1mL of PBS and incubated in the dark for 20 mins. Dissolved MTT was then diluted in 12 mL of

- 281 phenol red-free MDM10 medium. Macrophages in 12 well plates were washed with 2 mL PBS.
- 282 1 mL of MTT/MDM10 medium was added to each well and incubated at 37 °C for 45 mins. 12
- 283 mL of 0.01N hydrochloric acid was added to dissolve SDS, and 1 mL acidified SDS solution was
- added to each well and mixed thoroughly until all formazan crystals were dissolved. Formazan

- 285 quantification was performed using an iMark microplate absorbance reader (BioRad, Hercules,
- 286 CA) with a 570 nm test wavelength. Data were expressed as mean absorbance value (OD) of
- 287 duplicate samples plus standard error of the mean.
- 288

289 Data analysis

- 290 Data processing and analysis were conducted using tools from Microsoft Excel (geometric mean
- 291 normalization), Apple Numbers, GraphPad Prism, the MultiExperiment Viewer, and
- 292 R/BioConductor packages including pheatmap (<u>http://CRAN.R-project.org/package=pheatmap</u>;
- 293 quantile normalization, Euclidean distance, self-organizing maps, self-organizing tree algorithms,
- k-means clustering). Figures and tables were prepared using R Studio, Microsoft Excel and
- 295 Word, Apple Numbers and Keynote, GraphPad Prism, and Adobe Photoshop.

296

297 Data Availability and Rigor and Reproducibility

Array data have been deposited with the Gene Expression Omnibus (GEO) [37] as GSE107856.

- 299 Data in other formats are available upon request. To the extent that sample quantities would
- allow, the MISEV2014 recommendations for EV studies were followed [38, 39], and the EV
- 301 experiments have been registered with the EV-TRACK knowledgebase [40] with preliminary
- 302 EV-TRACK code XL5296IL.

304 **RESULTS**

305 Abnormal menstrual cycle of SIV-infected macaques and ovulation-associated changes in 306 levels of CVL EV-enriched particles

307 Plasma and CVL were collected from two control and four SIV-infected macaques over the

308 course of five weeks (Supplemental Figure 1). Abnormal cycling was observed for infected

309 subjects (K. Mulka, et al, manuscript in preparation). By nanoparticle tracking analysis, CVL EV

310 concentration increased during ovulation (Figure 1A). Transmission electron microscopy was

311 performed for representative fractions of CVL, revealing bacteria and associated particles in the

312 $1,000 \times g$ pellet (Figure 1B). The 100,000 x g pellet included apparent EVs up to 200 nm in

diameter (Figure 1C). EV markers (shown: CD63 and CD81) were confirmed by Western blot in

314 samples from control and infected subjects (Figure 1D). Calnexin was found only in tissue

315 samples (Figure 1E). Interestingly, neither TSG101 nor syntenin (considered to be luminal EV

316 proteins) could be detected in the EV-enriched fractions of CVL (Figure 1E), potentially

317 indicating a predominance of surface-released EVs over endosomal-origin exosomes in these

318 preparations.

319

320 Extracellular miRNAs of the cervicovaginal compartment

321 Based upon preliminary findings from a study of human CVL (Hancock and Witwer,

322 unpublished data), we designed a custom TaqMan low-density array (TLDA) to measure 47

323 miRNAs expected to be present in CVL, along with the snRNA U6. CVL from all subjects and

at all time points was fractionated by stepped centrifugation to yield a 10,000 x g pellet (10K

pellet or p10), a 100,000 x g pellet (UC pellet or p100), and 100,000 x g supernatant (UC

326	supernatant or S100). Total RNA from all fractions was profiled by TLDA. Raw (Figure 2A),
327	quantile normalized (Figure 2B), and geometric mean-adjusted Cq values (Figure 2C) were
328	subjected to unsupervised hierarchical clustering. This clustering did not reveal broad miRNA
329	profile differences associated with sample collection time, menstruation, or SIV infection.
330	
331	Distribution of miRNAs across CVL fractions
332	Across the three examined CVL fractions (p10, p100, S100), the ten most abundant miRNAs
333	(lowest Cq values) were miRs-223-3p, -203a-3p, -24-3p, -150-5p, -146a-5p, -21-5p, -222-3p, -
334	92a-3p, -17-5p, and -16-5p. The average normalized Cq value for each miRNA was greater (i.e.,
335	lower abundance) in the p100 than in the S100 fraction (Figure 3A and inset), and indeed in p10
336	and p100 combined (Figure 3B), suggesting that most miRNA in CVL, as in various body fluids,
337	is found outside the EV-enriched fractions. Considering all fractions, the differences between the
338	EV-enriched and EV-depleted fractions were significant even after Bonferroni correction for all
339	features except U6, miR-191-5p, and miR-451a-5p. On average, the S100 fraction contained
340	86.5% of the total miRNA from these three fractions. In the p10 fraction, the average miRNA
341	was detected at 10.5% its level in the S100 fraction (SD=5.7%). miR-34a-5p had the lowest
342	(5.9%) and miR-28-3p the highest (33.7%) abundance compared with S100. In the p100 fraction,
343	miRNAs were on average 5.6% (SD=2.4%) as abundant as in S100. The least represented in
344	p100 was miR-27a-3p (2.3%), and the best represented was again miR-28-3p (13.4%). miRNA
345	rank was significantly correlated across fractions, despite minor differences in order (Figure 3C).
346	

347 **qPCR validation**

348	Individual stem loop RT/hydrolysis probe qPCR assays were used to verify TLDA results for
349	miRs-19a-3p, -186-5p, -451a-5p, -200c-3p, -222-3p, -193b-3p, -181a-5p, and -125b-5p. miR-
350	375-3p (not included on the array), was also measured because of a reported association with
351	goblet cells (12). Results of qPCR assays, adjusted by miR-16-5p for each sample, are shown in
352	Figure 4A. Figure 4B compares miRNA ranks (1-11) by TLDA and individual qPCR, which are
353	generally in concordance. Note that expression of red blood cell miRNA miR-451a-5p was low,
354	suggesting minimal contamination from blood for most samples.

355

356 miRNAs and retroviral infection status

An association of miRNA abundance with infection status could yield novel biomarkers as well as clues to roles of miRNA in modulating infection. However, the small number of subjects in our study was a challenge. Nevertheless, by considering all subjects and time points together for both infected and uninfected subjects, microarray data suggested a slightly reduced abundance of miRs-186-5p, -222-3p, and -200c-3p in infected samples, while qPCR revealed differential abundance of miRs-186-5p, -375-3p, and -125b-5p. (Figure 5). miR-186-5p was thus identified by both techniques as potentially associated with retroviral infection.

364

365 miR-186-5p inhibits HIV p24 release by monocyte-derived macrophages. To assess a

366 possible influence of miR-186-5p ("miR-186") on retroviral replication, we introduced miR-186

- 367 mimic or control RNAs into monocyte-derived macrophages 24 hours before infection or not
- 368 with HIV. At days 3, 6, and 9 post-infection (dpi), we measured HIV release (capsid p24 protein
- in culture supernatant) and transcription (cellular Gag mRNA copy number). By p24 release,

370	robust infection was observed by 3 dpi, and p24 counts increased by two-fold or more by 9 dpi
371	(Figure 6A) for multiple replicate experiments with cells from three donors. Compared with
372	infected, untreated controls, mock-transfected cells (not shown), and cells transfected with a
373	negative control RNA (labeled with a fluorophore to assess transfection efficiency), miR-186
374	transfection was associated with a significant decline of released p24 at all time points (ANOVA
375	with Bonferroni correction) (Figure 6B-D). The negative control condition showed a suppressive
376	trend that reached nominal significance at 9 dpi. However, miR-186-associated suppression was
377	significantly greater at all time points.
378	

379 No consistent effect of miR-186 on HIV RNA abundance

Using a gag qPCR/standard curve, we quantitated full-length HIV-1 transcript in cells from three
donors. In cells from only one of three donors were fewer HIV-1 copies associated with miR-186
mimic transfection (Figure 7). Overall, there was no statistically significant difference in HIV
RNA between the conditions.

384

386 **DISCUSSION**

387 Cervicovaginal lavage and CVL EVs and exRNPs, like EVs in the uterus [41, 42], may offer 388 information about the health of the reproductive tract as well as clues about factors that facilitate 389 or block transmission of infectious agents. Proteomic analyses of human [43] and rhesus 390 macaque [44] CVL have suggested a core proteome and a highly variable proteome that responds 391 to changes in pregnancy status, menstruation, infection, and other stressors. However, exRNA 392 and extracellular vesicle profiles are less understood in this compartment. Thus, the major 393 finding of this study is further characterization of CVL fluid of primates, including extracellular 394 vesicle and miRNA profiles. EVs could be liberated from vaginal secretions by lavage, and these 395 EVs could be concentrated using a standard stepped centrifugation procedure, with enrichment 396 of positive (membrane-associated) markers and apparent absence of a cellular negative control. 397 Furthermore, both EV-replete and EV-depleted fractions of CVL contained abundant miRNA. 398 As reported for other biological fluids [27, 45], miRNA concentration was highest in the EV-399 depleted CVL fractions, not in EV-enriched ultracentrifuged pellets, consistent with packaging 400 of most extracellular miRNA into exRNPs; the function, if any, of extracellular miRNAs in the 401 cervicovaginal tract of healthy individuals remains to be determined. We observed minimal 402 differences in extracellular miRNA profiles between SIV-infected and uninfected subjects or, 403 most surprisingly, during the course of the menstrual cycle, suggesting a certain stability of 404 extracellular miRNA in the compartment. Correlation of miRNA concentrations in EV-depleted 405 and -replete fractions was also apparent. Based on relative abundance, miRNAs in EVs and 406 exRNPs of CVL are likely derived from epithelial cells (including goblet cells), and cells of the 407 immune system (as suggested, e.g., by myeloid-enriched miR-223 and lymphocyte-enriched 408 miR-150) [46]. Of the most abundant miRNAs we identified, many have been ascribed tumor-

409	suppressive roles in various types of cancer (14-19). Also, miR-223 and miR-150 have been
410	described as "anti-HIV" miRNAs [53] among a variety of reported antiretroviral sRNAs, both
411	host and viral [54–59]. Given their relative abundance in the vaginal tract, a common site for
412	HIV infection, these miRNAs may contribute to antiviral defenses.
413	Along these lines, a second major finding of this study is a possible role for miR-186 in anti-
414	retroviral defense. In contrast with an early report of direct binding of host miRNAs to retroviral
415	transcripts and subsequent suppression [53], it now appears that this mechanism of suppression is
416	relatively uncommon [60], and that anti-HIV miRNAs may exert effects through control of host
417	genes instead [e.g., [61]]. Our data also support the conclusion that reduction of HIV RNA levels
418	is not the main mechanism for miR-186-mediated suppression of HIV release.
419	We would like to emphasize several weaknesses of the study and opportunity for future research:
420	1) We used stepped ultracentrifugation without density gradients because of the small sample
421	volumes available. Although stepped ultracentrifugation remains a widely used method for EV
422	enrichment [33, 62], subsequent gradients or alternative isolation methods could be attempted
423	with larger volume samples to increase purity in future. Possibly, our study overestimates the
424	abundance of miRNAs in CVL EVs, and differential packaging into EVs and exRNPs is masked
425	by contamination of our EV preps with exRNPs.
426	2) Our qPCR array approach and focus on miRNAs leaves room for additional work. While we

427 are confident that our array captured most of the abundant miRNAs in CVL, sequencing short428 and longer RNAs could reveal additional markers.

3) The small number of subjects and the absence of obvious menstrual cycle in infected subjectsprecludes strong conclusions about EV or miRNA associations with either infection or the

431	menstrual cycle. For example, we did not observe the expected increase in miR-451a or other red
432	blood cell-specific miRNAs during menstruation. However, since only two animals showed
433	evidence of cycling, experiments with more subjects and larger sample volumes are needed.
434	4) Our previous criticisms of miRNA functional studies [63] also apply to our work here.
435	Additional work is needed to prove that miR-186 can regulate retroviral release at endogenous
436	levels, that it is present in active RNPs [64], its interactions with host targets, and a mechanism
437	for viral suppression. Finally, it is possible, but must be demonstrated, that miR-186 acts in a
438	paracrine fashion via EV or exRNP shuttles.
439	5) We have investigated the effects of miR-186 only in monocyte-derived macrophages. We
440	chose to begin with this cell type because of the abundance of miR-223 and the known role of
441	macrophages in the epithelium. Other cell types should also be investigated.
442	Overall, the results presented here support further development of CVL and its constituents as a
443	window into the health of the cervicovaginal compartment.
444	
445	
446	
447	

448 ACKNOWLEDGMENTS

- 449 The authors thank Robert Adams, Lauren Ostrenga, and Sarah Beck for contributions to these
- 450 studies. The authors gratefully acknowledge the Oregon National Primate Research Center and
- 451 David Erikson for hormone analyses and endocrinology advice and thank Barbara Smith of the
- 452 JHU IBBS Microscope Facility for expert assistance with electron microscopy. Amanda Steele
- 453 provided paid assistance with editing and organizing an early version of the manuscript.

455 AUTHOR CONTRIBUTIONS

- 456 All authors have accepted responsibility for the entire content of this submitted manuscript and
- 457 approved submission. ZZ and DM performed experiments and analyses and contributed to
- 458 writing the paper; KM and DM collected and processed samples; KAMP provided clinical
- 459 assistance; ZL, BHP, and GVH performed experiments; KWW planned and directed the studies,
- 460 conducted analyses, and wrote and edited the manuscript.

461

462 FUNDING

This work was supported in part by the US National Institutes of Health through R01 DA040385
(to KWW); by the Johns Hopkins University Center for AIDS Research, an NIH funded program
(P30AI094189; pilot grant to KWW and summer research fellowship to ZZ); and by the National
Center for Research Resources and the Office of Research Infrastructure Programs (ORIP) and
the National Institutes of Health (P40 OD013117). DM and KM received support through NIH
T32 OD011089.

469

470 **COMPETING INTERESTS**

The authors have no competing interests to declare. The funding organization(s) played no role
in the study design; in the collection, analysis, and interpretation of the data; in the writing of the
report; or in the decision to submit the report for publication.

474 **REFERENCES**

475	1.	Hanson EK, Ballantyne J (2013) Highly specific mRNA biomarkers for the identification			
476		of vaginal secretions in sexual assault investigations. Sci Justice 53:14-22. doi:			
477		10.1016/j.scijus.2012.03.007			
478	2.	Jakubowska J, MacIejewska A, Pawłowski R, Bielawski KP (2013) MRNA profiling for			
479		vaginal fluid and menstrual blood identification. Forensic Sci Int Genet 7:272–278. doi:			
480		10.1016/j.fsigen.2012.11.005			
481	3.	Park JL, Kwon OH, Kim JH, et al (2014) Identification of body fluid-specific DNA			
482		methylation markers for use in forensic science. Forensic Sci Int Genet 13:147-153. doi:			
483		10.1016/j.fsigen.2014.07.011			
484	4.	Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body			
485		fluids using a panel of differentially expressed microRNAs. Anal Biochem 387:303–314.			
486		doi: 10.1016/j.ab.2009.01.037S0003-2697(09)00065-7 [pii]			
487	5.	Liu J, Sun H, Wang X, et al (2014) Increased Exosomal MicroRNA-21 and MicroRNA-			
488		146a Levels in the Cervicovaginal Lavage Specimens of Patients with Cervical Cancer.			
489		Int J Mol Sci Int J Mol Sci 15:758–773. doi: 10.3390/ijms15010758			
490	6.	Gravett MG, Thomas A, Schneider KA, et al (2007) Proteomic Analysis of			
491		Cervical-Vaginal Fluid: Identification of Novel Biomarkers for Detection of Intra-			
492		amniotic Infection. J Proteome Res 6:89-96. doi: 10.1021/pr060149v			
493	7.	Burgener A, Boutilier J, Wachihi C, et al (2008) Identification of differentially expressed			
494		proteins in the cervical mucosa of HIV-1-resistant sex workers. J Proteome Res 7:4446-			

495 4454. doi: 10.1021/pr800406r

496	8.	Zevin AS, Xie IY, Birse K, et al (2016) Microbiome Composition and Function Drives			
497		Wound-Healing Impairment in the Female Genital Tract. PLoS Pathog 12:e1005889. doi:			
498		10.1371/journal.ppat.1005889			
499	9.	Boggiano C, Littman DR (2007) HIV's Vagina Travelogue. Immunity 26:145–147. doi:			
500		10.1016/j.immuni.2007.02.001			
501	10.	Patel M V., Ghosh M, Fahey J V., et al (2014) Innate Immunity in the Vagina (Part II):			
502		Anti-HIV Activity and Antiviral Content of Human Vaginal Secretions. Am J Reprod			
503		Immunol 72:22–33. doi: 10.1111/aji.12218			
504	11.	Benki S, Mostad SB, Richardson BA, et al (2008) Increased levels of HIV-1-infected cells			
505		in endocervical secretions after the luteinizing hormone surge. J Acquir Immune Defic			
506		Syndr 47:529–34. doi: 10.1097/QAI.0b013e318165b952			
507	12.	Zara F, Nappi RE, Brerra R, et al (2004) Markers of local immunity in cervico-vaginal			
508		secretions of HIV infected women: implications for HIV shedding. Sex Transm Infect			
509		80:108–112. doi: 10.1136/sti.2003.005157			
510	13.	Gardella B, Roccio M, Maccabruni A, et al (2011) HIV shedding in cervico-vaginal			
511		secretions in pregnant women. Curr HIV Res 9:313-20. doi: Abs: CHIVR-162 [pii]			
512	14.	Seaton KE, Ballweber L, Lan A, et al (2014) HIV-1 specific IgA detected in vaginal			
513		secretions of HIV uninfected women participating in a microbicide trial in Southern			
514		Africa are primarily directed toward gp120 and gp140 specificities. PLoS One. doi:			
515		10.1371/journal.pone.0101863			

516	15.	Ghosh M, Fahey J V., Shen Z, et al (2010) Anti-HIV activity in cervical-vaginal
517		secretions from HIV-Positive and -Negative women correlate with innate antimicrobial
518		levels and IgG antibodies. PLoS One. doi: 10.1371/journal.pone.0011366
519	16.	Clemetson DB, Moss GB, Willerford DM, et al (1993) Detection of HIV DNA in cervical
520		and vaginal secretions. Prevalence and correlates among women in Nairobi, Kenya. Jama
521		269:2860–2864. doi: 10.1016/0020-7292(94)90090-6
522	17.	Rahman S, Rabbani R, Wachihi C, et al (2013) Mucosal serpin A1 and A3 levels in HIV
523		highly exposed sero-negative women are affected by the menstrual cycle and hormonal
524		contraceptives but are independent of epidemiological confounders. Am J Reprod
525		Immunol 69:64–72. doi: 10.1111/aji.12014
526	18.	Yáñez-Mó M, Siljander PR-M, Andreu Z, et al (2015) Biological properties of
527		extracellular vesicles and their physiological functions. J Extracell vesicles 4:27066.
528	19.	Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for
529		extracellular vesicles. J Extracell Vesicles. doi: 10.3402/jev.v2i0.2038920389 [pii]
530	20.	Meehan B, Rak J, Di Vizio D (2016) Oncosomes - large and small: what are they, where
531		they came from? J Extracell vesicles 5:33109.
532	21.	György B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of
533		extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol
534		55:439-64. doi: 10.1146/annurev-pharmtox-010814-124630
535	22.	Witwer KW, Buzás EI, Bemis LT, et al (2013) Standardization of sample collection,
536		isolation and analysis methods in extracellular vesicle research. J Extracell vesicles 2:1-25.

537 doi: 10.3402/jev.v2i0.20360

538	23.	Smith JA, Daniel R (2016) Human vaginal fluid contains exosomes that have an inhibitory
539		effect on an early step of the HIV-1 life cycle. AIDS. doi:

- 540 10.1097/QAD.00000000001236
- 541 24. Muth DC, McAlexander MA, Ostrenga LJ, et al (2015) Potential role of cervicovaginal
- 542 extracellular particles in diagnosis of endometriosis. BMC Vet Res 11:187. doi:
- 543 10.1186/s12917-015-0513-7
- 544 25. Sergeeva AM, Pinzon Restrepo N, Seitz H (2013) Quantitative aspects of RNA silencing
- 545 in metazoans. Biochem 78:613–626. doi: 10.1134/S0006297913060072BCM78060795
 546 [pii]
- 547 26. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–
 548 233. doi: S0092-8674(09)00008-7 [pii]10.1016/j.cell.2009.01.002
- 549 27. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of
- 550 extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233. doi: gkr254
- 551 [pii]10.1093/nar/gkr254
- 552 28. Arroyo JD, Chevillet JR, Kroh EM, et al (2011) Argonaute2 complexes carry a population
- of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U

554 S A 108:5003–5008. doi: 1019055108 [pii]10.1073/pnas.1019055108

- 555 29. Witwer KW, Sarbanes SL, Liu J, Clements JE (2011) A plasma microRNA signature of
- acute lentiviral infection: biomarkers of CNS disease. AIDS 204:1104–1114. doi:
- 557 10.1097/QAD.0b013e32834b95bf

558	30.	Zubakov D, Boersma AW, Choi Y, et al (2010) MicroRNA markers for forensic body
559		fluid identification obtained from microarray screening and quantitative RT-PCR
560		confirmation. Int J Leg Med 124:217-226. doi: 10.1007/s00414-009-0402-3
561	31.	Seashols-Williams S, Lewis C, Calloway C, et al (2016) High-throughput miRNA
562		sequencing and identification of biomarkers for forensically relevant biological fluids.
563		Electrophoresis. doi: 10.1002/elps.201600258
564	32.	Muth DC, McAlexander MA, Ostrenga LJ, et al (2015) Potential role of cervicovaginal
565		extracellular particles in diagnosis of endometriosis. Bmc Vet Res. doi: 10.1186/s12917-
566		015-0513-7
567	33.	Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of
568		exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol
569		Chapter 3:Unit 3 22. doi: 10.1002/0471143030.cb0322s30
570	34.	McAlexander MA, Phillips MJ, Witwer KW (2013) Comparison of methods for miRNA
571		extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front
572		Genet 4:83. doi: 10.3389/fgene.2013.00083
573	35.	Chen C, Ridzon DA, Broomer AJ, et al (2005) Real-time quantification of microRNAs by
574		stem-loop RT-PCR. Nucleic Acids Res 33:e179. doi: 33/20/e179 [pii]10.1093/nar/gni178
575	36.	Witwer KW, Sarbanes SL, Liu J, Clements JE (2011) A plasma microRNA signature of
576		acute lentiviral infection: biomarkers of central nervous system disease. AIDS 25:2057-
577		2067. doi: 10.1097/QAD.0b013e32834b95bf
578	37.	Clough E, Barrett T (2016) The Gene Expression Omnibus Database. Methods Mol Biol

579 1418:93–110. doi: 10.1007/978-1-4939-3578-9_5

580	38.	Lotvall J, Hill AF, Hochberg F, et al (2014) Minimal experimental requirements for
581		definition of extracellular vesicles and their functions: a position statement from the
582		International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. doi:
583		10.3402/jev.v3.26913
584	39.	Witwer KW, Soekmadji C, Hill AF, et al (2017) Updating the MISEV minimal
585		requirements for extracellular vesicle studies: building bridges to reproducibility. J
586		Extracell Vesicles. doi: 10.1080/20013078.2017.1396823
587	40.	Van Deun J, Mestdagh P, Agostinis P, et al (2017) EV-TRACK: transparent reporting and
588		centralizing knowledge in extracellular vesicle research. Nat Methods 14:228–232. doi:
589		10.1038/nmeth.4185
590	41.	Nguyen HPT, Simpson RJ, Salamonsen LA, Greening DW (2016) Extracellular Vesicles
591		in the Intrauterine Environment: Challenges and Potential Functions. Biol Reprod 95:109-
592		109. doi: 10.1095/biolreprod.116.143503
593	42.	Campoy I, Lanau L, Altadill T, et al (2016) Exosome-like vesicles in uterine aspirates: a
594		comparison of ultracentrifugation-based isolation protocols. J Transl Med 14:180. doi:
595		10.1186/s12967-016-0935-4
596	43.	Zegels G, Aa G, Raemdonck V, et al (2009) Comprehensive proteomic analysis of human
597		cervical-vaginal fluid using colposcopy samples. Proteome Sci. doi: 10.1186/1477-5956-
598		7-17
599	44.	Gravett MG, Thomas A, Schneider KA, et al PROTEOMIC ANALYSIS OF CERVICAL-

600 VAGINAL FLUID: IDENTIFICATION OF NOVEL BIOMARKERS FOR DETECTION

- 601 OF INTRA-AMNIOTIC INFECTION. doi: 10.1021/pr060149v
- 45. Arroyo JD, Chevillet JR, Kroh EM, et al (2011) Argonaute2 complexes carry a population
- 603 of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U
- 604 S A 108:5003–8. doi: 10.1073/pnas.1019055108
- 46. Pritchard CC, Kroh E, Wood B, et al (2012) Blood cell origin of circulating microRNAs: a
- 606 cautionary note for cancer biomarker studies. Cancer Prev Res 5:492–497. doi: 1940-
- 607 6207.CAPR-11-0370 [pii]10.1158/1940-6207.CAPR-11-0370
- 47. Akhter A, Patel JL, Farooq F, et al De Novo Acute Myeloid Leukemia in Adults:
- 609 Suppression of MicroRNA-223 is Independent of LMO2 Protein Expression BUT
- 610 Associate With Adverse Cytogenetic Profile and Undifferentiated Blast Morphology.
- 611 Appl Immunohistochem Mol Morphol 23:733–9. doi: 10.1097/PAI.00000000000145
- 612 48. Tombak A, Ay OI, Erdal ME, et al (2015) MicroRNA Expression Analysis in Patients
- 613 with Primary Myelofibrosis, Polycythemia vera and Essential Thrombocythemia. Indian J
- 614 Hematol Blood Transfus 31:416–25. doi: 10.1007/s12288-014-0492-z
- 615 49. Giray BG, Emekdas G, Tezcan S, et al (2014) Profiles of serum microRNAs; miR-125b-
- 616 5p and miR223-3p serve as novel biomarkers for HBV-positive hepatocellular carcinoma.
- 617 Mol Biol Rep 41:4513–9. doi: 10.1007/s11033-014-3322-3
- 618 50. Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: New Biomarkers for Diagnosis,
- 619 Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics
- 620 5:1122–43. doi: 10.7150/thno.11543

621	51.	Wang S, Zhang R, Claret FX, Yang H (2014) Involvement of microRNA-24 and DNA			
622		methylation in resistance of nasopharyngeal carcinoma to ionizing radiation. Mol Cancer			
623		Ther 13:3163–74. doi: 10.1158/1535-7163.MCT-14-0317			
624	52.	Li J, Hu L, Tian C, et al (2015) microRNA-150 promotes cervical cancer cell growth and			
625		survival by targeting FOXO4. BMC Mol Biol 16:24. doi: 10.1186/s12867-015-0052-6			
626	53.	Huang J, Wang F, Argyris E, et al (2007) Cellular microRNAs contribute to HIV-1			
627		latency in resting primary CD4+ T lymphocytes. Nat Med 13:1241–1247. doi: nm1639			
628		[pii]10.1038/nm1639			
629	54.	Swaminathan S, Murray DD, Kelleher AD (2013) miRNAs and HIV: unforeseen			
630		determinants of host-pathogen interaction. Immunol Rev 254:265-280. doi:			
631		10.1111/imr.12077			
632	55.	Sisk JM, Witwer KW, Tarwater PM, Clements JE (2013) SIV replication is directly			
633		downregulated by four antiviral miRNAs. Retrovirology 10:95. doi: 1742-4690-10-95			
634		[pii]10.1186/1742-4690-10-95			
635	56.	Wang X, Ye L, Zhou Y, et al (2011) Inhibition of anti-HIV microRNA expression: a			
636		mechanism for opioid-mediated enhancement of HIV infection of monocytes. Am J Pathol			
637		178:41–47. doi: S0002-9440(10)00089-1 [pii]10.1016/j.ajpath.2010.11.042			
638	57.	Swaminathan S, Suzuki K, Seddiki N, et al (2012) Differential regulation of the Let-7			
639		family of microRNAs in CD4+ T cells alters IL-10 expression. J Immunol 188:6238-6246.			
640		doi: jimmunol.1101196 [pii]10.4049/jimmunol.1101196			
641	58.	Klase Z, Kale P, Winograd R, et al (2007) HIV-1 TAR element is processed by Dicer to			

642	yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol
643	Biol 8:63. doi: 1471-2199-8-63 [pii]10.1186/1471-2199-8-63

- 644 59. Wagschal A, Rousset E, Basavarajaiah P, et al (2012) Microprocessor, Setx, Xrn2, and
- 645 Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell

646 150:1147–1157. doi: 10.1016/j.cell.2012.08.004S0092-8674(12)00999-3 [pii]

- 647 60. Whisnant AW, Bogerd HP, Flores O, et al (2013) In-Depth Analysis of the Interaction of
- 648 HIV-1 with Cellular microRNA Biogenesis and Effector Mechanisms. MBio. doi:
- 649 10.1128/mBio.00193-13e00193-13 [pii]mBio.00193-13 [pii]
- 650 61. Sung TL, Rice AP (2009) miR-198 inhibits HIV-1 gene expression and replication in
- monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS
 Pathog 5:e1000263. doi: 10.1371/journal.ppat.1000263
- 653 62. Gardiner C, Vizio D Di, Sahoo S, et al (2016) Techniques used for the isolation and
- 654 characterization of extracellular vesicles: results of a worldwide survey. J Extracell
- 655 Vesicles. doi: 10.3402/jev.v5.32945
- 656 63. Witwer KW, Halushka MK (2016) Towards the Promise of microRNAs Enhancing
 657 reproducibility and rigor in microRNA research. RNA Biol 0. doi:
- 658 10.1080/15476286.2016.1236172
- 659 64. La Rocca G, Olejniczak SH, Gonzalez AJ, et al (2015) In vivo, Argonaute-bound
- 660 microRNAs exist predominantly in a reservoir of low molecular weight complexes not
- associated with mRNA. Proc Natl Acad Sci U S A 112:767–772. doi:
- 662 10.1073/pnas.1424217112

663 FIGURE LEGENDS

664	Figure 1. EVs are found in cervicovaginal lavage. A) Particle concentrations of CVL 100,000
665	\times g ultracentrifuge (UC) pellets (blue) monitored weekly over five weeks for two SIV-negative
666	("control") and four SIV-infected subjects. Red arrows indicate estimated ovulation for SIV-
667	negative subjects. B and C) Transmission electron micrographs of CVL $10,000 \times g$ pellet (B)
668	and $100,000 \times g$ pellet (C) confirm presence of bacteria and EVs (B) and EV-like particles (C).
669	Western blot: enrichment of CD63 and CD81 markers (D) and absence of ER marker calnexin
670	(E) in pooled 10,000 and 10,000 \times g pellet fractions. Vaginal tissue homogenate and dendritic
671	cell 100,000 \times g pellet controls were also positive for CD63 and CD81. EV luminal markers
672	syntenin and TSG101 were present in cellular but not putative EV samples.
673	
674	Figure 2. miRNA profile of CVL fractions. Targeted miRNA profiles were determined by
675	custom TaqMan low-density array (TLDA). Hierarchical clustering of samples and features
676	(Pearson correlation, average linkage) of data: raw (A) or normalized by (B) quantiles or (C) a
677	geometric mean approach as described in the methods. Abundance scale: red (high) to low (blue).
678	
679	Figure 3: Relative abundance of miRNAs in centrifuged CVL fractions. A) Abundant
680	miRNAs in descending order based on Cq values normalized to the geometric mean for each
681	sample. Inset: average of all miRNAs in UC pellet and UC supernatant. Error bars: SEM. B)

- 683 supernatant=S100) are significantly correlated (p<0.0001, Spearman). C) miRNA expression in

684	EV-enriched fractions (p10, p100) as a percentage of total estimated expression		
685	(p10+p100+S100 by Cq) in ascending order, from miR-27a-3p (7.9%) to miR-28-3p (32.0%).		
686			
687	Figure 4. miRNA qPCR validation. A) Stem-loop reverse transcription/qPCR validation of UC		
688	p100 samples, all subjects and time points (individual dots). B) Ranks of abundant miRNAs		
689	based on qPCR and TLDA Cq data.		
690			
691	Figure 5. miR-186-5p downregulation: SIV. A) By TLDA, miRs-186, -222, and -200c were		
692	significantly less abundant in the CVL p100 fraction of infected subjects, ** p \Box < \Box 0.01, ***		
693	p<0.001. B) By qPCR, miRs-186, -375, and -125b were significantly less abundant, **		
694	$p \square < \square 0.01, *** p < 0.001.$		

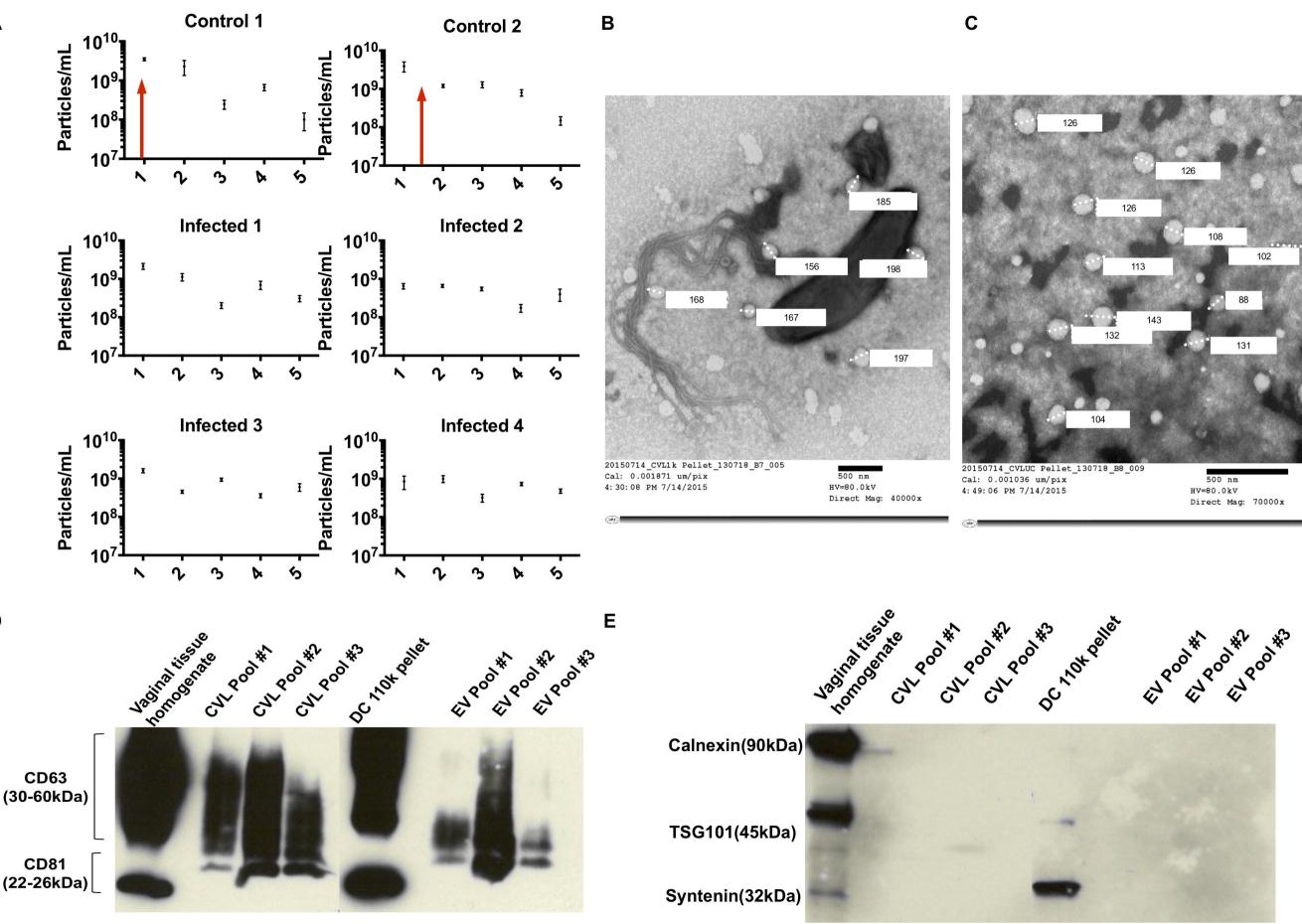
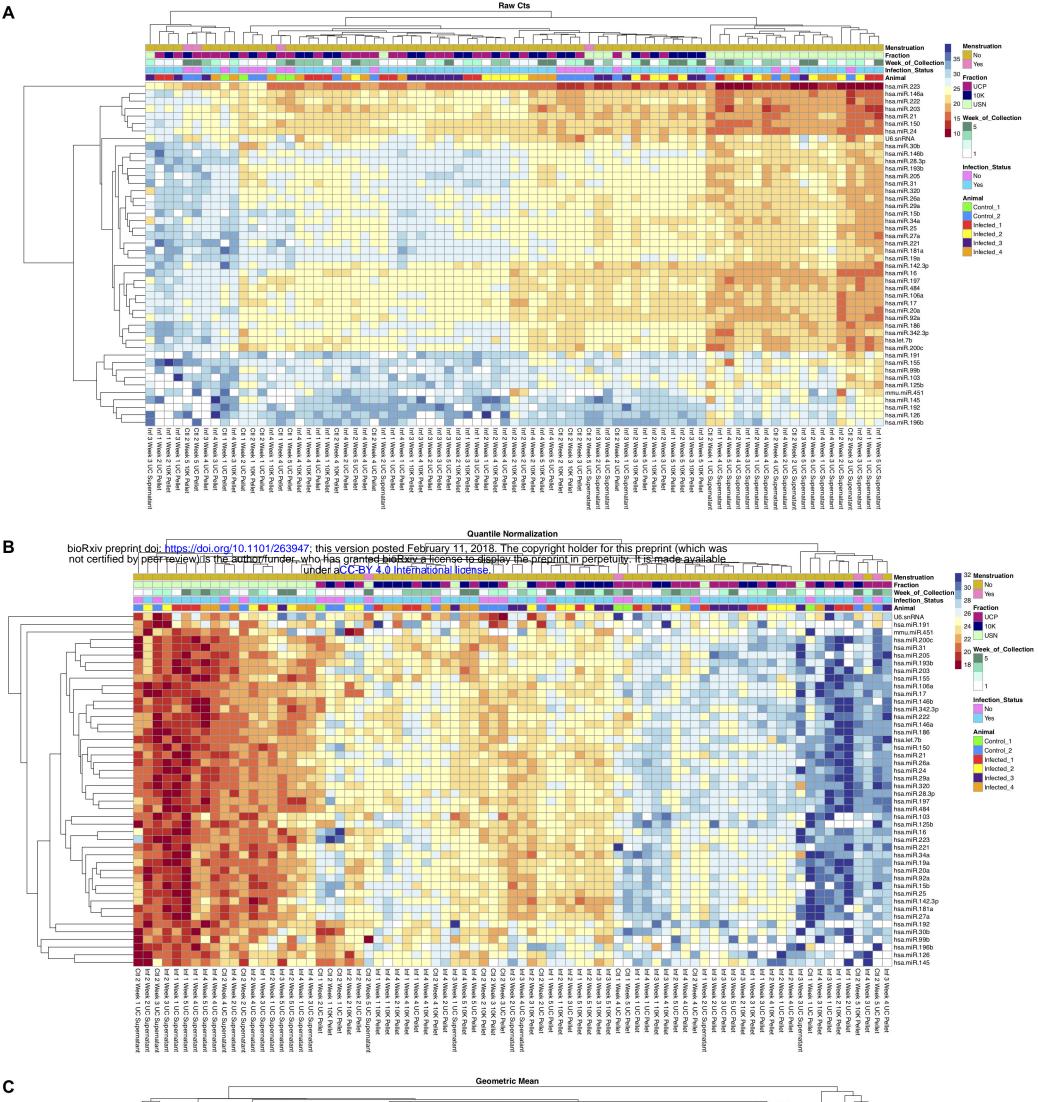
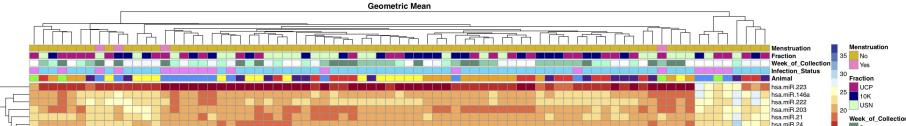
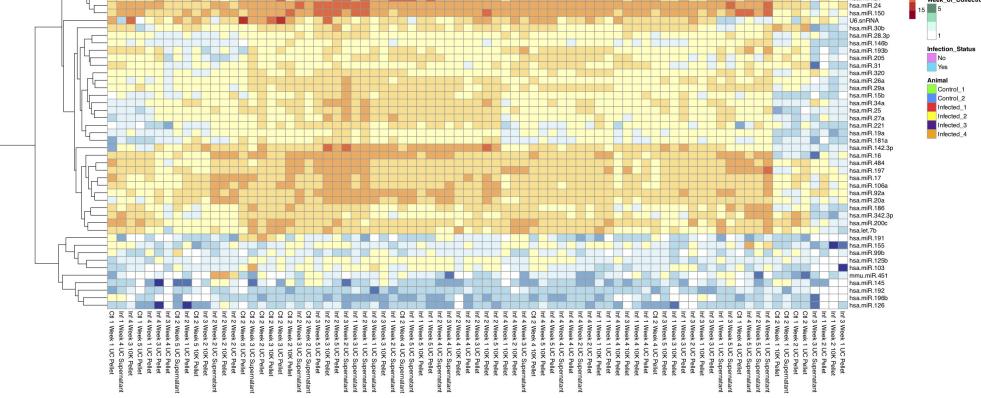
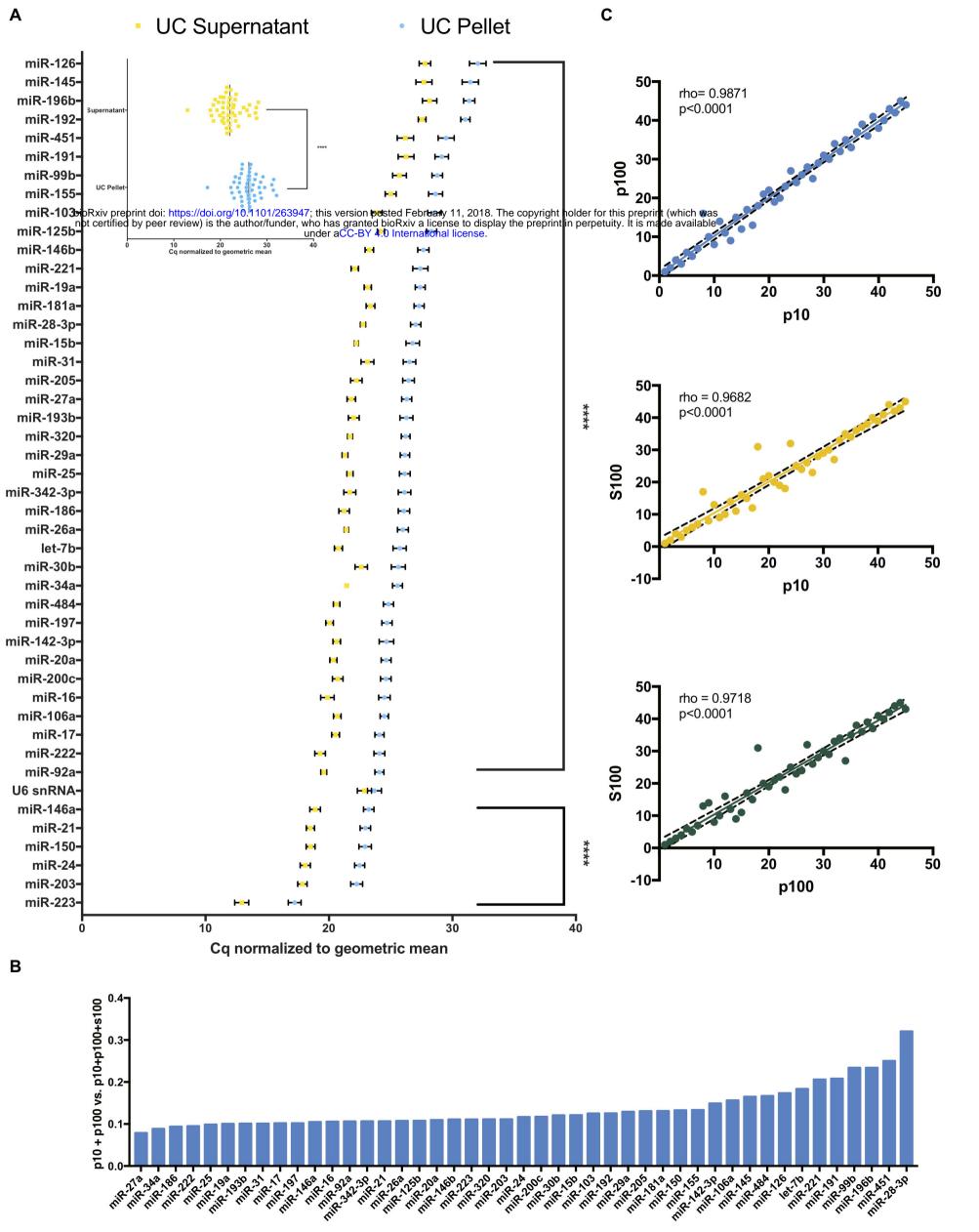

695

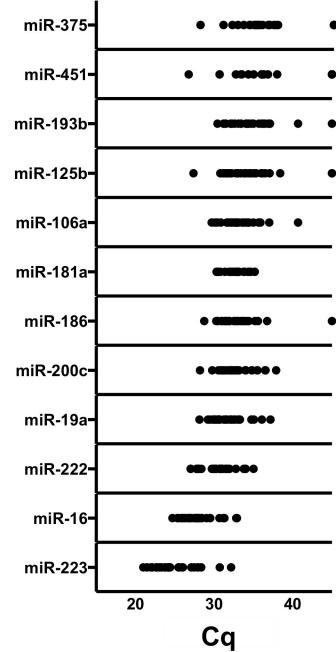
Figure 6: miRNA-186-5p inhibits p24 release. Monocyte-derived macrophages from human donors were infected with HIV-1 BaL. **A)** p24 production increased >2 fold for all donors from 3 to 9 days post-infection (dpi), infected but otherwise untreated cells. **B-D**) Transfection of miR-186 mimic was associated with a decrease of p24 release compared with untransfected controls (NC) and control RNA mimic-transfected controls (RC); ns=not significant, * p<0.05, ** p<0.01, **** p<0.0001 (ANOVA followed by Bonferroni correction for multiple tests). Results were obtained from 8 to 11 replicate experiments with cells from 3 human donors.


703

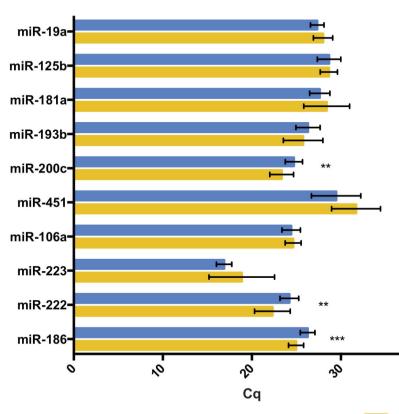

704 Figure 7: miRNA-186-5p mimic transfection inconsistently suppresses HIV-1 gag mRNA

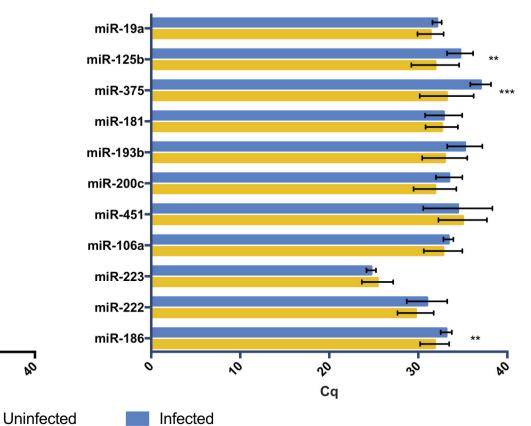

- 705 **production**. Apparent downregulation of gag mRNA (qPCR assay with standard curve) was
- observed in miR-186-transfected monocyte-derived macrophages from only 1 of 3 donors
- 707 compared with control RNA-transfected cells (RC). Overall, results were insignificant by t-test,
- p>0.1, with multiple replicates of cells from 3 human donors.

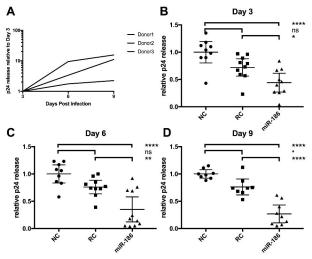


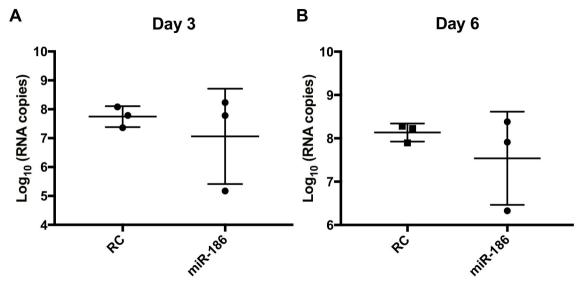

D

В


Rank (qPCR)	miRNA	Rank (TLDA)
1	miR-223-3p	1
2	miR-16-5p	3
3	miR-222-3p	2
4	miR-19a-3p	9
5	miR-200c-3p	4
6	miR-186-5p	6
7	miR-181a-5p	8
8	miR-106a-5p	5
9	miR-125b-5p	10
10	miR-193b-3p	7
11	miR-451a-5p	11


TLDA


Α


В

