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Abstract: The goal of this study was to characterize extracellular vesicles (EVs) and miRNAs of 14 
primate cervicovaginal lavage (CVL) during the menstrual cycle and simian immunodeficiency 15 
virus (SIV) infection, and to determine if differentially regulated CVL miRNAs might influence 16 
retrovirus replication. CVL and peripheral blood were collected from SIV-infected and uninfected 17 
macaques. EVs were enriched by stepped ultracentrifugation and characterized thoroughly. miRNA 18 
profiles were assessed with a medium-throughput stem-loop/hydrolysis probe qPCR platform and 19 
validated by single qPCR assays. Hormone cycling was abnormal in infected subjects, but EV 20 
concentration correlated with progesterone concentration in uninfected subjects. miRNAs were 21 
present predominantly in the EV-depleted CVL supernatant. Only a small number of CVL miRNAs 22 
were found to vary during the menstrual cycle or SIV infection. Among them was miR-186-5p, 23 
which was depleted in retroviral infection. In experiments with infected macrophages in vitro, this 24 
miRNA inhibited HIV replication. These results provide further evidence for the potential of EVs 25 
and small RNAs as biomarkers or effectors of disease processes in the reproductive tract. 26 
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1. Introduction 31 
The cervicovaginal canal is a potential source of biological markers for forensics investigations 32 

1–4, reproductive tract cancers 5–7,  and infections 8–10. Cervicovaginal secretions may be collected by 33 
swab, tampon, or other methods, or secretion components may be liberated by a buffered wash 34 
solution and collected as cervicovaginal lavage (CVL). In addition to utility as biomarkers, 35 
constituents of cervicovaginal secretions, including proteins, certain microbes, and metabolites, exert 36 
function, for example by playing protective roles in wound healing 11 and against HIV-1 infection 12–37 
22. A large and important body of work has thus examined biomarker potential and functional roles 38 
of numerous entities in the cervicovaginal compartment. 39 

Compared with secreted proteins, metabolites, and the microbiome, however, several 40 
components of cervicovaginal fluids are less well understood, including extracellular RNAs 41 
(exRNAs) and their carriers, such as extracellular vesicles (EVs) and ribonucleoprotein complexes 42 
(exRNPs). EVs are potential regulators of cell behavior in paracrine and endocrine fashion due to 43 
their reported abilities to transfer proteins, nucleic acids, sugars, and lipids between cells 23. EVs 44 
comprise a wide array of double-leaflet membrane extracellular particles, including those of 45 
endosomal and cell-surface origin24,25, and range in diameter from 30 nm to well over one micron 46 
(large oncosomes) 26. EV macromolecular composition tends to reflect, but is not necessarily identical 47 
to, that of the cell of origin 27. EVs have been isolated from most cells, as well as biological fluids 23,28, 48 
including cervicovaginal secretions of humans 29 and rhesus macaques 30. 49 

microRNAs (miRNAs) are one of the most studied classes of exRNA. These noncoding RNAs 50 
average 22 nucleotides in length and, in some cases, fine-tune the expression of target transcripts 31,32. 51 
Released from cells by several routes, miRNAs are among the most frequently examined biomarker 52 
candidates in biofluids and, along with some other RNAs, are reported to be transmitted via EVs 33–53 
36. miRNAs are found not only in EVs, but also in free Argonaute-containing protein complexes; the 54 
latter may outnumber the former, at least in blood 37,38. Many miRNAs are also highly conserved 32, 55 
and abundant species typically have 100% identity in humans and nonhuman primates 39. (For this 56 
reason, we will refer to hsa- (Homo sapiens) and mml- (Macaca mulatta) miRNAs without the species 57 
designation unless otherwise warranted by sequence disparity.) While miRNAs have been profiled 58 
in cervicovaginal secretions and menstrual blood, mostly in the forensics setting 4,40,41, their 59 
associations with EV and exRNP fractions require further study. A recent publication reported that 60 
EVs from healthy vaginal secretions inhibited HIV-1 infection 29. Another report found that CVL EVs 61 
(styled “exosomes”) were present at higher concentrations in cervical cancer, and that two miRNAs 62 
were also upregulated 5. Our laboratory described a reduction of CVL EVs in a severe endometriosis 63 
case compared with reproductively healthy primates 30. However, our study, along with others, was 64 
limited by the absence of molecular profiling of EV cargo 30.  65 

Here, we performed targeted miRNA profiling of EV-enriched and -depleted fractions of CVL 66 
and vaginal secretions collected from healthy and retrovirus-infected rhesus macaques. We queried 67 
how CVL EVs and miRNAs are affected by the menstrual cycle, an important potential confounder 68 
of biomarker studies 42. Similarly, we assessed possible associations with simian immunodeficiency 69 
virus (SIV) infection. We report an association of miR-186 levels with SIV infection and find that this 70 
miRNA also appears to have antiretroviral effects in HIV-infected macrophages. These studies 71 
provide baseline information for easily accessed CVL markers including EVs and miRNAs that may 72 
become useful tools in the clinic. 73 
  74 
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2. Materials and Methods  75 
Sample Collection 76 
CVL and whole blood samples were collected weekly for five weeks from two uninfected 77 

(control) and four SIVmac251-infected (infected) rhesus macaques (Macaca mulatta) as previously 78 
described 30. All macaques were negative for simian T-cell leukemia virus and simian type D 79 
retrovirus and were inoculated intravenously. Animals were sedated with ketamine at a dose of 7-10 80 
mg/kg prior to all procedures. CVL was performed by washing the cervicovaginal cavity with 3 mL 81 
of phosphate buffered saline (PBS, Thermo Fisher Scientific, Waltham, MA, USA. Cat #: 14190-144) 82 
directed into the cervicovaginal canal and re-aspirated using the same syringe. Materials and 83 
procedures for sample collection are depicted in Supplemental Figure 1. Volumes of CVL yield across 84 
collection dates were documented in Supplemental Table 1. Whole blood (3 mL) was collected by 85 
venipuncture into syringes containing acid citrate dextrose solution (ACD) (Sigma Aldrich, St. Louis, 86 
MO, USA. Cat #: C3821). 87 

 88 
Study Approvals 89 
All animal studies were approved by the Johns Hopkins University Institutional Animal Care 90 

and Use Committee (IACUC) and conducted in accordance with the Weatherall Report, the Guide 91 
for the Care and Use of Laboratory Animals, and the USDA Animal Welfare Act. 92 

 93 
Sample Processing 94 
Sample processing began within a maximum of 60 minutes of collection and utilized serial 95 

centrifugation steps to enrich EVs as described previously 30, based on a standard EV isolation 96 
protocol 43. Specifically, fluids were centrifuged: (1) 1,000 × g for 15mins at 4°C in a tabletop centrifuge; 97 
(2) 10,000 × g for 20 mins at 4°C; and (3) 110,000 × g for 2 hours at 4°C with a Sorvall Discovery SE 98 
ultracentrifuge (Thermo Fisher Scientific) with an AH-650 rotor (k factor: 53.0) (Supplemental Figure 99 
1B). Following each centrifugation step, most supernatant was removed, taking care not to disturb 100 
the pellet. After each step, supernatant was set aside for nanoparticle tracking analysis (NTA; 200 101 
µL), and RNA isolation (200 µL) following the second and third steps. The pellet was resuspended 102 
in 400 µL of PBS after each centrifugation step. After the final step, the remaining ultracentrifuged 103 
supernatant was concentrated to approximately 220 µL using Amicon Ultra-2 10 kDa molecular 104 
weight cutoff filters (Merck KGaA, Darmstadt, Germany. Cat #: UFC201024). 200 µL of the 105 
concentrate was used for RNA isolation and the remainder was retained for NTA. All samples 106 
reserved for RNA isolation were mixed with 62.6 µL of RNA isolation buffer (Exiqon, Vedbaek, 107 
Denmark. Cat #: 300112. Lot #: 593-84-9n) containing three micrograms of glycogen and 5 pg of 108 
synthetic cel-miR-39 as previously described 44. Processed samples were analyzed immediately or 109 
frozen at -80°C until further use. 110 

For plasma, whole blood was centrifuged at 800 × g for 10 mins at 25°C. Supernatant was 111 
centrifuged twice at 2,500 × g for 10 mins at 25°C. The resulting platelet-poor plasma was aliquoted 112 
and frozen at -80°C. 113 

 114 
Hormone Analysis 115 
Levels of progesterone (P4) and estradiol-17b (E2) were measured in plasma samples shipped 116 

overnight on dry ice to the Endocrine Technology and Support Core Lab at the Oregon National 117 
Primate Research Center, Oregon Health and Science University.  118 

 119 
Nanoparticle Tracking Analysis 120 
Extracellular particle concentration was determined using a NanoSight NS500 NTA system 121 

(Malvern, Worcestershire, UK). Cervicovaginal lavage samples were diluted as needed and specified 122 
in Supplemental Table 2 to ensure optimal NTA analysis. At least five 20-second videos were 123 
recorded for each sample at a camera setting of 12. Data were analyzed at a detection threshold of 124 
two using NanoSight software version 3.0. 125 

 126 
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Western Blot 127 
Western blot was used to detect the presence of EV protein markers and the absence of 128 

nucleoporin (nuclear marker) in CVL and enriched CVL EVs. 20 µL of samples from each fraction 129 
were lysed with 5 µL 1:1 mixture of RIPA buffer (Cell Signaling Technology, Danvers, MA. Cat #: 130 
9806S) and protease inhibitor (Santa Cruz Biotechnology, Dallas, TX. Cat #: sc29131). 8 µL of Laemmli 131 
4X sample buffer (BioRad, Hercules, CA. Cat #:161-0747 Lot #: 64077737) was added per sample, and 132 
30 µL of each was loaded into a Criterion TGX 4-15% gel (BioRad, Hercules, CA. Cat #: 5678084 Lot 133 
#: 64301319) after 5 mins of 95 °C incubation. The gel was electrophoresed by application of 100V for 134 
100 mins. The proteins were then transferred to a PVDF membrane (BioRad, Hercules, CA. Cat #: 135 
1620177, Lot #:31689A12.), which was blocked with 5% milk (BioRad, Hercules, CA. Cat #: 1706404. 136 
Lot #: 64047053) in PBS+0.1%Tween®20 (Sigma-Aldrich, St. Louis, MO Cat #: 274348 Lot #: 137 
MKBF5463V) for 1 hour. The membrane was subsequently incubated with mouse anti-human CD63 138 
(BD Biosciences, San Jose, CA Cat #: 556019 Lot #: 6355939) and mouse monoclonal IgG_2b CD81 139 
(Santa Cruz Biotechnology, Dallas, TX Cat #: 166029 Lot #: L1015) primary antibodies, at a 140 
concentration of 0.5 µg/mL overnight. After washing the membrane, it was incubated with a goat 141 
anti-mouse IgG-HRP secondary antibody (Santa Cruz Biotechnology, Dallas, TX Cat #: sc-2005 Lot #: 142 
B1616) at a 1:5,000 dilution for 1 h. The membrane was then incubated with a 1:1 mixture of 143 
SuperSignal West Pico Stable Peroxide solution and Luminol Enhancer solution (Thermo Scientific, 144 
Rockford, IL Cat #: 34080 Lot #: SD246944) for 5 min. The membrane was visualized on Azure 600 145 
imaging system (Azure Biosystems, Dublin, CA). The second blot was done in a reducing 146 
environment using 10mM DTT (Promega, Madison, WI Cat #: P1171 Lot #: 0000198991). Same 147 
procedures were followed with rabbit anti-human TSG101 (Cat #: ab125011 Lot #:GR180132-14), 148 
rabbit polyclonal anti-nucleoporin (Abcam, Cambridge, MA Cat #: ab96134 Lot #: GR22167-18) 149 
primary antibodies. Subsequent incubation with goat anti-rabbit IgG-HRP secondary antibody 150 
(Abcam, Cambridge, MA Cat #: sc-2204 Lot #: B2216). All antibodies were used at the same 151 
concentration as the first blot. Membrane was visualized on the Azure imaging system.  152 

 153 
Single particle interferometric reflectance imaging 154 
Both CVL-derived and dendritic cell LK23-derived EVs were diluted 1:1000 and incubated on 155 

ExoView (NanoView Biosciences, Brighton, MA) chips that were printed with anti-CD63 (BD 156 
Biosciences, Bedford, MA. Cat#: 556019) and anti-CD81 (BD Biosciences, Bedford, MA. Cat #: 555675) 157 
antibodies. After incubation for 16 hours, chips were washed per manufacturer’s protocol and 158 
imaged in the ExoView scanner by interferometric reflectance imaging. 159 

 160 
Electron Microscopy 161 
Gold grids were floated on 2% paraformaldehyde-fixed CVL–derived samples for two minutes, 162 

then negatively stained with uranyl acetate for 22 seconds. Grids were observed with a Hitachi 7600 163 
transmission electron microscope in the Johns Hopkins Institute for Basic Biomedical Sciences 164 
Microscope Facility. 165 

 166 
Total RNA Isolation and Quality Control 167 
RNA isolation work flow is shown in Supplemental Figure 1C. RNA lysis buffer was added into 168 

each sample as described above prior to freezing (-80 °C). Total RNA was isolated from thawed 169 
samples using the miRCURY RNA Isolation Kit-Biofluids (Exiqon, Vedbaek, Denmark. Cat #: 300112. 170 
Lot #: 593-84-9n) per manufacturer’s protocol with minor modifications as previously described44. 171 
Total RNA was eluted with 50 µL RNase-free water and stored at -80°C. As quality control, 172 
expression levels of several small RNAs including snRNA U6, miR-16-5p, miR-223-3p, and the 173 
spiked-in synthetic cel-miR-39 were assessed by TaqMan miRNA assays (Applied Biosystems/ Life 174 
Technologies, Carlsbad, California, USA) 45.  175 

 176 
miRNA Profiling by TaqMan Low-Density Array 177 
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A custom 48-feature TaqMan low-density array (TLDA) was ordered from Thermo Fisher, with 178 
features chosen based on results of a human CVL pilot study (GVH and KWW, unpublished data). 179 
Stem-loop primer reverse transcription and pre-amplification steps were conducted using the 180 
manufacturer’s reagents as previously described 46 but with 14 cycles of pre-amplification. Real time 181 
quantitative PCR was performed with a QuantStudio 12K instrument (Johns Hopkins University 182 
DNA Analysis Facility). Data were collected using SDS software and Cq values extracted with 183 
Expression Suite v1.0.4 (Thermo Fisher Scientific, Waltham, MA USA). Raw Cq values were adjusted 184 
by a factor determined from the geometric mean of 10 relatively invariant miRNAs. The selection 185 
process for these invariant miRNAs was to 1) rank miRNAs by coefficient of variation; 2) remove 186 
miRNAs with high average Cq (>30), non-miRNAs, and those with low amplification score; 3) select 187 
the lowest-CV member of miRNA families (e.g., the 17/92 clusters); and 4) pick the top 10 remaining 188 
candidates by CV: let-7b-5p, -miR-21-5p , -27a-3p, -28-3p, -29a-3p, -30b-5p, -92a-3p, -197-3p, -200c-3p, 189 
and -320a-3p. 190 

 191 
Individual RT-qPCR Assays 192 
Individual TaqMan miRNA qPCR assays were performed as previously described 46 on all UC 193 

pellet samples from all animals across all weeks for miRs-19a-3p (Thermo Fisher Assay ID #000395), 194 
-186-5p (Thermo Fisher Assay ID #002285), -451a-5p (Thermo Fisher Assay ID #001105) , -200c-3p 195 
(Thermo Fisher Assay ID #002300), -222-3p (Thermo Fisher Assay ID #002276), -193b-3p (Thermo 196 
Fisher Assay ID #002367), -181a-5p (Thermo Fisher Assay ID #000480), -223a-3p (Thermo Fisher Assay 197 
ID #002295), -16-5p (Thermo Fisher Assay ID #000391), -106a-5p (Thermo Fisher Assay ID #002169), 198 
and -125b-5p (Thermo Fisher Assay ID #00449). We also measured miR-375-3p (Thermo Fisher Assay 199 
ID #00564), which was not included on the array. Data were adjusted to Cqs of miR-16-5p. 200 

 201 
Blood Cell Isolation and Monocyte-Derived Macrophage Culture 202 
Total PBMCs were obtained from freshly drawn blood from human donors under a Johns 203 

Hopkins University School of Medicine IRB-approved protocol (JHU IRB #CR00011400). Blood was 204 
mixed with 10% Acid Citrate Dextrose (ACD) (Sigma Aldrich, St. Louis, MO Cat #: C3821 Lot #: 205 
SLBQ6570V) with gentle mixing by inversion. Within 15 minutes of draw, blood was diluted with 206 
equal volume of PBS+ 2% FBS, gently layered onto room temperature Ficoll (Biosciences AB, Uppsala, 207 
Sweden Cat #:17-1440-03 Lot #: 10253776) in Sepmate-50 tubes (STEMCELL Technologies, Vancouver, 208 
BC, Canada Cat #: 15450 Lot #: 06102016) and centrifuged for 10 minutes at 1200 × g. Plasma and 209 
PBMC fractions were removed, washed in PBS+ 2% FBS, and pelleted at 300 × g for 8 minutes. Pellets 210 
from 5 tubes were combined by resuspension in 10 mL RBC lysis buffer (4.15 g NH#Cl, 0.5 g	KHCO(, 211 
0.15 g EDTA in 450 mL H)O; pH adjusted to 7.2–7.3; volume adjusted to 500 mL and filter-sterilized); 212 
total volume was brought to 40 mL with RBC lysis buffer. After incubation at 37 °C for 5 mins, the 213 
suspension was centrifuged at 400 × g for 6 mins at room temperature. The cell pellet was 214 
resuspended in Macrophage Differentiation Medium with 20% FBS (MDM20) to a final concentration 215 
of 2´10,  cells/mL. PBMCs were plated at 4´10,cells per well in 12-well plates and cultured in 216 
MDM20 for 7 days. One half of the total volume of medium was replaced on day 3. On day 7, cells 217 
were washed 3 times with PBS to remove non-adherent cells. The medium was replaced with 218 
Macrophage Differentiation Medium with 10% serum (MDM10) and cultured overnight prior to 219 
transfection. 220 

 221 
miRNA Mimic Transfection  222 
Differentiated macrophages were transfected with 50 nM miRNA-186-5p (Qiagen, Foster City, 223 

CA. Cat #: MSY0000456 Lot #: 286688176) using Lipofectamine 2000 (Invitrogen/Life Technologies, 224 
Carlsbad, CA Cat #: 11668-019 Lot #:1467572) diluted in OptiMEM Reduced Serum Medium (Gibco, 225 
Grand Island, NY Cat #: 31985-070 Lot #: 1762285). Controls included mock transfections and 226 
transfection of 50 nM double-stranded siRNA oligo labeled with Alexa Fluor 555 (Invitrogen, 227 
Fredrick, MD Cat #: 14750-100 Lot #: 1863892). Plates were incubated for 6 hours at 37 °C. After 228 
incubation, successful transfection was confirmed by examining uptake of labeled siRNA with an 229 
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Eclipse TE200 inverted microscope (Nikon Instruments, Melville, NY). Transfection medium was 230 
removed. The plates were washed with PBS and refed with 2 mL fresh MDM10 medium.  231 

 232 
HIV Infection 233 
HIV-1 BaL stocks were generated from infected PM1 T-lymphocytic cells and stored at −80 °C. 234 

24 hours after mimic or mock transfections, macrophages were infected with HIV BaL and incubated 235 
overnight (stock, 80 µg p24/mL, diluted to 200 ng p24/mL). At days 3, 6, and 9 post-infection, 500 µL 236 
supernatant was collected for p24 release assays and cells were lysed with 600 µL mirVana lysis buffer 237 
for subsequent RNA isolation and analysis.  238 

 239 
HIV p24 Antigen ELISA 240 
Supernatant samples were lysed with Triton-X (Perkin Elmer, Waltham, MA Cat #: 241 

NEK050B001KT Lot #: 990-17041) at a final concentration of 1%. The DuPont HIV-1 p24 Core Profile 242 
ELISA kit (Perkin Elmer, Waltham, MA Cat #: NEK050B001KT Lot #: 990-17041) was used per 243 
manufacturer’s instructions to measure p24 concentration based on the provided standard. 244 

 245 
Total RNA Isolation 246 
Total RNA was isolated using the mirVana miRNA Isolation Kit per manufacturer’s protocol 247 

(Ambion, Vilnius, Lithuania. Cat #: AM1560 Lot #: 1211082). Note that this procedure yields total 248 
RNA, not just small RNAs. After elution with 100 µL RNase-free water, nucleic acid concentration 249 
was measured using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, 250 
DE). RNA isolates were stored at -80 °C. 251 

 252 
HIV Gag RNA RT-qPCR 253 
Real-time one-step reverse transcription quantitative PCR was performed with the QuantiTect 254 

Virus Kit (Qiagen, Foster City, CA Cat #:211011 Lot #: 154030803). Each 25 µl reaction mixture 255 
contained 15 µl of master mix containing HIV-1 RNA standard, 100 µM of FAM dye and IBFQ 256 
quencher labeled Gag probe (5’ ATT ATC AGA AGG AGC CAC CCC ACA AGA 3’), 600 nM each of 257 
Gag1 forward primer (5’TCA GCC CAG AAG TAA TAC CCA TGT 3’) and Gag2 reverse primer (5’ 258 
CAC TGT GTT TAG CAT GGT GTT T 3’), nuclease-free water, and QuantiTect Virus RT mix, and 10 259 
µL serial-diluted standard or template RNA. No-template control and no reverse transcriptase 260 
controls were included. Linear standard curve was generated by plotting the log copy number versus 261 
the quantification cycle (Cq) value. Log-transformed Gag copy number was calculated based on the 262 
standard curve. 263 
 264 

Data analysis 265 
Data processing and analysis were conducted using tools from Microsoft Excel (geometric mean 266 

normalization), Apple Numbers, GraphPad Prism, the MultiExperiment Viewer, and 267 
R/BioConductor packages including pheatmap (http://CRAN.R-project.org/package=pheatmap; 268 
quantile normalization, Euclidean distance, self-organizing maps, self-organizing tree algorithms, k-269 
means clustering). Figures and tables were prepared using R Studio, Microsoft Excel and Word, 270 
Apple Numbers and Keynote, GraphPad Prism, and Adobe Photoshop. 271 

 272 
Data Availability and Rigor and Reproducibility 273 
Array data have been deposited with the Gene Expression Omnibus (GEO) 47 as GSE107856. 274 

Data in other formats are available upon request. To the extent that sample quantities would allow, 275 
the MISEV recommendations for EV studies were followed24, and the EV experiments have been 276 
registered with the EV-TRACK knowledgebase, 48 with preliminary EV-TRACK code XL5296IL.  277 
  278 
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3. Results 279 

3.1. Abnormal menstrual cycle of SIV-infected macaques and ovulation-associated changes in CVL EV-280 
enriched particles 281 

Plasma and CVL were collected from two control and four SIV-infected macaques over the 282 
course of five weeks (Supplemental Figure 1). Abnormal cycling was observed for infected subjects 283 
(K. Mulka, et al, unpublished data). By nanoparticle tracking analysis, CVL EV concentration in 284 
control animals increased during ovulation (Figure 1A). Transmission electron microscopy was 285 
performed for representative fractions of CVL, revealing bacteria and large particles in the 10,000 × g 286 
pellet (Figure 1B). The 100,000 x g pellet included apparent EVs up to 200 nm in diameter (Figure 1C). 287 
EV markers (shown: CD63, CD81, and TSG101) were confirmed by Western blot (Figure 1D). The 288 
nuclear marker nucleoporin was detected only in tissue samples (Figure 1D). The relative EV 289 
tetraspanin profiles of both CVL and control EV samples were corroborated with single particle 290 
interferometric reflectance imaging: CVL EVs had a higher CD63 expression and dendritic cell EVs 291 
had higher CD81 expression.  292 

 293 
Figure 1. EV composition during the menstrual cycle. A) Nanoparticle concentrations of CVL 294 
ultracentrifuge (UC) pellets monitored weekly over five weeks for two SIV-negative (“control”) and 295 
four SIV-infected rhesus macaques. Red arrows indicate time of ovulation for 2 control animals, which 296 
were absent for SIV infected animals. B) Transmission electron micrographs of CVL pellets from the 297 
10,000× g pellet (left) and 110,000× g pellet (right) confirm presence of bacteria and EVs/EV-like 298 
particles, with several respective diameters indicated. C) Western blot analysis suggests enrichment 299 
of EV markers CD63, CD81, and TSG101 in 110k pellet fraction of CVL from uninfected animals. 300 
Vaginal tissue homogenate and dendritic cell (DC, LK23) 110k pellet controls were also positive for 301 
CD63 and CD81. Nuclear marker nucleoporin was detected in tissue homogenate but not in putative 302 
EV samples. D) SP-IRIS confirmation of EV markers on CVL and DC EVs. Shown are averages of 303 
tetraspanin-positive particles bound to anti-CD63 and anti-CD81 antibodies and detected by label-304 
free imaging. 305 

3.2. TLDA reveals an extracellular miRNA profile of the cervicovaginal compartment 306 
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Based upon preliminary findings from a study of human CVL (Hancock and Witwer, 307 
unpublished data), we designed a custom TaqMan low-density array (TLDA) to measure 47 miRNAs 308 
expected to be present in CVL, along with the snRNA U6. CVL from all subjects and at all time points 309 
was fractionated by stepped centrifugation to yield a 10,000 x g pellet (10K pellet), a 100,000 x g pellet 310 
(UC pellet), and 100,000 x g supernatant (UC supernatant). Total RNA from all fractions was profiled 311 
by TLDA. Raw (Supplemental Figure S2A), quantile normalized (Supplemental Figure S2B), and 312 
geometric mean-adjusted Cq values (Supplemental Figure S2C) were subjected to unsupervised 313 
hierarchical clustering. This clustering did not reveal broad miRNA profile differences associated 314 
with sample collection time, menstruation, or SIV infection. 315 

3.3. Distribution of miRNAs across CVL fractions 316 
Across the three examined CVL fractions (p10, p100, S100), the ten most abundant miRNAs 317 

(lowest Cq values) were miRs-223-3p, -203a-3p, -24-3p, -150-5p, -21-5p, -146a-5p, -92a-3p, -222-3p, -318 
17-5p, and -106a-5p. The average normalized Cq value for each miRNA was greater (i.e., lower 319 
abundance) in the p100 than the s100 fraction (Figure 2A and inset), and indeed in p10 and p100 320 
combined (Figure 3B), suggesting that most miRNA in CVL, as reported for various other body fluids, 321 
is found outside the EV-enriched fractions. Considering all fractions, the differences between the EV-322 
enriched and EV-depleted fractions were significant even after Bonferroni correction for all features 323 
except U6. On average, the s100 fraction contained 86.5% of the total miRNA from these three 324 
fractions. In the p10 fraction, the average miRNA was detected at 10.5% its level in the s100 fraction 325 
(SD=5.7%). miR-34a-5p had the lowest (5.9%) and miR-28-3p the highest (33.7%) abundance 326 
compared with s100. In the p100 fraction, miRNAs were on average 5.6% (SD=2.4%) as abundant as 327 
in s100. The least represented in p100 was miR-27a-3p (2.3%), and the best represented was again 328 
miR-28-3p (13.4%). Together, the content of the EV-enriched fractions (p10 and p100) as a percentage 329 
of the total is shown in Figure 2B for individual miRNAs. miRNA rank was significantly correlated 330 
across fractions, despite minor differences in order (Figure 2C). 331 
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   332 
Figure 2. Relative abundance of miRNAs in different CVL fractions. A) Abundant miRNAs in 333 
descending order based on Cq values normalized to the geometric mean for each sample. Inset: 334 
average of all miRNAs in UC pellet and UC supernatant. Error bars: SEM. B) miRNA expression in 335 
EV-enriched fractions (p10, p100) as a percentage of total estimated expression (p10+p100+S100 by 336 
Cq) in ascending order, from miR-27a-3p (7.9%) to miR-28-3p (32.0%). C) miRNAs in each fraction 337 
(10,000× g pellet=p10, 110,000 × g pellet=p100, 110,000× g supernatant=S100, and) are significantly 338 
correlated (p<0.0001, Spearman).  339 

3.4. qPCR Validation 340 
Individual stem loop RT/hydrolysis probe qPCR assays were used to verify TLDA results for 341 

eleven selected miRNAs plus miR-375-3p (not included on the array), which was also measured 342 
because of a reported association with goblet cells 49. Some miRNAs were chosen due to high 343 
expression levels. miR-181a-5p was measured due to its association with endometrial cells 50,51. miR-344 
125b-5p has been reported as a diagnostic marker of endometriosis 52. Other miRNAs (miRs-186-5p, 345 
-451a-5p, -200c-3p, -222-3p, -193b-3p) were selected based on our previous experience and results 346 
from other studies evaluating miRNAs in the context of HIV-1 and SIV infections. Results of qPCR 347 
assays, adjusted by miR-16-5p for each sample (since we found relatively low qPCR variation of miR-348 
16-5p, a commonly used normalizer 53), are shown in Figure 3A. Figure 3B compares miRNA ranks 349 
(1-11) by TLDA and individual qPCR, which are generally in concordance. Note that expression of 350 
red blood cell miRNA miR-451a-5p was low, suggesting minimal contamination from blood for most 351 
samples.  352 
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  353 
Figure 3. miRNA qPCR validation. A) qPCR validation for UC pellet samples, all subjects and time 354 
points (individual dots). B) Ranks of abundant miRNAs by qPCR and TLDA. 355 

3.5.miRNA association with retroviral infection status 356 
An association of miRNA abundance with infection status could yield novel biomarkers as well 357 

as clues to roles of miRNA in modulating infection. However, the small number of subjects in our 358 
study was a challenge. Nevertheless, by considering all subjects and time points together for both 359 
infected and uninfected subjects, microarray data suggested a slightly reduced abundance of miRs-360 
186-5p, -222-3p, and -200c-3p in infected samples (Figure 4A) based on statistical analysis of ∆𝐶𝑞 361 
values, while qPCR revealed differential abundance of miRs-186-5p and -125b-5p (Figure 4B). miR-362 
186-5p was thus identified by both techniques as potentially associated with retroviral infection. 363 

 364 
Figure 4. miR-186-5p downregulation: SIV. miR-186-5p fold change was determined using ∆∆𝐶𝑡 365 
method using miR-16 and uninfected animals as controls. 𝐿𝑜𝑔)(𝑓𝑜𝑙𝑑	𝑐ℎ𝑎𝑛𝑔𝑒) for both TLDA and 366 
qPCR analyses was plotted for 11 selected validation miRNAs. Statistical analyses were performed 367 
on ∆𝐶𝑡 values. For TLDA, miRs-186, -222, and -200c were significantly less abundant in the CVL 368 
p100 fraction of infected subjects (Mean ± SEM, Multiple t test, Bonferroni-Dunn Correction), ** 369 
p < 0.01, *** p<0.001. For qPCR analysis, miRs-186 and -125b were significantly less abundant 370 
(Multiple t test, Bonferroni-Dunn Correction), ** p < 0.01, *** p<0.001 371 
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3.6. miR-186-5p transfection has minimal effects on cellular HIV RNA abundance but reduces p24 release 372 
from monocyte-derived macrophages 373 

To assess a possible influence of miR-186-5p (“miR-186”) on retroviral replication, we 374 
introduced double-stranded miR-186-5p mimic or control RNA into monocyte-derived macrophages 375 
derived from three donors 24 hours before infecting the cells or not with HIV. At days three and six 376 
post-infection, we quantitated full-length HIV-1 transcript using a gag qPCR with standard curve. In 377 
cells from only one of three donors were fewer HIV-1 copies associated with miR-186-5p mimic 378 
transfection (Figure 5). Overall, there was no statistically significant difference in HIV RNA between 379 
the conditions. 380 

 381 
Figure 5. miRNA-186-5p mimic transfection inconsistently suppresses HIV-1 gag mRNA production. 382 
Apparent downregulation of gag mRNA (qPCR assay with standard curve) was observed in miR-383 
186-transfected monocyte-derived macrophages from only 1 of 3 donors compared with control RNA-384 
transfected cells (RC). Overall, results were insignificant by t-test, p>0.1, with multiple replicates of 385 
cells from 3 human donors. 386 

However, at the same time points and also out to nine days post-infection, a different result was 387 
seen for capsid p24 release into the supernatant. For infected but untransfected cells, measurable p24 388 
was observed by 3 dpi, and p24 counts increased by two-fold or more by 9 dpi (Figure 6A) for 389 
multiple replicate experiments with cells from three donors. Compared with infected, untreated 390 
controls, mock-transfected cells (not shown), and cells transfected with a negative control RNA 391 
(labeled with a fluorophore to assess transfection efficiency), miR-186-5p transfection was associated 392 
with a significant decline of released p24 at all time points (ANOVA with Bonferroni correction) 393 
(Figure 6B-D). The negative control condition showed a suppressive trend that reached nominal 394 
significance at 9 dpi. However, miR-186-associated suppression was significantly greater at all time 395 
points. 396 
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 397 
Figure 6. miRNA-186-5p inhibits p24 release. Monocyte-derived macrophages from human donors 398 
were infected with HIV-1 BaL. A) p24 production increased >2 fold for all donors from 3 to 9 days 399 
post-infection (dpi), untreated cells. B-D) Transfection of miR-186-5p mimic was associated with a 400 
decrease of p24 release compared with untransfected controls (NC) and control RNA mimic-401 
transfected controls (RC) at the indicated time points; ns=not significant, * p<0.05, ** p<0.01, **** 402 
p<0.0001 (ANOVA followed by Bonferroni correction for multiple tests). Results were from 8 to 11 403 
replicate experiments with cells from 3 human donors. 404 

3.7 p24 inhibition by miR-186-5p is correlated with transfection efficiency 405 

Despite the statistical significance of miR-186-5p-associated p24 inhibition, substantial 406 
variability was observed, including between donors/experiments; we therefore hypothesized that 407 
either donor- or experiment-specific factors were responsible for the variability. The transfection 408 
experiments were repeated using macrophages from five additional donors (labeled 1-5). While 409 
significant but variable inhibition of p24 release after miR-186-5p transfection was observed for 410 
three donors (1, 2, and 5), little or no inhibition was seen for donors 3 and 4 (Figure 7).  411 

One experimental variable that could affect the degree of inhibition is the efficiency with which 412 
the miRNA mimic is delivered into the cells. Since this variable was not assessed in our previous 413 
experiments, we measured it for the five new experiments. Despite using the same nominal 414 
concentrations of miRNA mimics for our experiments, a nearly 100-fold range of miR-186-5p 415 
concentration was observed between the lowest- and highest-efficiency transfections (Figure 9A), 416 
which increased miR-186-5p levels from around 5-fold to nearly 500-fold, respectively. Strikingly, 417 
the miR-186-5p level was inversely correlated with released p24 across these five donors. It should 418 
be noted that miR-186-5p antisense inhibitors were also introduced in these experiments. While 419 
they did not significantly increase HIV p24 release (Figure 7), they also did not achieve a consistent 420 
knockdown of native miR-186-5p (Figure 8A). 421 
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 422 
Figure 7. miRNA-186-5p inhibits p24 release in a donor-specific manner. Monocyte-derived 423 
macrophages from human donors were infected with HIV-1 BaL. A-C) Compared with mock 424 
transfected controls, transfection of miR-186 mimic was associated with a significant decrease of p24 425 
production from 3 to 9 days post-infection (dpi) in donors 1, 2, and 5. D-E) For donors 3 and 4, 426 
transfection of miR-186 mimic was ineffective in inhibiting p24 release compared with mock 427 
transfected controls; ns=not significant, * p<0.05, ** p<0.01, **** p<0.0001 (Two-way ANOVA followed 428 
by Bonferroni correction for multiple tests). 429 

 430 

 431 
Figure 8. miR-186-5p abundance post-transfection and correlation with p24 release. A) Abundance of 432 
miR-186-5p in macrophages post-transfection, as assessed by qPCR and compared (fold change) with 433 
the average of control macrophages. B) Correlation of macrophage miR-186-5p and p24 concentration 434 
released in supernatant three days post-infection. p(two-tailed)=0.0019 (Correlation), 𝑅) =435 
0.9731(Linear regression). 436 

 437 

  438 
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4. Discussion 439 
Cervicovaginal lavage EVs and exRNPs, like EVs in the uterus 54,55, may offer information about 440 

the health of the reproductive tract and may also facilitate or block transmission of infectious agents. 441 
Proteomic analyses of human 56 and rhesus macaque 57 CVL have suggested a core proteome and a 442 
highly variable proteome that responds to changes in pregnancy status, menstruation, infection, and 443 
other stressors. However, exRNA and extracellular vesicle profiles are less understood in this 444 
compartment. Thus, one major finding of this study is a partial profile of miRNAs of EV-enriched 445 
and -depleted fractions of CVL fluid of primates. We report that EVs can be liberated from vaginal 446 
secretions by lavage, and that these EVs can be concentrated using a standard stepped centrifugation 447 
procedure, with enrichment of positive (membrane-associated) markers while a cellular negative 448 
control was not detected.  449 

Both EV-replete and EV-depleted fractions of CVL contained abundant miRNA. As reported for 450 
other biological fluids 37,58, miRNA concentration was highest in the EV-depleted CVL fractions, not 451 
in EV-enriched ultracentrifuged pellets, consistent with packaging of most extracellular miRNA into 452 
exRNPs; the function, if any, of extracellular miRNAs in the cervicovaginal tract of healthy 453 
individuals remains to be determined. We observed minimal differences in extracellular miRNA 454 
profiles between SIV-infected and uninfected subjects or, surprisingly, even during the menstrual 455 
cycle, suggesting a certain stability of extracellular miRNA in the compartment. Correlation of 456 
miRNA concentrations in EV-depleted and -replete fractions was also apparent. Based on relative 457 
abundance compared with miRNAs of other cellular/tissue origins (e.g., heart and lung specific miR-458 
126, kidney-specific miR-196b, and liver-specific miR-192) 59,60, miRNAs in EVs and exRNPs of CVL 459 
are likely derived from epithelial cells (including goblet cells), and cells of the immune system (as 460 
suggested, e.g., by myeloid-enriched miR-223 and lymphocyte-enriched miR-150)61. Of the most 461 
abundant miRNAs we identified, some have been ascribed tumor-suppressive roles in cancers62–68. 462 
Also, miR-223 and miR-150 have been described as “anti-HIV” miRNAs 69 among a variety of 463 
reported antiretroviral small RNAs (sRNAs), both host and viral 70–75. Given their relative abundance 464 
in the vaginal tract, a common site for HIV infection, these miRNAs may contribute to antiviral 465 
defenses.  466 

Along these lines, a second major finding of this study is a possible role for miR-186-5p in 467 
antiretroviral defense, bolstered by the observation that exogenous miR-186-5p transfection 468 
efficiency correlates inversely with HIV p24 release. Previous publications have identified protein 469 
constituents in the cervicovaginal lavage with anti-HIV efficacies (for example 7,14,22). Our 470 
identification of miRNA as a potential anti-HIV agent adds an element of complexity to the picture 471 
of tissue-specific antiretroviral defense. In contrast with an early report of direct binding of host 472 
miRNAs to retroviral transcripts and subsequent suppression 69, it now appears that this mechanism 473 
of suppression may be relatively uncommon 76. Anti-HIV miRNAs may be more likely to exert effects 474 
through control of host genes instead (e.g., 77). Our data also support the conclusion that reduction of 475 
HIV RNA levels is not the main mechanism for miR-186-mediated suppression of HIV release. 476 

How, then, might miR-186-5p, whether endogenous or exogenous (therapeutically introduced) 477 
contribute to antiretroviral effects? Combining several miRNA target prediction, validation, and 478 
enrichment analysis approaches 78–84, we noticed a few putative miR-186-5p targets and related 479 
pathways that may merit follow-up. One target of miR-186-5p that was validated experimentally by 480 
multiple methods is FOXO1 85, an important contributor to apoptosis but also immunoregulation via 481 
IFNγ pathways. Another prominent validated target, P2X7R 86, is involved in membrane budding, T-482 
cell-mediated cytotoxicity, cellular response to extracellular stimuli and T-cell 483 
homeostasis/proliferation. There is also evidence that miR-186-5p targets the HIV co-receptor CXCR4 484 
87. Pathway enrichment analyses 83,84 suggest that miR-186-5p targets participate significantly in 485 
infection-related networks, including prion diseases, viral carcinogenesis, and responses to measles 486 
and herpes simplex virus infections. Although miRNA target prediction algorithms are imperfect, 487 
and validation efforts are of varying quality 88,89, these findings may shed some light on how miR-488 
186-5p is involved in responses to HIV. 489 

We would like to emphasize several aspects of the study that open the door to future research:  490 
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1. We used stepped ultracentrifugation without density gradients because of the small sample 491 
volumes available. Although stepped ultracentrifugation remains a widely used method for EV 492 
enrichment 43,90, subsequent gradients or alternative isolation methods could be attempted with 493 
larger volume samples to increase purity in future. Possibly, our study overestimates the 494 
abundance of miRNAs in CVL EVs, and differential packaging into EVs and exRNPs is masked 495 
by contamination of our EV preps with exRNPs.  496 

2. Our qPCR array approach and focus on miRNAs leaves room for additional work. While we 497 
are confident that our array captured most of the abundant miRNAs in CVL, sequencing short 498 
and longer RNAs could reveal additional markers. 499 

3. The small number of subjects and the absence of obvious menstrual cycle in infected subjects 500 
precludes strong conclusions about EV or miRNA associations with either infection or the 501 
menstrual cycle. For example, we did not observe the expected increase in miR-451a or other 502 
red blood cell-specific miRNAs during menstruation. However, since only two animals showed 503 
evidence of cycling, experiments with more subjects and larger sample volumes are needed. 504 

4. Our previous criticisms of miRNA functional studies 91 also apply to our results here. 505 
Additional work is needed to assess the potential of miR-186-5p to regulate retrovirus 506 
production at endogenous levels, for example by showing that it is present in active RNPs 92 507 
and that it interacts directly with specific host or viral targets. However, it is also important to 508 
note that miR-186-5p could have therapeutic benefit even if it must be delivered at 509 
supraphysiologic concentrations. Finally, it is possible, but must be demonstrated, that miR-510 
186-5p acts in a paracrine fashion via EV or exRNP shuttles. 511 

5. We have investigated the effects of miR-186-5p only in monocyte-derived macrophages. We 512 
chose to begin with this cell type because of the abundance of miR-223 and the known role of 513 
macrophages in the epithelium. Other cell types should also be investigated. 514 

Overall, the results presented here support further development of CVL and its constituents as a 515 
window into the health of the cervicovaginal compartment in retroviral infection and beyond. 516 
Furthermore, delivery of miR-186-5p could act to suppress retrovirus release. 517 

  518 
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SUPPLEMENTAL TABLES 816 

Supplemental Table 1. Recovered volumes: CVL 817 

Subject Week 1 Week 2 Week 3 Week 4 Week 5  

Control 1 1 mL 2 mL 1 mL 1 mL 1 mL 

Control 2 3 mL 0.7 mL 2 mL 0.5 mL 1.25 mL 

Infected 1 1 mL 0.2 mL 0.5 mL 0.3 mL 1.5 mL 

Infected 2 1.5 mL 1.5 mL 2 mL 0.8 mL 1.75 mL 

Infected 3 0.5 mL 0.6 mL 2.8 mL 0.8 mL 2 mL 

Infected 4 0.8 mL 0.3 mL 0.6 mL 0.3 mL 1.5 mL 
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Supplemental Table 2. NTA dilution factors, CVL 820 

 
Time 
point 

Subject 

Control 1 Control 2 Infected 1 Infected 2 Infected 3 Infected 4 

C
V

L 
(U

C
 

Su
pe

rn
at

an
t)  

Week 1 1:25 1:50 1:25 1:25 1:25 1:25 

Week 2 1:100 1:5 1:25 1:10 1:5 1:5 

Week 3 1:10 1:5 1:5 1:5 1:10 1:10 

Week 4 1:10 1:5 1:10 1:5 1:10 1:10 

Week 5 1:5 1:10 1:10 1:10 1:5 1:5 

C
V

L 
(U

C
 P

el
le

t) Week 1 Neat 1:5 1:5 1:5 1:5 1:5 

Week 2 1:10 1:10 1:5 1:5 1:5 1:5 

Week 3 1:5 1:5 1:5 1:5 1:5 1:5 

Week 4 1:5 1:5 1:5 1:5 1:5 1:5 

Week 5 1:5 1:5 1:5 1:5 1:5 1:5 

Abbreviations: CVL = cervicovaginal lavage; UC = ultracentrifugation 
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Supplemental Table 3. Pooling strategy: Western blot 822 
 823 

Pool 1 (healthy and 

infected) 

Healthy 2 Week 5, Infected 1 Week 2, Infected 3 Week 2, Infected 

3 Week 5, Infected 2 Week 3, Infected 2 Week 4 

Pool 2 (all healthy) Healthy 1 Week 4, Healthy 1 Week 5, Healthy 2 Week 2, Healthy 2 

Week 3, Healthy 2 Week 4, Healthy 1 Week 2 

Pool 3 (all infected) Infected 5 Week 2, Infected 3 Week 3, Infected 2 Week 4, Infected 

4 Week 5, Infected 4 Week 3, Infected 1 Week 5 
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