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Abstract 

A network is one of the most convenient way to represent interactions between biological entities in 

systems biology. A network of molecular interactions is a graph in which the vertices are biological 

component and the edges correspond to the interactions between them. Many notions and approaches 

for network analysis came to systems biology from the theory of graphs – a field of mathematics that 

study graphs. We focused on the study of the shortest path approach in this work. We investigated 

whether this approach yields valid molecular paths. To perform this, the shortest paths in the human 

interactome (derived from HPRD and HIPPIE databases) were found between all relevant 

combinations of proteins taken from eight well-studied highly conserved signaling pathways from 

the KEGG database (NF-kappa B, MAPK, Jak-STAT, mTOR, ErbB, Wnt, TGF-beta and the 

signaling part of the apoptotic process). Canonical paths were systematically compared with the 

shortest counterparts and centrality of vertices and paths in subnetworks induced by the shortest 

paths were analyzed. We found that the sets of the shortest paths contain the canonical counterparts 

only for very short canonical paths (length 2-3 interactions). We also found that high centrality 

vertices tend to belong to canonical counterparts, to less extent this can also be said about high 

centrality paths.  
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Introduction 

Modern molecular biology accumulated vast amount of knowledge about interactions between 

molecular entities within the cell. This knowledge is stored in databases of molecular interactions 

such as HPRD (Peri et al. 2003), Hippie (Schaefer et al. 2012), bioGrid (Stark 2006), STRING 

(Jensen et al. 2009).  Networks are the basic tool to visualize and to analyze these interactions 

(Kitano 2002; Barabási & Oltvai 2004). A network of molecular interactions is a direct or an indirect 

graph where vertices represent biological entities (e.g. proteins, genes, small molecules, metabolites, 

...) and edges represent interactions between them such as physical interactions, gene regulation, 

chemical reaction. 

Numerous concepts for network analysis came to systems biology from the graph theory - a field of 

mathematics that studies graphs. These are the concepts such as degree of a vertex (Pavlopoulos et 

al. 2011)  – which is the number of edges of a vertex; degree distribution – probability distribution of 

vertex degree over the whole network (Pavlopoulos et al. 2011); betweenness, closeness, 

eigenvector, degree centrality – different measures of importance of a vertex in a network 

(Pavlopoulos et al. 2011); clustering coefficient  – the measurement that shows the tendency of a 

graph to be divided into clusters (Pavlopoulos et al. 2011); the shortest path between two vertices – 

such a path that the sum of weights or the length is minimum possible in the network (Pavlopoulos et 

al. 2011). 

The applications of these concepts greatly vary. Vertex degree and centrality is used to distinguish 

possible hubs – vertices that might be important for biological system (Milioli et al. 2017; Dong et 

al. 2016). Clustering coefficient – to analyze network topology (Hao et al. 2012). The shortest path 

approach is used to construct networks for a set of genes (Yuan et al. 2017), to prioritize vertices 

(Zhang et al. 2012), to predict functional components and molecular pathways (Nakamura et al. 

2012; Bromberg et al. 2009), to perform network modularization (Cabusora et al. 2005) and to 

predict protein function (Sharan et al. 2007).   

In this work, we studied whether the shortest path approach when used alone on human interactome 

can yield valid molecular paths and whether high centrality vertices and paths in the subnetworks 

induced by the shortest paths belong to canonical counterparts. The reasoning behind using centrality 

is the following. Centrality measures were first introduced for social network analysis to identify 

‘important’ persons in a given social network. Several types of the centrality measure were 

developed depending on what the ‘important’ could mean (betweenness, closeness, eigenvector, 

degree centrality). Recent studies also show that high centrality vertices can be related to network 

stability. Our goal was to check whether ‘important’ vertices from the network point of view would 

be from the canonical pathways. 

To answer the abovementioned questions, we compared linear paths (we name them canonical paths) 

taken between all relevant pairs of source/target point on 8 canonical pathways from the KEGG 

database with the shortest path counterparts and checked whether high centrality vertices and paths 

in the subnetworks induced by the shortest paths belong to canonical paths. The following pathways 

were used: NF-kappa B, MAPK, Jak-STAT, mTOR, ErbB, Wnt, TGF-beta signaling pathways and 
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the signaling part of the apoptotic process. These are well-studied highly conserved signaling 

pathways that regulate a wide range of cellular processes such as proliferation, differentiation, 

inflammation, apoptosis, angiogenesis, adhesion and migration. Importantly, the signal transduction 

mechanism of the pathways works via protein-protein interactions.  

The pathways were dissected into linear paths and all relevant combinations between source and 

target points were taken for the analysis. This resulted in 91 paths of length 2 interactions, 74 paths 

of length 3 interactions, 51 pathways of length 4 interactions and 29 pathways of length 5 

interactions. The shortest paths between source and target points of the paths were taken in four 

networks created using protein-protein interaction from HPRD database, HIPPIE database with only 

high confidence interactions, HIPPIE database with high and medium confidence interactions, 

HIPPIE with high, medium and low confidence interactions. The shortest paths as well as high 

centrality vertices and paths in subnetworks induced by the shortest paths were compared with 

canonical counterparts. We found that one of the shortest paths match the canonical counterpart for 

56-77% of the canonical paths of length 2 interactions. One of the shortest paths match the canonical 

counterpart only for 15-30% of the canonical paths of length 3 interactions. None of the shortest 

paths match the canonical counterpart for canonical paths of length 4 and 5 interactions. However, 

we found that the vertices with high centrality scores belong to canonical pathways for 45-75% of 

the paths depending on the length and the database. The paths with high centrality score belong to 

canonical pathways for 17-54% of the paths also depending on the length and the database. 

Materials and Methods 

Databases 

The following databases were used to create protein-protein networks: Human Protein Reactions 

Database (HPRD) v9.1 and Human Integrated Protein-Protein Interaction rEference (HIPPIE) v2.0. 

Both databases contain experimentally validated protein-protein interactions for human cells. The 

confidence score is assigned for each interaction in HIPPIE database. The confidence score is 

calculated as a weighted sum of the number of studies in which an interaction was detected, the 

number and quality of experimental techniques used to measure an interaction and the number of 

non-human organisms in which an interaction was reproduced (Anon n.d.). We used predefined 

confidence levels by HIPPIE team to create networks with only High Confidence interactions – 

HIPPIE HC (confidence level 0.73 - third quartile of the HIPPIE score) and with High and Medium 

Confidence interactions – HIPPIE HC+MC (confidence level 0.63 - second quartile of the score 

distribution).  

Pathways 

The parts of NF-kappa B, MAPK, Jak-STAT, mTOR, ErbB, Wnt, TGF-beta signaling pathways, the 

signaling part of the apoptotic process consisting only of protein-protein interactions were taken 

from KEGG database(Ogata et al. 1999) for the analysis. 55 simple linear protein-protein paths of 

length from 2 to 5 interactions were found for 8 pathways (Supplementary Table 1). All possible 

combinations of source and target points preserving the direction of signal transduction were found 

from these 55 paths that gave 238 paths of the length from 2 to 5 interactions: 91 paths of length 2 

interactions, 74 paths of length 3 interactions, 51 pathways of length 4 interactions and 29 pathways 

of length 5 interactions (Supplementary Table 2). 

The shortest paths 
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The shortest paths between each pair of source and target points in each 4 protein-protein networks 

were found using the breadth-first search algorithm. In such cases when a canonical path starts 

and/or ends from a protein complex each subunit of the complex were taken as a source/target points. 

This procedure results in a set of the shortest paths for every pair of source/target points. Every path 

in the set was compared with the canonical counterpart. 

Construction of subnetworks of the shortest paths and centrality scores 

Networks for each pair of source/target points were created from the set of the shortest paths without 

duplicated edges. Centrality scores were calculated for each vertex and path except the source/target 

points as number of the shortest paths that pass through the vertex or the path. Vertices with 

centrality scores higher than the upper quartile for a network and paths with centrality scores higher 

than average for a network were compared with canonical counterparts.  

Results 

Table 1 gives information about basic topological properties for the created networks. The 

exponent of the fitted power-law distribution in the degree distribution was calculated with powerlaw 

(Alstott et al. 2014) Python package. It can be seen, that the topological properties of the networks 

created from HPRD and HIPPIE HC (only high confidence interactions) databases drastically differs 

from the topological properties of the networks created from HIPPIE and HIPPIE HC+MC (only 

high and medium confidence interactions) databases. 

We compared the lengths of the shortest paths and the lengths of the canonical counterparts. We 

found that the average length of the shortest paths is less by at least 1 interaction for the canonical 

paths of length 4 and 5 interactions (Figure 1) and is still less than the average length of the shortest 

path in the networks. 

Next, we checked whether one of the paths in the set of the shortest paths will match the canonical 

counterpart. We found that the set of the shortest paths contains the canonical counterpart only for 

56-77% of the canonical paths of length 2 interactions, for 15-30% of the canonical paths of length 3 

interactions and for 0% of the canonical paths of length 4 and 5 interactions (Figure 2). 

We also checked whether vertices and paths with high centrality scores belong to the canonical 

counterpart. We found that the vertices with centrality scores higher than the upper quartile belong to 

the canonical counterpart for 46-77% of the canonical paths depending on database (Figure 3a). The 

paths with centrality more than average belong to the canonical counterpart only for 16-54% paths 

(Figure 3b) 

 

Table 1. Basic topological properties of the networks created using HPRD and HIPPIE database. 

 HPRD HIPPIE HIPPIE 

HC+MC 

HIPPIE HC 

Vertices 9 648 16 403 15 857 9 365 

Interactions 39 156 237 958 193 576 41 329 
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Average clustering coefficient 0.2 0.26 0.23 0.31 

Number of connected components 112 9 17 121 

Average number of neighbors 7.8 28.6 24 8.6 

Density 0.0008 0.002 0.002 0.0009 

Diameter 14 8 8 12 

Average length of the shortest path 4.2 3.2 3.3 4.1 

Exponent of fitted power-law distribution 2.71 3.31 2.62 2.74 

 

Figure 1. Average length of the shortest paths. 

 

Figure 2. Relative number of canonical paths for which the sets of the shortest paths contains the 

canonical counterpart. 
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Figure 3. Relative number of canonical paths for which high centrality vertices in subnetworks 

induced by the shortest paths belong to the canonical counterpart 
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Figure 4. Relative number of the canonical paths for which high centrality paths in subnetworks 

induced by the shortest paths belong to the canonical counterpart. 

 

 

 

 

Discussion and Conclusion 

The shortest path approach is widely used approach to find connections between vertices in systems 

biology. We studied in this paper whether such an approach could yield valid paths.  

We performed an experiment by comparing the shortest paths between all possible source and target 

points on eight canonical pathways with the canonical counterparts. We found that the shortest paths 

between these points built in the human interactome constructed from HPRD or HIPPIE databases 

usually do not match the canonical counterpart. We also examined whether the vertices and the paths 

with high centrality score in the network created using the shortest path between these points belong 

to the canonical counterpart. We found that the vertices with centrality score higher than the upper 

quartile belong to the canonical counterpart for up to 77% of the canonical paths and the paths with 

centrality more than average belong to the canonical counterpart for up to 54% of the canonical 

paths. 

It is interesting that the network constructed from the whole HIPPIE database shows completely 

opposite performance for vertices and paths with high centrality score. A probable explanation for 

this is that many valid protein-protein interactions are assigned low confidence score, but on the 

other hand low confidence interactions that include false positives interactions could introduce 

shortcuts into the shortest paths. 

We conclude that the shortest path between two vertices in the human interactome usually does not 

match the valid biological path. However, studying additional topological features like centrality of a 
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vertex or of a path in the network constructed from the shortest paths might help at least partly 

reconstruct the valid biological path. 
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Supplementary Table 1. List of paths. 

 

NFKB: 

TNFRSF11A-TRAF6, TRAF2-MAP3K14-CHUK-NFKB2, RELB; 

TNFRSF11A-TRAF6, TRAF2-TAB1, TAB2, TAB3-IKBKG, CHUK, IKBKB-NFKBIA; 

LTBR-TRAF2, TRAF5-MAP3K14-TAB1, TAB2, TAB3, MAP3K14-IKBKG, CHUK, IKBKB-NFKBIA; 

LTBR-TRAF2, TRAF3-MAP3K14-CHUK-NFKB2, RELB; 

TNFRSF13C-TRAF2, TRAF3-MAP3K14-CHUK-NFKB2, RELB; 

CD40-TRAF2, TRAF3-MAP3K14-CHUK-NFKB2, RELB; 

CD40-TRAF6-TAB1, TAB2, TAB3-IKBKG, CHUK, IKBKB-NFKBIA; 
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TLR4-TICAM2, TICAM1-RID1, TRAF6-TAB1, TAB2, TAB3, MAP3K14-IKBKG, CHUK, IKBKB-

NFKBIA; 

TLR4-TIRAP, MYD88-IRAK1, IRAK4, TRAF6-TAB1, TAB2, TAB3-IKBKG, CHUK, IKBKB-NFKBIA; 

DDX58-TRAF2, TRAF6-TAB1, TAB2, TAB3, MAP3K14-IKBKG, CHUK, IKBKB-NFKBIA; 

TNFRSF1A-RIPK1, TRADD, TRAF2, TRAF5-TAB1, TAB2, TAB3, MAP3K7-IKBKG, CHUK, IKBKB-

NFKBIA; 

IL1R1-MYD88, IRAK1, IRAK4, TRAF6-TAB1, TAB2, TAB3, MAP3K7-IKBKG, CHUK, IKBKB-

NFKBIA; 

MAPK: 

NTRK1, NTRK2-GRB2-SOS1, SOS2, RRAS2, MRAS, HRAS, KRAS, NRAS, RRAS-BRAF, RAF1, MOS-

MAP2K1, MAP2K2; 

EGFR-GRB2-SOS1, SOS2, RRAS2, MRAS, HRAS, KRAS, NRAS, RRAS-BRAF, RAF1, MOS-MAP2K1, 

MAP2K2; 

FGFR1, FGFR2, FGFR3, FGFR4-GRB2-SOS1, SOS2, RRAS2, MRAS, HRAS, KRAS, NRAS, RRAS-

BRAF, RAF1, MOS-MAP2K1, MAP2K2; 

PDGFRA, PDGFRB-GRB2-SOS1, SOS2, RRAS2, MRAS, HRAS, KRAS, NRAS, RRAS-BRAF, RAF1, 

MOS-MAP2K1, MAP2K2; 

TNFRSF1A, ILR1, ILR2-CASP3-PAK1, PAK2=MAP3K1-MAP2K4-MAPK8, MAPK9, MAPK10; 

TNFRSF1A, ILR1, ILR2-TRAF2-MAP3K5-MAP2K3, MAP2K6-MAPK14, MAPK11, MAPK13, MAPK12; 

TNFRSF1A, ILR1, ILR2-TRAF6-MAP3K7-NLK; 

TNFRSF1A, ILR1, ILR2-TAB1-MAP3K7-NLK; 

JAKSTAT: 

IL22RA2, CNTFR, CSF2RA, CSF2RB, CSF3R, IL23R, IFNLR1, EPOR, GHR, IFNAR2, IFNGR1, IFNGR2, 

IFNGR2, IL2RA, IL2RB, IL2RG, IL3RA, IL4R, IL5RA, IL6R, IL6ST, IL7R, IL9R, IL10RA, IL10RB, 

IL11RA, IL12RB1, IL2RB2, IL13RA1, IL13RA2, IL15RA, LEPR, LIFR, MPL, IL21R, IL20RA, IL20RB, 

PRLR, IL22RA1, CRLF2, OSMR, IL27RA-PTPN11, GRB2-SOS1, SOS2-HRAS-RAF1; 

WNT: 

WNT16, WNT4, WNT1, WNT2, WNT3, WNT5A, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT10B, 

WNT11, WNT2B, WNT9A, WNT9B, WNT10A, WNT5B, WNT3A-FZD10, FRZD2, FZD5, FZD3, FZD4, 

FZD6, FZD7, FZD8, FZD9, LRP6, LRP5-DVL1, DVL2, DVL3-GSK3B-CTNNB1-LEF1, TCF7, TCF7L2, 

TCF7L1; 

ERB: 

EGFR-SRC-PTK2; 

EGFR-CRK, CRKL-ABL1, ABL2; 

EGFR-NCK1, NCK2-PAK4, PAK1, PAK2, PAK3, PAK6, PAK5-MAP2K7, MAP2K4-MAPK8, MAPK9, 

MAPK10-JUN, ELK1; 

ERBB2-SRC-PTK2; 
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ERBB2-CRK, CRKL-ABL1, ABL2; 

ERBB2-NCK1, NCK2-PAK4, PAK1, PAK2, PAK3, PAK6, PAK5-MAP2K7, MAP2K4-MAPK8, MAPK9, 

MAPK10-JUN, ELK1; 

MTOR: 

WNT16, WNT4, WNT1, WNT2, WNT3, WNT5A, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT10B, 

WNT11, WNT2B, WNT9A, WNT9B, WNT10A, WNT5B, WNT3A-DVL1, DVL2, DVL3-GSK3B-TSC1, 

TSC2, TBC1D7-RHEB; 

TNF-TNFRSF1A-IKBKB-TSC1, TSC2, TBC1D7-RHEB; 

IGF1, INS-IGF1R, INSR-IRS1-PIK3CA, PIK3CB, PIK3D, PIK3R1, PIK3R2, PIK3R3; 

APOPTOSIS: 

TNFRSF10D, TNFRSF10C, TNFRSF10B, TNFRSF10A, FAS-FADD-CASP8, CASP10-CASP3, CASP7-

TUBA1B, TUBA3E, TUBA3D, TUBA4A, TUBA8, TUBA3C, TUBA1A, TUBAL3, TUBA1C, MCL1, 

ACTB, ACTG1, SPTA1, SPTAN1, LMNA, LMNB1, LMNB2, PARP2, PARP3, PARP1, PARP4, DFFA, 

DFFB; 

TNFRSF1A-FADD, TRADD-CASP8-CASP3-TUBA1B, TUBA3E, TUBA3D, TUBA4A, TUBA8, 

TUBA3C, TUBA1A, TUBAL3, TUBA1C, MCL1, ACTB, ACTG1, SPTA1, SPTAN1, LMNA, LMNB1, 

LMNB2, PARP2, PARP3, PARP1, PARP4, DFFA, DFFB; 

TNFRSF1A-FADD, TRADD-CASP8-CASP7-TUBA1B, TUBA3E, TUBA3D, TUBA4A, TUBA8, 

TUBA3C, TUBA1A, TUBAL3, TUBA1C, MCL1, ACTB, ACTG1, SPTA1, SPTAN1, LMNA, LMNB1, 

LMNB2, PARP2, PARP3, PARP1, PARP4, DFFA, DFFB; 

TNFRSF1A-FADD, TRADD-CASP10-CASP3-TUBA1B, TUBA3E, TUBA3D, TUBA4A, TUBA8, 

TUBA3C, TUBA1A, TUBAL3, TUBA1C, MCL1, ACTB, ACTG1, SPTA1, SPTAN1, LMNA, LMNB1, 

LMNB2, PARP2, PARP3, PARP1, PARP4, DFFA, DFFB; 

TNFRSF1A-FADD, TRADD-CASP10-CASP7-TUBA1B, TUBA3E, TUBA3D, TUBA4A, TUBA8, 

TUBA3C, TUBA1A, TUBAL3, TUBA1C, MCL1, ACTB, ACTG1, SPTA1, SPTAN1, LMNA, LMNB1, 

LMNB2, PARP2, PARP3, PARP1, PARP4, DFFA, DFFB; 

TNFRSF1A-TRADD, RIPK1, TRAF-DAB2IP-MAP3K5-MAPK8, MAPK9, MAPK10-JUN, FOS; 

FAS-DAXX-MAP3K5-MAPK8, MAPK9, MAPK10-JUN, FOS; 

ERN1, TRAF2-MAP3K5-MAPK8, MAPK9, MAPK10-JUN, FOS; 

CTSC, CTSB, CTSD, CTSH, CTSK, CTSL, CTSV, CTSO, CTSS, CTSW, CTSZ, CTSF-BIRC2, BIRC3, 

BIRC5, XIAP-CASP9-CASP7, CASP6-TUBA1B, TUBA3E, TUBA3D, TUBA4A, TUBA8, TUBA3C, 

TUBA1A, TUBAL3, TUBA1C, MCL1, ACTB, ACTG1, SPTA1, SPTAN1, LMNA, LMNB1, LMNB2, 

PARP2, PARP3, PARP1, PARP4, DFFA, DFFB; 
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