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ABSTRACT

Rapidly evolving RNA viruses continuously produce
minority haplotypes that can become dominant
if they are drug-resistant or can better evade
the immune system. Therefore, early detection
and identification of minority viral haplotypes may
help to promptly adjust the patient’s treatment
plan preventing potential disease complications.
Minority haplotypes can be identified using next-
generation sequencing (NGS), but sequencing noise
hinders accurate identification. The elimination of
sequencing noise is a non-trivial task that still
remains open. Here we propose CliqueSNV based on
extracting pairs of statistically linked mutations from
noisy reads. This effectively reduces sequencing
noise and enables identifying minority haplotypes
with the frequency below the sequencing error
rate. We comparatively assess the performance
of CliqueSNV using an in vitro mixture of nine
haplotypes that were derived from the mutation
profile of an existing HIV patient. We show
that CliqueSNV can accurately assemble viral
haplotypes with frequencies as low as 0.1% and
maintains consistent performance across short and
long bases sequencing platforms.

INTRODUCTION

Rapidly evolving RNA viruses such as human
immunodeficiency virus (HIV), hepatitis C virus (HCV),
influenza A virus (IAV), SARS, and SARS-CoV-2 form
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populations of closely related genomic variants inside
infected hosts (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The intra-host viral
populations include minority viral variants that are frequently
responsible for drug resistance, immune escape, and disease
transmission (11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23).
Therefore, accurately predicting minority viral populations
from extremely large and noisy viral genomic data is
important for biomedical research, epidemiology, and clinical
applications. Although this problem has recently attracted
significant interest from the biomedical research community
(24, 25, 26), numerous obstacles still delay NGS integration
into the viral studies. The last decade witnessed numerous
attempts to employ NGS and bioinformatics methods for
reconstructing intra-host viral populations. These methods
are not accurate enough for clinical and epidemiological
applications since they cannot reliably identify haplotypes
accounting for a substantial portion of the population.
Existing methods are ill-equipped to assemble closely
related haplotypes and have elevated false-positive rates.
Additionally, there is only one in vitro viral sequencing
benchmark for validation of haplotyping tools (26), and
to convincingly demonstrate that such tools are ready for
clinical and epidemiological applications, new comprehensive
sequencing benchmarks are urgently required (27).

Next-generation sequencing (NGS) technologies now
provide versatile opportunities to study viral populations.
In particular, the popular Illumina MiSeq/HiSeq platforms
produce 25-320 million reads, which allow multiple coverage
of highly variable viral genomic regions. This high coverage
is essential for capturing rare variants. Ability of NGS
technologies to efficiently identify minority variants have
recently gained FDA approval (28). However, haplotyping
of heterogeneous viral populations (i.e., assembly of full-
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length genomic variants and estimation of their frequencies)
is extremely complicated due to the vast number of
sequencing reads, the need to assemble an unknown number
of closely related viral sequences and to identify and
preserve low-frequency variants. Single-molecule sequencing
technologies, such as PacBio, provide an alternative to
short-read sequencing by allowing full-length viral variants
to be sequenced in a single pass. However, the high
level of sequence noise due to background or platform-
specific sequencing errors produced by all currently available
platforms makes inference of low-frequency genetically
close variants especially challenging, since it is required to
distinguish between real and artificial genetic heterogeneity
produced by sequencing errors.

Recently, a number of computational tools for inference
of viral quasispecies populations from NGS reads have been
proposed (27), including Savage (24), PredictHaplo (29),
aBayesQR (30), QuasiRecomb (31), HaploClique (32), VGA
(33), VirA (34, 35), SHORAH (36), ViSpA (37), QURE (38)
and others (39, 40, 41, 42, 43). Even though these algorithms
proved useful in many applications, accurate and scalable viral
haplotyping remains a challenge. In particular, inference of
low-frequency viral variants is still problematic, while many
computational tools designed for the previous generation of
sequencing platforms have severe scalability problems when
applied to datasets produced by state-of-the-art technologies.

Previously, several tools such as V-phaser (44), V-phaser2
(45) and CoVaMa (46) exploited linkage of mutations for
single nucleotide variant (SNV) calling rather than haplotype
assembly, but they do not accommodate sequencing errors
when deciding whether two variants are linked. These tools
are also unable to detect the frequency of mutations above
sequencing error rates (47). The 2SNV algorithm (48)
accommodates errors in links and was the first such tool to
be able to correctly detect haplotypes with a frequency below
the sequencing error rate.

We propose a novel method that can accurately identify
minority haplotypes from NGS reads consisting of three
steps. First, we extract pairs of statistically linked mutations.
Second, we find maximal sets of pairwise linked mutations
(cliques) where each clique corresponds to a set of mutations
in a minority haplotype. Finally, we assign each read to the
closest clique, and for each clique, we form a haplotype as a
consensus of reads assigned to it.

All haplotyping tools require solid and convincing
validation benchmarks (49, 50). The true viral variants and
their distribution are only known for simulated data (51),
but sequencing errors, variation of coverage depth, PCR
bias, and systematic noise cannot be reliably simulated.
Therefore experimental sequencing benchmarks that provide
an adequate evaluation of haplotyping tools are necessary.

By now, there are only two experimental sequencing
benchmarks – (i) Illumina sequencing reads consisting of a
mixture of five HIV-1 strains (HIV5exp, see Table 1) (52)
and (ii) PacBio sequencing reads from a sample consisting
of ten IAV viral variants (IAV10exp, see Table 1) (48).
In the HIV5exp, five different HIV-1 strains each having
20% frequency were prepared to mimic an intra-host viral
population. Unfortunately, this benchmark is not realistic
enough since the observed intra-host viral populations consist
of variants that are much closer to each other than different

strains and contain both frequent and rare variants (53). The
IAV10exp benchmark significantly better mimics the intra-
host viral population since its variants are very similar to each
other and the variant frequencies are realistically non-uniform.
Thus, similar to the IAV10exp benchmark, it would be
beneficial to develop Illumina benchmarks which adequately
imitate intra-host viral populations containing closely related
minority variants.

To validate our method’s performance, we have introduced
two novel in vitro sequencing HIV-1 benchmarks, which
consist of Illumina MiSeq experiments on haplotype mixtures
based on the mutation profile from an existing patient.

Finally, there is a essential gap in existing quality measures
of intra-host viral population assembly. Up-to-date, instead
of populations (i.e. haplotypes with their frequencies), only
sets of reconstructed and the ground truth haplotypes are
compared (29). Here we propose to measure differences
between haplotype populations using Matching Error and the
Earth Mover’s Distance which account for both the distances
between haplotypes and their frequencies.

MATERIALS AND METHODS

CliqueSNV algorithm idea
A schematic diagram of the CliqueSNV algorithm is shown
in Figure 1. The algorithm takes aligned reads as input and
infers haplotype sequences with their frequencies as output.
The method consists of six steps:

• Step 1 uses aligned reads to build the consensus
sequence and identifies all SNVs. Then all pairs of
SNVs are tested for dependency and are then divided
into three groups: linked, forbidden, or unclassified.
Each SNV is represented as a pair (p,n) of its position
p and nucleotide value n in the aligned reads. If there
are enough reads that have two SNVs (p,n) and (p′,n′)
simultaneously, then they are tested for dependency.
If the dependency test is positive and statistically
significant (see CliqueSNV algorithm details for more
information), then the algorithm classifies these two
SNVs as linked. Otherwise, these two SNVs are tested
for independency. If the independency test is positive
and statistically significant (see Detailed description
for details), then these two SNVs are classified as a
forbidden pair.

• In Step 2, we build a graph G=(V,E) with a set of
nodes V representing SNVs, and a set of edges E
connecting linked SNV pairs.

• Ideally, SNVs of each true minority haplotype form
a clique in G. A maximal clique C⊆V is a set of
nodes such that (u,v)∈E for any u,v∈C and for any
x /∈C there is u∈C such that (x,u) /∈E. Step 3 finds all
maximal cliques in G.

• For real sequencing data, the linkage between some
SNV pairs may be undetected due to sequencing noise,
uneven coverage, or the shortness of the NGS reads. As
a result, a single clique corresponding to a haplotype
will be split into several overlapping cliques. Step 4
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Figure 1. Schematic representation of the CliqueSNV algorithm. Where SNV is single nucleotide variation.

merges such overlapping cliques. In order to avoid
merging distinct haplotypes, two cliques are not merged
if they contain a forbidden SNV pair.

• Step 5 assigns each read to a merged clique with which
it shares the largest number of SNVs. Then CliqueSNV

builds a consensus haplotype from all reads assigned to
a single merged clique.

• Finally, haplotype frequencies are estimated via an
expectation-maximization algorithm in Step 6.
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Name Type Virus #haplotypes Haplotype Hamming
frequencies distance

HIV9exp experimental HIV-1 9 0.2-50% 0.22-2.1%
HIV2exp experimental HIV-1 2 50-50% 1.2%
HIV5exp experimental HIV-1 5 20-20% 2-3.5%
IAV10exp experimental IAV 10 0.1-50% 0.1-1.1%
HIV7sim simulated HIV-1 7 14.3-14.3% 0.6-3%
IAV10sim simulated IAV 10 0.1-50% 0.1-1.1%

Table 1. Four experimental and two simulated sequencing datasets of human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV). The datasets
contain MiSeq and PacBio reads from intra-host viral populations consisting of two to ten variants each with frequencies in the range of 0.1-50%, and Hamming
distances between variants in the range of 0.1-3.5%.

Intra-host viral population sequencing benchmarks
We tested the ability of CliqueSNV to assemble haplotype
sequences and estimate their frequencies from PacBio and
MiSeq reads using four real (experimental) and two simulated
datasets from HIV and IAV samples (Table 1). Each dataset
contains between two to ten haplotypes with frequencies of
0.1 to 50%. The Hamming distances between pairs of variants
for each dataset are shown in Figure S1.

Experimental datasets:

1–2. HIV-1 subtype B plasmid mixtures and MiSeq reads
(HIV2exp and HIV9exp). We designed nine in silico
plasmid constructs comprising a 950-bp region of
the HIV-1 subtype B polymerase (pol) gene that
were then synthesized and cloned into pUCIDT-Amp
(Integrated DNA Technologies, Skokie, IL). Each clone
was confirmed by Sanger sequencing. This 950-bp
region at the beginning of pol contains known protease
and reverse transcriptase genes that are monitored
for drug-resistant mutations and is monitored with
sequence analysis for patient care. Each of these
plasmids contains a specific set of point mutations
chosen using mutation profiles of patient p7 from a
real clinical study (53) to create nine unique synthetic
HIV-1 pol haplotypes. Different proportions of these
plasmids were mixed and then sequenced using an
Illumina MiSeq protocol to obtain 2x300-bp reads (see
Supplementary Methods). HIV2exp and HIV9exp are
mixtures of two and nine variants, respectively.

3. HIV-1 subtype B mixture and MiSeq reads (HIV5exp).
This dataset consists of Illumina MiSeq 2×250-bp reads
with an average read coverage of ˜20,000× obtained
from a mixture of five HIV-1 isolates: 89.6, HXB2,
JRCSF, NL43, and YU2 available at (52). Isolates
have pairwise Hamming distances in the range from
2-3.5%(27 to 46-bp differences). The original HIV-1
sequence length was 9.3kb, but was reduced to the
beginning of pol with a length of 1.3kb.

4. Influenza A mixture and PacBio reads (IAV10exp).
This benchmark contains ten IAV virus clones that
were mixed at a frequency of 0.1-50%. The Hamming
distances between clones ranged from 0.1-1.1% (2-22–
bp differences) (48). The 2kb-amplicon was sequenced
using the PacBio platform yielding a total of 33,558
reads with an average length of 1973 nucleotides.

Simulated datasets:

1. HIV-1 subtype B mixture and MiSeq reads (HIV7sim).
This benchmark contains simulated Illumina MiSeq
reads with a 10k-coverage of 1-kb pol sequences. The
reads were simulated from seven equally distributed
HIV-1 variants chosen from the NCBI database:
AY835778, AY835770, AY835771, AY835777,
AY835763, AY835762, and AY835757. The Hamming
distances between clones are in the range from 0.6-
3.0% (6 to 30-bp differences). We used SimSeq (54) for
generating reads.

2. Influenza A mixture and MiSeq reads (IAV10sim).
This benchmark contains simulated IAV Illumina
MiSeq reads with the same IAV haplotypes and their
frequencies as for the IAV10exp benchmark. The
sequencing of a 2kb-amplicon with 40k coverage with
paired Illumina MiSeq reads was simulated by SimSeq
(54) with the default sequencing error profile in SimSeq.

Validation metrics for viral population inference
Precision and recall Inference quality is typically measured
by precision and recall.

Precision=
TP

TP+FP

Recall=
TP

TP+FN

where TP is the number of true predicted haplotypes, FP
is the number of false predicted haplotypes, and FN is the
number of undiscovered haplotypes.

Initially we measured precision and recall strictly by
treating a predicted haplotype with a single mismatch as an
FP . Additionally, like in (29) we introduced an acceptance
threshold, which is the number of mismatches permitted for a
predicted haplotype to count as a TP .

Matching errors between populations However, precision and
recall do not take into account (i) distances between true and
inferred viral variants as well as (ii) the frequencies of the true
and inferred viral variants. Instead, we chose to use analogues
of precision and recall defined for populations as follows.

Let T ={(t,ft)}, be the true haplotype population, where
ft is the frequency of the true haplotype t,

∑
t∈T ft=1.
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Similarly, let P ={(p,fp)}, be the reconstructed haplotype
population, where fp is the frequency of the reconstructed
haplotype p,

∑
p∈P fp=1. Let dpt be the distance between

haplotypes p and t. Thus, instead of precision, we used
the matching error ET→P which measures how well each
reconstructed haplotype p∈P weighted by its frequency is
matched by the closest true haplotype.

ET→P =
∑
p∈P

fpmin
t∈T

dpt

Indeed, precision increases while ET→P decreases and
reaches 100% when ET→P =0. Similarly, instead of recall,
we propose to use the matching error ET←P which measures
how well each true haplotype t∈T weighted by its frequency
is matched by the closest reconstructed haplotype. (55)

ET←P =
∑
t∈T

ftmin
p∈P

dpt

Note that recall increases while ET←P decreases and reaches
100% when ET←P =0.

Earth mover’s distance (EMD) between populations The
matching errors described above match haplotypes of true and
reconstructed populations but do not match their frequencies.
In order to simultaneously match haplotype sequences and
their frequencies, we allowed for a fractional matching when
portions of a single haplotype p of population P are matched
to portions of possibly several haplotypes of T and vice versa.
Thus, we separated fp into fpt’s each denoting portion of p
matched to t such that fp=

∑
t∈T fpt, fpt≥0. Symmetrically,

ft’s are also separated into fpt’s, i.e,
∑
p∈P fpt=ft. Finally,

we chose fpt’s minimizing the total error of matching T to
P which is also known as Wasserstein metric or the EMD
between T and P (56, 57).

EMD(T,P )= min
fpt>0

∑
t∈T

∑
p∈P

fptdpt

s.t.
∑
t∈T

fpt=fp, and
∑
p∈P

fpt=ft

EMD is efficiently computed as an instance of the
transportation problem using network flows.

EMDs can vary a lot over different benchmarks since
they may have different complexities, which depends on
the number of true variants, the frequency distribution, the
similarity between haplotypes, sequencing depth, sequencing
error rate, and many other parameters. Hence, we measured
the complexity of a benchmark as the EMD between the true
population and a population consisting of a single consensus
haplotype (58).

CliqueSNV algorithm details
Data input for CliqueSNV consists of PacBio or Illumina
reads from an intra-host viral population aligned to a reference

genome. Output is the set of inferred viral variant RNA
sequences with their frequencies. The formal high-level
pseudocode of the CliqueSNV algorithm is described in the
supplementary materials. Below we describe in detail the six
major steps of CliqueSNV that are schematically presented in
Figure 1.
Step 1: Finding linked and forbidden SNV pairs. At a
given genomic position I , the most frequent nucleotide is
referred to as a major variant and is denoted 1. Let us fix
one of the less frequent nucleotide (referred to as a minor
variant) and denote it 2. A pair of variants at two distinct
genomic positions I and J is referred to as a 2-haplotype.
There are four 2-haplotypes with major and minor variants
at I and J : (11),(12),(21), and (22). Let O11,O12,O21,O22
be the observed counts of 2-haplotypes in the reads covering
I and J . In this step, CliqueSNV tries to decide whether the
O22 reads are sequencing errors or they are produced by an
existing haplotype containing the 2-haplotype (22).

The pairs of minor variants (referred to as SNV pairs)
are classified into three categories: linked, forbidden, and
unclassified. An SNV pair is linked if it is highly probable that
there exists a haplotype containing both minor variants. On the
contrary, an SNV pair is forbidden if it is extremely unlikely
that the corresponding minor variants belong to the same
haplotype. All other SNV pairs are referred to as unclassified.

Assuming that errors are random, it has been proven in (59)
that if the 2-haplotype (22) does not exist, then the expected
number of reads E22 containing the 2-haplotype (22) should
not exceed

E22≤
E21 ·E12

E11
(1)

where E21, E12, and E11 are the expected numbers of reads
containing the 2-haplotypes (21), (12) and (11), respectively.
To determine if a pair of SNVs (the minor variants in positions
I and J) are linked, we need to estimate the probability that
the observed counts of 2-haplotypes O11,O12,O21,O22 are
produced by 2-haplotype counts satisfying equation 1.

Let n be the total number of reads covering both positions
I and J . Then

p=
O21 ·O12

O11 ·n
(2)

is the probability of observing O22 reads with the both minor
variants given that the variant (22) does not exist.

The 2-haplotype (22) exists with high probability 1−P and
the corresponding pair of SNVs is linked if the value of p
satisfies the following inequality (59)

1−
O22−1∑
i=0

(
n

i

)
pi(1−p)n−i≤ P(L

2

) (3)

where P is the user-defined P -value (by default P =0.01)
and dividing by

(L
2

)
is the Bonferroni correction for multiple

testing.
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Pairs of SNVs passing this linkage test are classified as a
linked SNV pairs. For every other pair of SNVs, we check
whether they can be classified as a forbidden SNV pair, i.e.,
whether the probability of observing at most 022 reads is
low enough (<0.05) given that the variant (22) has frequency
T22≥ t (by default t=0.001).

P (x≤O22|T22≥ t)≤
O22∑
i=0

(
n

i

)
ti(1−t)n−i (4)

Step 2: Constructing the SNV graph. The SNV graph G=
(V,E) consists of vertices corresponding to minor variants and
edges corresponding to linked pairs of minor variants from
different positions. If the intra-host population consists of very
similar haplotypes, then graph G is very sparse. Indeed, the
PacBio dataset for IAV encompassing 2,500 positions is split
into 10,000 vertices, while the SNV graph contains only 700
edges, and, similarly, the simulated Illumina read dataset for
the same haplotypes contains only 368 edges.

Note that the isolated minor variants correspond to
genotyping errors unless they have a significant frequency.
This fact allows us to estimate the number of errors per
read, assuming that all isolated SNVs are errors. As expected,
the distribution of the PacBio reads has a heavy tail (see
Figure S4), which implies that most reads are (almost) error
free, while a small number of heavy-tail reads accumulate
most of the errors. Our analysis allows the identification of
such reads, which can then be filtered out. By default, we
filter out ≈10% of PacBio reads, but we do not filter out
any Illumina reads. The SNV graph is then constructed for
the reduced set of reads. Such filtering allows the reduction of
systematic errors and refines the SNV graph significantly.

Step 3: Finding cliques in the SNV graph G. Although
the MAX CLIQUE is a well-known NP-complete problem
and there may be an exponential number of maximal cliques
in G, a standard Bron-Kerbosch algorithm requires little
computational time since G is very sparse (60).

Step 4: Merging cliques in the clique graph CG. The clique
graph CG=(C,F,L) consists of vertices corresponding to
cliques in the SNV graph G and two sets of edges F and
L. A forbidding edge (p,q)∈F connects two cliques p and
q with at least one forbidden pair of minor variants from p and
q respectively. A linking edge (p,q)∈L connects two cliques p
and q, (p,q) /∈F , with at least one linked pair of minor variants
from p and q respectively. Any true haplotype corresponds
to a maximal (L\F )-connected subgraph H of CG which is
connected with edges from L and does not contain any edge
from F (see Fig. 1 (4)).

Unfortunately, even deciding whether there is a L-path
between p and q avoiding forbidding edges is known to
be NP-hard (61). We find all subgraphs H as follows (see
Figure S5): (i) connect all pairs of vertices except connected
with forbidding edges, (ii) find all maximal super-cliques in
the resulted graph C ′G=(C,C(2)−F ) using (60), (iii) split
each super-clique into L-connected components, and (iv) filter
out the L-connected components which are proper subsets of
other maximal L-connected components.

Step 5: Partitioning reads between merged cliques and
finding consensus haplotypes. Let S be the set of all
positions containing at least one minor variant in V . Let qS be
an major clique corresponding to a haplotype with all major
variants in S. The distance between a read r and a clique q
equals the number of variants in q that are different from the
corresponding nucleotides in r. Each read r is assigned to the
closest clique q (which can possibly be qS). In case of a tie,
we assign r to all closest cliques.

Finally, for each clique q, CliqueSNV finds the consensus
v(q) of all reads assigned to q. Then v(q) is extended from
S to a full-length haplotype by setting all non-S positions to
major SNVs.
Step 6: Estimating haplotype frequencies by using the
expectation-maximization (EM) algorithm. CliqueSNV
estimates the frequencies of the assembled intra-host
haplotypes via an expectation-maximization algorithm similar
to the one used in IsoEM (62). Let K be the number of
assembled viral variants, and let α be the probability of
sequencing error. EM algorithm works as follows:

1. Initialize frequencies of viral variants f (0)j ←
1
K ,

Compute the probability of li-long read ri i=1,N ,
being emitted by viral variant j=1,K,
hji=

∏li
l=1((1−α)Mji,l+

α
3 (1−Mji,l)),

where Mji,l - indicator if i-th read coincides with j-th
viral variant in the position l

2. (Expectation) Update the amount of read ri emitted by

the jth viral variant pij←
f
(n−1)
j hji∑k

u=1f
(n−1)
u hui

3. (Maximization) Update the frequency of the jth viral

variant f (n)j ←
∑N

i=1pij∑k
u=1

∑N
i=1piu

4. if ||f (n−1)j −f (n)j ||>ε, then n←n+1 and go to step 2

5. Output estimated frequencies f (n)

RESULTS

Performance of haplotyping methods
We compared CliqueSNV to the 2SNV, PredictHaplo,
and aBayesQR haplotyping methods. Since CliqueSNV,
PredictHaplo and aBayesQR use Illumina reads, we compared
them using the HIV9exp, HIV2exp, HIV5exp, HIV7sim,
and IAV10sim datasets. Since CliqueSNV, 2SNV, and
PredictHaplo can also use PacBio reads, we compared
them using the IAV10exp dataset. We also used consensus
sequences in the comparisons (58) because of its simplicity
and to evaluate sequences most similar to those generated by
the Sanger sequencing method (63).

The precision and recall of haplotype discovery for each
method is provided in Table 2. CliqueSNV had the best
precision and recall for five of the six datasets. For the
HIV5exp dataset, PredictHaplo was more conservative and
predicted less false positive variants (better precision) than
CliqueSNV.
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Benchmark CliqueSNV aBayesQR PredictHaplo
Precision Recall Precision Recall Precision Recall

HIV9exp 0.60 0.33 0.00 0.00 0.00 0.00
HIV2exp 0.66 1.00 0.11 0.50 0.50 0.50
HIV5exp 0.18 0.40 0.00 0.00 0.33 0.20
HIV7sim 1.00 0.71 1.00 0.42 0.45 0.71
IAV10sim 0.75 0.30 0.11 0.10 0.33 0.10

(a)

Benchmark CliqueSNV 2SNV PredictHaplo
Precision Recall Precision Recall Precision Recall

IAV10exp 1.00 1.00 0.82 0.90 0.70 0.70
(b)

Table 2. Prediction statistics of haplotype reconstruction methods using experimental and simulated (a) MiSeq and (b) PacBio datasets. The precision and recall
was evaluated stringently such that if a predicted haplotype has at least one mismatch to its closest answer, then that haplotype is scored as a false positive.

Following study (29), we also showed how precision and
recall grew with the reduction of restriction on mismatches
(Fig. 2). The number of true predicted haplotypes for
CliqueSNV was always greater than that of the other methods
on real experimental sequencing benchmarks indicating that
CliqueSNV more accurately identified the true haplotypes.
The number of falsely predicted haplotypes for CliqueSNV
was always lower than those for aBayesQR, but similar to
those predicted by PredictHaplo on four out of five datasets
indicating that both CliqueSNV and PredictHaplo had the best
precision with MiSeq datasets.

Matching distance analysis showed that matching distances
ET←P and ET→P are better for CliqueSNV than for both
PredictHaplo and aBayesQR on four out of five MiSeq
datasets (Fig. 3). For HIV7sim, ET←P for aBayesQR
was slightly better than for CliqueSNV. Using HIV9exp,
HIV2exp, HIV7sim, and IAV10sim datasets, the ET←P and
ET→P for CliqueSNV were very close to zero indicating
that the predictions were almost perfect. Since ET←P and
ET→P correlate with precision and recall, matching distance
analysis indicates that CliqueSNV had a better precision, and
significantly outperformed both PredictHaplo and aBayesQR.
Since aBayesQR had a higher ET→P on MiSeq datasets, it is
more likely to make more false predictions. Notably, on the
HIV7sim dataset, aBayesQR outperformed both CliqueSNV
and PredictHaplo by ET←P .

The EMD between the predicted and true haplotype
populations for all five MiSeq datasets are shown in Figure 4.
The exact EMD values are provided in Table 3. CliqueSNV
provided the lowest (the best) EMD across all tools on four
out of five MiSeq benchmarks. For the simulated and PacBio
datasets, CliqueSNV had almost a zero EMD indicating a
low error in predictions. PredictHaplo had a lower EMD than
aBayesQR on four out of five MiSeq datasets. aBayesQR
has almost a zero EMD with the HIV7sim dataset and
outperformed CliqueSNV, while using the HIV5exp dataset,
aBayesQR performed poorer than other methods.

Next, CliqueSNV, 2SNV, and PredictHaplo were compared
using the IAV10exp benchmark dataset (see Table S1).
CliqueSNV correctly recovered all ten true variants, including
the haplotype with frequencies significantly below the
sequencing error rate. 2SNV recovered nine true variants
but found one false positive. PredictHaplo recovered only

seven true variants and falsely predicted three variants. To
further explore the precision of these three methods with
the IAV10exp data, we simulated low-coverage datasets
by randomly subsampling n=16K,8K,4K reads from the
original data. For each dataset, CliqueSNV found at least one
true variant more than both 2SNV and PredictHaplo.

Runtime comparison
To compare the computational run time of each method, we
used the same PC (Intel(R) Xeon(R) CPU X5550 2.67GHz
x2 8 cores per CPU, DIMM DDR3 1,333 MHz RAM 4Gb
x12) with the CentOS 6.4 operating system. The runtime of
CliqueSNV is sublinear with respect to the number of reads
while the runtime of PredictHaplo and 2SNV exhibit super-
linear growth. For the 33k IAV10sim reads the CliqueSNV
analysis took 21 seconds, while PredictHaplo and 2SNV took
around 30 minutes. The runtime of CliqueSNV is quadratic
with respect to the number of SNVs rather than by the length
of the sequencing region (Fig. S2).

We also generated five HIV-1 variants within 1% Hamming
distance from each other, which is the estimated genetic
distance between related HIV variants from the same person
(64). Then we simulated 1M Illumina reads for sequence
regions of length 566, 1132, 2263 and 9181 nucleotides
for which CliqueSNV required 37, 144, 227, and 614
seconds, respectively, for analyzing these datasets (Fig. S3).
For the HIV2exp benchmark, aBayesQR, PredictHaplo, and
CliqueSNV required over ten hours, 24 minutes, and only 79
seconds, respectively.

DISCUSSION

Assembly of haplotype populations from noisy NGS data
is one of the most challenging problems of computational
genomics. High-throughput sequencing technologies, such
as Illumina MiSeq and HiSeq, provide deep sequence
coverage that allows discovery of rare, clinically relevant
haplotypes. However, the short reads generated by the
Illumina technology require assembly that is complicated by
sequencing errors, an unknown number of haplotypes in a
sample, and the genetic similarity of haplotypes within a
sample. Furthermore, the frequency of sequencing errors in

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2020. ; https://doi.org/10.1101/264242doi: bioRxiv preprint 

https://doi.org/10.1101/264242
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“output” — 2020/10/9 — 4:13 — page 8 — #8 i
i

i
i

i
i

8 Nucleic Acids Research, YYYY, Vol. xx, No. xx

Figure 2. The number of true and false predicted haplotypes depending on the number of accepted mismatches for five benchmarks: (A) HIV9exp; (B) HIV2exp;
(C) HIV5exp; (D) HIV7sim; (E) IAV10sim. Two haplotypes are regarded identical if the Hamming distance between them is at most the number of accepted
mismatches.

Illumina reads is comparable to the frequencies of true minor
mutations (41). The recent development of single-molecule
sequencing platforms such as PacBio produce reads that are
sufficiently long to span entire genes or small viral genomes.
Nonetheless, the error rate of single-molecule sequencing is
exceptionally high reaching 13−14% (65), which hampers
PacBio sequencing to detect and assemble rare viral variants.

We developed CliqueSNV, a new reference-based assembly
method for reconstruction of rare genetically-related viral

variants such as those observed during infection with
rapidly evolving RNA viruses like HIV, HCV and IAV. We
demonstrated that CliqueSNV infers accurate haplotyping
in the presence of high sequencing error rates and is also
suitable for both single-molecule and short-read sequencing.
In contrast to other haplotyping methods, CliqueSNV infers
viral haplotypes by detection of clusters of statistically linked
SNVs rather than through assembly of overlapping reads used
with methods such as Savage (24).
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Figure 3. Matching distances ET←P and ET→P between the true haplotype population T and the reconstructed haplotype population P for five benchmarks.

Figure 4. Earth Movers’ Distance (EMD) between true and reconstructed haplotype populations for five benchmarks.

Benchmark Consensus CliqueSNV aBayesQR PredictHaplo
EMD EMD Impr. EMD Impr. EMD Impr.

HIV9exp 4.18 2.35 1.78 5.02 0.83 6.90 0.61
HIV2exp 5.50 1.87 2.94 3.02 1.82 3.65 1.51
HIV5exp 14.80 7.37 2.01 14.05 1.05 9.43 1.57
HIV7sim 9.63 0.76 12.72 0.67 14.4 2.00 4.80
IAV10sim 4.22 0.59 7.2 3.57 1.18 2.97 1.42

(a)

Benchmark Consensus CliqueSNV 2SNV PredictHaplo
EMD EMD Impr. EMD Impr. EMD Impr.

IAV10exp 4.22 0.22 19.18 0.23 18.35 0.38 11.12
(b)

Table 3. Earth Movers’ Distance from predicted haplotypes to the true haplotype population and haplotyping method improvement. Four haplotyping
methods(aBayesQR, CliqueSNV, Consensus, PredictHaplo) are benchmarked using five MiSeq (a) and one PacBio datasets (b). The column Impr. (improvement)
shows how much better is prediction of haplotyping method over inferred consensus, and it is calculated as EMDm

EMDc
, where EMDc is an EMD for consensus,

and EMDm is an EMD for method.
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Applied to the novel in vitro sequencing HIV-1 benchmark,
CliqueSNV correctly reconstructed 87% of the intra-host
haplotype population. At the same time, other state-of-the-art
tools were not able to recover even a single haplotype without
errors. Additionally, we have used the only previously known
and commonly used in vitro benchmark (26) and simulated
datasets to evaluate the accuracy of existing haplotyping
methods. In contrast to the existing methods, CliqueSNV was
able to detect minority haplotypes at a low 0.1% frequency and
distinguish minority haplotypes differently in only two base
pairs.

Although very accurate and fast, CliqueSNV has some
limitations. Unlike Savage (24), CliqueSNV is not a de novo
assembly tool and requires a reference viral genome. This
obstacle could easily be addressed by using Vicuna (58) or
other analogous tools to first assemble a consensus sequence
from the NGS reads, which can then be used as a reference.
Another limitation is for variants that differ only by isolated
SNVs separated by long conserved genomic regions longer
than the read length which may not be accurately inferred by
CliqueSNV. While such situations usually do not occur for
viruses, where mutations are typically densely concentrated in
different genomic regions, we plan to address this limitation
in the next version of CliqueSNV.

The ability to accurately infer the structure of intra-host
viral populations makes CliqueSNV applicable for studying
viral evolution, transmission and examining the genomic
compositions of RNA viruses. In addition, we envision that the
application of our method could be extended to other highly
heterogeneous genomic populations, such as metagenomes,
immune repertoires, and cancer cell genes.
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31. Töpfer, A., Zagordi, O., Prabhakaran, S., Roth, V., Halperin, E., and
Beerenwinkel, N. (2013) Probabilistic inference of viral quasispecies
subject to recombination. Journal of Computational Biology, 20(2),
113–123.
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and Zelikovsky, A. (2011) Reconstructing viral quasispecies from NGS
amplicon reads. In silico biology, 11(5), 237–249.

36. Zagordi, O., Bhattacharya, A., Eriksson, N., and Beerenwinkel, N. (2011)
ShoRAH: estimating the genetic diversity of a mixed sample from next-
generation sequencing data. BMC bioinformatics, 12(1), 119.

37. Astrovskaya, I., Tork, B., Mangul, S., Westbrooks, K., Măndoiu, I., Balfe,
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