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 34 

Background 35 

Maternal obesity has become a growing global health concern that impacts fetal health and subsequently 36 

predisposes the offspring to medical conditions later in life. However, the metabolic link between maternal 37 

pre-pregnant obesity and offspring has not yet been fully elucidated.  38 

Objective 39 

This study aims to investigate metabolomics changes in fetal cord blood associated with obese (BMI>30) 40 

and normal pre-pregnant weight (18.5<BMI<25) mothers. 41 

Design 42 

In this study, we conducted a case-control study using coupled untargeted and targeted metabolomics 43 

approach, from the newborn cord blood metabolomes associated with a matched discovery cohort of 28 44 

cases and 29 controls for maternal pre-pregnant obesity. The subjects are recruited from multi-ethnic 45 

populations in Hawaii, including rarely reported Native Hawaiian and other Pacific Islanders (NHPI). The 46 

results are subsequently validated in by an indepdent cohort of 12 cases and 18 controls.  47 

 48 

Results 49 
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Maternal obesity is the most important factor contributing to differences in cord blood metabolomics. Using 50 

elastic net regularization based logistic regression model, we identify 29 metabolites as early-life 51 

biomarkers manifesting intrauterine effect of maternal obesity, with accuracy as high as 0.947 even after 52 

adjusting for clinical confounding (maternal ethnicity etc). This obese model is validated in a separate 53 

cohort (N=30) with accuracy of 0.822. Among the metabolites, six metabolites of them (galactonic acid, 54 

butenylcarnitine, 2-hydroxy-3-methylbutyric acid, phosphatidylcholine diacyl C40:3, 1,5-anhydrosorbitol, 55 

and phosphatidylcholine acyl-alkyl 40:3) are individually significantly different between the maternal 56 

obese vs. norm-weight groups. Interstingly, hydroxy-3-methylbutyric acid shows significnatly higher levels 57 

in cord blood from the NHPI group in the dicovery cohort, compared to asian and caucasian groups. This 58 

trend is also observed in the validation cohort. 59 

 60 

Conclusions 61 

The work here demonstrates the significant associations between maternal pre-pregnant obesity and 62 

offspring metabolomics alternation at birth, revealing the inter-generational impact of maternal obesity.  63 

 64 

 65 
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 68 

Introduction     69 

 70 

Obesity is a global health concern. While some countries have a relative paucity of obesity, in the United 71 

States, obesity affects 38% of adults (1, 2). As such, maternal obesity has risen to epidemic proportions in 72 

recent years and can impose significant risk to both the mother and unborn fetus. Recently, research has 73 
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focused on the association of maternal health during pregnancy and the subsequent effects on the future 74 

health of offspring (3).  Since the inception of Barker’s hypothesis in the 1990’s, efforts to connect 75 

intrauterine exposures with the development of disease later in life has been the subject of many studies 76 

(4).  Both obesity and its accompanying morbidities, such as diabetes, cardiovascular diseases and cancers, 77 

are of particular interest as considerable evidence has shown that maternal metabolic irregularities may 78 

have a role in genotypic programming in offspring (5, 6).  Identifying markers of predisposition to health 79 

concerns or diseases would present an opportunity for early identification and potential intervention, thus 80 

providing life-long benefits (7-9). 81 

Previous studies have found that infants born to obese mothers consistently demonstrate elevation of 82 

adiposity and are at more substantial risk for the development of metabolic disease (10). While animal 83 

models have been used to demonstrate early molecular programming under the effect of obesity, human 84 

research to elucidate the underlying mechanisms in origins of childhood disease is lacking (11). In 85 

Drosophila melanogaster, offspring of females given a high-sucrose diet exhibited metabolic aberrations 86 

both at the larvae and adult developmental stages (12, 13). Though an invertebrate model, mammalian lipid 87 

and carbohydrate systems show high level of conservation in Drosophila melanogaster (14, 15). In a mouse 88 

model of maternal obesity, progeny demonstrated significant elevations of both leptin and triglycerides 89 

when compared with offspring of control mothers of normal weight (5). The authors proposed that 90 

epigenetic modifications of obesogenic genes during intrauterine fetal growth play a role in adaption to an 91 

expected future environment.  Recently, Tillery et al. used a primate model to examine the origins of 92 

metabolic disturbances and altered gene expression in offspring subjected to maternal obesity (16). The 93 

offspring consistently displayed significant increases in triglyceride level and also fatty liver disease on 94 

histologic preparations. However, human studies that explore the fetal metabolic consequences of maternal 95 

obesity are still in need of investigation.  96 

 97 

Metabolomics is the study of small molecules using high throughput platforms, such as mass spectroscopy 98 

(17). It is a desirable technology that can detect distinct chemical imprints in tissues and body fluids (18).  99 
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The field of metabolomics has shown great promise in various applications including early diagnostic 100 

marker identification (19), where a set of metabolomics biomarkers can differentiate samples of two 101 

different states (eg. disease and normal states). Cord blood metabolites provide information on fetal 102 

nutritional and metabolic health (20), and could provide an early window of detection to potential health 103 

issues among newborns. Previously, some studies have reported differential metabolite profiles associated 104 

with pregnancy outcomes such as intrauterine growth restriction (21) and low birth weight (22). For 105 

example, abnormal lipid metabolism and significant differences in relative amounts of amino acids were 106 

found in metabolomic signatures in cord blood from infants with intrauterine growth restriction in 107 

comparison to normal weight infants (21). In another study higher phenylalanine and citrulline levels but 108 

lower glutamine, choline, alanine, proline and glucose levels were observed in cord blood of infants of low-109 

birth weight (22). However, thus far no metabolomics studies have been reported to specifically investigate 110 

the impact of maternal obesity on metabolomics profiles in fetal cord blood (21-24).  111 

 112 

This study aims to investigate metabolomics changes in fetal cord blood associated with obese (BMI>30) 113 

and normal pre-pregnant weight (18.5<BMI<25) mothers. Uniquely, we recruited mothers from the multi-114 

ethnic population in Hawaii, including Native Hawaiian and other Pacific Islanders (NHPI).  NHPI is a 115 

particularly under-represented minority population across most scientific studies. To ensure the quality of 116 

the study, we enrolled the mothers undergoing elected C-sections without any clinically known gestational 117 

diseases. In addition to the cord blood samples of their babies at birth, we collected comprehensive EMR 118 

records from the subjects, other maternal and paternal parameters such as ethnicities. To confirm the 119 

scientific rigor, we validated the model and observations from another case-control cohort of 30 subjects. 120 

This study has discovered the metabolomic links between cord blood and maternal pre pregnant obesity 121 

and identified potential early-life metabolite biomarkers associated with maternal obesity.  122 

 123 

Methods 124 
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 125 

Study population   126 

We performed a multi-ethnic case-control study at Kapiolani Medical Center for Women and Children, 127 

Honolulu, HI from June 2015 through June 2017. The study was approved by the Western IRB board 128 

(WIRB Protocol 20151223). To avoid confounding of inflammation accompanying labor and natural births 129 

(25) we recruited women scheduled for full-term cesarean section at ≥ 37 weeks gestation. All subjects 130 

fasted for at least 8 hours before the scheduled cesarean delivery. Patients meeting inclusion criteria were 131 

identified from pre-admission medical records with pre-pregnancy BMI ≥30.0 (cases) or 18.5-25.0 132 

(controls). The pre-pregnancy BMIs were also confirmed during the enrollment.  Women with preterm 133 

rupture of membranes (PROM), labor, multiple gestations, pre-gestational diabetes, hypertensive disorders, 134 

cigarette smokers, HIV, HBV, and chronic drug users were excluded. Clinical characteristics were 135 

recorded, including maternal and paternal age, maternal and paternal ethinicities, mother’s pre-pregnancy 136 

BMI, net weight gain, gestational age, parity, gravidity and ethnicity. For the discovery cohort, a total of 137 

57 subjects (28 cases and 29 controls) were recruited. Additionally, to confirm the results, we recruited 30 138 

subjects ( 12 cases and 18 controls) from the same site but different time interval ( July 2017 to June 2018). 139 

 140 

Sample collection, preparation and quality control    141 

Cord blood was collected under sterile conditions at the time of cesarean section using Pall Medical cord 142 

blood collection kit with 25 mL citrate phosphate dextrose (CPD) in the operating room. The umbilical cord 143 

was cleansed with chlorhexidine swab before collection to ensure sterility.  The volume of collected blood 144 

was measured and recorded before aliquoting to conicals for centrifugation. Conicals were centrifuged at 145 

200g for 10 minutes, with break off, and plasma was collected. The plasma was centrifuged at 350g for 10 146 

minutes, with break on, aliquoted into polypropylene cryotubes, and stored at -80C. 147 

 148 

Metabolome profiling 149 
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The plasma samples were thawed and extracted with 3-vol cold organic mixture of ethanol: chloroform and 150 

centrifuged at 4 °C at 13500 rpm for 20 min. The supernatant was split for lipid and amino acid profiling 151 

with an Acquity ultra performance liquid chromatography coupled to a Xevo TQ-S mass spectrometry 152 

(UPLC-MS/MS, Waters Corp., Milford, MA). Metabolic profiling of other metabolites including organic 153 

acids, carbohydrates, amino acids, and nucleotides were measured with an Agilent 7890A gas 154 

chromatography coupled to a Leco Pegasus time of flight mass spectrometry (Leco Corp., St Joseph, MI). 155 

The raw data files generated from LC-MS (targeted) and GC-MS (untargeted) were processed with 156 

TargetLynx Application Manager (Waters Corp., Milford, MA) and ChromaTOF software (Leco Corp., St 157 

Joseph, MI) respectively. Peak signal, mass spectral data, and retention times were obtained for each 158 

metabolite. The detected metabolites from GC-MS were annotated and combined using an automated mass 159 

spectral data processing (AMSDP) software package (26). The levels of lipids and amino acids detected 160 

from LC-MS were calculated with calibration curves established with reference standards.   161 

Metabolomics data processing  162 

We conducted data pre-processing similar to the previous report (27). Briefly, we used K-Nearest 163 

Neighbors (KNN) method to impute missing metabolomics data (28). To adjust for the offset between high 164 

and low-intensity features, and to reduce the heteroscedasticity, the logged value of each metabolite was 165 

centred by its mean and autoscaled by its standard deviation (29).  We used quantile normalization to reduce 166 

sample-to-sample variation (30). We applied partial least squares discriminant analysis (PLS-DA) to 167 

visualize how well metabolites could differentiate the obese from normal samples. To explore the 168 

contribution of different clinical/physiological factors to metabolomics data, we conducted source of 169 

variation analysis. We used comBat Bioconductor R package (31) to adjust for the batch effects in the 170 

metabolomics data.  171 

Classification modeling and evaluation 172 

To reduce the dimensionality of our data (230 metabolites vs 57 samples), we selected the unique 173 

metabolites associated with separating obese and normal status. To achieve this, we used a penalized 174 
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logistic regression method called elastic net that was implemented in the glment R package (32). Elastic 175 

net method selects metabolites that have non-zero coefficients as features, guided by two penalty parameters 176 

alpha and lambda (32).  Alpha sets the degree of mixing between lasso (when alpha=1) and the ridge 177 

regression (when alpha=0). Lambda controls the shrunk rate of cofficients regardless of the value of alpha.  178 

When lambda equals zero, no shrinkage is performed and the algorithm selects all the features. As lambda 179 

increases, the coefficients are shrunk more strongly and the algorithm retrives all features with non-zero 180 

coefficients.  To find optimal parameters, we performed 10-fold cross-validation that yield the smallest 181 

prediction minimum square error (MSE). We then used the metabolites selected by the elastic net to fit the 182 

regularized logistic regression model. Three parameters were tuned: cost, which controls the trade-off 183 

between regularization and correct classification, logistic loss and epsilon, which sets the tolerance of 184 

termination criterion for optimization.  185 

To construct and evaluate the model, we divided samples into 5 folds. We trained the model on four folds 186 

(80% of data) using leave one out cross validation (LOOCV) and measured model performance on the 187 

remaining fold (20% of data).  We carried out the above training and testing five times on all folds 188 

combination.  We plotted the receiver-operating characteristic (ROC) curve for all folds prediction using 189 

pROC R package. To adjust confounding other clinical covariants such as ethnicity, gravidity and parity, 190 

we reconstructed the metabolomics model above by including these factors. 191 

Analysis on metabolite features 192 

We used Classification And REgression Training (CARET) R package to rank metabolites based on the 193 

model-based approach (33). In this approach, each metabolite was assigned a score that estimates its 194 

contribution to the model performance (34). These scores were scaled to have a maximum of 100. We 195 

performed metabolomic pathway analysis on metabolites chosen by the elastic net method using 196 

Consensus Pathway DataBase (CPDB). We used rcorr function implemented in Hmisc R package to 197 

compute the correlations among clinical and metabolomics data.    198 

Data availability 199 
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The metabolomics data generated by this study is deposited to Metabolomics workbench (Study ID 200 

ST001114).  201 

 202 

Results   203 

 204 

Cohort subjects characteristics  205 

Our disovery cohort consisted of three ethnic groups: Caucasian, Asian and Native Hawaiian and other 206 

Pacific Islander (NHPI). Women undergoing scheduled cesarean delivery were included based on the 207 

previously described inclusion and exclusion criteria (Methods). Demographical and clinical characteristics 208 

in obese and control groups are summarized in Table 1. In the Caucasian group (10 mothers), 6 were 209 

categorized as non-obese and 4 as obese. In the Asian group (23 mothers), 16 were categorized as non-210 

obese and 7 as obese. In the NHPI group (24 mothers), 7 (24%) were categorized as non-obese and 17 211 

(61%) as obese.  The variation in recruitment of cases versus controls in each ethnic background reflects 212 

the demographics in Hawaii. Compared to mothers of normal pre-pregnant BMI, obese mothers have 213 

significantly higher pre-pregnancy BMI (33.51+/- 4.49 vs 21.89 +/- 1.86 kg/m2, p=9.18e-11). Mothers have 214 

no statistical difference regarding their ages (32.10 +/- 4.88 vs 32.48 +/- 5.66, p=0.7) or gestational age 215 

(39.04 weeks+/- 0.22 vs 38.93 +/- 0.45 p=0.38), excluding the possibility of confouding from these factors. 216 

Babies of obese mothers have significantly (P=0.03) higher birth weight compared to the normal pre 217 

pregnant weight group, consistent with earlier observations (35, 36).  218 

 219 

Preliminary assessment of metabolomics results  220 

We detected a total of 230 metabolites, including 79 untargeted and 151 targeted metabolites (11 amino 221 

acids, and 140 lipids). To explore which clinical/physiological covariates are associated with the variations 222 

in the metabolomics, we conducted source of variation analysis. Indeed, maternal obesity is the 223 

predominatly most important factor contributing to metabolomic difference, rather than other factors 224 
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(Figure 1A). To test if these metabolites allow clear separation between the obese and normal-weight 225 

subjects, we used elastic net regularization based logistic regression, rather than the partial least squares 226 

(PLS) model, a routine supervised multivariate method which only yielded modest accuracy AUC=0.62 227 

(Figure 1S). Elastic net regularization overcomes the limitation of either ridge and lasso regularization 228 

alone, and combines their strengths to identify an optimized set metabolites [25]. Using the optimized 229 

regularization parameters (Figure. 2S), we identified a total of 29 metabolite features, which together yields 230 

the highest predictive performance with AUC=0.97, 95 % CI=[0.904-0.986] in 20% hold-out test dataset 231 

(Figure 1B). Among them, six metabolites have large contributions to the separations between case/control, 232 

with an importance score of at least 70% individually (Figure 1C). These are galactonic acid, 233 

butenylcarnitine (C4:1), 2-hydroxy-3-methylbutyric acid, phosphatidylcholine diacyl C40:3 (PC aa C40:3), 234 

1,5-anhydrosorbitol, and phosphatidylcholine acyl-alkyl 40:3 (PC ae C40:3). Thus, metabolites selected by 235 

the elastic net method indeed improved the prediction power of the model. 236 

 237 

Calibrated maternal-obese predictive model with consideration of confounding 238 

 239 

For statiscal rigor, it is important to consider possible confounders, such as maternal/paternal ethnicity and 240 

parity (Table 1) during the analysis. Towards this, we conducted two investigations. First, we explored the 241 

correlations among the demographic factors and metabolomics data. It is evident that several metaboloties 242 

are correlated with maternal and paternal ethnicity, gravidity, and/or parity (Figure 2-A). For example, 243 

maternal ethnicity is positively correlated with 2-hydroxy-3-methylbutyric acid. Secondly, we built a 244 

logistic regression model using the above-mentioned four covariates alone (parity, gravidity, maternal and 245 

paternal ethnicity). This model yields a modest AUC of 0.701 95% CI=[0.55-0.82] (Figure 3S-A), again 246 

suggesting existence of confounding. These observations prompted us to recalibrate the 29-metabolite 247 

elastic net model, by adjusting the metabolomics model using all collected clinical covariants (Figure 2B). 248 

The resulting modified model remains to have very high accuracy, with AUC= 0.947, 95% CI= [0.87-0.97]. 249 
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In the new model, besides the original 6 metabolite features, maternal ethnicity and paternal ethnicity also 250 

have importance scores greater than 70% (Figure 2C).  251 

 252 

Metabolomite features and their pathway and enrichment analysis 253 

The 29 metabolite features selected by the model belong to acylcarnitine, glycerophospholipid, amino acids 254 

and organic acids classes. Their log fold changes ranged from -0.45 (Hydroxyhexadecenoylcarnitine, or 255 

C16:1-OH) to 0.66 (2-hydroxy-3-methylbutyric acid) (Figure 3A). Among them,  15 metabolites are higher 256 

in obese associated cord blood samples, including 2-hydroxy-3-methylbutyric acid, galactonic acid, PC ae 257 

C40:3, Propionylcarnitine (C3), PC aa C40:3, O-butanoyl-carnitine (C4:1), Hexanoylcarnitine (C6 (C4:1 -258 

DC)) , Phosphatidylcholine diacyl C40:2 (PC aa C40:2), benzoic acid, 1,5-anhydrosorbitol, 259 

Isovalerylcarnitine (C5), PC ae C40:2, L-arabitol, Octadecenoylcarnitine (C18:1) (Figure 3A, Table 2) . 260 

The remaining 14 metabolites are lower in obese associated cord blood samples: malic acid, L-aspartic acid, 261 

citric acid, PC ae C34:0, isoleucine, PC ae C36:2, oleic acid, PC aa C36:5, PC ae C34:3, PC ae C40:6, 262 

C5:1-DC, 2-hydroxybutyric acid, myoinositol, and C16:1 -OH (Figure 3A, Table 2). The individual 263 

metabolite levels of Hexanoylcarnitine (C6(C4:1-DC)), O-butanoyl-carnitine (C4:1), PC aa C40:3, 264 

Propionylcarnitine (C3), PC ae C40:3, galactonic acid, and 2-hydroxy-3-methylbutyric acid increased 265 

significantly in obese cases (p<0.05, t-test).  266 

To elucidate the biological processes in newborns that may be effected by maternal obesity, we performed 267 

pathway enrichment analysis on the 29 metabolite features, using Consensus pathway database (CPDB) 268 

tool (37). We combined multiple pathway databases including KEGG, Wikipathways, Reactome, EHNM 269 

and SMPDB. A list of 10 pathways are enriched with adjusted p-value q<0.05 (Figure 3B). Among them, 270 

alanine and aspartate metabolism is the most significantly enriched pathway (q=0.004). Transmembrane 271 

transport of small molecules and SLC-mediated transmembrane transport are also significantly enriched 272 

(q=0.004 and q=0.01 respectively). 273 

 274 

The influence of ethinicity on metabolite levels 275 
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Our earlier correlational analysis suggested that maternal ethnicity may be correlated with 2-hydroxy-3-276 

methylbutyric acid level (Figure 2A). To confirm this, we conducted 2-way ANOVA statistical tests and 277 

indeed obtained significant p-value (P=0.023, chi-square test). We thus stratified the levels of 2-hydroxy-278 

3-methylbutyric acid by ethnicity (Figure 4). There is no significant difference in normal pre pregnant-279 

weight subjects across the three ethnic groups (Figure 4A). However, in cord blood samples associated with 280 

obese mothers, the concentration of 2-hydroxy-3-methylbutyric acid is much higher in NHPI, as compared 281 

to Caucasians (p=0.05) or Asians (p=0.04) (Figure 4B). 2-hydroxy-3-methylbutyric acid originates mainly 282 

from ketogenesis through the metabolism of valine, leucine and isoleucine (38). Since all subjects have 283 

fasted 8 hours before the C-section, we expect the confounding from diets is minimized among the three 284 

ethnical groups. Thus the higher 2-hydroxy-3-methylbutyric acid level may indicate the higher efficiency 285 

of ketogenesis in babies born from obese NHPI mothers. 286 

 287 

Validation on an independent cohort 288 

To test the robustness of our results, we applied our model on a new cohort of 30 patients (18 normal-289 

weight and 12 obese). We then performed new metabolomics measurements and processed the data as 290 

earlier. Using the model built on 57 samples, we tested its performance on the new 30 samples, and obtained 291 

an AUC of 0.822 (95% CI= [0.74-0.89]), confirming the reproducibility of our findings. Moreover, we 292 

observed a similar trend of higher concentration of 2-hydroxy-3-methylbutyric acid in NHPI compared to 293 

Asians and Caucasians (p=0.001) in the obese group, whereas no statistical difference between ethnicities 294 

exists in the control group. Moreover, within this cohort, four of the six metabolites that had large 295 

contributions to the separations between case/control (importance score > 70%) in the discovery cohort, 296 

has consistent trend of changes in the validation cohort. 297 

 298 

Discussion 299 

 300 
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This study aims to distinguish key cord blood metabolites associated with maternal pre-pregnancy obesity. 301 

The novelty of the study is manifested in several folds. First, we have collected a unique multi-ethnic 302 

population in Hawaii over a period of 3 years (2015-2018), which includes Asian, NHPI and Caucasians, 303 

following very strict inclusion/exclusion criteria (esp. on matching gestational weight gain). Secondly, we 304 

utilize state of the art metabolomics technology platform coupling GC-MS and LC-MS platforms, which 305 

allows us to detect hundreds of metabolites simultaneously. Lastly, we use the state of art method called 306 

elastic net based logistic regression that drastically improves the classification accuracy on cord blood 307 

metabolomics data.  308 

To ensure the quality of metabolomics data, our study set most stringent inclusion and exclusion crtieria to 309 

exclude as many confouding factors as possible. To avoid the confounding from labor and vaginal delivery, 310 

we only targeted mothers having elective C-sections. We also excluded obese mothers who had known 311 

complications during pregnancy, such as pre-gestational diabetes, smoking, and hypertension. These 312 

criteria helped to improve the quality of the metabolomics data. To minimize confounding due to maternal 313 

diet, all subjects fasted 8 hours before the Cesarean section. 314 

Such careful experimental design did yield good data quality, as the source of variation analysis did show 315 

that maternal obesity is the only dominate factor contributing to metabolomics diffeence in the cord blood. 316 

Additionally, we conducted rigorous statistical modeling and found that metabolites can distinguish the two 317 

maternal groups with accuracy as high as AUC=0.97 under cross-validation (or 0.947 after adjusting for 318 

confounding effects). Metabolomics pathway analysis on the metabolite features in the model identified 10 319 

significant pathways.  Among them, alanine and aspartate metabolism was previously reported to be 320 

associated with obesity (39). Transmembrane transport was identified as another significant pathway. The 321 

transmembrane transport pathway corresponds to the acylcarnitine metabolites in the features. 322 

Acylcarnitines are known transmembrane transporters of fatty acids across the mitochondrial membrane 323 

(40). Among all metabolites and physiological/demographic features selected by the combined model, 324 

galactonic acid has the largest impact on the model performance (importance score =86%). Galactonic acid, 325 
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was previously shown to be associated with diabetes in a mouse model, due to a proposed mechanism of 326 

oxidative stress (41).  On the other hand, maternal ethnicity has the largest impact among physiological 327 

factors (importance score =84%).  328 

A very few cord blood metabolomics studies have been carried out to associate with maternal obesity 329 

directly, or birth weight (22, 42, 43). In a recent Hyperglycemia and Adverse Pregnancy Outcome (HAPO) 330 

Study, Lowe et al. reported that branched-chain amino acids such as valine, phenylalanie, leucine/isoleucine 331 

and AC C4, AC C3, AC C5 are associated with maternal BMI in a meta-analysis over 4 large cohorts (400 332 

subjects in each) (43). In another study to associate cord blood metabolomics with low birth weight (LBW), 333 

Ivorra et al. found that newborns of LBW (birth weight < 10th percentile, n = 20) had higher levels of 334 

phenylalanine and citrulline, compared to the control newborns (birth weight between the 75th-90th 335 

percentiles, n = 30) (22). They also found lower levels of choline, proline, glutamine, alanine and glucose 336 

in new borns of LBW, however, there was no significant differences between the mothers of the two groups.  337 

In our study, isoleucine is also identified as one of the 29 metablite features related to maternal obesity; 338 

although alanine iteself is not selected by the model to be a maternal obesity biomarker in cord blood, we 339 

did find that alanine and aspartate metabolism are enriched in the cord blood samples associated with 340 

maternal obesity group. 341 

Notably, our study has identified 5 metabolites which are previously not reported in the literature with 342 

association to obesity or maternal obesity: galactonic acid, L-arabitol, indoxyl sulfate, 2-hydroxy-3-343 

methylbutyric acid and citric acid. Except citric acid, all the other four metabolites are increased in obese 344 

associated cord blood samples. 2-hydroxy-3-methylbutyric acid concentrations varied by ethnicity, but only 345 

in babies born from obese pre-pregnant mothers. 2-hydroxy-3-methylbutyric acid is known to accumulate 346 

in high levels during ketoacidosis and fatty acid breakdown. Therefore, the higher elevation of 2-hydroxy-347 

3-methylbutyric acid is likely due to increased cellular ketoacidosis and fatty acid breakdown in new borns 348 

from obese pre-pregnant mothers. To the best of our knowledge, this is the first study that shows differences 349 

in the 2-hydroxy-3-methylbutyric acid concentration levels among different ethnicities. Additionally, 350 
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Indoxyl sulfate is a metabolite of the amino acid tryptophan. As tryptophan is commonly found in fatty 351 

food, red meat and cheese, it is possible that high levels of indoxyl sulfate detected in the cord blood 352 

associated with obese pre-pregnant mothers could be due to the maternal high fat diet. Oppositely, citric 353 

acid, a compound associated with the citric acid cycle (44), is decreased in the cord blood associated with 354 

obese pre-pregnant mothers. This could be related to the lower vegitable and fruit consumptions among 355 

obese pre-pregnant mothers. In all, the data suggest that maternal obesity may impact offspring cord blood 356 

metabolites. Further research into the specific mode of action of these metabolites would be beneficial in 357 

understanding its association with maternal obesity. 358 

 359 

This study may benefit from some improvmenet in the future follow-up s. We determined the subjects’ 360 

ethnicity by self-reporting rather than genotyping, due to the restriction of the currently approved IRB 361 

protocol. Additionally, there has been debates on the use of BMI as an indicator of obesity (45), more direct 362 

measures of body fat could be considered such as skin-fold thickness measurements, bioelectrical 363 

impedance and energy x-ray absorptiometry (46, 47). Nevertheless, this study has established relationships 364 

between cord blood metabolomics with maternal pre-pregnant obesity, which in turn is associated with 365 

social economical disparities.   366 

 367 

Conclusion 368 

 369 

In this study, we identified 29 metabolites that are associated with maternal obesity, 5 of which are 370 

previously unreported in the literature. These metabolites have the potential to be maternal obesity-related 371 

bio-markers in newborns that warranty dietary interventions in early-life.  372 

 373 

 374 
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 578 

 579 

 580 

Tables  581 

 582 

 583 

Table 1: Demographical and clinical characteristics in obese and control groups  584 

 Control(n=29) Case(n=28) P-value* 

 Mean (SD)   

Maternal age, years 32.48 (5.66) 32.10 (4.88) 0.78 

Paternal age, years 34.68(7.14) 35.21(6.43) 0.79 

Pre-pregnancy BMI, kg/m2 21.89(1.86) 33.51(4.49) 1.12  e-14 

Gestational Age, Weeks 39.04(0.218) 38.93(0.45) 0.3812 

Net weight gain  30.85(10.92) 29.4(13.55) 0.7335 

Baby weight (kg) 3.29(0.32) 3.54(0.5) 0.03 

Head Circle (cm) 34.89(1.10) 35.55(1.36) 0.05 

Baby length (cm) 51.3(1.9) 51.4(2.36) 0.8 

Parity   

                  0 

                  1 

                  2 

                  3 and above  

                   

 

5 

16 

7 

1 

 

 

2 

7 

10 

9 

 

0.03 
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Gravidity  

                  1 

                  2 

                  3 

                  4 and above 

                 

 

5 

12 

7 

5 

 

 

1 

5 

8 

14 

 

0.12 

Maternal Ethnicity 

Caucasian  

Asian 

Pacific island 

 

6 

16 

7 

 

4 

7 

17 

 

0.01 

Paternal Ethnicity 

Caucasian  

Asian 

Pacific island 

 

8 

14 

7 

 

 

3 

9 

16 

 

0.03 

 585 

*Categorical variables were compared using chi-square test, whereas continuous variables were compared using t 586 

test. 587 

  588 

 589 

Table 2: A list of metabolites associated with obese-control maternal status and selected by elastic net 590 

regularization based logistic regression. The metabolites are sorted by the average log fold change of cases 591 

over controls. 592 

 593 
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Metabolites Chemical name 

Fold change a (case-

control)  Univariate Analysis b 

logFC P_value Cofficient P_value 

2-hydroxy-3-

methylbutyric acid 

2-hydroxy-3-methylbutyric acid 0.6609 0.0119 0.65592 0.062950865 

Galactonic acid Galactonic acid 0.6337 0.0158 0.640515 0.06565148 

PC ae C40:3 

Phosphatidylcholine acyl-alkyl 

C40:3 

0.6249 0.0173 0.762691 0.035189439 

C3 Propionylcarnitine 0.5598 0.033 -0.1467 0.648143485 

PC aa C40:3 

Phosphatidylcholine diacyl 

C40:3 

0.5561 0.0342 -0.33489 0.318665241 

C4:1 

O-butanoyl-carnitine, 

butenylcarnitine 

0.556 0.0342 -0.44274 0.168989046 

C6 (C4:1 -DC) 

Hexanoylcarnitine, 

Fumarylcarnitine 

0.5355 0.0414 -0.28551 0.337718 

PC aa C40:2 

Phosphatidylcholine diacyl 

C40:2 

0.4793 0.0679 0.532796 0.113517583 

Benzoic acid Benzoic acid 0.4549 0.0831 0.279734 0.350259256 

1,5-Anhydrosorbitol 1,5-Anhydrosorbitol 0.3664 0.1628 0.636374 0.24536415 

C5 

Isovalerylcarnitine, 

Valerylcarnitine, 

Methylbutyrylcarnitine 

0.3654 0.1638 -0.38664 0.196793118 

PC ae C40:2 

Phosphatidylcholine acyl-alkyl 

C40:2 

0.3242 0.2168 -0.71475 0.042908449 

L-Arabitol L-Arabitol 0.2685 0.3062 0.360549 0.266082992 
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C18:1 Octadecenoylcarnitine 0.228 0.385 0.253734 0.427416515 

Indoxyl sulfate Indoxyl sulfate 0.1792 0.4948 -0.06239 0.827985019 

Malic acid Malic acid -0.006 0.9811 0.010217 0.977502972 

L-Aspartic acid L-Aspartic acid -0.036 0.8899 -0.18507 0.549849292 

Citric acid Citric acid -0.058 0.8242 -0.08235 0.790831897 

PC ae C34:0 

Phosphatidylcholine acyl-alkyl 

C34:0 

-0.091 0.7295 0.712 0.058228623 

Isoleucine Isoleucine -0.158 0.5473 -0.56607 0.089720981 

PC ae C36:2 

Phosphatidylcholine acyl-alkyl 

C36:2 

-0.193 0.4629 -0.1802 0.553764206 

Oleic acid Oleic acid -0.2 0.4465 0.183252 0.536574067 

PC aa C36:5 

Phosphatidylcholine diacyl 

C36:5 

-0.218 0.4059 -0.4694 0.174139565 

PC ae C34:3 

Phosphatidylcholine acyl-alkyl 

C34:3 

-0.22 0.4008 0.319963 0.31966488 

PC ae C40:6 

Phosphatidylcholine acyl-alkyl 

C40:6 

-0.261 0.3193 0.741937 0.01875932 

C5:1-DC 

Glutaconylcarnitine, 

Mesaconylcarnitine 

-0.271 0.3021 -0.26351 0.409158971 

2-Hydroxybutyric 

acid 

2-Hydroxybutyric acid -0.323 0.219 0.250888 0.404894782 

Myoinositol Myoinositol -0.386 0.1416 0.47233 0.144462991 

C16:1 -OH Hydroxyhexadecenoylcarnitine -0.447 0.0884 0.809254 0.093896414 

      
aFold change was calculated as mean (log2 (obese)) – mean (log2 (control))   
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bUnivariate logistic regression of each Elanet-selected metabolite adjusted for maternal age, ethnicity, parity, and gravidity. 

 594 

 595 

 596 

 597 

 598 

Legends for figures 599 

 600 

Figure 1: Source of variation and accuracies of logistic regression models and important features selected 601 

by the metabolomics model. (A) ANOVA plot of clinical factors using the metabolites levels in cord blood 602 

samples. Averaged ANOVA F-statistics are calculated for potential confounding factors, including obesity, 603 

gravida, parity, paternal and maternal age and ethnicity. (B) Model accuracy represented by classification 604 

Receiver Operator Curves (ROCs). (C) The ranking of contributions (percentage) of selected metabolomics 605 

features in the model. 606 

 607 

 608 

 609 

Figure 2: (A) Correlation coefficients among demographical/physiological factors and the metabolomics 610 

data. Blue colors indicates positive correlations and red indicated negative correlations. (B) Receiver 611 

Operator Curves (ROCs) of the combined model with metabolomics and physiological/demographic data.  612 

(C). The ranking of contributions (percentage) of selected features in the model (B). 613 

 614 

 615 
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Figure 3: Analysis of the 29 selected metabolites.  (A) Heatmap of selected metabolites separated by 616 

maternal group. * indicates metabolites that shows significant p-values (P<0.05, t-test) individually. (B) 617 

Pathway analysis of the 29 metabolites. X-axis shows size of metabolomic pathway. Y-axis shows the 618 

adjusted p-value calculated from CPDB tool. The size of the nodes represents the size of metabolomic 619 

pathway (number of metabolites involved in each pathway). The color of the nodes represents the source 620 

of these pathways.  621 

 622 

 623 

Figure 4: Violin plot of 2-hydroxy-3-methylbutyric acid among 3 ethnic groups in the discovery cohort. 624 

Association between 2-hydroxy-3-methylbutyric acid and the ethnicity in (A) normal (n=29) and (B) obese 625 

(n=28) subjects.  626 

 627 

Figure 5: Validation with another cohort. (A) Accuracy on classifying cases vs controls in the validation 628 

cohort, using the model built on the discovery cohort as shown in Fig 2(B). (B-C) violin plots of 2-hydroxy-629 

3-methylbutyric acid in NHPI vs (Asians/Caucasians). Asians (n=2) and Caucasians (n=3) were combined, 630 

as the number of patients of these ethnicities in the obese group is small. (A) normal (n=18) and (B) obese 631 

(n=12) subjects are displayed.   632 

 633 

 634 

Supplementary Figures  635 

 636 

Supplementary Figure 1: Discrimination of obese and normal groups by Partial Least Squares (PLS) 637 

method. (A) Discriminant analysis score plot for obese cases (Green) and normal (Red). (B) The accuracy 638 

of the 10 fold cross-validation of the PLS-DA model. R2 is the sum of squares captured by the model; Q2 639 

is the cross-validation of R2. 640 
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 641 

Supplementary Figure 2: Selection of metabolites using elastic net regularization. (A) Tuning alpha 642 

parameter, the parameter representing the degree of mixing between lasso and the ridge regularization.  643 

Y-axis is the root mean square error of the 10-fold cross-validation. X-axis is the range of alpha values, 644 

with the optimal alpha =0.22. (B) Tuning lambda, the parameter controlling the shrunk rate of coefficients 645 

in the linear model. Y-axis is the misclassification error of the 10 fold cross validation. X-axis is the range 646 

of lambda, with the optimal lambda=0.008. (C) The shrinkage coefficients of the metabolites using tuned 647 

alpha and lambda.   648 

 649 

 650 

 651 

Supplementary Figure 3: Accuracies of logistic regression models and important features selected by the 652 

clinical model. (A) Model accuracy represented by classification Receiver Operator Curves (ROCs). (B) 653 

The ranking of contributions (percentage) of selected clinical features in the model. 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 
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 670 

 671 

 672 
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 674 

 675 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/264374doi: bioRxiv preprint 

https://doi.org/10.1101/264374
http://creativecommons.org/licenses/by/4.0/


A

B C

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/264374doi: bioRxiv preprint 

https://doi.org/10.1101/264374
http://creativecommons.org/licenses/by/4.0/


A B C

AUC=0.94

CI=0.88-0.98

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/264374doi: bioRxiv preprint 

https://doi.org/10.1101/264374
http://creativecommons.org/licenses/by/4.0/


ObeseNormal-weightA B
*

*
*

*
*

*
*

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/264374doi: bioRxiv preprint 

https://doi.org/10.1101/264374
http://creativecommons.org/licenses/by/4.0/


*

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/264374doi: bioRxiv preprint 

https://doi.org/10.1101/264374
http://creativecommons.org/licenses/by/4.0/


A

B C

ROC - validation cohort

*

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/264374doi: bioRxiv preprint 

https://doi.org/10.1101/264374
http://creativecommons.org/licenses/by/4.0/

