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Abstract:

Any conformational ensemble of biopolymers, whether they are proteins or chromosomes, can be described using
contact matrices derived from experimental or computational studies. One powerful approach to extract
meaningful information from these contact matrices is to perform principal component analysis (PCA) on the
covariance matrix of the contact data. Indeed, PCA on Hi-C chromosome contact matrices has revealed the spatial
segregation of active and inactive chromatin. Separately, PCA on contact matrices from snapshots of protein
conformations has characterized correlated fluctuations of protein domains. However, despite the similarities of
these data and analyses, there has been little synergy between the PCA approaches and the comparison of
resulting biological insights obtained for protein and chromosome structures. We note that, to date, different
styles of analyses were applied exclusively to each biomolecule type: explicit contact correlation analysis (E-PCA)
for proteins and implicit contact correlation (I-PCA) for chromosomes. In this work, we compare the results of
applying both methods to both classes of biopolymers. While I-PCA reveals only average features of 3D
chromosome structure, we find that applying E-PCA to an ensemble of chromosome structures from microscopy
data reveals the dominant motion (concerted fluctuation) of the chromosome. Applying E-PCA to Hi-C data across
the human blood cell lineage isolates the aspects of chromosome structure that most strongly differentiate cell
types. Conversely, when we apply I-PCA to simulation snapshots of two protein complexes, the major component
reports the consensus features of the structure, while the previously applied E-PCA characterizes correlated
deviations from the mean structure.

Introduction

The functions of large classes of biopolymers are related to their structural stability and conformational dynamics,
from small scale conformational changes of proteins responding to chemical and physical stimuli to large scale
genome structure reorganization. While the 3D structure of biopolymers is often represented by the Cartesian
coordinates of each point along the polymer, other structure representations, such as contact matrices, can
facilitate analyses of the configuration and motion of biopolymers in many situations. The structural features of a
folded polymer can be captured by recording the contacts formed between different parts of the molecule. This
information can then be organized in a contact matrix in which the linear constituents (amino acid residues or
genomic positions) of the polymer are labeled along the rows and columns of the matrix.

In protein studies, such contact information is typically derived from a 3D structure (obtained from either
experiments and/or computer simulations), defining a “contact” when one region of the amino acid chain is within
a certain distance of another region (1, 2). For chromosome structure, a similar distance threshold approach can
be employed when high resolution microscopy data (showing the path of a chromosome in 3D space) is available
(3). Even more commonly, however, chromosome contact matrices are measured directly using chromosome
conformation capture experiments (4). This approach chemically captures contacts between chromosome regions
using formaldehyde crosslinking followed by DNA digestion and proximity ligation. Then, in the genome-wide
version of the technique, Hi-C, contacts are identified by high throughput sequencing of ligated DNA pairs (5). In
most Hi-C experiments, the resulting chromosome contact matrices report the frequency of contacts between
pairs of chromosome loci within a population of cells. Single cell Hi-C techniques are also emerging (6), resulting in
contact maps at single cell resolution, which are directly analogous to the protein structure contact maps
described above.
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Contact matrix descriptions of polymer configurations, and the ensuing statistical analyses of the matrices, have
proven to be tremendously useful for the study of protein and chromatin structures. The first chromosome contact
matrices generated by Hi-C immediately revealed major principles of chromosome folding. In particular, a “plaid”
pattern on the contact map was found to represent the spatial compartmentalization of active and inactive regions
(also termed the A and B compartment) along the chromosome(5). This pattern can be mathematically isolated
and quantified using a version of Principal Component Analysis (PCA)(7) in which each row of the contact matrix is
treated as a degree of freedom (details described below) (5). As increasing numbers of Hi-C contact matrices are
published in different cell types and conditions, PCA has continued to be frequently used to analyze this population
average chromosome spatial compartmentalization (8, 9). @ Meanwhile, PCA has been extensively used to
characterize protein conformational dynamics, especially directly using the Cartesian coordinates of the system
(10-12). In recent years, PCA has also been used for the statistical analysis of other degrees of freedom (DOFs),
such as torsion angles (13) and residue-residue contacts (14) in the protein system. Particularly, treating each
individual contact as a DOF, PCA assisted researchers in identifying regions of protein with concerted dynamics of
contact forming and breaking (14-20).

Even though the underpinning mathematics of protein and chromosome contact matrices is identical, because
protein and chromosome structure analyses have largely been developed in separate communities of researchers
thus far, there has been little comparison of the properties of these contact matrices. No connection between
different approaches to similar analyses (such as PCA) has been made. A unified viewpoint and comparison of the
analyses performed using contact matrices in these different biological systems may facilitate the further
development of these research areas. Here, we formally describe the differences between the divergent contact
correlation analyses that have been used to date exclusively on either proteins or chromosomes, and seek to
determine the advantages, disadvantages, and different biological insights about protein and chromatin structure
that can be determined by each method. We term the PCA method previously applied exclusively to chromatin
contact matrices “implicit contact correlation analysis” (I-PCA) and the method previously applied exclusively to
proteins “explicit contact correlation analysis” (E-PCA).

Both I-PCA and E-PCA begin with contact matrices of size N x N (for a polymer comprised of N constituents: amino
acids, or genomic bins, for example). Once contact matrices are obtained, a covariance matrix of the contact
variables is calculated. Then, PCA of the covariance matrix reveals major properties of the contact pattern. The
essential difference between E-PCA and I-PCA is how the initial stochastic contact variables are defined. In E-PCA
analysis, explicit contacts (contacts between two explicitly labeled parts of the biopolymer, i and j) are treated as
independent variables u;;. When a single conformation can be specified, as often is the case of protein data input,
the value of u;; can be simply assigned to either 1 or 0 depending on whether a contact is made. Other more
elaborate improvements include using continuous contact energy (18) and coarse-graining the contacts (19). For
genome Hi-C structures, in the absence of single cell data, the value of u;; is the number of cross-links measured
with an elegant normalization procedure (5). E-PCA tracks the correlation between these N? contact elements Uy
(as shown in the dashed red square in Figure 1) across T snapshots or samples, and the size of covariance matrix is
NZ x N2in principle, as illustrated in Figure 1. Practically, due to symmetry, only the N X (N + 1)/2 unique
contacts are used. Thus, the covariance matrix of E-PCA explicitly provides correlation information between four
parts of the biopolymer, C;j, = ((ul-]- — (ul-j))(u,d — (ug))), that is, when i and j form a contact, whether k and [
are likely to form a contact (Figure 1). Here ( ) indicates an ensemble average.

On the other hand, the stochastic contact variables of I-PCA analysis, u;, are whole rows (or columns) of the
contact matrix, as shown in the red rectangle of Figure 1. That is, for polymer with N units, one has total N
stochastic variables. The contact variable u; is the pattern of contacts between i and the rest of the polymer. Each
contact matrix has N rows and thus contributes N sample points, comparing to the fact that in E-PCA, each entire
contact matrix contributes to 1 sampling point. The covariance matrix of I-PCA, C;; = ((u; — (ui))(uj -
(uj))), reveals the correlation between the pattern of contacts between i and the rest of the polymer vs. the
interaction pattern of j with the rest of the polymer (Figure 1). In summary, for a total T contact matrices of size
N X N, E-PCA identifies N* contact variables (more precisely, N(N + 1)/2) and total T sampling data points while
I-PCA identifies total N contact variables and total T X N data points. The variation of the I-PCA scheme that has
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been previously applied to the population-averaged Hi-C contact maps, we term such a procedure “mean implicit
contact correlation analysis” (MI-PCA). If the contact matrices are not already an average (as is often the case with
Hi-C data), one first obtains the mean contact matrix of T matrices and then performs I-PCA on this mean matrix. It
should be stressed that MI-PCA has N contact variables and only N data points.

In this article, we will first present the application of E-PCA to contact matrices of human chromosome 21 obtained
from microscopy data (3). Interestingly, this study obtained detailed snapshots of individual chromosome
structures from many different cells, data which is very similar to the protein structure snapshots previously
analyzed by E-PCA. But, the only PCA analysis performed in the original analysis of this data was MI-PCA (as usually
performed on Hi-C maps) on the mean spatial distance matrix to show that spatial compartments revealed by
imaging matched previous reports from Hi-C data. This reiterates the observation that, while commonly used to
study protein structural dynamics, PCA has never been applied to analyze correlated changes in structure across
heterogeneous chromosome data. Our results suggest essential correlated fluctuations of chromosome structure
across imaging snapshots. We further explore the utility of the E-PCA method in chromosome structure analysis
by applying it to chromosome contact matrices from Hi-C data collected across a group of related blood cell types
(21). Our results show that E-PCA can highlight dominant modes of chromosome structure changes between cell
types. We demonstrate the results of applying I-PCA and MI-PCA contact analyses to protein conformations using
two nuclear hormone receptor complexes as examples. Applying E-PCA to chromosomes and I-PCA to proteins
allows us to find analogies and contrasts between methods and between these different biopolymer systems. And,
to our knowledge, it is the first time such analyses have been performed on the corresponding systems.

Results

Explicit contact correlation analysis reveals correlated variations in chromosome structure
between individual cells

E-PCA has previously been used to examine correlated fluctuations across many snapshots of protein structures.
In the early days of 3D chromosome conformation studies, there were not enough sets of data available on
different individual chromosome structures to make this analysis possible for chromosomes. Now, with increasing
numbers of Hi-C datasets, single cell Hi-C, and high resolution microscopy data, we can apply E-PCA to
chromosome structure data. The essential difference between E-PCA, which we now apply to chromosome
structure data, and I-PCA, which has been previously applied to chromosome contact matrices, is the number of
contact degrees of freedom. As shown in the cartoon illustration shown in Fig. 1, in a 4x4 matrix, I-PCA examines
the correlation between four contact variables, each representing the contact pattern of one biopolymer element
(ie genomic bin) with the rest of the polymer. E-PCA, on the other hand, examines the correlation between sixteen
contact variables across many related contact matrices, where each variable is an explicit contact between two
sites along the biopolymer. For an E-PCA analysis, one first obtains contact correlation matrix

Ciji = ((ui]- - (ul-]-))(ukl —(uy))) and then proceeds with principal component analysis. Since the
computational complexity of obtaining C;jy; is in the order of O(N*), and the computation time increases in
proportion to the quartic power of the system size N, we also term E-PCA a four-point correlation analysis.

For the first application of E-PCA to chromosome structure, we re-examined an ensemble of structural data on
human chromosome 21 (Chr21) obtained by high resolution microscopy (3). In this experiment, Topologically
Associating Domains (TADs) identified by previous ensemble Hi-C experiments (22) were used as structural
subunits along Chr21 and were labeled with fluorescent probes in IMR-90 fetal lung fibroblast cells. The resulting
data provide the 3D spatial coordinates of each TAD along Chr21 in 120 myofibroblast cells (only 47 cells for which
data exists for every TAD are being used here, i.e., T = 47). The original analysis of this data used MI-PCA on the
average chromosome structure to define the “A” and “B” compartments (positive and negative elements of
eigenvector PC1) and to demonstrate that active and inactive chromatin compartmentalization is detected with
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microscopic chromosome tracing just as it is found with ensemble average Hi-C data. One compartment (“A”) turns
out to contain the relatively active, gene rich regions of the chromosome while, the other (“B”) is generally inactive
and gene poor (5)[. We applied E-PCA to this data to study correlated structural fluctuations across the snapshots
of chromosomes in different cells.

For Chr21, 34 TAD positions were measured for each cell (N = 34). We first constructed a matrix of pairwise
distances between each combination of TADs along the chromosome, givingm = N(N — 1)/2 = 561 pairwise
distance variables, since the N diagonal variables u;; are absent (always 0) in the distance matrix. We could further
convert this into a contact matrix by defining a minimum distance that should be called a “contact”, but here, we
constructed the covariance matrix of distances across all 47 cells C;j,; = ((lij - (lij>)(lkl — {lix)), where [;; is the
distance between TAD i and j, and ([;;) its ensemble average. We performed PCA on this covariance matrix of
distances. For comparisons, we also performed I-PCA, MI-PCA, and Cartesian coordinate PCA (Supplemental
Information) besides E-PCA.

How quickly the top eigenvalues of the covariance matrix decrease with the ranking index provides an overall idea
of how degenerate the dataset is. If a conformational ensemble has only a few major modes of fluctuation, the
first few eigenvalues will dominate the distribution and vice versa, if many eigenvalues are nearly equally high, we
can conclude that there are many different motions in the ensemble of structures. The eigenvalues of this and
other systems we examine in this study are shown in Fig. 2. To facilitate comparison across different types of
matrices, we normalized these traces by the sum of the eigenvalues. Specifically, for this Chr21 microscopy data
(3), we have examined the eigensystems of E-PCA, I-PCA, and Cartesian covariance matrices. Regardless of the
method used, all eigenvalues drop to zero after the 46th eigenvector, reflecting that we have only 47
conformations (cells). An ensemble of T conformations generally can contain no more than T — 1 independent
fluctuation modes around mean. Although we focus on reporting the results of Chr21 below, our study of chr22
TAD data revealed similar features (such as those shown in Figure 2) which demonstrated the robustness of our
conclusions.

The top three principal components (PCs, eigenvectors of the covariance) of EPCA are displayed in a two-
dimensional symmetric matrix known as displacement matrix d;;, as shown in Fig. 3(a-c). The displacement matrix
has the same size (N X N) as the mean contact matrix, but they have different meanings. The elements of mean
contact matrix <u;;> is never negative, while the displacement matrix d;;~&u;;=u;;- <u;;> can be either positive
or negative. Each displacement matrix represents a specific mode of fluctuation around the mean. Each
conformational ensemble only has one mean contact matrix but display many orthonormal modes of fluctuation.
The displacement matrix shows how each explicitly expressed contact contributes to the given mode of fluctuation.
When a particular contact, say one betweeniandj, shows strong blue (a highly positive value of d;;), the
dynamics of that contact are highly important for this mode of fluctuation. Additionally, the contact dynamics of all
blue regions are correlated, i.e., the contacts form and break in sync with each other. Similarly, the strongest red
(negative) regions are also highly correlated with each other in their fluctuations, but opposite (anti-sync) from the
blue regions. For example, if one red contact is formed, other red contacts are likely to be formed too, while blue
contacts are likely to be broken. The corresponding three-dimensional rendition of eigenvectors is shown in Fig.
3(d-f) where strong fluctuation relationships between different parts of chromatin are rendered as colored
cylinders. Note that we choose to use the 3D coordinates of the first cell to display TAD positions instead of an
average (see Supplemental Information for further explanation). Both the matrix and 3D rendering of the E-PCA
eigenvectors provide essential information on the biopolymer's structural changes as "concerted" modes of
contact forming and breaking, or, in the current case using a distance matrix, positions moving toward and away
from each other. In contrast, the eigenvectors of I-PCA analysis can be expressed as a bar graph (or a curve), such
as MI-PC1 shown in Fig. 3a as a bar-graph label, Fig. 5(a-c), and Fig. S1 in SI, since each eigenvector of (M)I-PCA
contains only N numbers. Particularly, in MI-PC1 of chromosomes, the most extreme positive and negative values
can be used to indicate spatially segregated genomic bins, e.g., regions with positive values tend to associate with
other positive regions.
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The dominant eigenvector PC1 of chr21, E-PC1, shows a prominent and simple inter-domain motion (association
and dissociation) between two large-scale domains (TAD 1-28 and TAD 29-34), indicated by the strong blue region
formed in Figure 3(a). The intradomain motions are primarily absent with small anticorrelated features (subtle red
regions), i.e., when each domain is slightly more packed (indicated by the shortening of the distances between
intradomain TADs, subtle red), the two domains dissociate (indicated by the lengthening of the distances between
interdomain TADs, strong blue), and vice versa. The matrix for eigenvector PC2 in Fig.3(b), on the other hand,
shows intricate interactions between four independent regions (Domain 1: TAD 1-15, which belongs to the “B”
compartment, colored by magenta; Domain 2: 16-22, “A”, cyan; Domain 3: 23-28, “B”, green; and Domain 4: 29-34,
“A”, yellow) defined by their correlated dynamics. Interestingly, these domains uncovered in the correlated
dynamics of interactions generally correspond well with the average domain compartmentalization identified by
the top PC of MI-PCA (shown as a bar graph label in Fig. 3a). Indeed, the interactions contributing most strongly to
PC2 (darkest red) are between neighboring domains, 2 and 3, that are, on average, spatially separated from each
other in the “A” and “B” compartments respectively. When these two domains (2-3) move closer together, so
does another pair of domains (1-2). The first two PCs suggest that the dynamics largely comes from the inter-
compartment contacts (“A”-“B” type of contacts, such as 1-2, 2- 3, and 1-4) with relatively little movement
contribution from intra-compartment contacts (“A”-“A” or “B”-“B” type, such as 1-3).This might be thought of as a
concerted “stretch and compress” motion within the first three regions of TADs. When the three domains stretch
further away from each other, an anti-correlated interaction tends to be formed between the telomeric domain
(TAD 29-34) and small local segments of the three domains (blue regions of the heatmap). Conversely, when the
first three domains become aggregated, the last domain wants to break away.

In Fig.3(c), the mode of motion reported by eigenvector PC3 is much more localized. Similar to the interpretation
of PC2, the classification of four regional domains (TAD 1-15, 16-22, 23-28, 29-34) can be utilized to describe these
interactions. The third domain (TAD 23-28) is observed to form contacts with the first (TAD 1-15) and fourth
domain (TAD 29-34), while the major parts of the second domain (TAD 16-22) migrate away from those two
domains (first and fourth domains).

Overall, this E-PCA method reveals information about the dynamics of chromosome compartmentalization within
individual cells, rather than just reporting an average spatial segregation. It allows us to begin to address
persistent questions within the chromosome conformation field, such as how certain interactions or folding
patterns relate to one another. These correlated movements could be related to the fact that different genes can
be regulated in sync. To alleviate the concern that our results could be affected by the small sample size of
chromosome conformations, we also checked the robustness of the E-PCA results by splitting 47 sampling points
(individual cells) into two halves (first 23 and last 24) and investigating the level of the convergence, as discussed in
SI. The results show the dot product of the normalized top eigenvectors is 0.834, which indicates the motions
detected are not due to random noise.

Key differences in 3D chromosome structure between cell types are captured by explicit contact
correlation analysis

The above analysis shows that E-PCA holds promising potential for analyzing numerous chromosome contact maps
(distance information) from individual cells. However, population-averaged Hi-C data is the only available
structural information in many situations. Can contact PCA help us detect chromosome conformation changes
using a set of average contact maps from different cell types or conditions? MI-PCA has been used toward this
goal, and, by comparing vectors of PC1 values from MI-PCA, previous work has identified regions of chromosomes
that, for example, switch their association from the “A” compartment to the “B” compartment on average in
different cell types (9, 23). To compare changes in all interactions across Hi-C data from different cell types, rather
than first reducing the Hi-C data to a representative single vector, we applied E-PCA to Chr21 and the first 17 Mb of
Chr10 across Hi-C data from nine related human blood cell types (Figure 4a). We chose this region of Chrl0 as a
representative example from a mid-size chromosome with no major repetitive regions and strong A/B
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compartmentalization. We also performed analysis on TAD-averaged Hi-C data from Chr21 as a more direct
comparison to the results from the imaging analysis. We focus on the results from Chr10 here, while the details of
Chr21 analyses and the comparison with TAD imaging results are shown in SI. Specifically, the nine different cell
types selected from the blood cell lineage were: 1. Neutrophil, 2. Monocyte, 3. MO macrophage, 4. Naive B-
lymphocyte, 5. Naive CD4* T-lymphocyte, 6. Naive CD8* T-lymphocyte, 7. Lymphoblast cell line GM12878, 8.
Erythroblast, 9. Megakaryocyte (21). Hi-C data was binned at 250 kb, to emphasize the compartment level of
genome structure, and processed and normalized as previously described ((8, 24) and SlI) The choice of
chromosomal region and bin size here was chosen as a representative example of the application of this method.
Other regions or levels of resolution could be chosen based on the particular biological focus or genes of interest.

In the current case, the eigenvectors show the dominant chromosome conformational differences across cell types,
whereas in the first example, the conformational differences occur within an ensemble of cells of the same type.
Since there are only 9 cell types, thus number of contact matrices, T =9, only the top 8 eigenvectors and
corresponding eigenvalues are nontrivial. Still, the statistics for this eigensystem is robust, since each Hi-C data
point is not obtained from a single instant snapshot of the chromosome, but rather from an ensemble of millions
of cells.

The results of the E-PCA analysis reflect the major features of the chromosome folding that distinguish one cell
type from another. The projection of each cell type onto PC1, 2, and 3 in a 3D space nicely reflects known
relationships and differences between cell types (Fig. 4b). From this projection alone, we can see that PC1 tends to
segregate the myeloid lineage cells (macrophage, monocyte, and neutrophil; all have low PC1 projections) from
the lymphoid lineage cells (which have higher PC1 projections). PC2 and PC3 further segregate within these major
classes, distinguishing, for example, macrophages from neutrophils. Meanwhile, highly related cell types like nCD8
and nCD4 cluster near each other on all three PC axes. The displacement matrices for PC1 and PC2 (shown in Fig 4c,
analogous to Fig 3a-c) show the interaction patterns that most distinguish these sets of cell types. Similar to the
observations from the TAD imaging data above, the major features of PC1 relate to the A and B compartment
segregation identified by MI-PCA. But, again, unlike MI-PCA, which focuses on the average associations of a
genomic region with A or B and how that mean association changes between cell types, E-PCA reports on the
correlated changes in the A/B compartmentalization of regions across the cell types. For E-PC1, the strongest
positive values represent interactions between A and B compartment bins while the strongest negative values
often represent interactions between regions of the same compartment identity. This result suggests that the
strongest differentiator between cell types is the strength of compartment segregation. Indeed, representative
contact matrices from cell types with high and low PC1 projections (Fig. 4d) show that cells like neutrophils and
macrophages have a stronger segregation of A and B compartment regions (seen as a plaid pattern in the contact
map) compared to cells like megakaryocytes and GM12878 lymphoblasts. E-PC2 shows that beyond strength of
compartmentalization overall, there are more specific patterns of interaction within these broader domains that
further distinguish between cell types. For example, across cell types, higher local interactions within 10p14
correspond to lower distant interactions between this region and neighboring regions, and vice versa.

Implicit contact correlation analysis reveals consensus features of protein conformational
ensembles

Besides using contact analysis for characterizing chromosome conformations, this type of analysis has been
prominent for studying protein folding and structures. As noted above, E-PCA (four-point correlation analysis) was
used previously for studying protein conformation dynamics and I-PCA (particularly, MI-PCA) for chromatin
structural analysis. Here, we demonstrate what I-PCA can reveal about protein structure and/or dynamics. It is
important to point out that I-PCA is beyond a two-point correlation analysis, since the correlation examined using
I-PCA is not about the direct contacts formed between i and j. Although the size covariance matrix of I-PCA is,
N X N, the computational complexity of I-PCA is not simply O(N?) but rather O(N3), since each matrix
contributes N sampling points (rows). I-PCA considers two types of deviations between samples: (i) a static one
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that emphasizes the difference between different rows of either of the same matrix or different matrices
(snapshots), and (ii) a truly dynamic one, the variance of the same row in different matrices. The former term
dominates over the latter, linearly increasing with the matrix size N. It is important to point out that MI-PCA only
captures the static structure.

Two sets of molecular dynamics simulations of protein complexes were used in this study. The system setup details
have been reported previously for E-PCA analysis (16, 17). Here, we focused on conformations from a long-time
simulation of the wild-type complex(19). Both protein systems we considered contain a dimer of the ligand binding
domains of nuclear hormone receptors. One system is a dimer complex between retinoid receptor (RXR) and
thyroid receptor (TR), while the second system is a complex between same RXR and another nuclear receptor,
constitutive androstane receptor (CAR). Including associated ligands, the RXR(9c):TR(t3) system has total N=493
residues with the internal indices as the following: RXR=1-232; TR=233-491; 9¢c=492; t3=493 (unless specified
otherwise). Here ligands 9c and t3 are the corresponding ligands for RXR and TR respectively. Similarly, the
complex RXR(9c):CAR(tcp) has N=476 with the following breakdown: RXR=1-232; CAR=233-474; 9c=475; tcp=476.
Each simulation is 200 ns long with snapshots taken every 1 ps. Thus, T=200,000 conformations for each of the two
complexes were converted into contact matrices for the I-PCA and E-PCA analysis.

Figure 5 shows the top four eigenvectors of I-PCA for the protein complex RXR:TR, both in the line representation
and on a 3D cartoon representation of the protein complex, color-coded by the eigenvector value. The top
eigenvector (Fig. 5a) shows a concerted anticorrelation between two monomers of the complex and naturally
separate the complex as two halves (domains). One can also observe a certain level of symmetry between the
monomers from PC1 of Figure 5. This is expected, given that the ligand binding domains of the nuclear hormone
receptors share the same fold. The second eigenvector, PC2 also largely splits the complex into two halves, though
the splitting planes are different. PC2 separates the bottom half (N-terminus, H1, H8, H9, half of H10, indicated by
blue) and the top half (C-terminus, H6, H7, half of H10, indicated by red). Similarly, as shown in Fig. 5¢c, PC3 is yet
another two-domain split while this time the front vs and the back. PC4 separates an interior core of the complex
(center of H10 and H7) and the outside surface (the rest). Note that the top four eigenvectors are all large scale,
global mode of fluctuation. To evaluate how robust our I-PCA results are, we also examined a second complex,
RXR:CAR. One can see the corresponding top two eigenvectors show similarities overall, which indicates, at the
large scale, the observed feature is robust. There are subtle differences observed: in PC2, for example, the
absolute values of the eigenvector are larger for TR than RXR in the RXR:TR complex, while in complex RXR:CAR,
CAR is more subdued than RXR. This would suggest that there is a stronger spatial separation of RXR and a more
compact tructure for CAR.

MI-PCA only considers a single contact matrix and does not study the dynamic correlations between any contact
events. As mentioned in the introduction, it has been the best-known analysis method to determine the spatial
separation of chromosome compartments. It is interesting to see what MI-PCA can reveal about protein
conformations. Here, we applied MI-PCA to protein systems using the mean contact map (shown in Fig.5d). For a
comparison, we also tested the MI-PCA analysis using a single frame, replacing the mean contact matrix with one
instant contact map (Fig. 5e). Surprisingly, the MI-PCA and, to a lesser extent, 1-frame PCA result in a very similar
PC1 as was obtained using I-PCA on the full set of individual snapshots for the RXR:TR system, as shown in Fig. 5f.
Similar results for other eigenvectors are shown in the Supplementary Information. Larger differences between I-
PCA and the corresponding MI-PCA results were apparent for subsequent, high ranked eigenvectors; in particular,
differences between MI- and I-PCA results were observed in the CAR part of PC2 for the RXR:CAR system, shown in
SI. Similarity between I-PCA and MI-PCA, especially for the top eigenvectors, indicates the I-PCA analysis largely
reveals the consensus features of the conformational ensemble, despite being a method analyzing covariance
fluctuation and the inclusion of individual snapshots. This focus on consensus features arises from the fact that
each row (or column) of the contact matrix is treated as an independent entity in this method. The total variation
between rows of the same contact matrix is far more significant than the difference between the same row of
different contact matrices—One can expect a high similarity between MI-PCA and I-PCA for a highly structured
biopolymer, especially when N is large, but we expect that the level of similarity would decrease for semi-
structured biopolymers such as chromosomes (from TAD data) and intrinsically disordered proteins.
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Traditionally, E-PCA and Cartesian PCA include a PC projection analysis, i.e. render the original conformation
sampling points using the newly found top PCs, e.g. the k™" PC, the projection is Zijdij(k)uij(t). Each conformation
of the biomolecule (snapshot) is displayed on the new coordinates spanned by the PCs, as previously
demonstrated in Ref. (14-16, 25) and in the previous section of this current work for chromosomes. One can
observe the fluctuation of individual conformations and the amplitude of fluctuation, where PCs themselves are

normalized eigenvectors and do not provide overall amplitude. We tested PC projections for I-PCA (Z; di(k)ui(t))
and found that a direct application of PC projection for I-PCA leads to a largely “spreading-out” pattern, as shown
in SI. One reason is that in |I-PCA, each conformation (contact matrix) contributes N sampling points. For total T
conformations, there are N X T points with two types of variances that showed up: “static” (variance between
different rows) and “dynamic” (variance of the same row in different matrices) types. If one further averages the
PC projections from these N points, we will obtain a largely trivial Gaussian distribution with very few features.
Perhaps, a more meaningful way to display the variance is by focusing on the “static” component, i.e., focusing on
PC projection of the MI-PCA, as shown in SI.

Comparing E-PCA and I-PCA approaches and resulting properties of protein and chromosome
structures

With the results we have obtained, we can make a more detailed comparison between the two methods being
used. Based on how fast eigenvalues decay with increasing rank, we observe that |I-PCA contains fewer modes of
fluctuation whereas E-PCA typically has a slower decay and thus many fluctuation modes. This makes sense since
E-PCA focuses on the explicit details of contacts being made. However, E-PCA has a faster initial drop at the top
eigenvalues which means it contains fewer dominant modes, as shown in Figure 2. From a statistical analysis
perspective, both methods study the same amount of information. E-PCA has more independent variables and less
sampling points, while I-PCA has more sampling points (by dividing one contact matrix to N "pieces"), but has less
stochastic variables and less explicit treatment of the contact information. The fact that I-PCA has previously been
exclusively associated with chromatin structure analysis reflects the fact that initially, Hi-C data were scarce and
little was known about the basic domains of the genome structure. Thus, it was useful in this system to first focus
on the consensus features of an ensemble. However, with an increasing amount of data and higher resolution
chromosome structures being characterized, E-PCA may be useful in many situations for chromatin systems.
Conversely, as I-PCA mainly reveals the common features, it has not been applied to protein fields previously in
which structures are often already known and the dynamic fluctuation is the focus. However, one can imagine I-
PCA will have useful applications for semi-structured polymers where the ground state is less defined. For example,
I-PCA is suitable for identifying protein domains and self-interacting regions from simulation data of intrinsically
disordered proteins (26).

On the other hand, E-PCA explicitly tracks the correlated dynamics of polymer contacts, thus provides high
resolution information and detailed correlated motions of the biopolymer and/or structure variation in the
ensemble. It requires more data points than |I-PCA, and thus a main drawback of E-PCA is the fast rise of the size of
the covariance matrix N*. Such higher order correlation analysis requires more computational resources for the
PCA data reduction task. For this reason, previous work has involved selecting dynamic contacts or coarse-graining
contacts in the protein system to make the matrix size manageable. Thus, I-PCA, with reduced dimensionality, has
its value in studying protein structures, especially for the large protein complexes which contain thousands of
amino acid residues. I-PCA provides simple dichotomy of dynamic motions, separating two types of domains: local
contact increasing (folding) and local contact decreasing (unfolding), but does not provide a detailed description of
more complicated motions involving multiple domains as was seen in the example of E-PC2 of Chr21 using TAD
data.

Regardless of the types of the covariance matrix being considered, it is always interesting to ask whether these
eigenvectors represent true dynamic motions of the biopolymers under investigation whether these are simply a
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way of illustrating the difference between different conformations in the ensemble. The answer has nothing to do
with a particular analysis procedure but rather depends on how the ensemble data has been generated. In the
current work, the example using protein structure data is clearly an example of truly dynamic motion, because the
underlying data are time-related snapshots of the protein conformation. In contrast, the second example involving
different blood cells types is clearly not reporting “dynamics” but instead conformational differences between
different states. The first example with TAD data is more ambiguous, as chromosome conformation differences
between cells could reflect either heterogeneous stable conformations or conformations that interconvert within
cells at a physiologically relevant timescale.

An attempt at directly comparing the dynamic motions of proteins and chromosomes is hampered by the
inequivalent sampling data. Simply judging from the eigenvalue distribution, it would be tempting to conclude that
the motion of chromosomes is largely “frozen” while proteins show a larger variety of modes of dynamics.
However, two factors make this an unfair comparison: the amount of data (< 100 snapshots in chromatin systems
versus > 100,000 in protein systems) used for the current work is highly discordant and the chromosome structure
is likely much more hierarchical than the protein structure.

Conclusions

As demonstrated from three distinct types of structural information (TAD imaging, Hi-C, and computer simulation)
of biopolymers across scales, PCA of contact information can provide a powerful description of structural
consensus and fluctuation of proteins and chromosomes. Different types of contact analyses appear to have a
preferred scale: I-PCA is suitable to identify the overall consensus picture (ground state) such as domains, using
large scale, low resolution data with fewer conformations in hand; whereas E-PCA highlights the major differences
of an ensemble (the dominant fluctuations around the ground state) when sufficient data is available.
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Figure Captions:

Figure 1: An illustration of contact correlation analysis methods. Here, identical input information, an
ensemble of contact matrices, is being digested two different ways. In explicit contact correlation
analysis (E-PCA), specific contacts are treated as independent variables and their covariance matrix is
calculated using the whole contact matrix as one sample (dotted red line). On the other hand, implicit
contact correlation analysis (I-PCA) treats rows of the contact matrix (a contact pattern between one
constituent of the polymer and the rest of the polymer) as independent variables and calculates the
covariance matrix using each row as one sample (dotted red line). In the table, check symbols indicate
the previous pairings of analysis methods and systems while stars indicate the new pairings explored in
the current work.

Figure 2: The eigenvalue distribution for various covariance matrices studied in this work. The main
systems we consider (TAD imaging for chromosome 21, Hi-C from chromosome 10, and the protein
complex RXR:TR) are shown in solid lines and comparison systems (TAD imaging from Chr22 and the
protein complex RXR:CAR) are shown in dashes.

Figure 3: The E-PCA results for TAD imaging Chr21 system. The displacement matrix view of PC1, PC2,
PC3 of E-PCA are shown in (a-c). PC1 from MI-PCA on the same system is shown as a bar-graph at left
and TAD elements are colored according to general domains detected by E-PCA. The corresponding 3D
representations are shown in (d-f), where the values of displacement matrix elements b;; are used to
color cylinders that connect TADs i and j. Less significant relationships (cutoff is |b;;| < 0.06) are not
shown. The reference 3D path of the 34 TADs (the configuration detected for a chosen cell, cell #1) is
shown in (g) along with a reference for the genomic position of each TAD probe. Explanation was made
in Sl for the selection of cell #1 as the reference.

Figure 4: The E-PCA results for the Hi-C data from 9 different blood cell types. (a) The blood cell lineage
from which the Hi-C data are derived, showing developmental relationships. Abbreviations used in
subsequent panels are defined. (b) The projection of each cell type’s Hi-C dataset onto E-PC1, 2, and 3.
(c) The displacement matrix for E-PC1 and E-PC2, showing the 17 Mb region of chromosome 10 from
which the sample Hi-C data was drawn. (d) Representative Hi-C contact matrices for cell types with high
and low E-PC1 or PC2 projections, visibly showing the contact pattern differences between these
categories of cell types.

Figure 5: The I-PCA and MI-PCA results for protein conformations. (a) The top eigenvector, PC1 for
RXR:TR and RXR:CAR are shown in the left panel, while the 3D view of the same information (for the
RXR:TR case) is shown on the right panel. Here the values of the elements of eigenvector PC1 are
displayed by color on a cartoon representation of the protein complex. (b) The corresponding
information for eigenvector PC2. (c) The eigenvectors PC3 and PC4 for RXR:TR complex. (d) The top two
eigenvectors PC1 and PC2 using MI-PCA.
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