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______________________________________________________________________________ 

Abstract - Powdery mildew is the most important disease of grapevines worldwide. Despite the potential for rapid spread by 
the causal pathogen, grape powdery mildew has been effectively managed using fungicide applications applied based on a 
calendar schedule or modeled disease risk index. Various epidemiological models for predicting disease development or risk 
have helped to improve disease management. The Gubler-Thomas (GT) risk index is a popular disease risk model used by 
many growers in the western U.S. We modified the GT risk index using fuzzy logic to address both biological and 
mechanical uncertainty in the pathosystem. The spraying schedule suggested by the fuzzy-modified GT risk index was tested 
in eight site-years. Overall, the fuzzy-modified risk index maintained comparable levels of disease control as both the 
original model and a calendar based treatment, and had significantly less disease than the untreated control. The fungicide use 
efficiency of the fuzzy-modified GT risk index suggests that the updated risk index was significantly more efficient with 
fungicide applications than both the calendar and original GT risk index. 
Keywords: fuzzy logic, risk index, fungicide use efficiency, plant disease epidemiology, decision support system 
_____________________________________________________________________________ 

INTRODUCTION 
Grapevine powdery mildew, caused by Erysiphe necator 
(Schwein.), affects all cultivated Vitis vinifera grapevines, 
and is the most serious persistent threat to grape 
production world.  Powdery mildew epidemics typically 
begin in the early spring with the release of ascospores 
from overwintering ascocarps lodged in the bark of grapes 
during periods of wetness (Gadoury and Pearson 1988).  
Once the ascospores have infected green host tissue, the 
pathogen begins to reproduce asexually. During periods of 
conducive weather conditions, rapid proliferation of 
asexual conidia on susceptible tissue can lead to extremely 
damaging epidemics if the pathogen is left unchecked.  
 
Many California and Oregon grape growers apply 
fungicides on a calendar schedule based on the shortest 
recommended application interval. However, this can often 
lead to over-application of fungicides if disease risk is low 
or if the host is relatively resistant. Several 
epidemiological models have been created to predict 
disease risk in an effort to reduce and optimize fungicide 
use (Chellemi and Marois 1991; Gubler et al. 1999; Sall 
1980). These epidemiological models differ in their data 
input as well as their ability to predict future disease risk. 
The most widely adopted epidemiological model in 
California is the Powdery Mildew Risk Assessment Index, 
also known as the Gubler-Thomas (GT) risk index (Gubler 

et al. 1999; Lybbert et al. 2016; Lybbert and Gubler 2008; 
Thomas et al. 2002).  
 
The GT risk index uses temperature and leaf wetness to 
first predict ascospore release and initiates a risk index. 
The risk index ranges from 0 to 100, and functions as an 
advisory tool that growers can use to efficiently choose the 
fungicide application interval or chemistry. The GT risk 
index was shown to maintain disease control while 
eliminating from 2 to 8 fungicide applications compared 
with a calendar-based schedule (Gubler and Thomas 2006) 
and used by over 50% of surveyed grape growers and 
managers (Lybbert and Gubler 2008). Despite its 
successes, the GT risk index tends to overestimate risk 
which results in excess applications of fungicide (Lybbert 
et al. 2016). However, the conservative approach has 
prevented management failures associated with use of the 
GT risk index for nearly 20 years.  
 
Recent research has examined how weather conditions 
impact the ability of E. necator to grow and reproduce 
(Choudhury et al. 2014; Moyer et al. 2010; Peduto et al. 
2013). Peduto et al. (2013) effectively combined a series of 
controlled environment studies and field trials to 
demonstrate that improvements to the GT risk index are 
possible.  Other recent work using controlled environment 
studies has found that E. necator can withstand repeated 
exposure to temperatures that were thought to be lethal or 
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sub-lethal (Choudhury et al. 2014). The success of the 
Peduto et al. (2013)-altered GT index with a higher lethal 
temperature threshold suggests that E. necator is tolerant 
of excessive heat in both field and laboratory settings. 
Many of these controlled environment studies suggest that 
temperature drives most of the life-history of the pathogen. 
However, other important confounding environmental 
factors such as relative humidity, ultraviolet radiation, and 
free moisture can also play a large role in its growth and 
reproduction (Austin and Wilcox 2012; Carroll and Wilcox 
2003; Vergely 2002). Since the extent and form of the 
uncertainty in pathogen response to these variables are 
themselves unknown, it is difficult to account for them 
using parametric approaches (Scherm 2000). One way to 
capture such uncharacterized uncertainty in dynamic 
processes is to use fuzzy logic (Zadeh 1965).  
 
While classical logic is based on assigning binary “true” or 
“false” truth values, many biological concepts are 
inherently uncertain because they may not be easily 
defined in terms of binary outcomes. While there may be 
variation within a single population, it is often possible to 
assign membership values which describe the extent to 
which individuals can be considered to belong to different 
categories (Zimmermann 2001). In fuzzy logic, values that 
have no uncertainty are considered “crisp”. Values that are 
“fuzzy” have uncertainty associated with them and this 
uncertainty can be visualized and expressed as a polygon 
around the “crisp” value in a 2-dimensional plane. The 
abcissa of the plane is the certainty function with a 
minimum of zero and a maximum of one, while the 
ordinate measures the possible values of the fuzzy 
quantity. In this way, crisp numbers are simply a special 
case of fuzzy numbers in which all the certainty is 
concentrated on a single value, and the polygon collapses 
to vertical line of height 1. 
 
The certainty (or belief) function for a fuzzy number can 
also be considered as a set membership function 
(Zimmermann 2001). As a consequence of this homology 
between fuzzy numbers and sets, the overlap between two 
fuzzy numbers can be considered as a fuzzy set 
intersection (Zimmermann 2001). Such intersections can 

be used as a decision tool in disease forecasting (Kim et al. 
2005), summarizing the extent to which, for example, a 
measured temperature intersects with the range of suitable 
and unsuitable temperatures for pathogen growth. 
 
The increasing popularity and use of personalized weather 
stations in precision agriculture has allowed many growers 
to implement site-specific disease forecast models (de 
Wolf and Isard 2007). There is, however, uncertainty 
associated with sensor accuracy, microclimates and 
variation (in some regions) in altitude that all contribute to 
a significant amount of variation in measured values from 
true values (Pfender et al. 2012). 
 
In many epidemiological models weather data are 
processed as crisp numbers regardless of whether they are 
derived from averages over a period of time or discrete 
measurements at a specific time.  Both approaches 
generally disregard the variance associated with 
measurement itself.  However, different classes of weather 
stations that vary in their accuracy depending on the 
parameter being measured and sensor used (Pfender et al. 
2011). These uncertainties are further complicated by the 
uncertainties in estimations of the optimal and lethal 
temperatures for pathogen growth based on controlled 
laboratory studies (Chellemi and Marois 1991; Delp 1954; 
Peduto et al. 2013) where sensor error and spatial 
variability of the experimental parameter being 
manipulated within the chamber. 
 
In this study, we modified the existing GT risk index for 
grape powdery mildew using fuzzy logic to account for 
uncertainty in both weather and biological data. We then 
tested fungicide spray schedules suggested by the original 
GT index and the modified fuzzy GT index in eight test 
vineyards, and measured disease severity on both leaves 
and clusters at regular intervals throughout the season. 
This allowed us to directly compare the effectiveness of 
the original GT index and the fuzzy GT index. The original 
GT risk index was used as a benchmark for comparison on 
two criteria: reduction in the number of fungicide 
applications and efficacy of disease control.
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Fig. 1. Cartoon schematic diagram of the fuzzy risk index model. 

 
MATERIALS AND METHODS 
Creation of the fuzzy GT risk index. Fuzzy logic was used 
to modify the Gubler-Thomas (GT) powdery mildew risk 
index model (Gubler et al. 1999). The model consists of 
several if-then statements that help guide whether the 
index is active or not. If there have been 3 consecutive 
days with at least 6 hours of optimal conditions post 
budbreak, then trigger the index; within each 24 hour 
period if there have been 6 hours of optimal conditions, 
then add 20 points to the index; if there have not been at 
least 6 hours of optimal conditions, then subtract 20 points 
from the index; if there have been temperatures greater 
than 35˚C for at least 15 minutes, then subtract 10 points 
from the index. The index cannot increase more than 20 
points or decrease more than 10 points in a single day, and 

is constrained to a maximum value of 100 and a minim
of 0. 
The main aim of the modifications made in this study
to deal with uncertainty in the way the GT risk in
accounts for the effects of high temperature on patho
development. By assuming a crisp threshold betw
suitable and unsuitable ambient temperatures the orig
GT risk index does not allow for high tempera
adaptability in the pathogen. Model parameters of
original index were based on field and labora
observations of optimal and lethal conditions of pow
mildew germination, growth, and sporulation (Delp 1
Gubler et al. 1999).  
 
To adapt the GT index the original risk index was 
analyzed as a set of membership functions (Fig. 1). 
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crisp membership functions of the original model were 
then modified to the produce the fuzzy GT model using a 
combination experimental data and expert knowledge (Fig. 
1). Estimation of uncertainty in weather station data was 
based on known variability in weather station data 
(Pfender et al. 2011). High accuracy for temperature is 
considered to be +/- 0.3˚C whereas +/-1˚C is a more 
commonly obtained range in practice and even this 
variability may be exceeded if sensors are not properly 
maintained and recalibrated.  Averaging across a time 
interval (e.g. 1 min) can reduce the effect sensor 
inaccuracy but the more common practice of averaging 
across longer time intervals (e.g. 15 min or 1 hour) 
introduces the variance of the change in temperature over 
time due to air turbulence and mass transport into the 
uncertainty (Bailey et al. 2014). 
 
Estimations for the optimal and lethal growth ranges were 
based on controlled environment studies (Austin and 
Wilcox 2012; Delp 1954; Peduto et al. 2013). The upper 
threshold of the optimal growth range was reduced from 
the original GT risk index to account for deleterious effects 
of exposures to sub-lethal temperatures (Peduto et al. 
2013). This change was supported by work that suggested 
that stress from other environmental factors can exacerbate 
the detrimental effects of increased heat (Austin and 
Wilcox 2012; Delp 1954). Estimation of the lethal growth 
range was based on controlled environment studies that 
suggest that the pathogen can be detrimentally affected by 
duration exposure of high temperatures, depending on 
other ambient environmental conditions (Austin and 
Wilcox 2012; Delp 1954; Peduto et al. 2013). 
 
Weather data. For field testing, temperature and rainfall 
data were imported from the weather station located 
closest to the field site. The Davis, Clarksburg, Corvallis, 
and Fresno site-years had an in-vineyard weather station 
(iMETOS ag, Pessl Instruments, GmbH) with hourly 
weather data that was downloaded daily. The Napa site-
years relied on public weather stations ranging from 3 to 7 
km from the test vineyard. After the weather data was 
imported into the software, hourly temperature data were 
adjusted according to the fuzzy membership function (Fig. 
1). The fuzzy temperature data were then overlaid on top 
of the fuzzy membership functions to assess the 
intersection with these sets (Fig. 1). The fuzzy intersection 
area was calculated hourly using integration methods, and 
was then used as a decision criterion in the calculation of 
the fuzzy risk index value. For each hourly average 
temperature measurement If the area of the fuzzy 
intersection between the measured temperature and the 
lethal high temperature threshold, or optimal temperature 
range was greater than 0.6, then the hour was considered 

lethal/optimal or lethal for fungal growth, depending on 
which intersection was relevant for that hour. 
Field validation. Randomized complete block design 
experiments were implemented in eight vineyards over two 
years to compare the fungicide schedule suggested by the 
GT and fuzzy GT risk indices. Field sites in Clarksburg 
and Napa planted with ‘Chardonnay’ grapes; those in 
Davis and Fresno were planted with ‘Thompson Seedless’; 
and the Corvallis site was planted with ‘Pinot Noir’. In 
California, each treatment replicate consisted of three 
vines, and each replicate was repeated six times in a 
randomized complete block experiment. Field sites in 
Davis, Clarksburg, and Fresno included an untreated 
control treatment as well as a fuzzy GT, GT, and calendar 
spray programs. An untreated control treatment was not 
feasible in either of the Napa sites due to potential 
financial impacts on neighboring vineyards arising from 
the presence of untreated blocks. 
 
For disease control three different fungicides were applied 
in rotation: Quintec (quinoxyfen; Dow AgroSciences 
LLC), Luna Experience (fluopyram + tebuconazole; Bayer 
CropScience LP), and Flint (trifloxystrobin; Bayer 
CropScience LP) in 2011; and Quintec, Adament 
(tebuconazole + trifloxystrobin; Bayer CropScience LP), 
and Flint in 2012. The fungicide regime was changed 
between 2011 and 2012 due to concern about local 
populations of the pathogen developing fungicide 
resistance.  All fungicides were used at their recommended 
application rates, and were applied on 14-21 day intervals, 
depending on the values of the risk indices. Fungicide 
applications and leaf disease severity ratings began when 
shoots reached a length of 30cm height, following 
common grower practices in California. The calendar 
spray program used the three different fungicides in 
rotation, applied on a 14 day interval. 
 
Eighteen leaves from each replicate were assessed weekly 
or biweekly for disease severity, a percentage estimate of 
the leaf area covered with mildew. Six leaves from each 
vine were randomly selected from the fruit zone. Disease 
ratings always occurred before fungicide applications to 
ensure safety for the disease raters. When grape berries 
were pea-sized, eighteen clusters per replicate were rated 
for severity in addition to leaves. Grape cluster severity is 
a percentage estimate of the amount of visible cluster 
surface covered with powdery mildew mycelia. Leaves 
were removed from the canopy for disease rating while 
clusters were left intact on the vine. In the field, ratings 
were randomly performed by several disease raters. 
Disease ratings and fungicide applications continued until 
grape berries reached 10˚ Brix, following common grower 
practices (Gadoury et al. 2003; Gubler et al. 1999).
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Fig. 2: Grapevine powdery mildew risk indices and fungicide spray applications for the site-years in this study. Dashed line 
represents fuzzy GT index, solid line is the original GT index. Solid inverted triangles, empty triangles, and grey diamonds 
represent fungicide applications for the GT, fuzzy GT, and calendar treatments, respectively. 

 
The field site in Corvallis, OR also used a randomized 
complete block design, with six blocks and each replicate 
consisting of five vines. The trial consisted of four 
treatments: a GT index treatment, a fuzzy GT index 
treatment, a calendar treatment, and an untreated control, 
which was sprayed with water at the same time as the GT 
treatment. Disease incidence was measured weekly and 
severity ratings on leaves were measured monthly. For 
disease incidence, 10 leaves on the 6th or 7th node from the 
growing tip for each were rated as disease if single colony 
was observed on the adaxial or abaxial surface.  Each 
month disease severity was assessed from the same leaves 
and recorded as an average of percent leaf area covered on 
the abaxial and adaxial sides of the leaf. At véraison, ten 
clusters per vine from the middle three vines were 
harvested and frozen at -20°C. Twenty-five berries per 
cluster were arbitrarily selected and microscopically 

examined for presence of E. necator infection. Two blocks 
were rated for disease severity for each of the treatments 
using a five-category ordinal scale. Disease severity 
ratings were then adjusted to represent the percent of the 
maximum score. 

 
Data analysis. Disease severity on both clusters and leaves 
was analyzed for the entire season for all site-years. True 
means and standard error of the means were calculated for 
all sites. In addition to true means, disease severity on both 
clusters and leaves was analyzed using a linear mixed 
model approach for all sites-years using the R package 
lme4 (Bates et al. 2014). The mixed model consisted of 
fungicide scheduling treatments as a fixed effect and 
block, site, and year as random effects. All site-years had a 
GT treatment and a fuzzy GT treatment. All site-years 
except those conducted in Napa, CA were conducted with 
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an untreated control as well. Pairwise least square means 
comparisons between treatments were conducted using a 
Tukey’s honestly significant difference (HSD) test 
adjustment for all site-years except those conducted in 
Napa, CA. In the Napa, CA site-years, means comparisons 
were conducted using Student’s t test, because there were 
only two treatments. Risk indices were analyzed for the 
average risk index and the area under the curve of the 
index. 
 

Area under the disease progress curve (AUDPC) for 
both cluster and leaf disease severity data was calculated 
using the audpc() function in the agricolae package in R 
(De Mendiburu 2014). AUDPC was calculated at the block 
level for all site-years. Fungicide use efficiency (E) was 

calculated for the calendar, fuzzy logic, and GT treatments 
following the modified equation used of Small et al. 
(2015). Fungicide use efficiency is a measure of the 
percent of disease control per fungicide application, and is 
caluculated as: 
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in which Au is the AUDPC for the untreated crop, Am is 
the AUDPC for a spray schedule method, and N is the 
number of fungicide applications scheduled by the method. 
AUDPC and fungicide use efficiency values were 
compared using a linear mixed model approach as 
described above.  

  

 
Fig. 3: Final powdery mildew disease severity ratings for the four treatments: calendar (CA), fuzzy modified GT risk index 
(FZ), original GT risk index (GT), and untreated (UN). Lettering describes significant differences based on Tukey’s honestly 
significant difference (HSD) test at α=0.05. 

 
RESULTS 
Implementation of the fuzzy model. Fuzzy modeling was 
first implemented in 2011 using FuziCalc software 
(FuziWare Inc, Knoxville, TN) and then using R v. 2.10.0 
(www.cran-project.org) and Excel 2007 (Microsoft 
Corporation, Redmond, WA) in 2012. The software was 
changed from FuziCalc to R/Excel because of the wider 
availability of R and Excel. While both software packages 
produced the same output, they functioned in slightly 
different ways. FuziCalc has a graphical user interface, 

allowing users to define the specific shapes and 
coordinates of different membership functions. Weather 
data was first imported and then fuzzified to fit the 
membership function. A series of ‘if-then-else’ statements 
were used to decide whether temperature data was optimal 
or lethal (Fig. 1), and ultimately decide whether to increase 
or decrease the risk index. The use of FuziCalc was 
discontinued in this study because the software is no 
longer commercially available, and because the software 
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would often not function on computers using modern 
operating systems. The R/ Excel software was processed 
by first fitting the weather data to the membership function 
in Excel, and then exporting to R to assess whether the 
fuzzy weather data overlaps with the optimal and lethal 
membership functions. Membership functions were 
represented as polygons in R. After assessing the fuzzy 
intersection in R, data was exported back to Excel. A 

series of ‘if-then-else’ statements were used to decide 
whether the fuzzy hourly weather data was optimal or 
lethal, and ultimately whether to add or subtract points 
from the risk index. After creating the R/ Excel fuzzy 
model, the same weather data was used in both R/ Excel 
and FuziCalc to ensure that the R/ Excel model created the 
same risk index as the FuziCalc model. 

 
 

 
Fig. 4: Area under the disease progress curve (AUDPC) for the four treatments: calendar (CA), fuzzy modified GT risk index 
(FZ), and original GT risk index (GT). Lettering describes significant differences based on Tukey’s honestly significant 
difference (HSD) test at α=0.05. 
 
Weather data. Weather stations export hourly data as crisp 
numbers. After the weather data was imported into the 
software, hourly temperature data were fuzzified according 
to the fuzzy membership function. The fuzzy temperature 
data were then overlaid on top of the fuzzy optimal and 
fuzzy lethal membership functions to assess the fuzzy 
intersection with these fuzzy sets; i.e. the area of overlap 
between membership functions for the temperature value 
and each of the growth-response functions. The fuzzy 
intersection values were used as a decision tool. If the area 
of the fuzzy intersection was greater than 0.6, then the 
hour was considered optimal or lethal for fungal growth, 
depending on the comparison in question. The threshold 
fuzzy intersection value of 0.6 was determined empirically 
based on previous weather data and powdery mildew 
disease severity. 

 
Field validation. Field trials comparing the fuzzy GT and 
original GT risk indices were conducted at eight site-years. 
Disease developed early on both untreated leaves and 
clusters at the Clarksburg site-years. Disease severity at the 
Davis and Fresno site-years were lower than those at 
Clarksburg, possibly due to differential resistance of 
varieties. Although little to no disease developed at the 
Napa site-years, vineyards in the surrounding area were 
affected by powdery mildew, suggesting the presence of 
regional inoculum (R.A. Choudhury, personal 
observation). 
  
Risk indices. The two risk indices differed in all eight site-
years (Fig. 2). The fuzzy GT risk index had lower overall 
risk index values compared with the original GT risk 
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index, especially in the later season (Fig. 2). The mean risk 
index for the fuzzy GT risk index across all site-years was 
14 points lower than the original GT risk index (Fig. 2). 
This difference between the models was especially 
noticeable in warmer areas (e.g. – Fresno) where the fuzzy 
model predicted lower disease risk than the original model 
as the season progressed. Although there were broad 
differences between the two indices across the study, the 
mean risk indices did not significantly differ at the 
Corvallis-2012, Napa-2011, or Napa-2012 site-years. The 
fuzzy GT risk index had on average slightly fewer 
fungicide applications and a longer application interval 
(Fig. 2). The fuzzy GT risk index was able to reduce 
fungicide applications while maintaining comparable 
disease control to the original GT risk index at four of the 
eight site-years (Fig. 2).  

 
Final disease severity following different indices. The 
mixed model analysis revealed significant differences in 
final disease severity in leaves and clusters at different 
site-years (Fig. 3). In general these significant effects 
could be attributed to the difference between the untreated 
control and the other treatments in site-years where the 
untreated control was present.  There were no differences 
in disease leaf severity between the two index treatments at 
any of the site-years. Similar patterns of results were 
observed for cluster disease ratings. The untreated control 
treatments had consistently higher cluster disease severity 
at all site-years. There were no statistical differences 
between the GT and fuzzy GT treatments in cluster disease 
severity at any of the site-years.  

 

 
Fig. 5: Fungicide use efficiency for the three spray schedules: calendar (CA), fuzzy modified GT risk index (FZ), original GT 
risk index (GT), and untreated (UN). Lettering describes significant differences based on Tukey’s honestly significant 
difference (HSD) test at α=0.05. 

 
AUDPC and Fungicide use efficiency. The mixed model 
revealed significant differences in AUDPC in leaves and 
clusters at different site-years (Fig. 4). The mixed model 
analyses also revealed statistical differences in AUDPC 
where the untreated control had a consistently and 
significantly higher AUDPC than either of the index 
treatments or the calendar treatment at all site-years. 
However, there were no differences in AUDPC between 
the two index treatments or the calendar treatment at any 

of the site-years. The mixed model analyses also revealed 
statistical differences in fungicide use efficiency (Fig. 5). 
The fuzzy GT treatment control had a consistently and 
significantly higher fungicide use efficiency than either the 
original GT index treatment or the calendar treatment at all 
site-years tested whether considering  both leaf  or cluster 
disease data. 
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DISCUSSION 
The goals of this study were to modify an existing decision 
support system to address instrumental measurement and 
biological uncertainty, and assess whether the updated 
model improved disease control and it impact on fungicide 
use. The fuzzy-modified GT risk index performed well 
compared with fungicide schedules suggested by the 
original GT risk index and a calendar-based spray 
schedule, reducing the number of fungicide applications at 
several sites without significant increases in disease 
severity. These data suggest that the fuzzy-modified GT 
risk index used fungicides more efficiently than the 
original GT risk index or a calendar-based spray schedule 
under the conditions tested. 
 
Addressing sources of uncertainty in epidemiological 
models is one of the most important challenges for future 
plant disease research (Cunniffe et al. 2015). With the 
increasing availability of  high-resolution weather data as 
well as rapid and high-throughput molecular diagnostics of 
local host populations (Thiessen et al. 2016), growers have 
more information than ever for assessing and responding 
to risk of disease. The availability of enabling technologies 
coupled with increasing interest and support for precision 
agriculture will only increase the importance of decision 
support systems in crop management (Gent et al. 2013; 
Shtienberg 2013).  Ideally, uncertainty in weather data and 
the effects of that uncertainty on the accuracy of 
epidemiological models would be fully characterized and 
captured in appropriate probability distributions around 
model parameters.  However, in practice models are often 
developed and deployed without such characterization and 
with little chance of the detailed work needed to achieve 
the results ever being carried out.  In such situations an 
alternative approach to introducing uncertainty into 
existing models is needed, and the use of fuzzy arithmetic 
is one possible means to achieve that end. 
 
While the fuzzy-modified GT risk index adjusted how the 
original GT risk index interpreted weather input variables 
and pathogen growth variables, it did not directly modify 
how the model interpreted time. A fuzzy modification of 
time could be very valuable, allowing for more flexibility 
in what conditions may be considered optimal or lethal 
(Choudhury et al. 2014; Peduto et al. 2013). In the original 
GT risk index, six consecutive hours of optimal 
temperatures are required to increase the risk index 
(Gubler et al. 1999). However, in the western USA where 
the GT model has been most widely adopted, during the 
warmer periods of the mid-season, it is common to have 
long periods of optimal temperature interspersed with 
mildly sub-optimal temperatures. While a single day may 
have more than six hours of optimal temperature, the 
interruptions to the optimal conditions mean that no 
increase the risk index occurs. A fuzzy interpretation of 
time requirements for pathogen development may help by 

recognizing these periods as optimal for growth of the 
pathogen. 
 
Using fungicides efficiently is important, because it helps 
to reduce the economic and environmental effects of 
pesticides. There are over three hundred thousand hectares 
of grapes in California (USDA NASS 2016), and they are 
sprayed with approximately 8.1 million kilograms of sulfur 
(CDPR 2015), mostly for prophylactic treatment against 
powdery mildew. There have also been increases in uses of 
synthetic pesticides in grape production (CDPR 2015). 
Calculating the efficiency of fungicide use helps to 
elucidate how different DSS-scheduled sprays compare 
with one another (Small et al. 2015). Our study suggests 
that both the fuzzy modified GT risk index and the original 
GT risk index are more efficient in fungicide use than a 
calendar-based schedule of treatments.   
 
Many growers rely on calendar-based pesticide 
applications as a form of crop insurance (Horowitz and 
Lichtenberg 1994). This can sometimes lead to perverse 
incentives when deciding whether to apply a pesticide or 
not, as growers frequently rely on pesticides more often 
than they need. The monetary costs associated with extra 
pesticide sprays (equipment use, labor, material) are often 
out-weighed by yield or quality losses, especially in high-
value crops, or for diseases that are capable of rapid 
dispersal and require preventative treatment to maintain 
adequate control. 
 
The GT model was originally developed with the aim of 
allowing growers to extend the interval between fungicide 
applications, when the risk of pathogen development is 
low. While the GT model has been adopted by many 
growers (Lybbert and Gubler 2008), they will frequently 
use the system to decide what to spray rather than when to 
spray, applying sulfur treatments when the risk index 
predicts low disease risk and synthetic pesticides under 
high disease risk (Lybbert et al. 2016). This alternative use 
of the original GT risk index may lead (counterintuitively) 
to an overall increase in the number of pesticides applied 
to the crop.  
 
While several epidemiological models have been 
developed using fuzzy logic independent of existing 
models (Kim et al. 2005; Scherm 2000), we designed our 
fuzzy-modified GT risk index using the original GT risk 
index as a scaffold. Orlandini et al. (2003) similarly 
modified their PLASMO model using fuzzy logic, 
improving the model's ability to predict grapevine downy 
mildew infection and disease intensity. Gonzalez-
Dominguez et al. (2015) were also able to use fuzzy logic 
to match expert recommendations on grapevine downy 
mildew spray scheduling based on host and pathogen 
variables. Using the original GT risk index as a scaffold 
has the advantage of maintaining familiarity for growers 
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(Lybbert and Gubler 2008) as well as a large retaining the 
relevance of the body of supporting literature and research. 
In a study of winegrape growers in the Lodi area of 
California, Hoffman et al. (2014) found that growers' 
perceptions of the financial value of a technology was 
correlated with their familiarity with the technology. The 
fuzzy-modified GT risk index maintains many of the 
features that growers valued from the original GT risk 
index and reduce the overall number of fungicides and 
maintain disease control in our eight site-years, suggesting 
the modified GT index, may have characteristics that 
would promote its adoption.  
 
While modifying an existing decision support system has 
the advantage of familiarity to growers and an established 
infrastructure, there are some drawbacks. Modifying an 
existing decision support system restricts design 
capabilities compared with completely new systems. We 
maintained many of the attributes of the original GT risk 
index (e.g. – index minimum and maximum, points added 
and subtracted per day) (Gubler et al. 1999).  
 
We developed the fuzzy modified risk index and then 
tested it in several sites over two years. We debated 
whether to update the fuzzy modified risk index after 
testing in the field for the first year in order to address how 
best to implement the fuzzy risk index. Dynamically 
adapting a decision support system as new data is collected 
would allow for a heuristic optimization of the model over 
the course of the study. However, these changes to the 
model would have reduced the number of repetitions of the 
direct comparison between treatments extending the 
development time, as each iteration would need to be 
independently tested at multiple sites and years to allow 
collection of sufficiently robust data. This dynamic creates 
an unusual tradeoff between creating an optimized system 
for the end user or presenting a model for publication in a 
peer-reviewed journal. Ideally, developers of a new DSS 
will be able to draw upon a large body of data before field 

testing (Gent et al. 2013; Shtienberg 2013). However, this 
is not conducive towards development of DSS’es for 
understudied pathosystems, or systems that experience 
different environmental conditions due to global climate 
change (Garrett et al. 2013). Changes in publication types 
and institutional rewards for developing tools may help to 
incentivize optimization techniques in DSS development 
(Howison and Herbsleb 2013).  
 
There is uncertainty associated with every disease system. 
While controlled environment studies can help us 
understand important epidemiological factors that drive 
disease, there will always be confounding environmental 
factors that impact the host or pathogen in undescribed 
ways. Fuzzy logic is an effective way to address this 
uncertainty in plant disease epidemiology. The fuzzy GT 
risk index is a successful adaptation of the original GT risk 
index, and field testing at multiple sites in two years 
suggests that the fuzzy GT risk index performs as well as 
the GT risk index in maintaining disease control, and can 
reduce fungicide use even further.  
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