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Abstract5

Multi-species microbial communities often display functions - biochemical activities unattainable by member6

species alone, such as �ghting pathogens or degrading wastes. Arti�cially selecting high community function7

is useful but rarely attempted. Here, we theoretically examine arti�cial selection of Helper-Manufacturer8

communities. Helpers digest Waste and generate Byproduct essential to Manufacturers; Manufacturers divert9

a fraction of their growth to make Product. Thus, community function - total Product accumulated as a10

low-density �Newborn� community grows over �maturation time� T into an �Adult� community - is costly11

to Manufacturers. Despite pre-optimizing Helper and Manufacturer monocultures, community function is12

sub-optimal. To improve community function, we simulate community selection by allowing cells in Newborn13

communities to grow and mutate, and select highest-functioning Adults to �reproduce� by diluting each into14

multiple Newborns. We �nd that �uctuations in Newborn composition during community reproduction (e.g.15

due to pipetting) can interfere with selection, and reducing �uctuations (e.g. via cell sorting) facilitates16

selection.17

Introduction18

Multi-species microbial communities often display important functions - biochemical activities not achievable19

by member species in isolation 1 2. For example, a six-species microbial community, but not any member20

species alone, cleared relapsing Clostridium di�cile infections in mice [1]. As another example, cellulose-21

degrading communities often harbor non-cellulolytic aerobic bacteria which, by depleting oxygen, establish22

a proper anaerobic environment for cellulolytic bacteria [2].23

Community functions arise from interactions where an individual alters the physiology of another indi-24

vidual. Thus, to improve community function, one could take a �bottom-up� approach by identifying and25

modifying interactions [3, 4]. In reality, this is no trivial task given that even two species can engage in com-26

plex interactions: each species can release tens or more compounds, many of which could in�uence partner27

species in diverse fashions [5, 6, 7, 8]. Then, from this �haystack� of interactions, we will need to identify28

those interactions that are critical for community function, and modify them by altering species genotypes29

or abiotic environment.30

∗Author of correspondence
1Community function may be de�ned as biochemical activities not achievable to the same extent by summing activities of

member species monocultures. Our de�nition here is more restrictive.
2A community function is a community trait, but a community trait may or may not be a community function. For example,

total population size is a community trait and not a community function, since individual species also has a population size.
Here, we are interested in community function.
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Figure 1: Figure 1. Arti�cial selection can be more challenging for multi-species communities
than for individuals or groups of individuals. We consider arti�cial selection on a trait, where the
entity under selection is an individual (A), a mono-species group (B), or a multi-species community (C).
In each selection cycle, a population of �Newborn� entities (which can be individuals, mono-species groups,
or multi-species communities) grow for a �xed maturation time T to become �Adults�. Adults expressing
a higher level of the desired trait (darker entity shade) are arti�cially selected to have a higher chance of
reproduction. An individual reproduces by making copies of itself, while an Adult group or community
reproduces by randomly splitting into multiple Newborns. (A) Arti�cial selection on individuals. Unlike
natural selection which selects for fastest-growing cells, in arti�cial selection we select for traits which often
impose a �tness cost to individuals (e.g. over-expression of a recombinant protein). We arti�cially select for
individuals with desired trait and allow only these individuals to reproduce. Phenotypes are largely heritable
from one generation to the next due to the constancy of genotypes, so long as mutation and recombination
rates are not extraordinarily high. Arti�cial selection on individuals has successfully yielded improved green
�uorescent protein [9], enzymes with new properties [10], and antibody fragments with high antigen-binding
a�nity [11]. (B) Arti�cial selection on mono-species groups. Group selection, and in a related sense, kin
selection [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], have been extensively examined to explain,
for example, the evolution of traits that lower individual �tness (e.g. sterile ants) but increase the success
of a group. In this diagram, cooperators pay a �tness cost (giving rise to two instead of three o�spring)
to generate the product of interest (shade), while cheater mutants avoid paying the �tness cost (giving
rise to three o�spring) and generate no product. The trait of interest is the total amount of product in
an Adult group. Arti�cial selection favors cooperator-dominated groups over cheater-dominated groups,
although within a group, cheaters grow faster than cooperators. If Newborn groups have a large population
size (top), then both variation and heredity are compromised: due to large size, all Newborn groups will
harbor similar fractions of cheaters, thereby diminishing inter-group variations. During maturation, cheater
frequency will increase, thereby diminishing heredity. In contrast, when Newborn groups are initiated at
a small size such as one individual (bottom), a Newborn group will comprise either a cooperator or a
cheater, thereby ensuring variation. Furthermore, even if cheater mutants were to arise during maturation,
some Newborn groups of the next cycle will by chance inherit a cooperator, thereby ensuring some level
of heredity. Thus, group selection can be e�ective when Newborn size is small [15, 27, 28]. (C) Arti�cial
selection on multi-species communities. Since maturation time T is de�ned by an experimentalist, Adulthood
may or may not correspond to a speci�c physiological state. Mechanisms that reduce heredity include: 1)
changes in genotype and species abundance within a cycle due to evolution and ecological interactions, and
2) random �uctuations in Newborn composition during community reproduction.
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Alternatively, one could take a �top-down� approach by arti�cially selecting for microbial communities31

exhibiting high community function. In theory, arti�cial selection can be applied to any population of entities.32

An entity can be, for example, an individual (Figure 1A), a mono-species group of individuals (Figure 1B),33

or a multi-species community (Figure 1C) [29]. The boundary of a group or a community is arti�cially34

imposed (e.g. in microtiter wells or �uidic droplets). Successful arti�cial selection requires that i) entities35

display trait variations; ii) trait variations can be selected to result in di�erential �tness in terms of entity36

survival and reproduction; and iii) entity trait is su�ciently heritable from one selection cycle to the next37

[30]. In all three types of selections, variations in a trait can be introduced by mutations and recombinations38

in individuals (di�erent hatch patterns in Figure 1). Arti�cial selection also operates similarly among the39

three types of selections. Heredity is generally high when selecting for individuals (Figure 1A legend). When40

selecting for groups 3 , if Newborn groups have a small population size, su�cient heredity can be achieved41

to allow group selection to work (Figure 1B legend).42

During arti�cial community selection, we choose a su�ciently short maturating time T so that newly-43

arising genotypes rarely reach high frequency within T . This way, community function is mostly determined44

by Newborn composition (the biomass of each genotype in each member species). We de�ne community45

variation as the dissimilarity in composition among Newborn communities within a cycle, and community46

heredity as the similarity of Newborn composition from one cycle to the next 4. Community variation47

and heredity are almost two opposite sides of a coin. Mutations, by creating phenotypic variations among48

individuals, can increase community variation and reduce community heredity. Furthermore during com-49

munity reproduction, stochastic �uctuations in Newborn composition increases community variation and50

reduces heredity. During community maturation, genotype and species abundances can rapidly change due51

to ecological interactions and evolution (e.g. �cheaters� out-competing �cooperators� in Figure 1). This furt-52

her compromises heredity. Thus, arti�cial selection of community function may be hindered by insu�cient53

heredity.54

How e�ective is community selection in theory and in practice? So far, community selection has been55

attempted only a small number of times. In simulations, multi-species communities were selected based on56

how community abiotic environment departed from or approached an arbitrary target [36]. Indeed, this57

community trait responded to community selection, and in at least some cases, the selected community trait58

could not be realized by single species. However, the response quickly leveled o�, and was generated even59

without mutations. Thus, community selection likely acted on preexisting variations in community species60

composition. In experiments, arti�cial selections have been performed on complex microbial communities61

to improve their abilities to degrade a pollutant or support plant growth [37, 38]. Strikingly, a community62

trait may sometimes fail to improve despite selection, and may improve even without selection [37, 38].63

Intriguing as these selection attempts might be, how they operated is unknown. First, is the trait under64

selection a community function or simply a trait of one member species? If the latter, then community65

selection is not even needed. Second, does selection act solely on species compositions or also on newly-66

arising genotypes? This is an important distinction because if selection acts solely on species compositions,67

then without immigration of new species, community function will quickly level o� [36]. On the other68

hand, if selection acts on genotypes, then community function can potentially continue to improve as new69

genotypes are generated. Third, does community selection run counter to natural selection? For example,70

during pollutant remediation, microbes may pay a �tness cost to release a pollutant-degrading enzyme. In71

this case, selecting high-degradation communities would favor high-degraders, while natural selection would72

favor low-degraders. Alternatively, microbes may exploit pollutant as a nutrient for growth. In this case,73

high-degraders are also fast growers, and are favored by both natural selection and community selection. In74

3Group selection is often applied in a broader sense to spatially-structured populations to explain the evolution of cooperative
traits [31, 32]. In these cases, individuals form groups. Within each cycle, individuals grow based on their genotype (e.g.
cooperators or cheaters) and group environment (cooperator-dominated or cheater-dominated). At the end of each cycle,
individuals migrate among groups. However, if there are no births or deaths of groups, then selection acts on individuals
instead of on groups [33, 34, 35].

4For any microbial community in the absence of stochasticity (e.g. mutations, stochastic death events), its dynamics starting
at a given abiotic environment is determined by Newborn composition. Speci�cally, for a community with n species, for simplicity
let's assume that each species has one quantitative phenotype. The community composition can then be speci�ed by a set of
functions {S1(x1), S2(x2), ..., Sn(xn)} where Si(xi) describes the biomass distribution of the ith species over the quantitative
phenotype xi. A simple de�nition of the similarity between two microbial communities with compositions {S1(x1), S2(x2), ...,

Sn(xn)} and {S∗
1 (x1), S

∗
2 (x2), ..., S

∗
n(xn)} can then be

n∑
i=1

wi
∫ ∣∣Si(xi)− S∗

i (xi)
∣∣ dxi, where {wi} is a set of weights.
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this case, community selection may not even be necessary.75

In this article, we seek a theoretical understanding of how to rapidly improve community function when76

natural selection tends to reduce it. In the accompanying article, we explore how selection dynamics is77

shaped by community function landscape and constrained by steady state species composition, and contrast78

di�erent selection regimens. These theoretical insights are intended to guide future experiments.79

Results80

The Helper-Manufacturer community81

We consider a community of two asexual microbial species that together convert Waste (such as cellulose) to82

a useful Product P (such as a biofuel or an anti-cancer drug). Such communities have in fact been engineered83

in the laboratory [39, 40, 41, 42]. In our community (Figure 2), Waste is supplied in excess. Helper H but84

not Manufacturer M can grow by digesting Waste. As H grows, it releases Byproduct B, which serves as85

the sole carbon source for Manufacturer M. Helper and Manufacturer also compete for a shared Resource86

R (such as reduced nitrogen). Manufacturer invests fP fraction of its growth potential (fP gM ) to make87

Product P, and uses the rest (1−fP )gM for its actual biomass growth. Community function P (T ) is de�ned88

as the total amount of Product P accumulated when a newly-assembled �Newborn� community matures89

into an �Adult� community over maturation time T (Figure 4A). Thus, community function incurs a �tness90

cost fP to M. Low-producing and non-producing mutants reduce community function and are more �t than91

high-producers, a common problem when employing engineered microbes. In Methods Section 7, we explain92

pathology associated with two alternative de�nitions of community function.93

We use a stochastic, individual-based model to describe community dynamics (Methods Section 5). Each94

cell continuously increases its biomass at the actual growth rate (gH for H and (1− fP )gM for M). Biomass95

growth rate increases with concentration(s) of required nutrient(s) until maximal growth rate is achieved:96

For H which requires Resource R and waste W, since waste W is in excess, we model growth rate as a97

function of R using the Monod Equation (Figure 9A). For M which requires both Resource R and Byproduct98

B, we adopt a dual-substrate model by Mankad and Bungay (Figure 9B) due to its experimental support99

[43] (Figure 10). Cell biomass starts at 1, and once it grows to the division threshold of 2, the cell divides100

into two equal halves, thus capturing experimental observations on E. coli growth [44]. Our model describes101

the continuous dynamics of biomass increase (Figure 11), and tracks discrete cells which is important for102

modeling events such as mutation and death. We model cell death as occurring stochastically to individuals103

at a probability determined by death rate. Changes in quantities of metabolites (Resource R, Byproduct104

B, and Product P) are due to release and/or consumption. Throughout the text, we use H and M to105

respectively represent the biomass of Helper and Manufacturer, and IH and IM to respectively represent the106

integer cell number of Helper and Manufacturer. R, B, and P respectively represent the amount of Resource107

(in unit of R̃(0), initial Resource in Newborn), Byproduct (in unit of r̃B , the amount of Byproduct released108

per H biomass produced), and Product (in unit of r̃P , the amount of Product released at the cost of one109

M biomass). �∼� marks scaling factors, and rationales of scaling can be found in Methods Section 1. At a110

given maturation time T and initial Resource, community function P (T ) depends on Newborn composition,111

which is in turn de�ned by initial total biomass N(0), the biomass fraction of Manufacturer φM (0), and the112

relative abundance of various H and M genotypes and phenotypes (see Methods Section 1).113
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Figure 2: Figure 2. A Helper-Manufacturer community that converts Waste to Product. Helper
H digests Waste (present in excess) to grow its biomass, and produces Byproduct B. B is the sole carbon
source for Manufacturer M. M invests a fraction fP of its potential growth gM to make Product P, while
channels the remaining 1 − fP to its own biomass growth. When fP = 0, M makes no Product and its
growth rate is gM ; when fP = 1, M uses all its resources to make Product and does not grow. H and M
compete for a shared Resource R, and thus when R is depleted, cell growth stops. In this study, we assume
that the release of Byproduct and Product is coupled to biomass growth.

114

Species coexistence in Helper-Manufacturer community115

To convert Waste to Product, H and M must coexist. Coexistence can be achieved if at least one species116

derives a large �tness bene�t (when compared to its basal �tness) from the other species [45]. In the Helper-117

Manufacturer community, Manufacturer obligatorily depends on Helper, and thus coexistence is possible.118

However, if fP is too high (e.g. near 1), then Manufacturer will always grow slower than Helper and therefore119

go extinct (burgundy in the top panel of Figure 3A and in Figure 3B). At low fP , if Byproduct from Helper120

allows Manufacturer to grow faster than Helper for part of a maturation cycle T , then the two species can121

coexist. Furthermore if species coexistence is achieved, then coexistence is stable in the sense that species122

ratio will converge to a steady-state value (olive and green in the bottom panel of Figure 3A and in Figure123

3B).124
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Figure 3: Figure 3. Stable species coexistence at low fP . (A) Helper H and Manufacturer M fail
to coexist when fP is high (0.8; top). At low fP (0.1, bottom), if M can grow faster than H for part of
the maturation cycle T , then H and M can stably coexist: di�erent initial species ratios will converge to a
steady state value (dotted line). (B) Phase portrait showing steady state φM,SS (light green and lavender)
as a function of fP . The dynamics trajectories in A are re-plotted in B. The initial state of a Newborn
community is marked with ⊕, and each subsequent cross (+) along the arrow direction represents community
state at the end of a maturation cycle T . Parameters are from the last column of Table 1.

Considerations for community selection125

In this section, we discuss several important considerations for community selection. First, we choose H and126

M phenotypes (Table 1) so that the two species can coexist for a range of fP (Figure 3). Our parameter127

values are biologically feasible based on experimental measurements on microbes (details in Methods Section128

2).129

Second, the rate of mutations. Experimentally-measured rates of phenotype-altering mutations can vary130

from 10−8 to 10−3 per genome per generation depending on the phenotype of interest (e.g. a qualitative131

phenotype such as survival under a stress, or a quantitative phenotype such as growth rate) and a variety132

of other factors (Methods Section 4). Mutation rate can be further elevated by 100-fold in hyper-mutators133

[46, 47, 48]. Here for any mutable phenotype, we assume a high, but biologically feasible, rate of 0.002134

phenotype-altering mutations per cell per generation, in part to speed up computation. When we lower135

mutation rate 100-fold, all of our conclusions still hold (see Figure 23).136

Third, the phenotype spectrum of mutations (Methods Section 4; Figure 4B). Among phenotype-altering137

mutations, we assume that 50% create null mutants (e.g. maximal growth rate gSpeciesmax = 0, metabolite138

a�nity 1/KSpeciesMetabolite = 0, or fP = 0), as per experimental studies on GFP, virus, and yeast [49, 50, 51].139

Among not-null mutations, the fraction of mutations that enhance a phenotype (�enhancing mutations�) ver-140

sus those that diminish a phenotype (�diminishing mutations�) is highly variable depending on, for example,141

e�ective population size and the optimality of the starting phenotype (Methods Section 4). Reasoning that142

a starting community is generally neither optimized nor thoroughly un-optimized, we model mutation e�ects143

based on an S. cerevisiae study from the Dunham lab. This study quanti�ed the �tness e�ects of a large144

number of �tness-enhancing and �tness-diminishing mutants [52]. Our reanalysis of the Dunham lab data145

shows that the distribution of mutation e�ect is largely conserved regardless of environmental conditions146

(carbon-limitation, phosphate-limitation, or sulfate-limitation) or mutation types (single-copy gene deletion147

in haploid or diploid; extra gene copies on low-copy or high-copy plasmids in diploid) (Figure 13). In all148

cases, the relative �tness changes caused by �tness-enhancing and �tness-diminishing mutations can be ap-149

proximated by separate exponential distributions with di�erent means (Figure 4B). We further assume that150

the e�ects of sequential mutations are multiplicative, i.e. there is no epistasis. When we use a di�erent151

distribution of mutation e�ect or incorporate various strengths of epistasis based on previous experimental152

and theoretical work (Methods Section 6; Figure 14), our conclusions still hold (see Figures 24 and 25).153

Fourth, the total number of communities ntot. When ntot gets larger, more variations become available154
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for selection, but experimental setup becomes more demanding. Here, we start with a modest number of155

100 Newborn communities which experimentally can be screened in 96-well plates.156

Fifth, Newborn composition such as total biomass N(0) and fraction of Manufacturer biomass φM (0). If157

N(0) (and thus the total population size) is very large, then all communities will share similar evolutionary158

dynamics of accumulating and being overtaken by fast-growing, non-producing Manufacturers. This makes159

higher-level selection (group selection and community selection) ine�ective [15, 28, 53] (Figure 1B, top). On160

the other hand, if N(0) (and thus the total population size) is very small, then a member species could be161

lost by chance. Moreover, to sample rare mutations, a very large number of communities would be required.162

We have chosen N0 (the target biomass of a Newborn community) to be 100 (e.g. 100 cells of biomass 1).163

As for species ratio, it will rapidly converge to the steady state (Figure 3) which may or may not be optimal164

for community function (see the accompanying article).165

Sixth, maturation time T and Resource supplied to Newborn, which together determine the number of166

cell generations within a selection cycle. The number of generations should be su�ciently large to allow167

new mutations to occur, but su�ciently short because otherwise, non-producers will eventually take over all168

communities, reducing heredity as well as variations among communities. We choose maturation time T such169

that the total biomass of even evolved communities comprising fastest-growing H and M would grow from the170

initial ~100 biomass to at most 9.9×103 when fP = 0, and generally to ∼ 7×103 for fP normally encountered171

during community selection. At the mutation rate of 2× 10−3 per cell per generation, a community growing172

from ∼ 102 to ∼ 104 (∼ 6 − 7 generations) samples a handful of mutations on average. We supply each173

Newborn community with Resource so that a maximal total biomass of 104 can be supported. For an average174

community, this choice ensures a good (~70%) usage of Resource, and the excess (30%) Resource prevents175

stationary phase and its physiological complications (e.g. sporulation).176

Finally, community reproduction. Here, we do not allow mixing (migration) among communities to177

prevent non-producers from migrating to high-functioning communities. If we select a large percent of Adult178

communities to reproduce, then community selection is too weak. If we select a small number of Adult179

communities to reproduce, then variations among the next-generation Newborns could be limited. However,180

since we use hyper-mutators, we are not as concerned about a shortage of variations. Thus, we choose the181

top-functioning Adult community and reproduce it by randomly partitioning it into Newborns to achieve182

an average biomass of N0 = 100. Since total biomass (or population size) generally increases by ∼ 70 fold183

during maturation but we need 100 ntot Newborn communities, we use the top-functioning Adult community184

to reproduce as many Newborns as possible, and then use the second top-functioning Adult community to185

generate the remaining Newborns.186

To summarize (Figure 4), we start with ntot of 100 Newborns. Each Newborn starts with N(0) of 100187

biomass units, and H : M ratio converges to a steady state value (Figure 3). Each Newborn is supplied188

with excess Waste W and enough Resource to grow to a total biomass of 104. To avoid stationary phase, we189

choose a maturation time T so that even the fastest-growing community on average would not deplete R by190

the end of a selection cycle. Phenotype-altering mutations occur at a rate of 0.002 per cell per generation191

for each mutable phenotype (Table 1). A mutation can create a null mutant (probability = 0.5), or enhance192

a phenotype by an average of 5% (probability ∼0.25), or diminish a phenotype by an average of 6.7%193

(probability ∼0.25). The e�ects of sequential mutations are multiplicative. At the end of a cycle, Adult194

with the highest P (T ) is selected and randomly partitioned into as many Newborns as possible, and these195

Newborns on average have a target biomass of N0 = 100. When the top-functioning Adult is exhausted, the196

second highest-functioning community is used until ntot of 100 Newborns are generated for a new cycle. As197

a control, we randomly choose Adult communities to reproduce in a similar fashion.198

Improving individual growth sometimes improves community function199

To simulate community selection, we allow mutations to change mutable phenotypes so that phenotypes range200

between zero (null mutants) and respective biological upper bounds (Table 1). Mutable phenotypes include201

M's production parameter fP (ranging from 0 to 1), as well as H and M's growth phenotypes (maximal growth202

rates and a�nities for nutrients). Species phenotypes and their upper bounds are biologically reasonable (see203

Methods Section 2 for experimental justi�cations), and also allow evolved H and M to coexist for a range204

of fP (Figure 3B). These mutable phenotypes have been shown to rapidly evolve (within tens to hundreds205
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Figure 4: Figure 4. Selection on community function. (A) De�nition of community function. (B) The
distribution of relative phenotype change due to a mutation, as inferred from the Dunham lab data (see Figure
13 for full �gure). For example in the case of fP , 0.5 on the x -axis means (fP,mut − fP,anc) /fP,anc = 0.5.
The probability of a mutation altering the relative phenotype by ±α is the shaded area. See Figure 14
for how we model phenotypic e�ects of mutations under epistasis. (C) Summary of community selection
simulations.
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Figure 5: Figure 5. Improved community function can be accompanied by improved individual
growth. Upon community selection, community function P (T ) increases (A). This increase is accompanied
by improved individual growth (improved maximal growth rates gMmax and gHmax and a�nities for meta-
bolites 1/KMR, 1/KMB and 1/KHR) (C). However, fP increases very little (B). P (T ) is averaged across
the two selected Adult communities. ḡMmax, ḡHmax, and fP are obtained by averaging within each selected
Adult community and then averaging across the two selected Adults. KSpeciesMetabolite are averaged within
each selected Adult community, then averaged across the two selected Adults, and �nally inverted to repre-
sent average a�nity. Green dashed lines: upper bounds of phenotypes; Magenta dashed lines: fP optimal
for community function, and maximal P (T ) when all �ve growth parameters are �xed at their upper bounds
and φM (0) is also optimal for P (T ). Black, cyan, and gray curves show three independent simulations.

of generations; [54, 55, 56, 57]). We hold death rates constant because they are much smaller than growth206

rates and thus any changes are likely to be inconsequential. We hold consumption coe�cients (cRH , cRM ,207

cBM ) constant because the amounts of essential elements required to make biomass are unlikely to evolve208

dramatically due to stoichiometric constraints, especially when these elements are not supplied in large excess209

([58]).210

In control simulations where random communities are selected for reproduction, community function211

rapidly declines to zero in all replicates (Figure 15C). This is expected since in the absence of community212

selection, natural selection favors fast-growing non-producers (fP = 0; Figure 15B). Consistent with natural213

selection, maximal growth rates rapidly increase to their upper bounds, and nutrient a�nities also improve214

(Figure 15A).215

When we apply community selection, community function P (T ) initially increases (Figure 5A). Concur-216

rently, H and M's maximal growth rates and nutrient a�nities improve toward their respective upper bounds217

(green dashed lines in Figure 5C). fP does not decline, but it fails to increase even though a higher fP would218

have led to a higher community function (magenta dashed lines in Figure 5A and B).219

These dynamics suggest that if fP is prevented from declining, then improving individual �tness may220

improve community function. Of course, this is not always true. For example, if H evolves to always grow221

faster than M, then H will out-compete M and community function will decline. Here, we want to �x all222

growth parameters (maximal growth rates and nutrient a�nities) at their evolutionary upper bounds, which223

will allow us to simplify our model and visualize community function landscape (accompanying article). Thus,224

we have deliberately chosen parameters such that improving H and M's growth parameters will generally225

improve community function (Methods Section 3; Figures 16 and 17). Consequently, mutations that reduce226

growth parameters will be selected against by both natural selection and community selection. Even in the227

one exceptional case where M's lower a�nity for R (lower 1/KMR) leads to improved M growth but lower228

community function when fP is low (Figure 18), whether or not �xing the particular parameter (1/KMR ) at229
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Figure 6: fP optimal for monoculture production may di�er from fP optimal for community
production. (A) For a Newborn H-M community supplied with a �xed Resource and excess Waste, optimal
community function P (T ) is achieved at an intermediate f∗P = 0.41 (magenta dashed line). Here the Newborn
community has 60 M and 40 H cells of biomass 1, which is also the starting point of our community selection
simulation. The growth parameters of M and H are all �xed at their upper bounds. (B) Consider a Newborn
group starting with a single Manufacturer with its gMmax and 1/KMR �xed at their upper bounds. Besides
the same amount of Resource, we will need to supply Byproduct B. Experimentally, it will be di�cult to
supply B in a manner that mimics the community environment. If we supply excess B, maximal group
function is achieved at an intermediate fP = 0.13 (grey dotted line).

its upper bound does not a�ect community selection dynamics (Figure 26). From here on, unless otherwise230

stated, we �x all growth parameters at their upper bounds.231

Maximal community function is achieved at an intermediate fP232

Ideally, we would like to compute global maximal P (T ) to test whether it can be achieved via community233

selection. However, given the nonlinear equations in our model (Methods Section 1), identifying global234

maximal can be mathematically challenging 5. Instead, we heuristically search for a locally maximal P (T )235

which may or may not be globally maximal but is experimentally accessible.236

As discussed above, in our system we can �x all growth parameters at their upper bounds to improve237

community function (Methods Section 3). In this simpli�ed scenario, for Newborn size N(0) = 100, we238

can identify fP and φM (0) combination (f∗P = 0.41 and φ∗M (0) = 0.54) that realizes maximal community239

function P ∗(T ) (Methods, Section 8). For any φM (0), an intermediate fP value maximizes community240

function (Figure 6A). This is not surprising: at zero fP , no Product is made; at high fP , Helper out-241

competes Manufacturer. Importantly, the maximal P ∗(T ) identi�ed above cannot be further improved if we242

allow all growth and production parameters to mutate (Figure 19). Thus, this P ∗(T ) is locally maximal.243

fP optimal for monoculture function may not be optimal for com-244

munity function245

Experimentally, how might we achieve optimal P ∗(T ) discussed above? We can pre-adapt H via natural246

selection by growing H in a Resource-limited chemostat so that fastest growers dominate. If maximal growth247

rate and Resource a�nity are independent (i.e. no trade-o�s), then both will approach their upper bounds.248

5Applied Mathematician Professor Hong Qian (University of Washington) states, �Without a closed-form solution, rigorously
proving global optimum is di�cult and remains an open question. Pure mathematicians may go as far as telling you the existence
and uniqueness of such a solution. Applied mathematicians will forego rigor a little bit, and will come up with a "heuristic"
algorithm that is usually better than brute-force parameter scans. Consequently, they can almost be sure that there is a global
optimum (or not).�
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For M, natural selection will yield zero fP . Instead, we can attempt group selection to obtain high-249

production M monocultures. Speci�cally, we start with ntot of 100 Newborn groups, each starting with one250

M cell to facilitate group selection (Figure 1B bottom panel, [27]). We supply Newborn groups with the251

same amount of Resource as we supply Newborn communities. Since it is di�cult to reproduce community252

Byproduct dynamics in M monocultures, for simplicity, we supply excess Byproduct to Newborn groups.253

Consequently, M's a�nity for B (1/KMB) cannot be selected. When we select for high group function254

P (T ), maximal growth rate gMmax and M's a�nity for Resource 1/KMR both reach their evolutionary255

upper bounds, and fP gradually increases to 0.13 (Figure 20), consistent with our calculations (Figure 6B).256

As expected, fP optimal for group production occurs at an intermediate value (Figure 6B): at zero fP ,257

production is zero; at fP = 1, M cannot grow and may even die, and thus group function is low.258

To experimentally improve M's a�nity for Byproduct, we can evolve ancestral M in Byproduct-limited259

chemostat where we expect gMmax and 1/KMB to reach their upper bounds and fP to decline to zero.260

We can then identify mutations that improve 1/KMB , and engineer them into the above group-selected M261

(assuming that mutations exert independent e�ects). We thus obtain mono-optimized M where all growth262

parameters are at upper bounds and fP is optimal for M group function.263

fP optimal for group function is lower than that for community function (Figure 6) 6. Natural selection264

will reduce fP . Can we perform community selection to counter natural selection so that fP and community265

function will increase?266

Community function fails to improve due to non-heritable variations267

Starting with Newborn communities of mono-optimized H and M, we simulate arti�cial community selection268

(Figure 4; Methods Section 5). We keep all �ve growth parameters �xed at their upper bounds, and only allow269

fP to mutate as communities mature. We select Adult communities with the highest functions, and reproduce270

them by partitioning them into Newborns with target total biomass N0 (Figure 4C). Experimentally, this is271

equivalent to calculating the fold-dilution by dividing N(T ) (the turbidity of an Adult community) by target272

N0 (the target turbidity of a Newborn), and performing this dilution by pipetting a small volume of the273

Adult community into fresh medium (Methods Section 5). In this selection regimen, total biomass N(0) and274

fraction of M biomass φM (0) �uctuate stochastically 7. fP barely increases and remains far below optimum275

(Figure 7A), similar to what we have observed earlier (Figure 5). Consequently, community function P (T )276

also remains far below optimum (Figure 7B).277

To investigate the reason for this lack of improvement, we examine correlation between P (T ) and Newborn278

composition (in terms of fP (0), total biomass N(0), and fraction of M biomass φM (0)) during one round279

of selection (Figure 8). P (T ) should ideally depend on fP (0) whose variations are partially heritable since280

Newborns sample subsets of fP in the Adult community. However, we observe little correlation between P (T )281

and fP (0) (Figure 8A). For example, the Adult community displaying the highest function (left magenta282

dot) has a below-median fP (0). Instead, we observe a strong correlation between P (T ) and N(0), and283

between P (T ) and φM (0)(Figure 8B-C).284

The reason for strong correlations between P (T ) and N(0) and between P (T ) and φM (0) becomes clear285

when we examine community dynamics. To minimize stationary phase, we have chosen maturation time T286

so that a typical community depletes the majority but not all of the Resource R. A community begins with287

abundant Resource and no Byproduct, so H will grow �rst and release Byproduct. After Byproduct has288

accumulated to a level comparable to M's a�nity for Byproduct, M will start to grow. When a community289

starts with a higher-than-average N(0) (dotted lines in top panels of Figure 27), M will grow to a higher290

biomass, deplete Resource more thoroughly, and make more Product. Similarly, if a community starts with291

a lower-than-average φM (0) (dotted lines in bottom panels of Figure 27), it will have a higher-than-average292

6To see why this is true, we note that M grows faster in monoculture than in community, because Byproduct is in excess in
monoculture whereas in community, H-supplied Byproduct is initially limiting. Thus,

∫
T gMdt is larger in monoculture than

in community. According to Eq. 26 (Methods Section 7), fP ∗ = 1/
∫
T gMdt is smaller for monoculture than for community.

7N(0) �uctuates with a standard deviation of
√
E(N(0)) =

√
N0. For φM (0) = M(0)/N(0) , Var(φM (0)) =(

E(M(0))
E(N(0))

)2 [ Var(M(0))

(E(M(0)))2
− 2

Cov(M(0), N(0))
E(M(0))E(N(0))

+
Var(N(0))

(E(N(0)))2

]
=
(
N0φM (T )

N0

)2 [
1

N0φM (T )
+ 1
N0

]
where �E� means the expected

value and �Var� means variance, and φM (T ) is the fraction of M biomass in the Adult community from which Newborns are
generated. For detailed derivation, see www.stat.cmu.edu/~hseltman/�les/ratio.pdf. Thus, φM (0) �uctuates with a standard

deviation of φM (T )
√

1/ (N0φM (T )) + 1/N0.
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Figure 7: . Figure 7. Evolutionary dynamics of community selection depends on how we
reproduce Adult communities. (A-H) Communities of mono-adapted H and M are selected for highP (T )
at short T (T=17, where on average the majority, but not all, Resource is consumed by the end of T to
avoid stationary phase). (A, B) N(0) and φM (0) are allowed to �uctuate around target total biomass of
N0 = 100 and φM (T ) of the previous cycle, which is experimentally similar to diluting a volume of Adult
community to fresh medium. (G, H) N(0) and φM (0) are �xed to N0 = 100 and φM (T ) of the previous cycle,
which is experimentally similar to sorting a �xed H and M biomass from selected Adults to Newborns. This
allows community function to improve. (C-F) Fixing either N(0) or φM (0) does not signi�cantly improve
community selection. (I-L) Communities of mono-adapted H and M are selected for high P (T ) at target
N0 = 100 and longer T = 20 (I-J), or at a larger target N0 = 160 and short T = 17 (K-L). In both cases, on
average Resource is depleted by the end of T . Thus, �unlucky� communities with lower N(0) and/or higher
φM (0) will have a chance to catch up. Consequently, �uctuations in N(0) and φM (0) do not signi�cantly
a�ect P (T ), and community function improves under selection even without �xing N(0) and φM (0). fP (T )
are obtained by averaging within each selected Adult community and then averaging across the two selected
Adults. P (T ) are averaged across the two selected Adults. Magenta dashed lines: f∗P optimal for P (T ) and
maximal P ∗(T ) when all �ve growth parameters are �xed at their upper bounds and φM (0) is at φ∗M (0).
Black, cyan and gray curves are three independent simulations.

Figure 8: Figure 8. Community function strongly correlates with Newborn total biomass and
fraction of Manufacturer biomass. (A-C) Nonheritable Poissonian �uctuations in N(0) and φM (0)
during community reproduction cause large variations in community function P (T ). In contrast, community
function only weakly correlates with fP (0), whose variations are partially heritable. Consequently, selected
communities (magenta dots) may not have the highest fP (0). (D) When both N(0) and φM (0) are �xed,
P (T ) strongly correlates with fP (0). Each dot represents one community.
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fraction of Helper. Consequently, M will endure a shorter growth lag, grow to a higher biomass, deplete293

Resource more thoroughly, and make more Product. Thus, random �uctuations in Newborn biomass N(0)294

and species composition φM (0) during community reproduction can lead to large non-heritable variations in295

community function such that communities with the highest average fP may not get selected (Figure 8A).296

Reducing non-heritable variations enables community function to297

improve298

Random �uctuations in Newborn biomass N(0) and species composition φM (0) create non-heritable variati-299

ons in community function (Figure 8). Reducing non-heritable variations should enable community selection300

to work. Indeed, if we �x both N(0) and φM (0) (Methods, Section 5), equivalent to experimentally �ow-301

sorting a �xed biomass of H and M (based on for example cell �uorescence intensity) into each Newborn,302

then community function becomes strongly correlated with fP (0) (Figure 8D). Furthermore, both fP and303

P (T ) improve (Figure 7, G and H). In this particular case, fP overshoots fP ∗ and consequently, maximal304

P (T ) is not achieved (see accompanying article for an explanation). Community function improvement is305

not seen if either N(0) or φM (0) is non-�xed (Figure 7, C-F). Community function also improves (Figure 22)306

if we distribute �xed H and M cell numbers (instead of biomass) into each Newborn community (Methods,307

Section 5), which can be realized experimentally by �ow sorting.308

Alternatively, we can reduce non-heritable variations in P (T ) by extending maturation time T or incre-309

asing N(0) so that an average community will deplete Resource by T . In this selection regimen, Newborn310

communities will still experience Poissonian �uctuations in N(0) and φM (0) during community reproduction.311

However, those �unlucky� communities with smaller-than-average N(0) and/or larger-than-average φM (0)312

will have time to �catch up� as the �lucky� communities wait in stationary phase after exhausting Resource.313

Indeed, community function improves without having to �x N(0) or φM (0) (Figure 7, I-L). In practice,314

these selection regimens will only be e�ective if variations in stationary phase duration introduce minimal315

non-heritable variations in community function.316

In summary, community function improves under selection if we suppress non-heritable variations in317

community function. This conclusion holds when we lower the mutation rate by 100-fold (Figure 23), or use318

a di�erent distribution of mutation e�ect (Figure 24). We have also tested the e�ect of epistasis (Methods,319

Section 6) where the e�ect of a mutation on fP depends on the current fP (Figure 14): If current fP is high320

(e.g. 0.40) compared to the starting fP (0.13, Figure 6B), then an enhancing mutation exerts a lesser e�ect321

and a diminishing mutation exerts a larger e�ect compared to when there is no epistasis. Conversely, if322

current fP is low (e.g. fP = 0.04), then the opposite is true. Under di�erent epistasis strengths, community323

function improvement can be sped up by reducing non-heritable variations in P (T ) (Figure 25).324

Discussion325

How might we improve functions of multi-species microbial communities? We can enrich for the appropriate326

species combination. For example, using cellulose as a main carbon source enriches for communities of327

microbes that work together to degrade cellulose [2]. However, if we solely rely on species combinations to328

improve community function, then without a constant in�ux of new species, community function will likely329

stop improving [36].330

Here, we consider arti�cial selection of communities with de�ned member species. The conventional331

wisdom may suggest �you get what you select for�. But is this true? We have studied a Helper-Manufacturer332

community where community function is costly to Manufacturer. For community selection to be e�ective, we333

need to ensure that member species can stably coexist (Figure 3). Improving individual �tness can sometimes334

improve community function (Figures 5 and 17), although this often may not be true (Figure 16). Despite335

pre-optimizing member species in monocultures, community function may still be sub-maximal (Figure 6)336

due to the di�culty in recapitulating community dynamics in monocultures. Further improvements in337

community function can be achieved via arti�cial community selection, if performed properly.338

Many aspects need to be taken into consideration when performing arti�cial community selection. It339
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is universally true that suppressing non-heritable variations in a trait will increase its selection e�cacy.340

However, we show here that for community selection, large non-heritable variations in community function341

can readily arise via routine experimental procedures such as pipetting. For example, to avoid stationary342

phase, if we choose maturation time T such that Resource is in excess, then pipetting a volume of Adult343

community to seed a Newborn community can already introduce large, non-heritable variations in com-344

munity function (Figure 8B-C). These non-heritable variations in turn partially mask heritable variations345

in community function caused by mutations in fP (Figure 8A). Consequently, community function P (T )346

remains stagnant (Figure 7A-B). In contrast, if we �x both N(0) and φM (0) (via cell sorting for example),347

then community function improves (Figure 7G-H). Similarly, if we extend maturation time T or increase348

N(0) so that Resource will on average be depleted by the end of T , then community function also improves349

(Figure 7I-L). However, increasing T or N(0) creates variations in how much time each community spends in350

stationary phase, which in turn might generate non-heritable variations in community function. By the same351

reasoning, if Resource is in excess, then reproducing an Adult community via �xed-fold dilution (instead of352

diluting to a �xed total biomass or total cell number) will select for Newborn communities of larger and353

larger size instead of Newborn communities with higher and higher fP (Methods, Section 9).354

How does arti�cial selection on multi-species communities compare with arti�cial selection on mono-355

species groups? In both cases, Newborn size must not be too large and maturation time must not be too356

long, because otherwise, all entities will accumulate non-producers in a similar fashion. This undermines357

variation among entities as well as heredity of the entity trait. Community selection and group selection di�er358

in at least two aspects. First, inter-species interactions in a community could drive species composition to a359

value sub-optimal for community function (accompanying article), and this problem does not exist for group-360

level selection 8. Second, in group selection, when a Newborn group starts with a small number of individuals,361

a fraction of Newborn groups will show high similarity to the Newborn of the previous cycle (Figure 1B,362

bottom panel). This heredity facilitates group selection. In contrast, when a Newborn community starts363

with a small number of total individuals, stochastic �uctuations in Newborn community composition can be364

large and can interfere with community selection (Figure 7). In the extreme case, a member species can even365

get lost by chance. Even if a �xed number of cells from each species are sorted into Newborns, each Newborn366

will randomly sample a subset of genotypes in each member species. This reduces heredity and can interfere367

with selection 9. If many communities are under selection, then rare communities can by chance sample a368

bene�cial genotype from multiple species, and these bene�cial genotypes rapidly rise to high frequency due369

to small N(0). In this case, reduced heredity actually speeds up community function improvement. This370

bears resemblance to how sexual recombination a�ects evolutionary dynamics: sexual recombination reduces371

heredity, but when population size is large so that bene�cial mutation supply is large, sexual recombination372

speeds up adaptation [60, 61, 62].373

Microbes can coevolve with each other and with their host in nature [63, 64, 65]. This coevolution is374

mainly driven by natural selection. Might microbial community as a whole become a unit of selection in375

nature? Our work suggests that if selection for a costly microbial community function should occur in nature,376

then mechanisms for suppressing non-heritable variations in community function should be in place.377

Methods378

1 A mathematical model of the H-M community379

Starting from initial conditions, the dynamics of a community comprising homogeneous H and M populations380

can be described by the following equations. De�nitions and values of all parameters as well as de�nitions381

of scaling factors (marked by �~�) are in Table 1. De�nitions of variables in our model and simulations are382

8Here, we assume that individuals in a group do not di�erentiate into interacting subgroups (i.e. not like cyanobacteria
where some cells are photosynthetic while other cells �x nitrogen [59]).

9In group selection, suppose that a Newborn group starts with a single cooperator and that the highest-functioning Adult
group has accumulated 80% cheaters. Then in the next cycle, 20% groups will be initiated with a single cooperator like the
previous Newborn group. In community selection, suppose that a Newborn community starts with a single cooperator from each
of the two species and that in the highest-functioning Adult community, each species has accumulated 80% cheaters. Then, in
the next cycle, only 20%×20%= 4% communities will be initiated with pure cooperators like the previous Newborn community.
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in Table 2. Variables and parameters without hats will not be scaled further. After scaling (see below for383

an explanation), scaling factors will become 1 and variables and parameters with hats will lose their hats.384

First, M and H, the biomass of M and H, change as a function of growth and death,385

dM

dt
= gM (R̂, B̂) (1− fP )M − δMM (1)

dH

dt
= gH(R̂)H − δHH (2)

In these equations, according to Fig 9386

gH(R̂) = gHmax
R̂

R̂+ K̂HR

is the Monod growth dynamics and gM (R̂, B̂) takes the form of the Mankad-Bungay model [43]:387

gM (R̂, B̂) = gMmax
R̂M B̂M

R̂M + B̂M

(
1

R̂M + 1
+

1

B̂M + 1

)
where R̂M = R̂/K̂MR and B̂M = B̂/K̂MB .388

Second, Resource R̂ is consumed proportionally to the growth of M and H; Byproduct B̂ is released pro-389

portionally to H growth and consumed proportionally to M growth; and Product P̂ is released proportionally390

to the fP fraction of M's growth diverted to make P.391

dR̂

dt
= −ĉRMgM (R̂, B̂)M − ĉRHgH(R̂)H (3)

dB̂

dt
= r̃BgH(R̂)H − ĉBMgM (R̂, B̂)M (4)

dP̂

dt
= r̃P fP gM (R̂, B̂)M (5)

Our model assumes that a �xed amount of Byproduct or Product is generated per biomass produced,392

which is a reasonable assumption given the stoichiometry of metabolic �uxes and has been experimentally393

observed [66]. Products such as secondary metabolites may be released during stationary phase, and future394

work will test whether variations in this assumption will change our conclusions. The initial conditions are395

described by total biomass N(0) = M(0) + H(0), the fraction of M biomass φM (0) = M(0)/N(0), and the396

total amount of Resource supplied at the beginning of a selection cycle R̃(0). The volume of a community397

V is set to be 1, and thus cell or metabolite quantities (which are considered here) are numerically identical398

to cell or metabolite concentrations.399

We scale Resource-related variable (R̂) and parameters (K̂MR, K̂HR, ĉRM , and ĉRH) against R̃(0) (Re-400

source supplied to Newborn), Byproduct-related variable (B̂) and parameters (K̂MB and ĉBM ) against r̃B401

(amount of Byproduct released per H biomass born), and Product-related variable (P̂ ) against r̃P (amount402

of Product made at the cost of one M biomass). For biologists who usually think of quantities with units,403

the purpose of scaling (and getting rid of units) is to reduce the number of parameters. For example, H404

biomass growth rate can be scaled against initial Resource R̃(0):405

gH(R̂) = gHmax
R̂

R̂+ K̂HR

= gHmax

(
R̂

R̃(0)

)/(
R̂

R̃(0)
+
K̂HR

R̃(0)

)

= gHmax
R

(R+KHR)

= gH(R)
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where R = R̂/R̃(0) and KHR = K̂HR/R̃(0). Thus, the unscaled gH(R̂) and the scaled gH(R) share identical406

forms. The value of R̃(0) becomes irrelevant since all R-related terms are relative to R̃(0) and the initial407

Resource has the value of 1 with no units. Similarly, since R̂M = R̂

R̃(0)

/
K̂MR

R̃(0)
= R

KMR
= RM and B̂M =408

B̂
r̃B

/
K̂MB

r̃B
= B

KMB
= BM , gM (R̂, B̂) = gM (R, B). As another example, after scaling P̂ against r̃P , we have409

dP

dt
=

dP̂

r̃P dt
(6)

= fP gM (R̂, B̂)M

= fP gM (R, B)M

and thus parameter r̃P is no longer necessary. Other scaled equations are:410

dR

dt
=
dR̂/R̃(0)

dt
(7)

= − ĉRM
R̃(0)

gM (R̂, B̂)M − ĉRH

R̃(0)
gH(R̂)H

= −cRMgM (R, B)M − cRHgH(R)H

dB

dt
=
dB̂/r̃B
dt

(8)

= gH(R̂)H − ĉBM
r̃B

gM (R̂, B̂)M

= gH(R)H − cBMgM (R, B)M

dM

dt
= gM (R, B) (1− fP )M − δMM (9)

dH

dt
= gH(R)H − δHH (10)

We have not scaled time here, although time can also be scaled by, for example, the community maturation411

time. Here, time has the unit of unit time (e.g. hr), and to avoid repetition, we often drop the time unit.412

2 Parameter choices413

H can grow on Resource alone. For ancestral H, we set gHmax = 0.25, KHR = 1 (i.e. KHR is one unit of414

R̃(0) ) and cRH = 10−4. This way, ancestral H can grow by about 10-fold by the end of T = 17. These415

parameters are biologically realistic: time unit can be arbitrarily chosen, and if we choose hour as the unit,416

then gHmax translates to a doubling time of 2.8 hrs. Furthermore, for a lys- S. cerevisiae strain with lysine as417

Resource, Monod constant is K̂ = 1 µM, and consumption ĉ is 2 fmole/cell (Ref. [67], Figure 2 Source Data418

1). Thus, if we choose 20 µL as volume V̂ and 1 µM as initial Resource concentration, then R̃(0) = 2× 104
419

fmole. After scaling, K = K̂V̂ /R̃(0) = 1 and c = ĉ/R̃(0) = 10−4.420

To ensure the coexistence of H and M, M must grow faster than H for part of the maturation cycle. Thus,421

i) gMmax must exceed gHmax (Figure 3) since we have assumed M and H to have the same a�nity for R422

(Table 1); ii) M's a�nity for Byproduct (1/KMB) must be su�ciently large; and iii) Byproduct consumed423

per Manufacturer cBM must be su�ciently small so that growth of M can be supported by H. Thus for424

ancestral M, we choose gMmax = 0.58 (equivalent to a doubling time of 1.2 hrs). We set ĉBM = 1
3 units425

of rB (i.e. cBM = 1
3 ). This means that Byproduct released during one H biomass growth is su�cient to426

generate 3 M biomass, which is biologically achievable ([68, 69]). When we choose K̂MB = 5
3 × 102 units of427
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De�nition Ancestral Mono-adapted

r̃B amount of releasedB̂ released per H biomass born scaling factor no change
r̃P amount of released P̂ at the cost of one M biomass scaling factor no change
R̃(0) initial amount of Resource in Newborn scaling factor
fP fraction of M growth diverted to producing P 0.03 0.13
KMR fold of R̃(0) at which gMmax/2 is achieved in excess B 1 1/3*

KMB
amount of B̂ at which gMmax/2 is 5

3 × 102 1
3 × 102*

achieved in excess R, scaled against r̃B
KHR fold of R̃(0) at which gHmax/2 is achieved 1 1/5*
gMmax maximal biomass growth rate of M 0.58/unit time 0.7*
gHmax maximal biomass growth rate of H 0.25/unit time 0.3*
δM death rate of M 3.5× 10−3/unit time no change
δH death rate of H 1.5× 10−3/unit time no change
cRM fraction of R̃(0) consumed per M biomass born 10−4 no change
cRH fraction of R̃(0) consumed per H biomass born 10−4 no change

cBM
amount of B̂ consumed 1

3 no change
per M biomass born, scaled against r̃B

Pmut
mutation probability per cell

2× 10−5~ 2× 10−3

division for each mutable phenotype

Table 1: Parameters for ancestral and mono-adapted H and M. For maximal growth rates, * represents
evolutionary upper bound. For KSpeciesMetabolite, * represents evolutionary lower bound, which corresponds
to evolutionary upper bound for Species's a�nity for Metabolite (1/KSpeciesMetabolite). In the text, we
explain why we hold the remaining parameters constant during evolution.

Symbols De�nition

M(t), H(t) The biomass of M or H in a community at time t
N(t) = M(t) +H(t) The total biomass in a community at time t

φM (t) The fraction of M biomass at time t
N0 Pre-set target total biomass of Newborns during community reproduction

IM (t), IH(t) The integer number of M or H cells in a community at time t
ϕM (t) The fraction of M individuals at time t

LM (t), LH(t) The biomass (length) of an individual M or H cell at time t, ranged between 1 and 2
P (t) The amount of Product P in a community at time t, scaled by r̃P
R(t) The amount of Resource R in a community at time t, scaled by R̃(0)
B(t) The amount of Byproduct B in a community at time t, scaled by r̃B
nD The integer fold of dilution when reproducing an Adult Community
ntot Total number of communities under selection
T Community maturation time, corresponding to the duration of a selection cycle

Table 2: A summary of variables used in the simulation.
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r̃B (i.e. KMB = 5
3 × 102), H and M can coexist for a range of fP (Figure 3). This value is realistic. For428

example, an evolved hypoxanthine-requiring S. cerevisiae strain achieved a Monod constant for hypoxanthine429

at 0.1 µM and a doubling time of τ0 = 7 hours when co-cultured with a hypoxanthine-overproducing strain430

(bioRxiv). If V̂ = 20 µL in our experiment, then K̂MB/r̃B = 5
3 × 102 corresponds to an absolute release431

rate r̃B = 0.1µM × 20µL/( 5
3 × 102) = 12 fmole per cell biomass born = 12 fmole/(1 cell×7 hr)≈ 1.7432

fmole/cell/hr, which is of the same order of magnitude as that for a lysine-overproducing yeast strain (up433

to 0.8 fmole/cell/hr, bioRxiv) and a leucine-overproducing strain (4.2 fmole/cell/hr [69]). Death rates δH434

and δM are chosen to be 0.5% of the upper bound of maximal growth rate, which is within the ballpark of435

experimental observations (e.g. the death rate of a lys- strain in lysine-limited chemostat is 0.4% of maximal436

growth rate, bioRxiv).437

Since the biomass of various microbes share similar compositions of elements such as carbon or nitrogen438

[58], we assume that H and M consume the same amount of R per new cell (cRH = cRM ). Since cRH =439

cRM = 10−4 after scaling against R̃(0), the maximum yield is 104 biomass.440

Growth parameters (maximal growth rates gMmax and gHmax and a�nities for nutrients 1/KMR, 1/KMB ,441

and 1/KHR ) and production parameter (fP ∈ [0, 1]) are allowed to change during evolution, since these442

phenotypes have been observed to rapidly evolve within tens to hundreds of generations ([54, 55, 56, 57]).443

For example, several-fold improvement in nutrient a�nity [55] and ~20% increase in maximal growth rate444

[57] have been observed in experimental evolution. Thus we allow a�nities 1/KMR, 1/KHR, and 1/KMB445

to increase by 3-fold, 5-fold, and 5-fold respectively, and allow gHmax and gMmax to increase by ~20%.446

These bounds also ensure that evolved H and M can coexist for fp < 0.5 (Figure 3B), and that Resource447

is on average not depleted by T to avoid cells entering stationary phase. Although maximal growth rate448

and nutrient a�nity can sometimes show trade-o� (e.g. [55]), for simplicity we assume here that they are449

independent of each other. We hold metabolite consumption (cRM , cBM , cRH ) constant because conversion450

of essential elements such as carbon and nitrogen into biomass is unlikely to evolve quickly and dramatically,451

especially when these elements are not in large excess ([58]). Similarly, we hold the scaling factors r̃P and452

r̃B constant, assuming that they do not change rapidly during evolution due to stoichiometric constraints of453

biochemical reactions. We hold death rates (δM , δH) constant because they are much smaller than growth454

rates in general and thus any changes are likely inconsequential.455

3 Choosing growth parameters to simplify evolutionary modeling456

Besides considerations in Section 1, we want to choose growth parameters so that improved cell growth457

(maximal growth rates and a�nity for metabolites) improves community function. This way, we can assemble458

Newborn communities using mono-adapted H and M where all growth parameters are �xed at their respective459

evolutionary upper- bounds (which can be achieved via natural selection), while only allowing fP to evolve.460

This simpli�es our problem. As we will see in the accompanying article, this also enables us to visualize the461

community function landscape. It is important to note that improving individual growth does not always462

lead to improved community function (Figure 16).463

We have chosen such a set of growth parameters and their evolutionary upper bounds. Let's �rst consider464

the case where fP = 0.41, which corresponds to optimal community function (magenta dashed lines in Figure465

5 and Figure 6A). If we �x four of the �ve growth parameters to their upper bounds, then as the remaining466

growth parameter improves, both individual �tness and community function increase (magenta lines in467

Figure 17). Thus, if community function is already optimized, then deviations from growth parameter upper468

bounds are disfavored by both community selection and natural selection, and hence growth parameters are469

naturally �xed.470

Now let's consider the case where fP = 0.13, which is optimal for M-monoculture function (grey dotted471

line in Figure 6B) and thus our starting point for community selection. Community function and individual472

�tness generally increase as growth parameters improve (black dashed line in Figure 17 A-D and F-I). Howe-473

ver, at lower fP (e.g. 0.13 corresponding to black dashed line in Figure 17 J and 0.1 corresponding to black474

solid line in Figure 18 A), individual �tness declines slightly when M's a�nity for Resource (1/KMR) impro-475

ves. This is equivalent to decreased a�nity for the abundant nutrient improving growth rate. Transporter476

competition for membrane space [70] could lead to this result, since reduced a�nity for abundant nutrient477

may increase a�nity for rare nutrient.478
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Mathematically speaking, this is a consequence of the Mankad-Bungay model [43] (Figure 10 B). Let479

S̊1 = S1/K1 and S̊2 = S2/K2. Then,480

∂g

∂K1
=

∂g

∂S̊1

∂S̊1

∂K1
=
∂
[
gmax

S̊1S̊2

S̊1+S̊2

(
1

1+S̊1
+ 1

1+S̊2

)]
∂S̊1

∂S̊1

∂K1

= gmax
S̊1S̊2

(S̊1 + S̊2)K1

(
S̊1

(1 + S̊1)2
− S̊2

S̊1 + S̊2

(
1

1 + S̊1

+
1

1 + S̊2

))

If S̊1 � 1� S̊2 (corresponding to limiting S1 and abundant S2),481

S̊1

(1 + S̊1)2
− S̊2

S̊1 + S̊2

(
1

1 + S̊1

+
1

1 + S̊2

)
≈ S̊1

(1 + S̊1)2
− 1

1 + S̊1

= − 1

(1 + S̊1)2
(11)

and thus ∂g/∂K1 < 0. This is the familiar case where growth rate increases as the Monod constant decreases482

(i.e. a�nity increases). However, if S̊2 � 1� S̊1483

S̊1

(1 + S̊1)2
− S̊2

S̊1 + S̊2

(
1

1 + S̊1

+
1

1 + S̊2

)
≈ 1

S̊1

− S̊2

S̊1

1

1 + S̊2

=
1

S̊1(1 + S̊2)
(12)

and thus ∂g/∂K1 > 0. In this case, the growth rate decrease as the Monod constant decreases (i.e. a�nity484

increases).485

In the case of M, let S1 represent R and let S2 represent B. Thus, K1 corresponds to KMR and K2486

corresponds to KMB . At the beginning of each cycle, R is abundant and B is limiting (Eq. 12). Thus M487

cells with lower a�nity for R (higher KMR) will grow faster than those with higher a�nity (Figure 18). At488

the end of each cycle, the opposite is true (Figure 18). As fP decreases, M has the capacity to grow faster489

and the �rst stage becomes more important. Thus in the Mankad & Bungay model at low fP , M can gain490

higher overall �tness by lowering a�nity for R (Figure 18).491

Regardless, the decline in individual �tness is very slight and only occurs at low fP at the beginning of492

community selection, and thus may be neglected. Indeed, if we start all growth parameters at their upper493

bounds, and perform community selection while allowing all parameters to vary (Figure 21), then M's a�nity494

for Resource (1/KMR) decreases somewhat, yet the dynamics of fP is similar to when we only allow fP to495

change (compare Figure 21D with Figure 7A). Indeed, allowing both fP and 1/KMR to evolve does not496

change our conclusions as shown in Figure 26.497

4 Mutation rate and phenotype spectrum498

Among mutations, a fraction will be phenotypically neutral in that they do not a�ect the phenotype of499

interest. For example, the vast majority of synonymous mutations are neutral [71]. Experimentally, the500

fraction of neutral mutations is di�cult to determine. Consider organismal �tness as the phenotype of501

interest. Whether a mutation is neutral or not can vary as a function of e�ective population size, and selection502

condition. For example, at low population size due to drift, a bene�cial or deleterious mutation may not be503

selected for or selected against, and is thus neutral with respect to selection [72, 73]. In addition, mutations504

in an antibiotic-degrading gene can be neutral under low antibiotic concentrations, but deleterious under505

high antibiotic concentrations [74]. When considering single mutations, a larger fraction of neutral mutations506

is mathematically equivalent to a lower mutation rate. Here on, our �mutation rate� refers to the rate of507

mutations that either enhance a phenotype (�enhancing mutations�) or diminish a phenotype (�diminishing508

mutations�). For �ve of the mutable phenotypes in our model, enhancing mutations of maximal growth rate509

(gHmax and gMmax) and of nutrient a�nity (1/KHR, 1/KMR, 1/KMB) enhance individual �tness (bene�cial510

mutations). In contrast, enhancing mutations in fp diminish individual �tness (deleterious mutations).511

Depending on phenotype, the rate of phenotype-altering mutations is highly variable. Mutations that512

cause qualitative phenotypic changes (e.g. canavanine or 5-�uoroorotic acid resistance) occur at a rate of513

10−8~10−6 per genome per generation in bacteria and yeast [75, 76]. Mutations a�ecting quantitative traits514
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such as growth rate occur much more frequently. For example in yeast, mutations that increase growth515

rate by ≥ 2% occur at a rate of ∼ 10−4 per genome per generation (calculated from Figure 3 of [77]),516

and deleterious mutations occurs at a rate of 10−4 ∼ 10−3 per genome per generation [51, 48]. If the517

phenotype of interest encompasses growth rates in diverse abiotic environments, then most of single-gene518

deletion mutations in S. cerevisiae alter phenotypes [78]. Moreover, mutation rate can be elevated by as519

much as 100-fold in hyper-mutators [46, 47, 48]. Here, we assume a high, but biologically feasible, rate of520

0.002 phenotype-altering mutations per genome per generation to speed up computation. We have also tried521

100-fold lower mutation rate. As expected, evolutionary dynamics slows down, but all of our conclusions522

still hold (Figure 23).523

Among phenotype-altering mutations, tens of percent create null mutants, as illustrated by experimental524

studies on protein, virus, and yeast [49, 50, 51]. Thus, we assume that 50% phenotype-altering mutations525

are null (i.e. gSpeciesmax = 0, or KSpeciesMetabolite =∞, or fp = 0). Among non-null mutations, the relative526

abundances of enhancing versus diminishing mutations are highly variable in di�erent experiments. It can527

be impacted by e�ective population size. For example, with a large e�ective population size, the survival528

rate of bene�cial mutations is 1000-fold lower due to clonal interference (competition between bene�cial529

mutations) [79]. The relative abundance of enhancing versus diminishing mutations also strongly depends530

on the optimality of the starting phenotype [49, 74, 72]. For example with ampicillin as a substrate, the531

TEM-1 β-lactamase acts as a �perfect� enzyme. Consequently, mutations were either neutral or diminishing,532

and few enhanced enzyme activity [74]. In contrast with a novel substrate such as cefotaxime, the enzyme533

has undetectable activity. Thus, diminishing mutations were not detected and 2% of tested mutations were534

enhancing [74].535

Phenotypes of the ancestral community members are generally not so extreme that mutations are solely536

diminishing or solely enhancing. Thus, we base our model on experimental studies where a large number537

of enhancing and diminishing mutants have been quanti�ed in an unbiased fashion. An example is a study538

from the Dunham lab where the �tness e�ects of thousands of S. cerevisiae mutations were quanti�ed under539

various nutrient limitations [52].540

Speci�cally for each nutrient limitation, the authors �rst measured 4sWT = (wWT − w̄WT )/w̄WT =541

wWT /w̄WT − 1, the deviation in relative �tness of thousands of bar-coded wild-type control strains from the542

mean �tness. Due to experimental noise, 4sWT is distributed with zero mean and non-zero variance. Then,543

the authors measured thousands of 4sMT , each corresponding to the relative �tness change of a bar-coded544

mutant strain with respect to the mean of wild-type �tness (i.e. 4sMT = (wMT − w̄WT )/w̄WT ). From545

these two distributions, we derive µ∆s, the probability density function (PDF) of mutation �tness e�ect546

∆s = 4sMT −4sWT (see Figure 13A for an explanation), in the following manner.547

First, we calculate µm(4sMT ), discrete PDF of mutant strain relative �tness change, with bin width548

0.04. In other words, µm(4sMT ) =counts in the bin of [4sMT − 0.02, 4sMT + 0.02] / total counts/0.04549

where 4sMT ranges from −0.6 and 0.6 which is su�cient to cover the range of experimental outcome. The550

Poissonian uncertainty of µm is δµm(4sMT ) =
√

counts per bin/total counts/0.04. Repeating this process551

for wild-type collection, we obtain PDF of wild-type strain relative �tness µw(4sWT ). Next, from wild type552

µw(4sWT ) and each µm(4sMT ), we derive µ∆s(∆s), the PDF of ∆s with bin width 0.04:553

µ∆s(∆s = i× 0.04) = 0.04×
+∞∑
j=−∞

µw(j × 0.04)µm((i+ j)× 0.04). (13)

assuming that 4sMT and 4sWT are independent from each other. Here, i is an integer from -15 to 15. The554

uncertainty for µ∆s is calculated by propagation of error. That is, if f is a function of xi (i = 1, 2, ..., n).555

Then sf , the error of f , is s2
f =

∑(
∂f
∂xi

sxi

)2

where sxi
is the error or uncertainty of xi. Thus,556

δµ∆s(i) = 0.04×
√∑

j

[
(δµw(j)µm(i+ j))

2
+ (µw(j)δµm(i+ j))

2
]

(14)

where µw(j) is short-hand notation for µw(4sWT = j× 0.04) and so on. Our calculated µ∆s(∆s) with error557

bar of δµ∆s is shown in Figure 13B.558

Our reanalysis demonstrates that distributions of mutation �tness e�ects µ∆s(∆s) are largely conserved559

regardless of nutrient conditions and mutation types (Figure 13B). In all cases, the relative �tness changes560
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caused by bene�cial (�tness-enhancing) and deleterious (�tness-diminishing) mutations can be approximated561

by separate exponential distributions with di�erent means s+ and s−, respectively. After normalization to562

have a total probability of 1, we have:563

µ∆s(∆s) =

{
1

s++s−(1−exp(−1/s−)) exp(−∆s/s+) if ∆s ≥ 0
1

s++s−(1−exp(−1/s−)) exp(∆s/s−) if − 1 < ∆s < 0
(15)

We �t the Dunham lab haploid data (since microbes are often haploid) to Eq. 15, using µ∆s(i)/δµ∆s(i) as564

the weight for non-linear least squared regression (green lines in Figure 13B). We obtain s+ = 0.050± 0.002565

and s− = 0.067± 0.003.566

Interestingly, exponential distribution described the �tness e�ects of deleterious mutations in an RNA567

virus signi�cantly well [49]. Based on extreme value theory, the �tness e�ects of bene�cial mutations are pre-568

dicted to follow an exponential distribution [80, 81], which has gained experimental support from bacterium569

and virus [82, 83, 84] (although see [85, 77] for counter examples). Evolutionary models based on exponential570

distributions of �tness e�ects have shown good agreements with experimental data [79, 86].571

We have also tried smaller average mutational e�ects based on measurements of spontaneous or chemically-572

induced (instead of deletion) mutations. For example, the �tness e�ects of nonlethal deleterious mutations in573

S. cerevisiae are mostly 1%~5% [51], and the mean selection coe�cient of bene�cial mutations in E. coli was574

1%∼2% [82, 79]. Thus, as an alternative, we choose s+ = 0.02; s− = −0.02, and obtain similar conclusions575

(Figure 24).576

5 Simulation code of community selection cycle577

In our simulation, cell mutation, cell death, and community reproduction are stochastic. All other processes578

(biomass growth, cell division, and changes in chemical concentrations) are deterministic.579

The code starts with a total of ntot = 100 Newborn communities with identical con�guration:580

• each community has 100 total cells of biomass 1. Thus, total biomass N(0) = 100.581

• 40 cells are H. 60 cells are M with identical fP . Thus, M(0) = 60 and φM (0) = 0.6.582

In the beginning, a random number is used to seed the random number generator for each Newborn commu-583

nity, and this number is saved so that the sequence of random numbers used below can be exactly repeated584

for subsequent data analysis. The initial amount of Resource is 1 unit of R̃(0), and the initial Byproduct is585

B(0) = 0. The cycle time is divided into time steps of ∆τ = 0.05.586

Below, we describe in detail what happens during each step of ∆τ . During an interval [τ , τ + ∆τ ],587

biomass growth is continuous but birth and death are discrete. Death and Product release are calculated at588

the end of each ∆τ . Resource R(t) and Byproduct B(t) between [τ , τ + ∆τ ] are calculated by solving the589

following equations between [τ, τ + ∆τ ] with the initial condition R(τ) and B(τ) using the ode23s solver in590

Matlab:591

592

dR

dt
= −cRMgM (R, B)M(τ)− cRHgH(R)H(τ) (16)

593

594

dB

dt
= gH(R)H(τ)− cBMgM (R, B)M(τ) (17)

where M(τ) and H(τ) are the biomass of M and H at time τ , respectively. The solutions from Eq. 16 and595

17 are used in the integrals below.596

We track the phenotypes of every H and M cell which are rod-shaped organisms of a �xed diameter. Let597

the biomass (length) of an H cell be LH(τ). The continuous growth of LH during τ and τ + ∆τ can be598

described as599

600

dLH
dt

= gH(R)LH
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thus LH(τ + ∆τ) is601

602

ln
LH(τ + ∆τ)

LH(τ)
=

∫ τ+∆τ

τ

gH(R)dt

and603

604

LH(τ + ∆τ) = LH(τ) exp

(∫ τ+∆τ

τ

gH(R)dt

)
. (18)

605

Similarly, let the length of an M cell be LM (τ). The continuous growth of M can be described as606

607

dLM
dt

= (1− fP )gM (R, B)LM .

608

Thus during the interval [τ, τ + ∆τ ],609

610

ln
LM (τ + ∆τ)

LM (τ)
=

∫ τ+∆τ

τ

(1− fP )gM (R, B)dt

Thus for an M cell, its length LM (τ + ∆τ) is611

612

LM (τ + ∆τ) = LM (τ) exp

(∫ τ+∆τ

τ

(1− fP )gM (R, B)dt

)
(19)

From Eq. 9 and 6,613

614

dP

dt
= fP gM (R, B)M ∼ fP

1− fP
dM

dt

and we get615

616

P (τ + ∆τ) = P (τ) +
fP

1− fP
(M(τ + ∆τ)−M(τ))

where M(τ + ∆τ) =
∑
LM (τ + ∆τ) is the sum of the lengths of all M cells.617

To describe discrete death events, each H and M cell has a probability of δH∆τ and δM∆τ to die,618

respectively. This is simulated by assigning a random number between [0, 1] for each cell and those receive619

a random number less than δH∆τ or δM∆τ get eliminated. For surviving cells, if a cell's length ≥ 2, this620

cell will divide into two cells with half the original length.621

Each cell has a probability of Pmut = 0.002 to acquire a mutation that changes each of its phenotype622

(Methods, Section 4). Without loss of generality, let's consider mutations in fP . After mutation, fP will be623

multiplied by (1 + ∆fP ), where ∆fP is determined as below.624

First, a uniform random number u1 is generated. If u1 ≤ 0.5, ∆fP = −1, which represents 50% chance625

of a null mutation (fP = 0). If 0.5 < u1 ≤ 1, ∆fP follows the distribution de�ned by Eq. 22 with626

s+(fP ) = 0.05 for fP -enhancing mutations and s−(fP ) = 0.067 for fP -diminishing mutations when epistasis627

is not considered (Methods, Section 4). In the simulation, ∆fP is generated via inverse transform sampling.628

Speci�cally, C(∆fP ), the cumulative distribution function (CDF) of ∆fP , can be found by integrating Eq.629

15 from -1 to ∆fP :630

C(∆fP ) =

∫ ∆fP

−1

µ∆s(x)dx

=


s−

s++s−(1−e−1/s− )
(exp(∆fP /s−)− exp(−1/s−)) if ∆fP ≤ 0

1− s+

s++s−(1−e−1/s− )
exp(−∆fP /s+) if ∆fP ≥ 0

(20)

The two parts of Eq. 20 overlap at C(∆fP = 0) = s−(1− e−1/s−)/
[
s+ + s−(1− e−1/s−)

]
.631
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In order to generate ∆fP satisfying the distribution in Eq. 15, a uniform random number u2 between 0632

and 1 is generated and we set C(∆fP ) = u2. Inverting Eq. 20 yields633

634

∆fP =

s− ln
(
u2(s+ + s−(1− e−1/s−))/s− + e−1/s−

)
u2 ≤ s−(1−e−1/s− )

s++s−(1−e−1/s− )

−s+ ln
(
(1− u2)(s+ + s−(1− e−1/s−))/s+

)
u2 >

s−(1−e−1/s− )

s++s−(1−e−1/s− )

(21)

635

When epistasis is considered, s+(fP ) = s+init/(1 + g × (fP /fP,init − 1)) and s−(fP ) = s−init × (1 +636

g × (fP /fP,init − 1)) are used in Eq. 21 to calculated ∆fP for each cell with di�erent current fP (Methods637

Section 6).638

If for a certain fP , fP,mut = fP (1 + ∆fP ) > 1, fP,mut is set to 1 (upper bound). In general, if a mutation639

increases or decreases the phenotypic parameter beyond its bound, the phenotypic parameter is set to the640

bound value.641

The above growth-death/birth-mutation cycle is repeated from time 0 to T . Note that since the size of642

each M and H cell can be larger than 1, the integer numbers of M and H cells, IM and IH , are generally643

smaller than biomass M and H , respectively. At the end of T , the communities are sorted according to644

P (T ).645

For community reproduction, we save the current random number generator state to generate random646

numbers for partitioning the Adult. When we do not �x total biomass or total cell number, we do the647

following. We select the Adult community with the highest function (or a randomly-chosen Adult community648

in control simulations). The fold by which this Adult will be diluted is nD = b(M(T ) +H(T )) /N0c where649

N0 = 100 is the pre-set target for total biomass of a Newborn, andbxc is the �oor function that generates the650

largest integer that is smaller than x. IH + IM random integers between 1 and nD are uniformly generated651

so that each M and H cell is assigned a random integer between 1 and nD. All cells assigned with the652

same random integer belong to the same Newborn. This generates nD newborn communities. This partition653

regimen can be experimentally implemented by pipetting 1/nD volume of an Adult community into a new654

well. If nD is less than ntot (the total number of communities under selection), all nD newborn communities655

are kept. Then, we partition the Adult with the second highest function (or a random community in control656

simulations) to obtain an additional batch of nD Newborns, and if this is enough, we will randomly pick657

from these a su�cient number of Newborns to obtain ntot Newborns. The next cycle then begins.658

To ��x� Newborn total biomass N(0) to the target total biomass N0, total biomass N(0) is counted so659

that N(0) comes closest to the target N0 without exceeding it (otherwise, P (T ) may exceed the theoretical660

maximum). For example, suppose that a certain number of M and H cells have been sorted into a Newborn661

so that the total biomass is 98.6. If the next cell, either M or H, has a mass of 1.3, this cell goes into662

the community so that the total biomass is 98.6 + 1.3 = 99.9. However, if a cell of mass 1.6 happens to663

be picked, this cell doesn't go into this community so that this Newborn has a total biomass of 98.6 and664

the cell of mass 1.6 goes to the next Newborn. Thus, each Newborn may not have exactly the biomass of665

N0, but rather between N0 − 2 and N0. Experimentally, total biomass can be determined from the optical666

density (OD), or from the total �uorescence if cells are �uorescently labeled (bioRxiv). In most simulations667

we �x the total biomass of each Newborn because biomass M(t) and H(t) are the quantities used in Eqs.668

6-10 and Eqs. 16-19. If a cell sorter can only track the number of cells (instead of also tracking cell size),669

we perform simulations where the we sort a total of bN0/1.5c cells into each Newborn, assuming that the670

average biomass of an M or H cell is 1.5. We obtain the same conclusion, as shown in Figure 22 left panels.671

To �x φM (0) (while allowing total biomass N(0) to �uctuate), we generate Newborn communities so that672

φM (0) = φM (T ) of the selected Adult community from the previous cycle. Again, because each M and H has673

a biomass (or length) between 1 and 2, φM (0) of each Newborn community may not be exactly φM (T ) of674

the selected Adult community. In the code, dilution fold nD is calculated in the same fashion as mentioned675

above. IM (T ) random integers between [1, nD] are then generated for each M cell. All M cells assigned the676

same random integer belong to the same Newborn community. A total biomass of M(0)(1−φM (T ))/φM (T )677

of H cells should be sorted into this Newborn community. In the code, H cells are randomly dispensed into678

each Newborn community until the total biomass of H comes closest to M(0)(1 − φM (T ))/φM (T ) without679

exceeding it. Again, because each H cell has a biomass between 1 and 2, the total biomass of H might not be680

exactly M(0)(1−φM (T ))/φM (T ) but between M(0)(1−φM (T ))/φM (T )− 2 and M(0)(1−φM (T ))/φM (T ).681

We have also performed simulations where the ratio of M and H cell numbers in the Newborn community,682
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IM (0)/IH(0), is set to IM (T )/IH(T ) of the Adult community, and obtain the same conclusion (Figure 22683

center panels).684

To �x both N(0) and φM (0), we sort a total biomass of N0φM (T ) of M cells and a total biomass of685

N0(1− φM (T )) of H cells into each Newborn community. Here, N0 = 100 is preset and φM (T ) is measured686

from the selected Adult community of the previous cycle. In the code, to form a Newborn community, M cells687

are randomly picked from the Adult community until the total biomass of M comes closest to N(0)φM (T )688

without exceeding it. H cells are sorted similarly. Because each M and H cells has a length between 1 and689

2, the biomass of M can vary between N(0)φM (T ) − 2 and N(0)φM (T ) and the biomass of H can vary690

between N(0)(1−φM (T ))− 2 and N(0)(1−φM (T )). Although such a partition scheme does not completely691

eliminate variations in species composition among Newborn communities, such variations are su�ciently692

small so that community selection can improve fP (T ). We have also performed simulations where the total693

number of cells is set to bN0/1.5c with bN0ϕM (T )/1.5c M cells and bN0(1− ϕM (T ))/1.5c H cells where694

ϕM (T ) = IM (T )/(IM (T ) + IH(T )) is calculated from the numbers instead of biomass of M and H cells. We695

obtain the same conclusion (Figure 22, right panels).696

6 Modeling epistasis on fP697

Epistasis, where the e�ect of a new mutation depends on prior mutations (�genetic background�), is known698

to a�ect evolutionary dynamics. Epistatic e�ects have been quanti�ed in various ways. Experiments on699

virus, bacterium, yeast, and proteins have demonstrated that for two mutations that are both deleterious or700

random, viable double mutants experience epistatic e�ects that are nearly symmetrically distributed around701

a value near zero [87, 88, 89, 90, 91]. In other words, a signi�cant fraction of mutation pairs show no epistasis,702

and a small fraction show positive or negative epistasis (i.e. a double mutant displays a stronger or weaker703

phenotype than expected from additive e�ects of the two single mutants). Epistasis between two bene�cial704

mutations can vary from being predominantly negative [88] to being symmetrically distributed around zero705

[89]. Furthermore, a bene�cial mutation tends to confer a lower bene�cial e�ect if the background already706

has high �tness (�diminishing returns�) [92, 89, 93].707

A mathematical model by Wiser et al. incorporates diminishing returns epistasis [86]. In this model,708

bene�cial mutations of advantage s in the ancestral background are exponentially distributed with probability709

density α exp(−αs), where 1/α > 0 is the mean advantage. After a mutation with advantage s has occurred,710

the mean advantage of the next mutation would be reduced to 1/[α(1 + gs)], where g > 0 is the �diminishing711

returns parameter�. Wiser et al. estimates g ≈ 6. This model quantitatively explains the �tness dynamics712

of evolving E. coli populations.713

Based on experimental and theoretical literature, we model epistasis on fP in the following manner. Let714

the relative mutation e�ect on fP be ∆fP = (fP,mut − fP ) /fP ≥ −1. Then, µ(∆fP , fP ), the probability715

density function of ∆fP at the current fP value, is described by a form similar to Eq. 15:716

µ(∆fP , fP ) =

{
1

s+(fP )+s−(fP )(1−exp(−1/s−(fP ))) exp(−∆fP /s+(fP )) if ∆fP ≥ 0
1

s+(fP )+s−(fP )(1−exp(−1/s−(fP ))) exp(∆fP /s−(fP )) if − 1 < ∆fP < 0
(22)

Here, s+(fP ) and s−(fP ) are respectively the mean ∆fP for enhancing and diminishing mutations at717

current fP . s+(fP ) = s+init/(1 + g× (fP /fP,init− 1)), where fP,init is the fP of the initial background (e.g.718

0.13 for mono-adapted Manufacturer), s+init is the mean enhancing ∆fP occurring in the initial background,719

and 0 < g < 1 is the epistatic factor. Similarly, s−(fP ) = s−init × (1 + g × (fP /fP,init − 1)) is the mean720

|∆fP | for diminishing mutations at current fP . In the initial background since fP = fP,init, we have721

s+(fP ) = s+init and s−(fP ) = s−init where s+init = 0.050 and s−init = 0.067 (Figure 13). For subsequent722

mutations, mean ∆fP is modi�ed by epistatic factor g. Consistent with diminishing returns principle, if723

current fP > fP,init, then a new enhancing mutation becomes less likely and a new diminishing mutation724

becomes more likely (ensured by g > 0). Similarly, if current fP < fP,init, then a new enhancing mutation725

becomes more likely and a diminishing mutation becomes less likely (ensured by 0 < g < 1). Thus, as fP726

approaches 1, s+(fP ) decreases and s−(fP ) increases (Figure 14). That is, enhancing mutations become less727

likely, and diminishing mutations become more likely. Conversely as fP approaches 0, the opposite is true728

(s+(fP ) increases and s−(fP ) decreases, Figure 14). In summary, our model captures not only diminishing729

returns of enhancing mutations, but also our understanding of mutational e�ects on protein stability [72].730
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7 Pathology of two alternative de�nitions of community function731

For a given Newborn community, we de�ne community function as P (T ), the total amount of Product at732

maturation time T . Below, we describe the pathology of alternative de�nitions of community function.733

Let's consider a simpler case where groups of Manufacturers are selected for high P, and cell death is734

negligible. We have735

dM

dt
= (1− fP )gMM (23)

dP

dt
= fP gMM (24)

where biomass growth rate gM is a function of B and R. When M and H compete for Resource, gM also736

depends implicitly on fP because fP a�ects M:H and therefore B and R.737

Since from Eq. 23 and 24738

dM

(1− fP )dt
=

dP

fP dt

we have739

P (T ) =
fP

1− fP
(M(T )−M(0)) ≈

fP
1− fP

M(T )

if M(T )�M(0). This is true if T is long enough for cells to double at least three or four times.740

If we de�ne community function as P (T )/M(T ) (total Product normalized against M biomass in Adult741

community), P (T )/M(T ) ≈ fP
1−fP . Under this de�nition, higher fP

1−fP or higher fP always leads to higher742

community function, and higher fP in turn leads to M extinction (Figure 3).743

If the community function is instead de�ned as P (T )/M(0), then744

P (T )

M(0)
≈

fP
1− fP

M(T )

M(0)
=

fP
1− fP

exp

(
(1− fP )

∫
T

gMdt

)
(25)

From Eq. 25, at a �xed fP ,
P (T )
M(0) increases as

∫
T
gMdt increases.

∫
T
gMdt increases as φM (0) decreases,745

since the larger fraction of Helper, the faster the accumulation of Byproduct and the larger
∫
T
gMdt (Figure746

27B). Thus, we end up selecting communities with small φM (0) (Figure 12). This means that Manufactures747

could get lost during community reproduction, and community selection then fails.748

For groups or communities with a certain
∫
T
gMdt, we can calculate fP optimal for community function749

from Eq. 25 by setting750

dP (T )

dfp
= M(0)

d

dfp

[
fP

1− fP
exp

(
(1− fP )

∫
T

gMdt

)]
= 0

We have 1
(1−fP )2 exp

(
(1− fP )

∫
T
gMdt

)
− fP

1−fP

∫
T
gMdt exp

(
(1− fP )

∫
T
gMdt

)
= 0, or 1/

∫
T
gMdt =751

fP (1− fP ).752

If
∫
T
gMdt� 1, fP is very small, and the optimal fP for P (T ) is753

f∗P ≈
(∫

T

gMdt

)−1

(26)

8 Identify optimal P (T )754

For a Newborn community with total biomass N(0) = 100, we �x growth parameters of M and H to upper755

bounds, and calculate P (T ) under various fP and φM (0). Since both numbers range between 0 and 1, we756

calculate P (T, fP = 0.01 × i, φM (0) = 0.01 × j) for integers i and j between 1 and 99. There is a global757

maximum for P (T ) when i = 41 and j = 54 (see the accompanying article). Therefore the optimal fP and758

φM (0) combination for a Newborn community with N(0) = 100 are 0.41 and 0.54, respectively.759
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9 Pathology associated with community reproduction via �xed-fold760

dilution761

If Resource is unlimited, then there is no competition between H and M. According to Eq. 25, P (T )762

increases linearly with M(0). P (T ) also increases with H(0), since higher H(0) leads to higher Byproduct763

and consequently higher
∫
T
gMdt in the exponent. Newborn communities can vary signi�cantly in their N(0)764

due to stochastic �uctuations (with a standard deviation of
√
N0). Thus each cycle, communities with larger765

N(0) (instead of higher fp) will get selected. With unlimited Resource, the size of an Adult community has766

no upper bound. After a �xed-fold dilution, N(0) also has no upper bound. In comparison, the average fp767

of di�erent Newborns do not vary nearly as much (Figure 8).768
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Supplementary Figures775

Figure 9: Figure 2-�gure supplement 1. (A) H growth follows Monod kinetics, reaching half maximal
growth rate when R = KHR. (B) M growth follows dual-substrate Mankad and Bungay kinetics. When
Resource R is in great excess (RM � BM ) or Byproduct B is in great excess (BM � RM ), we recover
mono-substrate Monod kinetics (A).

Figure 10: Figure 2-�gure supplement 2. A comparison of dual-substrate models. Suppose that
cell growth rate depends on each of the two substrates S1 and S2 in a Monod-like, saturable fashion. When
S2 is in excess, the S1 at which half maximal growth rate is achieved is K1. When S1 is in excess, the S2 at
which half maximal growth rate is achieved is K2. (A) In the �Double Monod� model, growth rate depends
on the two limiting substrates in a multiplicative fashion. In the model proposed by Mankad and Bungay
(B), growth rate takes a di�erent form. In both models, when one substrate is in excess, growth rate depends
on the other substrate in a Monod-fashion. However, di�erences exist. For example, when S1

K1
= S2

K2
= 1,

the growth rate is predicted to be gmax/2 by Mankad & Bunday model, and gmax/4 by the Double Monod
model. Mankad and Bungay model outperforms the Double Monod model in describing experimental data
of S. cerevisiae and E. coli growing on low glucose and low nitrogen. The �gures are plotted using data from
Ref. [43].
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Figure 11: Figure 2-�gure supplement 3. A comparison of birth models. We modeled exponen-
tial biomass growth in excess metabolites. Thick black line: analytical solution with biomass growth rate
(0.7/time unit). Grey dashed line: simulation assuming that biomass increases exponentially at 0.7/time
unit and that cell division occurs upon reaching a biomass threshold, an assumption used in our model. Color
dotted lines: simulations assuming that cell birth occurs at a probability equal to the birth rate multiplied
with the length of simulation time step (∆τ = 0.05). When a cell birth occurs, biomass increases discretely
by 1, resulting in step-wise increase in color dotted lines at early time.

Figure 12: Figure 2-�gure supplement 4. The pathology of arti�cial community selection if community
function is de�ned as P (T )/M(0). Over the range of fP where M and H can coexist, P (T )/M(0) increases
as φM (0) decreases.
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Figure 13: Figure 4 - Figure Supplement 1. Probability density functions of changes in relative
�tness due to mutations ( µ∆s(∆s) ). (A) Suppose that green line represents the probability density
function of ∆s, the relative �tness change in mutants. Then the probability P (0 ≤ ∆s ≤ x) is the area of the
shaded region. (B) We derived µ∆s(∆s) from the Dunham lab data [52] where bar-coded mutant strains were
competed under sulfate-limitation (red), carbon-limitation (blue), or phosphate-limitation (black). Error
bars represent uncertainty δµ∆s (the lower error bar is omitted if the lower estimate is negative). In the
leftmost panel, green lines show non-linear least squared �tting of data to Eq. 15 using all three sets of data.
Note that data with larger uncertainty are given less weight, and thus deviate more from the �tting lines.
For an exponentially-distributed probability density function, the average �tness e�ect is 1/slope. From the
green line on the right side, we obtain the average e�ect of enhancing mutations s+ = 0.050 ± 0.002, and
from the green line on the left side, we obtain the average e�ect of diminishing mutations s− = 0.067±0.003.

Figure 14: Figure 4-Figure Supplement 2. Mutation e�ects under epistasis. Distribution of
mutation e�ects at di�erent current fP values are plotted. (Top) When there is no epistasis, distribution of
mutational e�ects on fP (4fP ) are identical regardless of current fP . (Middle and Bottom) With epistasis
(see Methods Section 6 for de�nition of epistasis factor), mutational e�ects on fP depend on the current
value of fP . If current fP is low (left), enhancing mutations are more likely to occur while diminishing
mutations are less likely to occur; if current fP is high (right), the opposite is true.
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Figure 15: Figure 5-Figure Supplement 1. Community function declines to zero in the absence of
community selection. Without community selection, natural selection favors fast growers with improved
maximal growth rates and improved a�nities for nutrients (A). Consequently, fP (B) and thus P (T ) (C)
decrease to zero. Maximal growth rates of H and M (gHmax and gMmax), H's a�nity for Resource 1/KHR ,
and M's a�nity for Byproduct 1/KMB rapidly improve to their respective upper bounds, while M's a�nity
for Resource 1/KMR improves more slowly. This is consistent with M's growth being more limited by
Byproduct. P (T ) is averaged across the two randomly selected Adult communities. gMmax, gHmax, and fP
are obtained by averaging within each randomly-selected Adult community and then averaging across the
two randomly-selected Adult communities. KSpeciesMetabolite are averaged within each randomly-selected
Adult community, then across the two randomly-selected Adults, and �nally inverted to represent average
a�nity. Green dashed lines: upper bounds of phenotypes; Magenta dashed lines: fP optimal for community
function and maximal P (T ) when all �ve growth parameters are �xed at their upper bounds and φM (0) is
also optimal for P (T ). Note di�erent x axis scales. Black, cyan, and gray curves show three independent
simulations.

Figure 16: Figure 5-Figure Supplement 2. Improving maximal growth rate of Helper gHmax does
not necessarily improve community function. We have chosen the ancestral (blue dashed line) and
the evolutionary upper bound (green dashed line) of gHmax such that improving gHmax improves community
function. Suppose we have chosen ancestral gHmax at the grey dotted line, then higher gHmax would lower
community function. The black curve is obtained by numerically integrating Eqs. 6-10 at di�erent gHmax
values where fP is set to 0.4 and all growth parameters except for gHmax are set to their respective upper
bounds. N(0) is 100, and φM (0) is 0.7 (close to steady-state value).
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Figure 17: Figure 5-Figure Supplement 3. Improving maximal growth rates and nutrient af-
�nities generally, but do not always, improve individual �tness and community function. In
all �gures, solid and dashed lines respectively represent dynamics when fP = 0.41 (optimal for community
function if all growth parameters are �xed at their upper bounds; Figure 6A) and fP = 0.13 (optimal for
M monoculture production when Byproduct is in excess; Figure 6B). (A-D) Community function increases
as gMmax, 1/KMB , gHmax or 1/KHR increases when other growth parameters are �xed at their upper
bounds. For example, In (A), all growth parameters except for gMmax are at their upper bounds, and for
each combination of gMmax and fP , the steady-state φM,SS is calculated using equations in Methods Section
1. This steady-state φM,SS is then used to calculate P (T ). (F-I) respectively show that mutant individuals
with gMmax, 1/KMB , gHmax or 1/KHR 10% lower than the upper bound have lower �tness. For example in
(F), a Newborn community has 70 M and 30 H. 90% of M have upper bound gMmax = 0.7 (�upper bound�).
10% of M have gMmax = 0.63, 10% less than the upper bound (�mutant�). Other growth parameters are
all at upper bounds. The ratio between mutant and upper bound drops over maturation time, indicating
that M cells with mutant (lower) maximal growth rate have lower �tness. (E, J) When fP = 0.13 (black
dashed line) but not when fP = 0.41 (magenta line), increasing M's a�nity for Resource (1/KMR) slightly
decreases both P (T ) and individual �tness.

Figure 18: Figure 5-Figure Supplement 4. At low fP , higher 1/KMR can lead to reduced M

growth rate. (A) The ratio between MLow with low a�nity for R (K−1
MR = 2.5R̃(0)−1) and MHigh with

high a�nity for R (K−1
MR = 3R̃(0)−1) when their fP is equal to 0.1 (solid line), 0.2 (dotted line) and 0.3

(dashed line) are plotted over one maturation cycle. (B) P (T ) improves over increasing a�nity K−1
MR when

fP is 0.1 (solid line), 0.2 (dotted line) and 0.3 (dashed line). The dependence of P (T ) on K−1
MR is rather

weak for low fP . For example, when K−1
MR increases from R̃(0)−1 to 3R̃(0)−1, P (T ) increases only by 2%

and 0.6% for fP = 0.2 and fP = 0.1, respectively.
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Figure 19: Figure 6-Figure Supplement 1. Local optimality of community function P ∗(T ). We
start each Newborn community with total biomass N(0)=100, all �ve growth parameters at their upper
bounds, and f∗P = 0.41 and φ∗M (0) = 0.54 to achieve P ∗(T ). We then allow all �ve growth parameters and
fP to mutate while applying community selection. To ensure e�ective community selection (see the last
section of Results), during community reproduction, we �x N(0) to 100, and assign φM (0) to φM (T ) of
the previous cycle. We �nd that all �ve growth parameters remain at their respective evolutionary upper
bounds. At the end of the �rst cycle (Cycle=1 in insets), even though fP has not changed, P (T ) has already
declined from the magenta dashed line. This is because φM (0) has changed via ecological interactions to
0.73, close to the steady state φM instead of the optimal φ∗M (0) of 0.54. Later, over hundreds of cycles, fP
gradually increases, which increases P (T ) . However, P (T ) is still below maximal. This is because species
composition gravitates toward steady state φM,SS which deviates from what is required for P ∗(T ). See the
accompanying article for further discussions. ḡMmax, ḡHmax, and fP are obtained by averaging within each
selected Adult community and then averaging across the two selected Adults. KSpeciesMetabolite are similarly
averaged, and then inverted to represent average a�nity. Green dashed lines: upper bounds of phenotypes;
Magenta dashed lines: f∗P and P ∗(T ) when all �ve growth parameters are �xed at their upper bounds and
φM (0) = φ∗M (0).

Figure 20: Figure 6-Figure Supplement 2. Selection dynamics of M mono-species groups. Phe-
notypes averaged over selected groups are plotted. Because Byproduct is in excess, KMB terms are no longer
relevant in equations (Figure 10, RM � BM ). upper bounds of gMmax and 1/KMR are marked with green
dashed lines. Magenta lines mark maximal fP and P (T ) when gMmax and 1/KMR are �xed at their upper
bounds and when Byproduct is in excess.
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Figure 21: . Figure 7-Figure supplement 1. Selection dynamics of communities of mono-adapted
H and M when allowing all parameters to vary. gMmax, gHmax, 1/KMB and 1/KHR remain mostly
constant during community selection because mutants with lower-than-maximal values are weeded out by
natural selection as well as community selection. However, 1/KMR decreases slightly because at low fP , M
with a lower a�nity for R (lower1/KMR) slight improves individual �tness while slightly decreasing com-
munity function (Figure 18). ḡMmax, ḡHmax, and fP are obtained by averaging within each selected Adult
community and then averaging across the two selected Adults. KSpeciesMetabolite are similarly averaged, and
then inverted to represent average a�nity. P (T ) are averaged across the two selected Adults. Black, cyan
and gray curves are three independent simulations. Green dashed lines indicate upper bounds for growth
parameters. Magenta dashed lines: fP optimal for community function and optimal P (T ) when all �ve
growth parameters are �xed at their upper bounds and φM (0) is also optimal for P (T ).
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Figure 22: Figure 7-Figure Supplement 2. Fixing H and M cell numbers (instead of biomass) du-
ring community reproduction allows short-T selection regimen to improve community function.
For left panels, the total cell number is �xed to bN0/1.5c. For center panels, the ratio between M and H
cell numbers are �xed to IM (T )/IH(T ), where IM (T ) and IH(T ) are the number of M and H cells in the
selected Adult community, respectively. For right panels, the total cell numbers are �xed to bN0/1.5c and
the ratio between M and H cell numbers are �xed to IM (T )/IH(T ). See Methods Section 5 for details of
simulating community reproduction. fP is averaged across members of each selected community, and sub-
sequently averaged across the two selected communities. Community function P (T ) is averaged across the
two selected communities. Black, cyan and gray curves are three independent simulations.
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Figure 23: Figure 7-Figure Supplement 3. Evolution dynamics of selected Adult communities
at a low mutation rate of 2 × 10−5 per cell per generation. (A, B) At short maturation time
(T = 17, Resource is not exhausted in an average community), �xing both N(0) and φM (0) is required for
community function to improve. (C, D) At long maturation time (T = 20, Resource is exhausted in an
average community), community function improves without needing to �x N(0) or φM (0). When both are
�xed, community function improves even faster. fP is averaged across members of each selected community,
and subsequently averaged across the two selected communities. Community function P (T ) is averaged
across the two selected communities. Black, cyan and gray curves are three independent simulations. At
this low mutation rate, because the population size of a community never exceeds 104, a mutation occurs on
average every 5 cycles, resulting in step-wise improvement in both fP (T ) and P (T ).
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Figure 24: Figure 7-Figure Supplement 4. Evolution dynamics of selected Adult communities
under a di�erent distribution of mutation e�ect. Here, the distribution of mutation e�ects is speci�ed
by Eq. 15 where s+ = s− = 0.02 are constants. fP is averaged across members of each selected community,
and subsequently averaged across the two selected communities. Community function P (T ) is averaged
across the two selected communities. Black, cyan and gray curves are three independent simulations.
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Figure 25: Figure 7-Figure Supplement 5. Evolution dynamics of selected Adult communities
when epistasis is considered. When we incorporate di�erent epistasis strengths (epistasis factor of 0.3
and 0.8), we obtain essentially the same conclusions as when epistasis is not considered (Figure 7). fP is
averaged across members of each selected community, and subsequently averaged across the two selected
communities. Community function P (T ) is averaged across the two selected communities. Black, cyan and
gray curves are three independent simulations.
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Figure 26: Figure 7-Figure Supplement 6. Evolution dynamics of selected Adult communities
when both fP and KMR are allowed to mutate. Green dashed lines indicate upper bounds for growth
parameters. Magenta dashed lines: fP optimal for community function and optimal P (T ) when all �ve
growth parameters are �xed at their upper bounds and φM (0) is also optimal for P (T ). fP is averaged across
members of each selected community, and subsequently averaged across the two selected communities. KMR

is similarly averaged, and then inverted to represent average a�nity. Community function P (T ) is averaged
across the two selected communities. Black, cyan and gray curves are three independent simulations.38
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Figure 27: Figure 8-Figure Supplement 1. Variations in community function can arise from
non-heritable variations in Newborn compositions. An average Newborn community (solid lines)
has a total biomass of 100 with 75% M. (A) A �lucky� Newborn community (dotted lines), by stochastic
�uctuations, has a total biomass of 130 with 75% M. Even though the two communities share identical
fP = 0.1, the Newborn with 130 total biomass has its M growing to a larger size (left), depleting more
Resource (middle), and making more Product (right) if T is short. (B) A �lucky� Newborn community (dotted
lines), by stochastic �uctuations, has 100 total biomass with 65% M. Even though the two communities share
identical fP = 0.1, the Newborn with lower φM (0) (dotted) has its M enjoying a shorter growth lag and
growing to a larger size (left), depleting more Resource (middle), and making more Product (right) if T is
short. In both cases, the di�erence between lucky (dotted) and average (solid) communities is diminished at
longer T (T = 20) compared to shorter T (T = 17, dash dot line).
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