bioRxiv preprint doi: https://doi.org/10.1101/264689; this version posted February 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

under aCC-BY-NC 4.0 International license.

Reducing compositional fluctuations facilitates artificial selection
of microbial community function

Li Xie* and Wenying Shou*

Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, USA

Abstract

Multi-species microbial communities often display functions - biochemical activities unattainable by member
species alone, such as fighting pathogens or degrading wastes. Artificially selecting high community function
is useful but rarely attempted. Here, we theoretically examine artificial selection of Helper-Manufacturer
communities. Helpers digest Waste and generate Byproduct essential to Manufacturers; Manufacturers divert
a fraction of their growth to make Product. Thus, community function - total Product accumulated as a
low-density “Newborn” community grows over “maturation time” T into an “Adult” community - is costly
to Manufacturers. Despite pre-optimizing Helper and Manufacturer monocultures, community function is
sub-optimal. To improve community function, we simulate community selection by allowing cells in Newborn
communities to grow and mutate, and select highest-functioning Adults to “reproduce” by diluting each into
multiple Newborns. We find that fluctuations in Newborn composition during community reproduction (e.g.
due to pipetting) can interfere with selection, and reducing fluctuations (e.g. via cell sorting) facilitates
selection.

Introduction

Multi-species microbial communities often display important functions - biochemical activities not achievable
by member species in isolation ' 2. For example, a six-species microbial community, but not any member
species alone, cleared relapsing Clostridium difficile infections in mice [1]. As another example, cellulose-
degrading communities often harbor non-cellulolytic aerobic bacteria which, by depleting oxygen, establish
a proper anaerobic environment for cellulolytic bacteria [2].

Community functions arise from interactions where an individual alters the physiology of another indi-
vidual. Thus, to improve community function, one could take a “bottom-up” approach by identifying and
modifying interactions [3, 4]. In reality, this is no trivial task given that even two species can engage in com-
plex interactions: each species can release tens or more compounds, many of which could influence partner
species in diverse fashions [5, 6, 7, 8]. Then, from this “haystack” of interactions, we will need to identify
those interactions that are critical for community function, and modify them by altering species genotypes
or abiotic environment.

*Author of correspondence

ICommunity function may be defined as biochemical activities not achievable to the same extent by summing activities of
member species monocultures. Our definition here is more restrictive.

2A community function is a community trait, but a community trait may or may not be a community function. For example,
total population size is a community trait and not a community function, since individual species also has a population size.
Here, we are interested in community function.
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Figure 1: Figure 1. Artificial selection can be more challenging for multi-species communities
than for individuals or groups of individuals. We consider artificial selection on a trait, where the
entity under selection is an individual (A), a mono-species group (B), or a multi-species community (C).
In each selection cycle, a population of “Newborn” entities (which can be individuals, mono-species groups,
or multi-species communities) grow for a fixed maturation time T to become “Adults”. Adults expressing
a higher level of the desired trait (darker entity shade) are artificially selected to have a higher chance of
reproduction. An individual reproduces by making copies of itself, while an Adult group or community
reproduces by randomly splitting into multiple Newborns. (A) Artificial selection on individuals. Unlike
natural selection which selects for fastest-growing cells, in artificial selection we select for traits which often
impose a fitness cost to individuals (e.g. over-expression of a recombinant protein). We artificially select for
individuals with desired trait and allow only these individuals to reproduce. Phenotypes are largely heritable
from one generation to the next due to the constancy of genotypes, so long as mutation and recombination
rates are not extraordinarily high. Artificial selection on individuals has successfully yielded improved green
fluorescent protein [9], enzymes with new properties [10], and antibody fragments with high antigen-binding
affinity [11]. (B) Artificial selection on mono-species groups. Group selection, and in a related sense, kin
selection [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], have been extensively examined to explain,
for example, the evolution of traits that lower individual fitness (e.g. sterile ants) but increase the success
of a group. In this diagram, cooperators pay a fitness cost (giving rise to two instead of three offspring)
to generate the product of interest (shade), while cheater mutants avoid paying the fitness cost (giving
rise to three offspring) and generate no product. The trait of interest is the total amount of product in
an Adult group. Artificial selection favors cooperator-dominated groups over cheater-dominated groups,
although within a group, cheaters grow faster than cooperators. If Newborn groups have a large population
size (top), then both variation and heredity are compromised: due to large size, all Newborn groups will
harbor similar fractions of cheaters, thereby diminishing inter-group variations. During maturation, cheater
frequency will increase, thereby diminishing heredity. In contrast, when Newborn groups are initiated at
a small size such as one individual (bottom), a Newborn group will comprise either a cooperator or a
cheater, thereby ensuring variation. Furthermore, even if cheater mutants were to arise during maturation,
some Newborn groups of the next cycle will by chance inherit a cooperator, thereby ensuring some level
of heredity. Thus, group selection can be effective when Newborn size is small [15, 27, 28]. (C) Artificial
selection on multi-species communities. Since maturation time 7' is defined by an experimentalist, Adulthood
may or may not correspond to a specific physiological state. Mechanisms that reduce heredity include: 1)
changes in genotype and species abundance within a cycle due to evolution and ecological interactions, and
2) random fluctuations in Newborn composition during community reproduction.
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31 Alternatively, one could take a “top-down” approach by artificially selecting for microbial communities
32 exhibiting high community function. In theory, artificial selection can be applied to any population of entities.
33 An entity can be, for example, an individual (Figure 1A), a mono-species group of individuals (Figure 1B),
s« or a multi-species community (Figure 1C) [29]. The boundary of a group or a community is artificially
35 imposed (e.g. in microtiter wells or fluidic droplets). Successful artificial selection requires that i) entities
ss display trait variations; ii) trait variations can be selected to result in differential fitness in terms of entity
37 survival and reproduction; and iii) entity trait is sufficiently heritable from one selection cycle to the next
ss [30]. In all three types of selections, variations in a trait can be introduced by mutations and recombinations
3o in individuals (different hatch patterns in Figure 1). Artificial selection also operates similarly among the
20 three types of selections. Heredity is generally high when selecting for individuals (Figure 1A legend). When
a1 selecting for groups 3 , if Newborn groups have a small population size, sufficient heredity can be achieved
2 to allow group selection to work (Figure 1B legend).

a3 During artificial community selection, we choose a sufficiently short maturating time 7" so that newly-
22 arising genotypes rarely reach high frequency within 7". This way, community function is mostly determined
«s by Newborn composition (the biomass of each genotype in each member species). We define community
s variation as the dissimilarity in composition among Newborn communities within a cycle, and community
sz heredity as the similarity of Newborn composition from one cycle to the next *. Community variation
ss and heredity are almost two opposite sides of a coin. Mutations, by creating phenotypic variations among
4o individuals, can increase community variation and reduce community heredity. Furthermore during com-
so munity reproduction, stochastic fluctuations in Newborn composition increases community variation and
s1 reduces heredity. During community maturation, genotype and species abundances can rapidly change due
52 to ecological interactions and evolution (e.g. “cheaters” out-competing “cooperators” in Figure 1). This furt-
53 her compromises heredity. Thus, artificial selection of community function may be hindered by insufficient
sa  heredity.

55 How effective is community selection in theory and in practice? So far, community selection has been
se attempted only a small number of times. In simulations, multi-species communities were selected based on
sz how community abiotic environment departed from or approached an arbitrary target [36]. Indeed, this
ss community trait responded to community selection, and in at least some cases, the selected community trait
so could not be realized by single species. However, the response quickly leveled off, and was generated even
oo without mutations. Thus, community selection likely acted on preexisting variations in community species
61 composition. In experiments, artificial selections have been performed on complex microbial communities
e2 to improve their abilities to degrade a pollutant or support plant growth [37, 38]. Strikingly, a community
63 trait may sometimes fail to improve despite selection, and may improve even without selection [37, 38§].

o4 Intriguing as these selection attempts might be, how they operated is unknown. First, is the trait under
es selection a community function or simply a trait of one member species? If the latter, then community
e selection is not even needed. Second, does selection act solely on species compositions or also on newly-
ez arising genotypes? This is an important distinction because if selection acts solely on species compositions,
es then without immigration of new species, community function will quickly level off [36]. On the other
eo hand, if selection acts on genotypes, then community function can potentially continue to improve as new
7o genotypes are generated. Third, does community selection run counter to natural selection? For example,
7 during pollutant remediation, microbes may pay a fitness cost to release a pollutant-degrading enzyme. In
7 this case, selecting high-degradation communities would favor high-degraders, while natural selection would
7z favor low-degraders. Alternatively, microbes may exploit pollutant as a nutrient for growth. In this case,
7« high-degraders are also fast growers, and are favored by both natural selection and community selection. In

3Group selection is often applied in a broader sense to spatially-structured populations to explain the evolution of cooperative
traits [31, 32]. In these cases, individuals form groups. Within each cycle, individuals grow based on their genotype (e.g.
cooperators or cheaters) and group environment (cooperator-dominated or cheater-dominated). At the end of each cycle,
individuals migrate among groups. However, if there are no births or deaths of groups, then selection acts on individuals
instead of on groups [33, 34, 35].

4For any microbial community in the absence of stochasticity (e.g. mutations, stochastic death events), its dynamics starting
at a given abiotic environment is determined by Newborn composition. Specifically, for a community with n species, for simplicity
let’s assume that each species has one quantitative phenotype. The community composition can then be specified by a set of
functions {S1(z1), S2(x2), ..., Sn(zn)} where S;(z;) describes the biomass distribution of the ith species over the quantitative
phenotype z;. A simple definition of the similarity between two microbial communities with compositions {S1(x1), S2(z2), ...,

Sn(zn)} and {S; (1), S3(x2), .., Si(zn)} can then be > w; [|S;(w;) — 7 (ws)| das, where {w;} is a set of weights.
i=1
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this case, community selection may not even be necessary.

In this article, we seek a theoretical understanding of how to rapidly improve community function when
natural selection tends to reduce it. In the accompanying article, we explore how selection dynamics is
shaped by community function landscape and constrained by steady state species composition, and contrast
different selection regimens. These theoretical insights are intended to guide future experiments.

Results

The Helper-Manufacturer community

We consider a community of two asexual microbial species that together convert Waste (such as cellulose) to
a useful Product P (such as a biofuel or an anti-cancer drug). Such communities have in fact been engineered
in the laboratory [39, 40, 41, 42]. In our community (Figure 2), Waste is supplied in excess. Helper H but
not Manufacturer M can grow by digesting Waste. As H grows, it releases Byproduct B, which serves as
the sole carbon source for Manufacturer M. Helper and Manufacturer also compete for a shared Resource
R (such as reduced nitrogen). Manufacturer invests fp fraction of its growth potential (fpgps) to make
Product P, and uses the rest (1 — fp)gas for its actual biomass growth. Community function P(T) is defined
as the total amount of Product P accumulated when a newly-assembled “Newborn” community matures
into an “Adult” community over maturation time 7' (Figure 4A). Thus, community function incurs a fitness
cost fp to M. Low-producing and non-producing mutants reduce community function and are more fit than
high-producers, a common problem when employing engineered microbes. In Methods Section 7, we explain
pathology associated with two alternative definitions of community function.

We use a stochastic, individual-based model to describe community dynamics (Methods Section 5). Each
cell continuously increases its biomass at the actual growth rate (g for H and (1 — fp)gas for M). Biomass
growth rate increases with concentration(s) of required nutrient(s) until maximal growth rate is achieved:
For H which requires Resource R and waste W, since waste W is in excess, we model growth rate as a
function of R using the Monod Equation (Figure 9A). For M which requires both Resource R and Byproduct
B, we adopt a dual-substrate model by Mankad and Bungay (Figure 9B) due to its experimental support
[43] (Figure 10). Cell biomass starts at 1, and once it grows to the division threshold of 2, the cell divides
into two equal halves, thus capturing experimental observations on E. coli growth [44]. Our model describes
the continuous dynamics of biomass increase (Figure 11), and tracks discrete cells which is important for
modeling events such as mutation and death. We model cell death as occurring stochastically to individuals
at a probability determined by death rate. Changes in quantities of metabolites (Resource R, Byproduct
B, and Product P) are due to release and/or consumption. Throughout the text, we use H and M to
respectively represent the biomass of Helper and Manufacturer, and Iy and I, to respectively represent the
integer cell number of Helper and Manufacturer. R, B, and P respectively represent the amount of Resource
(in unit of R(0), initial Resource in Newborn), Byproduct (in unit of 75, the amount of Byproduct released
per H biomass produced), and Product (in unit of ¥p, the amount of Product released at the cost of one
M biomass). “~" marks scaling factors, and rationales of scaling can be found in Methods Section 1. At a
given maturation time 7" and initial Resource, community function P(T") depends on Newborn composition,
which is in turn defined by initial total biomass N(0), the biomass fraction of Manufacturer ¢»s(0), and the
relative abundance of various H and M genotypes and phenotypes (see Methods Section 1).
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Figure 2: Figure 2. A Helper-Manufacturer community that converts Waste to Product. Helper
H digests Waste (present in excess) to grow its biomass, and produces Byproduct B. B is the sole carbon
source for Manufacturer M. M invests a fraction fp of its potential growth gp; to make Product P, while
channels the remaining 1 — fp to its own biomass growth. When fp = 0, M makes no Product and its
growth rate is gps; when fp = 1, M uses all its resources to make Product and does not grow. H and M
compete for a shared Resource R, and thus when R is depleted, cell growth stops. In this study, we assume
that the release of Byproduct and Product is coupled to biomass growth.

Species coexistence in Helper-Manufacturer community

To convert Waste to Product, H and M must coexist. Coexistence can be achieved if at least one species
derives a large fitness benefit (when compared to its basal fitness) from the other species [45]. In the Helper-
Manufacturer community, Manufacturer obligatorily depends on Helper, and thus coexistence is possible.
However, if fp is too high (e.g. near 1), then Manufacturer will always grow slower than Helper and therefore
go extinct (burgundy in the top panel of Figure 3A and in Figure 3B). At low fp, if Byproduct from Helper
allows Manufacturer to grow faster than Helper for part of a maturation cycle 7', then the two species can
coexist. Furthermore if species coexistence is achieved, then coexistence is stable in the sense that species
ratio will converge to a steady-state value (olive and green in the bottom panel of Figure 3A and in Figure
3B).
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Figure 3: Figure 3. Stable species coexistence at low fp. (A) Helper H and Manufacturer M fail
to coexist when fp is high (0.8; top). At low fp (0.1, bottom), if M can grow faster than H for part of
the maturation cycle T, then H and M can stably coexist: different initial species ratios will converge to a
steady state value (dotted line). (B) Phase portrait showing steady state ¢r,ss (light green and lavender)
as a function of fp. The dynamics trajectories in A are re-plotted in B. The initial state of a Newborn
community is marked with @, and each subsequent cross (+) along the arrow direction represents community
state at the end of a maturation cycle T. Parameters are from the last column of Table 1.

s Considerations for community selection

126 In this section, we discuss several important considerations for community selection. First, we choose H and
12z M phenotypes (Table 1) so that the two species can coexist for a range of fp (Figure 3). Our parameter
128 values are biologically feasible based on experimental measurements on microbes (details in Methods Section
129 2).

130 Second, the rate of mutations. Experimentally-measured rates of phenotype-altering mutations can vary
131 from 107% to 1072 per genome per generation depending on the phenotype of interest (e.g. a qualitative
132 phenotype such as survival under a stress, or a quantitative phenotype such as growth rate) and a variety
13 of other factors (Methods Section 4). Mutation rate can be further elevated by 100-fold in hyper-mutators
1a [46, 47, 48]. Here for any mutable phenotype, we assume a high, but biologically feasible, rate of 0.002
135 phenotype-altering mutations per cell per generation, in part to speed up computation. When we lower
e mutation rate 100-fold, all of our conclusions still hold (see Figure 23).

137 Third, the phenotype spectrum of mutations (Methods Section 4; Figure 4B). Among phenotype-altering
s mutations, we assume that 50% create null mutants (e.g. maximal growth rate gspecies maz = 0, metabolite
we  affinity 1/ KgpeciesMetabolite = 0, 0r fp = 0), as per experimental studies on GFP, virus, and yeast [49, 50, 51].
10 Among not-null mutations, the fraction of mutations that enhance a phenotype (“enhancing mutations”) ver-
11 sus those that diminish a phenotype (“diminishing mutations”) is highly variable depending on, for example,
> effective population size and the optimality of the starting phenotype (Methods Section 4). Reasoning that
13 a starting community is generally neither optimized nor thoroughly un-optimized, we model mutation effects
142 based on an S. cerevisiae study from the Dunham lab. This study quantified the fitness effects of a large
15 number of fitness-enhancing and fitness-diminishing mutants [52]. Our reanalysis of the Dunham lab data
1a6  shows that the distribution of mutation effect is largely conserved regardless of environmental conditions
17 (carbon-limitation, phosphate-limitation, or sulfate-limitation) or mutation types (single-copy gene deletion
s in haploid or diploid; extra gene copies on low-copy or high-copy plasmids in diploid) (Figure 13). In all
149 cases, the relative fitness changes caused by fitness-enhancing and fitness-diminishing mutations can be ap-
1o proximated by separate exponential distributions with different means (Figure 4B). We further assume that
151 the effects of sequential mutations are multiplicative, i.e. there is no epistasis. When we use a different
152 distribution of mutation effect or incorporate various strengths of epistasis based on previous experimental
153 and theoretical work (Methods Section 6; Figure 14), our conclusions still hold (see Figures 24 and 25).

154 Fourth, the total number of communities n;,;. When n;,; gets larger, more variations become available
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for selection, but experimental setup becomes more demanding. Here, we start with a modest number of
100 Newborn communities which experimentally can be screened in 96-well plates.

Fifth, Newborn composition such as total biomass N(0) and fraction of Manufacturer biomass ¢ (0). If
N(0) (and thus the total population size) is very large, then all communities will share similar evolutionary
dynamics of accumulating and being overtaken by fast-growing, non-producing Manufacturers. This makes
higher-level selection (group selection and community selection) ineffective [15, 28, 53] (Figure 1B, top). On
the other hand, if N(0) (and thus the total population size) is very small, then a member species could be
lost by chance. Moreover, to sample rare mutations, a very large number of communities would be required.
We have chosen Ny (the target biomass of a Newborn community) to be 100 (e.g. 100 cells of biomass 1).
As for species ratio, it will rapidly converge to the steady state (Figure 3) which may or may not be optimal
for community function (see the accompanying article).

Sixth, maturation time 7" and Resource supplied to Newborn, which together determine the number of
cell generations within a selection cycle. The number of generations should be sufficiently large to allow
new mutations to occur, but sufficiently short because otherwise, non-producers will eventually take over all
communities, reducing heredity as well as variations among communities. We choose maturation time 7" such
that the total biomass of even evolved communities comprising fastest-growing H and M would grow from the
initial ~100 biomass to at most 9.9 x 103 when fp = 0, and generally to ~ 7x 103 for fp normally encountered
during community selection. At the mutation rate of 2 x 1073 per cell per generation, a community growing
from ~ 102 to ~ 10* (~ 6 — 7 generations) samples a handful of mutations on average. We supply each
Newborn community with Resource so that a maximal total biomass of 10* can be supported. For an average
community, this choice ensures a good (T770%) usage of Resource, and the excess (30%) Resource prevents
stationary phase and its physiological complications (e.g. sporulation).

Finally, community reproduction. Here, we do not allow mixing (migration) among communities to
prevent non-producers from migrating to high-functioning communities. If we select a large percent of Adult
communities to reproduce, then community selection is too weak. If we select a small number of Adult
communities to reproduce, then variations among the next-generation Newborns could be limited. However,
since we use hyper-mutators, we are not as concerned about a shortage of variations. Thus, we choose the
top-functioning Adult community and reproduce it by randomly partitioning it into Newborns to achieve
an average biomass of Ny = 100. Since total biomass (or population size) generally increases by ~ 70 fold
during maturation but we need 100 n;,; Newborn communities, we use the top-functioning Adult community
to reproduce as many Newborns as possible, and then use the second top-functioning Adult community to
generate the remaining Newborns.

To summarize (Figure 4), we start with n,, of 100 Newborns. Each Newborn starts with N (0) of 100
biomass units, and H : M ratio converges to a steady state value (Figure 3). Each Newborn is supplied
with excess Waste W and enough Resource to grow to a total biomass of 10%. To avoid stationary phase, we
choose a maturation time 7" so that even the fastest-growing community on average would not deplete R by
the end of a selection cycle. Phenotype-altering mutations occur at a rate of 0.002 per cell per generation
for each mutable phenotype (Table 1). A mutation can create a null mutant (probability = 0.5), or enhance
a phenotype by an average of 5% (probability ~0.25), or diminish a phenotype by an average of 6.7%
(probability ~0.25). The effects of sequential mutations are multiplicative. At the end of a cycle, Adult
with the highest P(T) is selected and randomly partitioned into as many Newborns as possible, and these
Newborns on average have a target biomass of Ny = 100. When the top-functioning Adult is exhausted, the
second highest-functioning community is used until n.,; of 100 Newborns are generated for a new cycle. As
a control, we randomly choose Adult communities to reproduce in a similar fashion.

Improving individual growth sometimes improves community function

To simulate community selection, we allow mutations to change mutable phenotypes so that phenotypes range
between zero (null mutants) and respective biological upper bounds (Table 1). Mutable phenotypes include
M’s production parameter fp (ranging from 0 to 1), as well as H and M’s growth phenotypes (maximal growth
rates and affinities for nutrients). Species phenotypes and their upper bounds are biologically reasonable (see
Methods Section 2 for experimental justifications), and also allow evolved H and M to coexist for a range
of fp (Figure 3B). These mutable phenotypes have been shown to rapidly evolve (within tens to hundreds
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Figure 4: Figure 4. Selection on community function. (A) Definition of community function. (B) The
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simulations.
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Figure 5: Figure 5. Improved community function can be accompanied by improved individual
growth. Upon community selection, community function P(7T) increases (A). This increase is accompanied
by improved individual growth (improved maximal growth rates garmaz and grma. and affinities for meta-
bolites 1/K g, 1/Kyp and 1/Kggr) (C). However, fp increases very little (B). P(T) is averaged across
the two selected Adult communities. Garmaz, GHmaz, and 71; are obtained by averaging within each selected
Adult community and then averaging across the two selected Adults. Kgpeciesiretabolite are averaged within
each selected Adult community, then averaged across the two selected Adults, and finally inverted to repre-
sent average affinity. Green dashed lines: upper bounds of phenotypes; Magenta dashed lines: fp optimal
for community function, and maximal P(T) when all five growth parameters are fixed at their upper bounds
and ¢7(0) is also optimal for P(T). Black, cyan, and gray curves show three independent simulations.

of generations; [54, 55, 56, 57]). We hold death rates constant because they are much smaller than growth
rates and thus any changes are likely to be inconsequential. We hold consumption coefficients (cry, cru,
cpy) constant because the amounts of essential elements required to make biomass are unlikely to evolve
dramatically due to stoichiometric constraints, especially when these elements are not supplied in large excess
([58]).

In control simulations where random communities are selected for reproduction, community function
rapidly declines to zero in all replicates (Figure 15C). This is expected since in the absence of community
selection, natural selection favors fast-growing non-producers (fp = 0; Figure 15B). Consistent with natural
selection, maximal growth rates rapidly increase to their upper bounds, and nutrient affinities also improve
(Figure 15A).

When we apply community selection, community function P(7T') initially increases (Figure 5A). Concur-
rently, H and M’s maximal growth rates and nutrient affinities improve toward their respective upper bounds
(green dashed lines in Figure 5C). fp does not decline, but it fails to increase even though a higher fp would
have led to a higher community function (magenta dashed lines in Figure 5A and B).

These dynamics suggest that if fp is prevented from declining, then improving individual fitness may
improve community function. Of course, this is not always true. For example, if H evolves to always grow
faster than M, then H will out-compete M and community function will decline. Here, we want to fix all
growth parameters (maximal growth rates and nutrient affinities) at their evolutionary upper bounds, which
will allow us to simplify our model and visualize community function landscape (accompanying article). Thus,
we have deliberately chosen parameters such that improving H and M’s growth parameters will generally
improve community function (Methods Section 3; Figures 16 and 17). Consequently, mutations that reduce
growth parameters will be selected against by both natural selection and community selection. Even in the
one exceptional case where M’s lower affinity for R (lower 1/Kjsr) leads to improved M growth but lower
community function when fp is low (Figure 18), whether or not fixing the particular parameter (1/Kr ) at
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Figure 6: fp optimal for monoculture production may differ from fp optimal for community
production. (A) For a Newborn H-M community supplied with a fixed Resource and excess Waste, optimal
community function P(T) is achieved at an intermediate f} = 0.41 (magenta dashed line). Here the Newborn
community has 60 M and 40 H cells of biomass 1, which is also the starting point of our community selection
simulation. The growth parameters of M and H are all fixed at their upper bounds. (B) Consider a Newborn
group starting with a single Manufacturer with its garma. and 1/ Ky g fixed at their upper bounds. Besides
the same amount of Resource, we will need to supply Byproduct B. Experimentally, it will be difficult to
supply B in a manner that mimics the community environment. If we supply excess B, maximal group
function is achieved at an intermediate fp = 0.13 (grey dotted line).

its upper bound does not affect community selection dynamics (Figure 26). From here on, unless otherwise
stated, we fix all growth parameters at their upper bounds.

Maximal community function is achieved at an intermediate fp

Ideally, we would like to compute global maximal P(7T) to test whether it can be achieved via community
selection. However, given the nonlinear equations in our model (Methods Section 1), identifying global
maximal can be mathematically challenging ®. Instead, we heuristically search for a locally maximal P(T)
which may or may not be globally maximal but is experimentally accessible.

As discussed above, in our system we can fix all growth parameters at their upper bounds to improve
community function (Methods Section 3). In this simplified scenario, for Newborn size N(0) = 100, we
can identify fp and ¢p(0) combination (fj = 0.41 and ¢3,(0) = 0.54) that realizes maximal community
function P*(T) (Methods, Section 8). For any ¢,/(0), an intermediate fp value maximizes community
function (Figure 6A). This is not surprising: at zero fp, no Product is made; at high fp, Helper out-
competes Manufacturer. Importantly, the maximal P*(7T') identified above cannot be further improved if we
allow all growth and production parameters to mutate (Figure 19). Thus, this P*(T) is locally maximal.

fp optimal for monoculture function may not be optimal for com-
munity function
Experimentally, how might we achieve optimal P*(T') discussed above? We can pre-adapt H via natural

selection by growing H in a Resource-limited chemostat so that fastest growers dominate. If maximal growth
rate and Resource affinity are independent (i.e. no trade-offs), then both will approach their upper bounds.

5 Applied Mathematician Professor Hong Qian (University of Washington) states, “Without a closed-form solution, rigorously
proving global optimum is difficult and remains an open question. Pure mathematicians may go as far as telling you the existence
and uniqueness of such a solution. Applied mathematicians will forego rigor a little bit, and will come up with a "heuristic"
algorithm that is usually better than brute-force parameter scans. Consequently, they can almost be sure that there is a global
optimum (or not).”
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249 For M, natural selection will yield zero fp. Instead, we can attempt group selection to obtain high-
20 production M monocultures. Specifically, we start with n,; of 100 Newborn groups, each starting with one
a1 M cell to facilitate group selection (Figure 1B bottom panel, [27]). We supply Newborn groups with the
22 same amount of Resource as we supply Newborn communities. Since it is difficult to reproduce community
23 Byproduct dynamics in M monocultures, for simplicity, we supply excess Byproduct to Newborn groups.
2se  Consequently, M’s affinity for B (1/Kp/p) cannot be selected. When we select for high group function
a5 P(T), maximal growth rate garmae. and M’s affinity for Resource 1/Kpr both reach their evolutionary
256 upper bounds, and fp gradually increases to 0.13 (Figure 20), consistent with our calculations (Figure 6B).
257 As expected, fp optimal for group production occurs at an intermediate value (Figure 6B): at zero fp ,
2ss production is zero; at fp = 1, M cannot grow and may even die, and thus group function is low.

250 To experimentally improve M’s affinity for Byproduct, we can evolve ancestral M in Byproduct-limited
260 chemostat where we expect gnrmar and 1/Kpp to reach their upper bounds and fp to decline to zero.
261 We can then identify mutations that improve 1/Kj;p, and engineer them into the above group-selected M
262 (assuming that mutations exert independent effects). We thus obtain mono-optimized M where all growth
263 parameters are at upper bounds and fp is optimal for M group function.

264 fp optimal for group function is lower than that for community function (Figure 6) 6. Natural selection
2s  will reduce fp. Can we perform community selection to counter natural selection so that fp and community
266 function will increase?

- Community function fails to improve due to non-heritable variations

2es  Starting with Newborn communities of mono-optimized H and M, we simulate artificial community selection
260 (Figure 4; Methods Section 5). We keep all five growth parameters fixed at their upper bounds, and only allow
270 fp to mutate as communities mature. We select Adult communities with the highest functions, and reproduce
>nn them by partitioning them into Newborns with target total biomass Ny (Figure 4C). Experimentally, this is
a2 equivalent to calculating the fold-dilution by dividing N(7') (the turbidity of an Adult community) by target
a3 Ny (the target turbidity of a Newborn), and performing this dilution by pipetting a small volume of the
27 Adult community into fresh medium (Methods Section 5). In this selection regimen, total biomass N (0) and
25 fraction of M biomass ¢7(0) fluctuate stochastically 7. fp barely increases and remains far below optimum
are  (Figure TA), similar to what we have observed earlier (Figure 5). Consequently, community function P(T")
277 also remains far below optimum (Figure 7B).

278 To investigate the reason for this lack of improvement, we examine correlation between P(T') and Newborn
27e  composition (in terms of fp(0), total biomass N(0), and fraction of M biomass ¢(0)) during one round
280 of selection (Figure 8). P(T) should ideally depend on fp(0) whose variations are partially heritable since
21 Newborns sample subsets of fp in the Adult community. However, we observe little correlation between P(T")
22 and fp(0) (Figure 8A). For example, the Adult community displaying the highest function (left magenta
283 dot) has a below-median f,(0). Instead, we observe a strong correlation between P(T) and N(0), and
ase  between P(T) and ¢ps(0)(Figure 8B-C).

285 The reason for strong correlations between P(T) and N(0) and between P(T) and ¢7(0) becomes clear
286  when we examine community dynamics. To minimize stationary phase, we have chosen maturation time T’
287 50 that a typical community depletes the majority but not all of the Resource R. A community begins with
2ss  abundant Resource and no Byproduct, so H will grow first and release Byproduct. After Byproduct has
280 accumulated to a level comparable to M’s affinity for Byproduct, M will start to grow. When a community
200 starts with a higher-than-average N(0) (dotted lines in top panels of Figure 27), M will grow to a higher
201 biomass, deplete Resource more thoroughly, and make more Product. Similarly, if a community starts with
202 a lower-than-average ¢,/(0) (dotted lines in bottom panels of Figure 27), it will have a higher-than-average

6To see why this is true, we note that M grows faster in monoculture than in community, because Byproduct is in excess in
monoculture whereas in community, H-supplied Byproduct is initially limiting. Thus, fT gndt is larger in monoculture than
in community. According to Eq. 26 (Methods Section 7), fp* =1/ [;. gprdt is smaller for monoculture than for community.
"N(0) fluctuates with a standard deviation of /E(N(0)) = +/Ng. For ¢p(0) = M(0)/N(0) , Var(pp(0) =
(E(M(o)))2 [Var(M(o)) _ 2COV(M(O),N(D)) + Var(N(0)) ] _ <N0¢M(T)
E(N(0)) (E(M(0)))2 E(M(0)E(N(0)) " (E(N(0)))2 No
value and “Var” means variance, and ¢p(T) is the fraction of M biomass in the Adult community from which Newborns are
generated. For detailed derivation, see www.stat.cmu.edu/~ hseltman /files/ratio.pdf. Thus, ¢ps(0) fluctuates with a standard

deviation of ¢ (T)+/1/ (Nodar (T)) + 1/No.

2
) [NWL(T) + NLO] where “E” means the expected
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Figure 7: . Figure 7. Evolutionary dynamics of community selection depends on how we

reproduce Adult communities. (A-H) Communities of mono-adapted H and M are selected for high P(T')
at short T (T=17, where on average the majority, but not all, Resource is consumed by the end of T to
avoid stationary phase). (A, B) N(0) and ¢,/(0) are allowed to fluctuate around target total biomass of
No = 100 and ¢ (T) of the previous cycle, which is experimentally similar to diluting a volume of Adult
community to fresh medium. (G, H) N(0) and ¢7(0) are fixed to Ny = 100 and ¢ps(T) of the previous cycle,
which is experimentally similar to sorting a fixed H and M biomass from selected Adults to Newborns. This
allows community function to improve. (C-F) Fixing either N(0) or ¢5s(0) does not significantly improve
community selection. (I-L) Communities of mono-adapted H and M are selected for high P(T) at target
No = 100 and longer T' = 20 (I-J), or at a larger target Ny = 160 and short T'= 17 (K-L). In both cases, on
average Resource is depleted by the end of 7. Thus, “unlucky” communities with lower N(0) and/or higher
¢n(0) will have a chance to catch up. Consequently, fluctuations in N(0) and ¢,(0) do not significantly
affect P(T), and community function improves under selection even without fixing N(0) and ¢7(0). fp(T)
are obtained by averaging within each selected Adult community and then averaging across the two selected
Adults. P(T) are averaged across the two selected Adults. Magenta dashed lines: f} optimal for P(T) and
maximal P*(T) when all five growth parameters are fixed at their upper bounds and ¢,(0) is at ¢3,(0).
Black, cyan and gray curves are three independent simulations.
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Figure 8: Figure 8. Community function strongly correlates with Newborn total biomass and
fraction of Manufacturer biomass. (A-C) Nonheritable Poissonian fluctuations in N(0) and ¢as(0)
during community reproduction cause large variations in community function P(7T'). In contrast, community
function only weakly correlates with f,(0), whose variations are partially heritable. Consequently, selected
communities (magenta dots) may not have the highest f,(0). (D) When both N(0) and ¢ (0) are fixed,
P(T) strongly correlates with fp(0). Each dot represents one community.
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fraction of Helper. Consequently, M will endure a shorter growth lag, grow to a higher biomass, deplete
Resource more thoroughly, and make more Product. Thus, random fluctuations in Newborn biomass N (0)
and species composition ¢ys(0) during community reproduction can lead to large non-heritable variations in
community function such that communities with the highest average fp may not get selected (Figure 8A).

Reducing non-heritable variations enables community function to
improve

Random fluctuations in Newborn biomass N(0) and species composition ¢y, (0) create non-heritable variati-
ons in community function (Figure 8). Reducing non-heritable variations should enable community selection
to work. Indeed, if we fix both N(0) and ¢/(0) (Methods, Section 5), equivalent to experimentally flow-
sorting a fixed biomass of H and M (based on for example cell fluorescence intensity) into each Newborn,
then community function becomes strongly correlated with f,(0) (Figure 8D). Furthermore, both fp and
P(T) improve (Figure 7, G and H). In this particular case, fp overshoots fp* and consequently, maximal
P(T) is not achieved (see accompanying article for an explanation). Community function improvement is
not seen if either N(0) or ¢5,(0) is non-fixed (Figure 7, C-F). Community function also improves (Figure 22)
if we distribute fixed H and M cell numbers (instead of biomass) into each Newborn community (Methods,
Section 5), which can be realized experimentally by flow sorting.

Alternatively, we can reduce non-heritable variations in P(T') by extending maturation time 7" or incre-
asing N(0) so that an average community will deplete Resource by T'. In this selection regimen, Newborn
communities will still experience Poissonian fluctuations in N (0) and ¢5/(0) during community reproduction.
However, those “unlucky” communities with smaller-than-average N(0) and/or larger-than-average ¢as(0)
will have time to “catch up” as the “lucky” communities wait in stationary phase after exhausting Resource.
Indeed, community function improves without having to fix N(0) or ¢;(0) (Figure 7, I-L). In practice,
these selection regimens will only be effective if variations in stationary phase duration introduce minimal
non-heritable variations in community function.

In summary, community function improves under selection if we suppress non-heritable variations in
community function. This conclusion holds when we lower the mutation rate by 100-fold (Figure 23), or use
a different distribution of mutation effect (Figure 24). We have also tested the effect of epistasis (Methods,
Section 6) where the effect of a mutation on fp depends on the current fp (Figure 14): If current fp is high
(e.g. 0.40) compared to the starting fp (0.13, Figure 6B), then an enhancing mutation exerts a lesser effect
and a diminishing mutation exerts a larger effect compared to when there is no epistasis. Conversely, if
current fp is low (e.g. fp = 0.04), then the opposite is true. Under different epistasis strengths, community
function improvement can be sped up by reducing non-heritable variations in P(T) (Figure 25).

Discussion

How might we improve functions of multi-species microbial communities? We can enrich for the appropriate
species combination. For example, using cellulose as a main carbon source enriches for communities of
microbes that work together to degrade cellulose [2]. However, if we solely rely on species combinations to
improve community function, then without a constant influx of new species, community function will likely
stop improving [36].

Here, we consider artificial selection of communities with defined member species. The conventional
wisdom may suggest “you get what you select for”. But is this true? We have studied a Helper-Manufacturer
community where community function is costly to Manufacturer. For community selection to be effective, we
need to ensure that member species can stably coexist (Figure 3). Improving individual fitness can sometimes
improve community function (Figures 5 and 17), although this often may not be true (Figure 16). Despite
pre-optimizing member species in monocultures, community function may still be sub-maximal (Figure 6)
due to the difficulty in recapitulating community dynamics in monocultures. Further improvements in
community function can be achieved via artificial community selection, if performed properly.

Many aspects need to be taken into consideration when performing artificial community selection. It
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is universally true that suppressing non-heritable variations in a trait will increase its selection efficacy.
However, we show here that for community selection, large non-heritable variations in community function
can readily arise via routine experimental procedures such as pipetting. For example, to avoid stationary
phase, if we choose maturation time 7' such that Resource is in excess, then pipetting a volume of Adult
community to seed a Newborn community can already introduce large, non-heritable variations in com-
munity function (Figure 8B-C). These non-heritable variations in turn partially mask heritable variations
in community function caused by mutations in fp (Figure 8A). Consequently, community function P(T)
remains stagnant (Figure 7TA-B). In contrast, if we fix both N(0) and ¢,,(0) (via cell sorting for example),
then community function improves (Figure 7G-H). Similarly, if we extend maturation time T or increase
N(0) so that Resource will on average be depleted by the end of T', then community function also improves
(Figure 7I-L). However, increasing T' or N (0) creates variations in how much time each community spends in
stationary phase, which in turn might generate non-heritable variations in community function. By the same
reasoning, if Resource is in excess, then reproducing an Adult community via fixed-fold dilution (instead of
diluting to a fixed total biomass or total cell number) will select for Newborn communities of larger and
larger size instead of Newborn communities with higher and higher fp (Methods, Section 9).

How does artificial selection on multi-species communities compare with artificial selection on mono-
species groups? In both cases, Newborn size must not be too large and maturation time must not be too
long, because otherwise, all entities will accumulate non-producers in a similar fashion. This undermines
variation among entities as well as heredity of the entity trait. Community selection and group selection differ
in at least two aspects. First, inter-species interactions in a community could drive species composition to a
value sub-optimal for community function (accompanying article), and this problem does not exist for group-
level selection ®. Second, in group selection, when a Newborn group starts with a small number of individuals,
a fraction of Newborn groups will show high similarity to the Newborn of the previous cycle (Figure 1B,
bottom panel). This heredity facilitates group selection. In contrast, when a Newborn community starts
with a small number of total individuals, stochastic fluctuations in Newborn community composition can be
large and can interfere with community selection (Figure 7). In the extreme case, a member species can even
get lost by chance. Even if a fixed number of cells from each species are sorted into Newborns, each Newborn
will randomly sample a subset of genotypes in each member species. This reduces heredity and can interfere
with selection °. If many communities are under selection, then rare communities can by chance sample a
beneficial genotype from multiple species, and these beneficial genotypes rapidly rise to high frequency due
to small N(0). In this case, reduced heredity actually speeds up community function improvement. This
bears resemblance to how sexual recombination affects evolutionary dynamics: sexual recombination reduces
heredity, but when population size is large so that beneficial mutation supply is large, sexual recombination
speeds up adaptation [60, 61, 62].

Microbes can coevolve with each other and with their host in nature [63, 64, 65]. This coevolution is
mainly driven by natural selection. Might microbial community as a whole become a unit of selection in
nature? Our work suggests that if selection for a costly microbial community function should occur in nature,
then mechanisms for suppressing non-heritable variations in community function should be in place.

Methods

1 A mathematical model of the H-M community

Starting from initial conditions, the dynamics of a community comprising homogeneous H and M populations
can be described by the following equations. Definitions and values of all parameters as well as definitions
of scaling factors (marked by “7”) are in Table 1. Definitions of variables in our model and simulations are

8Mere, we assume that individuals in a group do not differentiate into interacting subgroups (i.e. not like cyanobacteria
where some cells are photosynthetic while other cells fix nitrogen [59]).

9n group selection, suppose that a Newborn group starts with a single cooperator and that the highest-functioning Adult
group has accumulated 80% cheaters. Then in the next cycle, 20% groups will be initiated with a single cooperator like the
previous Newborn group. In community selection, suppose that a Newborn community starts with a single cooperator from each
of the two species and that in the highest-functioning Adult community, each species has accumulated 80% cheaters. Then, in
the next cycle, only 20%x20%= 4% communities will be initiated with pure cooperators like the previous Newborn community.
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in Table 2. Variables and parameters without hats will not be scaled further. After scaling (see below for
an explanation), scaling factors will become 1 and variables and parameters with hats will lose their hats.
First, M and H, the biomass of M and H, change as a function of growth and death,

dM PN
WZQM(R’ B) (1—fp)M—§MM (].)
dH -
dat =gu(R)H — 6y H (2)
In these equations, according to Fig 9
. R

gH(R) = 09Hmaz =~ 7~
R+ Kgr

is the Monod growth dynamics and g (R, B) takes the form of the Mankad-Bungay model [43]:

. RuB 1 1
gM(Ra B) = dMmaz = M ]Y[ ( = + = )
Ry + By \Ryy+1 By +1

where R[W = R/KMR and BM = B/KMB

Second, Resource R is consumed proportionally to the growth of M and H; Byproduct B is released pro-
portionally to H growth and consumed proportionally to M growth; and Product P is released proportionally
to the fp fraction of M’s growth diverted to make P.

R o ) )
i —C¢rmygm(R, B)YM — ¢rugu(R)H (3)
dB  _ R R .
e g (R)H — ¢gnmgm (R, B)M (4)
dp L
- =Prlpgu (R B)M (5)

Our model assumes that a fixed amount of Byproduct or Product is generated per biomass produced,
which is a reasonable assumption given the stoichiometry of metabolic fluxes and has been experimentally
observed [66]. Products such as secondary metabolites may be released during stationary phase, and future
work will test whether variations in this assumption will change our conclusions. The initial conditions are
described by total biomass N(0) = M (0) + H(0), the fraction of M biomass ¢ (0) = M(0)/N(0), and the
total amount of Resource supplied at the beginning of a selection cycle E(O) The volume of a community
V is set to be 1, and thus cell or metabolite quantities (which are considered here) are numerically identical
to cell or metabolite concentrations. B

We scale Resource-related variable (R) and parameters (K r, Kiyr, éry, and égp) against R(0) (Re-
source supplied to Newborn), Byproduct-related variable (B) and parameters (K M and égp) against Tp
(amount of Byproduct released per H biomass born), and Product-related variable (P) against 7p (amount
of Product made at the cost of one M biomass). For biologists who usually think of quantities with units,
the purpose of scaling (and getting rid of units) is to reduce the number of parameters. For example, H

biomass growth rate can be scaled against initial Resource R(0):

. R
gu(R) = gomaa Rt B
B R R Kur
— (é@) / (é(o) ! é(o>)
R
= JHmax (R n KHR)
= gu(R)
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where R = R/R(0) and Kpypg = Kir/R(0). Thus, the unscaled gH(}%) and the scaled gp (R) share identical
forms. The value of R(0) becomes irrelevant since all R-related terms are relative to R(0) and the initial

Resource has the value of 1 with no units. Similarly, since RM = % / I}%%I; = KMR = R and BM =
% KFJ‘gB = KMB = Bur, gu(R, B) = gn(R, B). As another example, after scaling P against 7p , we have

dP  dP

dt  rpdt (6)
= frgm(R, B)M
and thus parameter 7p is no longer necessary. Other scaled equations are:
dR _ dR/R(0) -
dt — dt
CRM - CRH ~
=—= , B)M — = R)H
R(O)gM( ) R(O)gH( )
= —crmgm (R, B)M — crugu(R)H
dB _ dB/rp
G d ®
. ¢ A
= gn(R)H = = gu (R, B)M
= gH(R)H - CBMgM(R7 B)M
dM
WZQM(Ra B)(1—fp)M — 5y M (9)
dH

We have not scaled time here, although time can also be scaled by, for example, the community maturation
time. Here, time has the unit of unit time (e.g. hr), and to avoid repetition, we often drop the time unit.

2 Parameter choices

H can grow on Resource alone. For ancestral H, we set ggmaz = 0.25, Kyr = 1 (i.e. Kgg is one unit of
E(O) ) and cry = 107%. This way, ancestral H can grow by about 10-fold by the end of T = 17. These
parameters are biologically realistic: time unit can be arbitrarily chosen, and if we choose hour as the unit,
then grmaqe translates to a doubhng time of 2.8 hrs. Furthermore, for a lys- S. cerevisiae strain with lysine as
Resource, Monod constant is K = 1 M, and consumption ¢ is 2 fmole/ cell (Ref. [67], Figure 2 Source Data
1). Thus, if we choose 20 pL as volume V and 1 1M as initial Resource concentration, then R(0) =2 x 10*
fmole. After scaling, K = KV/R(0) = 1 and ¢ = ¢/R(0) = 10~4,
To ensure the coexistence of H and M, M must grow faster than H for part of the maturation cycle. Thus,
1) gMmae must exceed grmar (Figure 3) since we have assumed M and H to have the same affinity for R
(Table 1); ii) M’s affinity for Byproduct (1/Kjsp) must be sufficiently large; and iii) Byproduct consumed
per Manufacturer cgps must be sufficiently small so that growth of M can be supported by H. Thus for
ancestral M, we choose garmaez = 0.58 (equivalent to a doubling time of 1.2 hrs). We set épps = 1 units

3

of rg (i.e. cpy = %) This means that Byproduct released during one H biomass growth is sufficient to

generate 3 M biomass, which is biologically achievable (|68, 69]). When we choose K5 = 2 % 107 units of
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’ \ Definition \ Ancestral \ Mono-adapted ‘
B amount of released B released per H biomass born scaling factor no change
rp amount of released P at the cost of one M biomass scaling factor no change

R(0) initial amount of Resource in Newborn scaling factor
fp fraction of M growth diverted to producing P 0.03 0.13
Kyr | fold of R(0) at which garmaz/2 is achieved in excess B 1 1/3%
amount of B at which gprmas/2 18
Kus achieved in excess R, scali?f agai/nst TR % x 107 % x 107
Kur fold of R(0) at which gpmax/2 is achieved 1 1/5%
IMmaz maximal biomass growth rate of M 0.58 /unit time 0.7*
JHmaz maximal biomass growth rate of H 0.25/unit time 0.3*
oM death rate of M 3.5 x 1073 /unit time no change
SH death rate of H 1.5 x 1073 /unit time no change
CRM fraction of R(0) consumed per M biomass born 1074 no change
CRH fraction of R(0) consumed per H biomass born 10~4 no change
. a.umount of B consumed o 1 no change
per M biomass born, scaled against 75 3
mutation probability per cell ~
Prnut division for ezfch mutabbllepphenotype 2x 1077 2x 107

Table 1: Parameters for ancestral and mono-adapted H and M. For maximal growth rates, * represents
evolutionary upper bound. For Kgpeciesietabolite, * represents evolutionary lower bound, which corresponds
to evolutionary upper bound for Species’s affinity for Metabolite (1/K gpeciesmetabolite)- In the text, we
explain why we hold the remaining parameters constant during evolution.

’ Symbols \ Definition
M(t), H(t) The biomass of M or H in a community at time ¢
N(t)=M(t)+ H(t) The total biomass in a community at time ¢
o (t) The fraction of M biomass at time ¢
Ny Pre-set target total biomass of Newborns during community reproduction
Ing(t), I (t) The integer number of M or H cells in a community at time ¢
o (t) The fraction of M individuals at time ¢
Ly (t), Ly (t) The biomass (length) of an individual M or H cell at time ¢, ranged between 1 and 2
P(t) The amount of Product P in a community at time ¢, scaled by rp
R(t) The amount of Resource R in a community at time ¢, scaled by R(0)
B(t) The amount of Byproduct B in a community at time ¢, scaled by 7
np The integer fold of dilution when reproducing an Adult Community
Niot Total number of communities under selection
T Community maturation time, corresponding to the duration of a selection cycle

Table 2: A summary of variables used in the simulation.
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7p (ie. Kyp = 2 x 10%), H and M can coexist for a range of fp (Figure 3). This value is realistic. For
example, an evolved hypoxanthine-requiring S. cerevisiae strain achieved a Monod constant for hypoxanthine
at 0.1 pM and a doubling time of 7y = 7 hours when co-cultured with a hypoxanthine-overproducing strain
(bioRxiv). If V = 20 puL in our experiment, then KMB/?B = % x 102 corresponds to an absolute release
rate 75 = 0.1 puM x 20uL/(3 x 10?) = 12 fmole per cell biomass born = 12 fmole/(1 cellx7 hr)~ 1.7
fmole/cell /hr, which is of the same order of magnitude as that for a lysine-overproducing yeast strain (up
to 0.8 fmole/cell /hr, bioRxiv) and a leucine-overproducing strain (4.2 fmole/cell/hr [69]). Death rates dp
and §j; are chosen to be 0.5% of the upper bound of maximal growth rate, which is within the ballpark of
experimental observations (e.g. the death rate of a lys- strain in lysine-limited chemostat is 0.4% of maximal
growth rate, bioRxiv).

Since the biomass of various microbes share similar compositions of elements such as carbon or nitrogen
[58], we assume that H and M consume the same amount of R per new cell (cry = cgar). Since cry =
cry = 107* after scaling against R(0), the maximum yield is 10* biomass.

Growth parameters (maximal growth rates garmaz and gpma. and affinities for nutrients 1/ Ky g, 1/ K5,
and 1/Kpgpr ) and production parameter (fp € [0, 1]) are allowed to change during evolution, since these
phenotypes have been observed to rapidly evolve within tens to hundreds of generations ([54, 55, 56, 57]).
For example, several-fold improvement in nutrient affinity [55] and ~20% increase in maximal growth rate
[57] have been observed in experimental evolution. Thus we allow affinities 1/Ky g, 1/Kpr, and 1/ Ky p
to increase by 3-fold, 5-fold, and 5-fold respectively, and allow ggmez and garmaz to increase by ~20%.
These bounds also ensure that evolved H and M can coexist for f, < 0.5 (Figure 3B), and that Resource
is on average not depleted by T to avoid cells entering stationary phase. Although maximal growth rate
and nutrient affinity can sometimes show trade-off (e.g. [55]), for simplicity we assume here that they are
independent of each other. We hold metabolite consumption (cgar, ¢ga, cry ) constant because conversion
of essential elements such as carbon and nitrogen into biomass is unlikely to evolve quickly and dramatically,
especially when these elements are not in large excess ([58]). Similarly, we hold the scaling factors ¥p and
rp constant, assuming that they do not change rapidly during evolution due to stoichiometric constraints of
biochemical reactions. We hold death rates (07, dr) constant because they are much smaller than growth
rates in general and thus any changes are likely inconsequential.

3 Choosing growth parameters to simplify evolutionary modeling

Besides considerations in Section 1, we want to choose growth parameters so that improved cell growth
(maximal growth rates and affinity for metabolites) improves community function. This way, we can assemble
Newborn communities using mono-adapted H and M where all growth parameters are fixed at their respective
evolutionary upper- bounds (which can be achieved via natural selection), while only allowing fp to evolve.
This simplifies our problem. As we will see in the accompanying article, this also enables us to visualize the
community function landscape. It is important to note that improving individual growth does not always
lead to improved community function (Figure 16).

We have chosen such a set of growth parameters and their evolutionary upper bounds. Let’s first consider
the case where fp = 0.41, which corresponds to optimal community function (magenta dashed lines in Figure
5 and Figure 6A). If we fix four of the five growth parameters to their upper bounds, then as the remaining
growth parameter improves, both individual fitness and community function increase (magenta lines in
Figure 17). Thus, if community function is already optimized, then deviations from growth parameter upper
bounds are disfavored by both community selection and natural selection, and hence growth parameters are
naturally fixed.

Now let’s consider the case where fp = 0.13, which is optimal for M-monoculture function (grey dotted
line in Figure 6B) and thus our starting point for community selection. Community function and individual
fitness generally increase as growth parameters improve (black dashed line in Figure 17 A-D and F-I). Howe-
ver, at lower fp (e.g. 0.13 corresponding to black dashed line in Figure 17 J and 0.1 corresponding to black
solid line in Figure 18 A), individual fitness declines slightly when M’s affinity for Resource (1/Kjsg) impro-
ves. This is equivalent to decreased affinity for the abundant nutrient improving growth rate. Transporter
competition for membrane space [70] could lead to this result, since reduced affinity for abundant nutrient
may increase affinity for rare nutrient.
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aro Mathematically speaking, this is a consequence of the Mankad-Bungay model [43] (Figure 10 B). Let
480 Sl = Sl/Kl and Sg = SQ/KQ. Then,

dg Oy 951 0 [gm‘”’ Sffgz <01+15’1 + 1+18°2H 951

0K 675.“18K1 - 05, 0K

_ 1S5 S8 ( Lo, 1 >
e (Sl +50'2)K1 (1+§1)2 S +S \1+8, 1+5,
481 If 5’1 <1l 5'2 (corresponding to limiting Sy and abundant Ss),
§1_§2(1+1>N§1_1__1
(14+51)2 S1+8 \1+8 148, (1+51)2 1+ (14 51)2
a2 and thus dg/0K; < 0. This is the familiar case where growth rate increases as the Monod constant decreases
a3 (i.e. affinity increases). However, if Sy < 1 <« S

§1_§2<1+1)%1_§21_ 1 12)
(1452 S48 \1+8 1+5; Sy S1148  Si(1+5)

asa and thus dg/0K; > 0. In this case, the growth rate decrease as the Monod constant decreases (i.e. affinity
sss  increases).

86 In the case of M, let S; represent R and let Sy represent B. Thus, K corresponds to Ky r and Ko
a7 corresponds to Kprp. At the beginning of each cycle, R is abundant and B is limiting (Eq. 12). Thus M
ass  cells with lower affinity for R (higher Kjsg) will grow faster than those with higher affinity (Figure 18). At
«s0 the end of each cycle, the opposite is true (Figure 18). As fp decreases, M has the capacity to grow faster
a0 and the first stage becomes more important. Thus in the Mankad & Bungay model at low fp, M can gain
s01  higher overall fitness by lowering affinity for R (Figure 18).

492 Regardless, the decline in individual fitness is very slight and only occurs at low fp at the beginning of
203 community selection, and thus may be neglected. Indeed, if we start all growth parameters at their upper
20a  bounds, and perform community selection while allowing all parameters to vary (Figure 21), then M’s affinity
205 for Resource (1/Kjr) decreases somewhat, yet the dynamics of fp is similar to when we only allow fp to
a0s change (compare Figure 21D with Figure 7A). Indeed, allowing both fp and 1/Kjg to evolve does not
a7 change our conclusions as shown in Figure 26.

(11)

s 4 Mutation rate and phenotype spectrum

200  Among mutations, a fraction will be phenotypically neutral in that they do not affect the phenotype of
soo interest. For example, the vast majority of synonymous mutations are neutral [71]. Experimentally, the
so1  fraction of neutral mutations is difficult to determine. Consider organismal fitness as the phenotype of
so2 interest. Whether a mutation is neutral or not can vary as a function of effective population size, and selection
so3 condition. For example, at low population size due to drift, a beneficial or deleterious mutation may not be
sos  selected for or selected against, and is thus neutral with respect to selection [72, 73]. In addition, mutations
sos in an antibiotic-degrading gene can be neutral under low antibiotic concentrations, but deleterious under
sos high antibiotic concentrations [74]. When considering single mutations, a larger fraction of neutral mutations
soz is mathematically equivalent to a lower mutation rate. Here on, our “mutation rate” refers to the rate of
sos mutations that either enhance a phenotype (“enhancing mutations”) or diminish a phenotype (“diminishing
soo mutations”). For five of the mutable phenotypes in our model, enhancing mutations of maximal growth rate
510 (9Hmaz and grrmaz) and of nutrient affinity (1/Kgg, 1/Knmr, 1/ Ky ) enhance individual fitness (beneficial
su mutations). In contrast, enhancing mutations in f, diminish individual fitness (deleterious mutations).

512 Depending on phenotype, the rate of phenotype-altering mutations is highly variable. Mutations that
513 cause qualitative phenotypic changes (e.g. canavanine or 5-fluoroorotic acid resistance) occur at a rate of
s 107871075 per genome per generation in bacteria and yeast [75, 76]. Mutations affecting quantitative traits
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such as growth rate occur much more frequently. For example in yeast, mutations that increase growth
rate by > 2% occur at a rate of ~ 107* per genome per generation (calculated from Figure 3 of [77]),
and deleterious mutations occurs at a rate of 107% ~ 1073 per genome per generation [51, 48]. If the
phenotype of interest encompasses growth rates in diverse abiotic environments, then most of single-gene
deletion mutations in S. cerevisiae alter phenotypes [78]. Moreover, mutation rate can be elevated by as
much as 100-fold in hyper-mutators [46, 47, 48]. Here, we assume a high, but biologically feasible, rate of
0.002 phenotype-altering mutations per genome per generation to speed up computation. We have also tried
100-fold lower mutation rate. As expected, evolutionary dynamics slows down, but all of our conclusions
still hold (Figure 23).

Among phenotype-altering mutations, tens of percent create null mutants, as illustrated by experimental
studies on protein, virus, and yeast [49, 50, 51]. Thus, we assume that 50% phenotype-altering mutations
are null (i.e. gspecies maz = 0, O KspeciesMetabolite = 00, OF f, = 0). Among non-null mutations, the relative
abundances of enhancing versus diminishing mutations are highly variable in different experiments. It can
be impacted by effective population size. For example, with a large effective population size, the survival
rate of beneficial mutations is 1000-fold lower due to clonal interference (competition between beneficial
mutations) [79]. The relative abundance of enhancing versus diminishing mutations also strongly depends
on the optimality of the starting phenotype [49, 74, 72]. For example with ampicillin as a substrate, the
TEM-1 p-lactamase acts as a “perfect” enzyme. Consequently, mutations were either neutral or diminishing,
and few enhanced enzyme activity [74]. In contrast with a novel substrate such as cefotaxime, the enzyme
has undetectable activity. Thus, diminishing mutations were not detected and 2% of tested mutations were
enhancing [74].

Phenotypes of the ancestral community members are generally not so extreme that mutations are solely
diminishing or solely enhancing. Thus, we base our model on experimental studies where a large number
of enhancing and diminishing mutants have been quantified in an unbiased fashion. An example is a study
from the Dunham lab where the fitness effects of thousands of S. cerevisiae mutations were quantified under
various nutrient limitations [52].

Specifically for each nutrient limitation, the authors first measured Asywr = (wwr — Owr)/wwr =
wwr/OwT — 1, the deviation in relative fitness of thousands of bar-coded wild-type control strains from the
mean fitness. Due to experimental noise, Asy 7 is distributed with zero mean and non-zero variance. Then,
the authors measured thousands of Asy;r, each corresponding to the relative fitness change of a bar-coded
mutant strain with respect to the mean of wild-type fitness (i.e. Asyr = (wyr — Owr)/@wr). From
these two distributions, we derive uag, the probability density function (PDF) of mutation fitness effect
As = Aspyr — Aswr (see Figure 13A for an explanation), in the following manner.

First, we calculate p,,(Asyr), discrete PDF of mutant strain relative fitness change, with bin width
0.04. In other words, pm,(Aspyr) =counts in the bin of [Aspyr — 0.02, Aspyr + 0.02] / total counts/0.04
where Asp/pr ranges from —0.6 and 0.6 which is sufficient to cover the range of experimental outcome. The
Poissonian uncertainty of pi,, is dpum (Asarr) = +/counts per bin/total counts/0.04. Repeating this process
for wild-type collection, we obtain PDF of wild-type strain relative fitness u,,(Aswr). Next, from wild type
L (Aswr) and each pu, (Asyr), we derive pas(As), the PDF of As with bin width 0.04:

+oo
pas(As =i x0.04) =0.04x > poy(j % 0.04) (i + 5) x 0.04). (13)

j=—o0

assuming that Aspp and Asy are independent from each other. Here, i is an integer from -15 to 15. The
uncertainty for uas is calculated by propagation of error. That is, if f is a function of z; (1 = 1, 2, ..., n).

Then sy, the error of f, is 3? =3 (6%3%) where s, is the error or uncertainty of z;. Thus,

S (i) = 0.04 x \/Z |6 ()11 (i ) + (11 ()81 i 4 5 (14)

where p,,(j) is short-hand notation for p,, (Aswr = j % 0.04) and so on. Our calculated pas(As) with error
bar of duas is shown in Figure 13B.

Our reanalysis demonstrates that distributions of mutation fitness effects puas(As) are largely conserved
regardless of nutrient conditions and mutation types (Figure 13B). In all cases, the relative fitness changes
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caused by beneficial (fitness-enhancing) and deleterious (fitness-diminishing) mutations can be approximated
by separate exponential distributions with different means s, and s_, respectively. After normalization to
have a total probability of 1, we have:

L exp(—As/sy) ifAs>0
+s_(1—exp(—1/s—
pas(As) = {SJr ! elp( [s=))

. (15)
P ey exp(As/s_) if —1<As<0

We fit the Dunham lab haploid data (since microbes are often haploid) to Eq. 15, using puas(7)/0puas (i) as
the weight for non-linear least squared regression (green lines in Figure 13B). We obtain s; = 0.050 £ 0.002
and s_ = 0.067 £ 0.003.

Interestingly, exponential distribution described the fitness effects of deleterious mutations in an RNA
virus significantly well [49]. Based on extreme value theory, the fitness effects of beneficial mutations are pre-
dicted to follow an exponential distribution [80, 81], which has gained experimental support from bacterium
and virus [82, 83, 84] (although see [85, 77| for counter examples). Evolutionary models based on exponential
distributions of fitness effects have shown good agreements with experimental data [79, 86].

We have also tried smaller average mutational effects based on measurements of spontaneous or chemically-
induced (instead of deletion) mutations. For example, the fitness effects of nonlethal deleterious mutations in
S. cerevisiae are mostly 1%~ 5% [51], and the mean selection coefficient of beneficial mutations in E. coli was
1%~2% [82, 79]. Thus, as an alternative, we choose s; = 0.02; s = —0.02, and obtain similar conclusions
(Figure 24).

5 Simulation code of community selection cycle

In our simulation, cell mutation, cell death, and community reproduction are stochastic. All other processes
(biomass growth, cell division, and changes in chemical concentrations) are deterministic.
The code starts with a total of ns,; = 100 Newborn communities with identical configuration:

e cach community has 100 total cells of biomass 1. Thus, total biomass N(0) = 100.
e 40 cells are H. 60 cells are M with identical fp. Thus, M (0) = 60 and ¢»;(0) = 0.6.

In the beginning, a random number is used to seed the random number generator for each Newborn commu-
nity, and this number is saved so that the sequence of random numbers used below can be exactly repeated
for subsequent data analysis. The initial amount of Resource is 1 unit of R(0), and the initial Byproduct is
B(0) = 0. The cycle time is divided into time steps of A7 = 0.05.

Below, we describe in detail what happens during each step of A7. During an interval [r, 7 + A7],
biomass growth is continuous but birth and death are discrete. Death and Product release are calculated at
the end of each A7. Resource R(t) and Byproduct B(t) between [7, 7 + A7] are calculated by solving the
following equations between [r, 7 + A7] with the initial condition R(7) and B(7) using the ode23s solver in
Matlab:

% = —cprmgm (R, B)M(7) — crugu(R)H(T) (16)

%? = gu(R)H(T) — cemgm (R, B)M(7) (17)

where M (7) and H(7) are the biomass of M and H at time 7, respectively. The solutions from Eq. 16 and
17 are used in the integrals below.

We track the phenotypes of every H and M cell which are rod-shaped organisms of a fixed diameter. Let
the biomass (length) of an H cell be Ly (7). The continuous growth of Ly during 7 and 7 + A7 can be
described as

dL g

4tH I
o gu(R)Lyu
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thus Ly (7 4+ A7) is

Ly(t+ A1) /T+AT
In—— —~ = R)dt
n LH(T) T gH( )

and

TH+AT

Ly(r+ A1) = Ly(T)exp </ gH(R)dt> .

Similarly, let the length of an M cell be Ly (7). The continuous growth of M can be described as

dLyy
dt

=1 - fp)gm(R, B)Ly.

Thus during the interval [r, 7 + A7],

L (T + AT)
L (7)
Thus for an M cell, its length Ly, (7 + A7) is

T+AT
In = [T - soeur. By

T+AT

LM(T+ A’T) = LM(T) exp </ (1 - fp)gM(R, B)dt)

From Eq. 9 and 6,

P fo dM
@~ Irom (R BIM o~ e
and we get
P(r+A7)=P(1) + 1 {Pf (M(1T+ A1) — M(7))
P

where M (7 4+ A7) =Y Ly(7 + A7) is the sum of the lengths of all M cells.

(19)

To describe discrete death events, each H and M cell has a probability of dgy A7 and dp; AT to die,
respectively. This is simulated by assigning a random number between [0, 1] for each cell and those receive
a random number less than dg A7 or dp; AT get eliminated. For surviving cells, if a cell’s length > 2, this

cell will divide into two cells with half the original length.

Each cell has a probability of P,,; = 0.002 to acquire a mutation that changes each of its phenotype
(Methods, Section 4). Without loss of generality, let’s consider mutations in fp. After mutation, fp will be

multiplied by (1 + Afp), where Afp is determined as below.

First, a uniform random number u; is generated. If u; < 0.5, Afp = —1, which represents 50% chance
of a null mutation (fp = 0). If 0.5 < u; < 1, Afp follows the distribution defined by Eq. 22 with
s+(fp) = 0.05 for fp-enhancing mutations and s_(fp) = 0.067 for fp-diminishing mutations when epistasis
is not considered (Methods, Section 4). In the simulation, A fp is generated via inverse transform sampling.
Specifically, C(Afp), the cumulative distribution function (CDF) of Afp , can be found by integrating Eq.

15 from -1 to Afp:

Afp
cafr) = [ 7 syt
m (exp(Afp/s-) —exp(=1/s-)) ifAfp <0

1-— W eXp(_AfP/SJr) 1f AfP 2 0

The two parts of Eq. 20 overlap at C(Afp =0) =s_(1 —e /=) / [s4 +s_(1 — e 1/5)].
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632 In order to generate A fp satisfying the distribution in Eq. 15, a uniform random number us between 0
o33 and 1 is generated and we set C(Afp) = uz. Inverting Eq. 20 yields
634 . 1_971/57)

Afp={”" I (uz(ss +s-(1—e™/*) /s +e™/o) up < EEmE s (21)

p = —1/s_
—siln (1= u2)(sy +s-(L—e Vo)) /sy)  up> =)

636 When epistasis is considered, si(fp) = sqinit/(1 + g X (fp/fprinit — 1)) and s_(fp) = s_inat x (1 +
637 g X (fp/fpinit —1)) are used in Eq. 21 to calculated A fp for each cell with different current fp (Methods
e3e  Section 6).
630 If for a certain fp, fpmut = fP(L+Afp) > 1, fpmu is set to 1 (upper bound). In general, if a mutation
es0 increases or decreases the phenotypic parameter beyond its bound, the phenotypic parameter is set to the
sa1  bound value.
642 The above growth-death/birth-mutation cycle is repeated from time 0 to 7. Note that since the size of
ez each M and H cell can be larger than 1, the integer numbers of M and H cells, I, and Iy, are generally
eaa smaller than biomass M and H , respectively. At the end of T, the communities are sorted according to
645 P(T).
046 For community reproduction, we save the current random number generator state to generate random
eaz numbers for partitioning the Adult. When we do not fix total biomass or total cell number, we do the
sss following. We select the Adult community with the highest function (or a randomly-chosen Adult community
eas in control simulations). The fold by which this Adult will be diluted is np = [(M(T) + H(T)) /No| where
eso Ny = 100 is the pre-set target for total biomass of a Newborn, and |z | is the floor function that generates the
es1 largest integer that is smaller than x. Iy + I3, random integers between 1 and np are uniformly generated
es>  so that each M and H cell is assigned a random integer between 1 and np. All cells assigned with the
63 same random integer belong to the same Newborn. This generates np newborn communities. This partition
ese Tegimen can be experimentally implemented by pipetting 1/np volume of an Adult community into a new
ess  well. If np is less than ny. (the total number of communities under selection), all np newborn communities
ess are kept. Then, we partition the Adult with the second highest function (or a random community in control
es7  simulations) to obtain an additional batch of np Newborns, and if this is enough, we will randomly pick
ess  from these a sufficient number of Newborns to obtain ny,; Newborns. The next cycle then begins.
659 To “fix” Newborn total biomass N(0) to the target total biomass Ny, total biomass N(0) is counted so
eso that N(0) comes closest to the target Ny without exceeding it (otherwise, P(T) may exceed the theoretical
esr maximum). For example, suppose that a certain number of M and H cells have been sorted into a Newborn
ez SO that the total biomass is 98.6. If the next cell, either M or H, has a mass of 1.3, this cell goes into
es3 the community so that the total biomass is 98.6 + 1.3 = 99.9. However, if a cell of mass 1.6 happens to
esa be picked, this cell doesn’t go into this community so that this Newborn has a total biomass of 98.6 and
ees the cell of mass 1.6 goes to the next Newborn. Thus, each Newborn may not have exactly the biomass of
es  INp, but rather between Ny — 2 and Ny. Experimentally, total biomass can be determined from the optical
ee7 density (OD), or from the total fluorescence if cells are fluorescently labeled (bioRxiv). In most simulations
ess we fix the total biomass of each Newborn because biomass M (t) and H(t) are the quantities used in Egs.
eeo  6-10 and Eqs. 16-19. If a cell sorter can only track the number of cells (instead of also tracking cell size),
er0 we perform simulations where the we sort a total of |Ny/1.5] cells into each Newborn, assuming that the
o1 average biomass of an M or H cell is 1.5. We obtain the same conclusion, as shown in Figure 22 left panels.
o72 To fix ¢2s(0) (while allowing total biomass N (0) to fluctuate), we generate Newborn communities so that
o3 O (0) = & (T) of the selected Adult community from the previous cycle. Again, because each M and H has
s7e a biomass (or length) between 1 and 2, ¢»s(0) of each Newborn community may not be exactly ¢ (T) of
e7s  the selected Adult community. In the code, dilution fold np is calculated in the same fashion as mentioned
ere above. Ips(T) random integers between [1, np] are then generated for each M cell. All M cells assigned the
e same random integer belong to the same Newborn community. A total biomass of M (0)(1— ¢ (T))/da(T)
ors  Of H cells should be sorted into this Newborn community. In the code, H cells are randomly dispensed into
s each Newborn community until the total biomass of H comes closest to M (0)(1 — ¢ (T)) /¢ (T) without
e20 exceeding it. Again, because each H cell has a biomass between 1 and 2, the total biomass of H might not be
es1  exactly M(0)(1— ¢ (T))/Pnr(T) but between M (0)(1 — ¢ar(T))/da(T) — 2 and M(0)(1 — dpr(T))/dar(T).
es2  We have also performed simulations where the ratio of M and H cell numbers in the Newborn community,
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I (0)/I5(0), is set to Ing(T)/Ig(T) of the Adult community, and obtain the same conclusion (Figure 22
center panels).

To fix both N(0) and ¢5;(0), we sort a total biomass of Nogp(T) of M cells and a total biomass of
No(1 — ¢p(T)) of H cells into each Newborn community. Here, Ny = 100 is preset and ¢y (7") is measured
from the selected Adult community of the previous cycle. In the code, to form a Newborn community, M cells
are randomly picked from the Adult community until the total biomass of M comes closest to N(0)¢ar(T)
without exceeding it. H cells are sorted similarly. Because each M and H cells has a length between 1 and
2, the biomass of M can vary between N(0)¢r (T) — 2 and N(0)¢pr(T) and the biomass of H can vary
between N (0)(1 — ¢ (T)) —2 and N(0)(1 — ¢ (T)). Although such a partition scheme does not completely
eliminate variations in species composition among Newborn communities, such variations are sufficiently
small so that community selection can improve fp(T). We have also performed simulations where the total
number of cells is set to | No/1.5] with | Nowar(T)/1.5] M cells and | No(1 — ¢ (T))/1.5] H cells where
oM (T) = In(T)/(Ip(T) + Ig(T)) is calculated from the numbers instead of biomass of M and H cells. We
obtain the same conclusion (Figure 22, right panels).

6 Modeling epistasis on fp

Epistasis, where the effect of a new mutation depends on prior mutations (“genetic background”), is known
to affect evolutionary dynamics. Epistatic effects have been quantified in various ways. Experiments on
virus, bacterium, yeast, and proteins have demonstrated that for two mutations that are both deleterious or
random, viable double mutants experience epistatic effects that are nearly symmetrically distributed around
a value near zero [87, 88, 89, 90, 91]. In other words, a significant fraction of mutation pairs show no epistasis,
and a small fraction show positive or negative epistasis (i.e. a double mutant displays a stronger or weaker
phenotype than expected from additive effects of the two single mutants). Epistasis between two beneficial
mutations can vary from being predominantly negative [88] to being symmetrically distributed around zero
[89]. Furthermore, a beneficial mutation tends to confer a lower beneficial effect if the background already
has high fitness (“diminishing returns”) [92, 89, 93].

A mathematical model by Wiser et al. incorporates diminishing returns epistasis [86]. In this model,
beneficial mutations of advantage s in the ancestral background are exponentially distributed with probability
density acexp(—as), where 1/a > 0 is the mean advantage. After a mutation with advantage s has occurred,
the mean advantage of the next mutation would be reduced to 1/[a(1 + gs)], where g > 0 is the “diminishing
returns parameter”. Wiser et al. estimates g ~ 6. This model quantitatively explains the fitness dynamics
of evolving E. coli populations.

Based on experimental and theoretical literature, we model epistasis on fp in the following manner. Let
the relative mutation effect on fp be Afp = (fpmu — fr)/fp > —1. Then, u(Afp, fp), the probability
density function of Afp at the current fp value, is described by a form similar to Eq. 15:

ST —ewC G SP(-ASP/s1(fp) i Afp >0
1

. (22)
ST U —en—175-Ge SP(ASP/s-(fp))  if —1<Afp <0

w(Afp, fp) = {

Here, s (fp) and s_(fp) are respectively the mean A fp for enhancing and diminishing mutations at
current fp. S+(fp) = 5+init/(1 +g X (fP/fP,init — 1)), where fP,init is the fp of the initial background (eg
0.13 for mono-adapted Manufacturer), s4;,;; is the mean enhancing A fp occurring in the initial background,
and 0 < g < 1 is the epistatic factor. Similarly, s_(fp) = S—ini X (1 + g X (fp/fpPnit — 1)) is the mean
|Afp| for diminishing mutations at current fp. In the initial background since fp = fpinit, we have
S+ (fp) = Stinit and s_(fp) = S_init Where sy;n;r = 0.050 and s_;p;; = 0.067 (Figure 13). For subsequent
mutations, mean A fp is modified by epistatic factor g. Consistent with diminishing returns principle, if
current fp > fpinit, then a new enhancing mutation becomes less likely and a new diminishing mutation
becomes more likely (ensured by g > 0). Similarly, if current fp < fpinit, then a new enhancing mutation
becomes more likely and a diminishing mutation becomes less likely (ensured by 0 < g < 1). Thus, as fp
approaches 1, sy (fp) decreases and s_(fp) increases (Figure 14). That is, enhancing mutations become less
likely, and diminishing mutations become more likely. Conversely as fp approaches 0, the opposite is true
(s+(fp) increases and s_(fp) decreases, Figure 14). In summary, our model captures not only diminishing
returns of enhancing mutations, but also our understanding of mutational effects on protein stability [72].
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~ 7 Pathology of two alternative definitions of community function

732 For a given Newborn community, we define community function as P(T), the total amount of Product at
733 maturation time 7. Below, we describe the pathology of alternative definitions of community function.

738 Let’s consider a simpler case where groups of Manufacturers are selected for high P, and cell death is
735 negligible. We have

O == frguM (28)

dP

il M 24

7 frPam (24)
76 where biomass growth rate gps is a function of B and R. When M and H compete for Resource, gps also
73z depends implicitly on fp because fp affects M:H and therefore B and R.

738 Since from Eq. 23 and 24

aM  dP

(1—fp)dt  fpdt

730 we have f F
P P
P(T) = 2 () - M(0) ~ L2 (r)
1—fp L—fp

70 if M(T') > M(0). This is true if 7" is long enough for cells to double at least three or four times.
741 If we define community function as P(T)/M(T) (total Product normalized against M biomass in Adult
72 community), P(T)/M(T) = 5 L “- Under this definition, higher ; f’}P or higher fp always leads to higher

7a3  community function, and higher fp in turn leads to M extinction (Figure 3).
o If the community function is instead defined as P(T)/M(0), then

P(T) _ fo M(T)  f
e P R ((1 i | gMdt) (25)

745 From Eq. 25, at a fixed fp, % increases as fT g dt increases. fT gmdt increases as ¢y (0) decreases,

e since the larger fraction of Helper, the faster the accumulation of Byproduct and the larger [,. gasdt (Figure
77 27B). Thus, we end up selecting communities with small ¢5,(0) (Figure 12). This means that Manufactures
ras could get lost during community reproduction, and community selection then fails.

749 For groups or communities with a certain fT gumdt, we can calculate fp optimal for community function

750 from Eq 25 by setting
dP(T) _ d fr B
i, M(O)?p L ~ 7 P ((1 - fp) /TgMdt)] =0

751 We have ﬁexp (1= fp) [ gmdt) — %fT gudtexp (1= fp) [ gudt) = 0, or 1/ [, gudt =

= fp(l— fp)
753 If [, gndt>> 1, fp is very small, and the optimal fp for P(T) is

fh~ ( /| gMdt>1 (26)

=~ 8 Identify optimal P(T)

75 For a Newborn community with total biomass N(0) = 100, we fix growth parameters of M and H to upper
76 bounds, and calculate P(T) under various fp and ¢ar(0). Since both numbers range between 0 and 1, we
77 calculate P(T, fp = 0.01 x i, ¢»7(0) = 0.01 x j) for integers i and j between 1 and 99. There is a global
7s  maximum for P(T') when ¢ = 41 and j = 54 (see the accompanying article). Therefore the optimal fp and
70 ¢pr(0) combination for a Newborn community with N(0) = 100 are 0.41 and 0.54, respectively.
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« 9 Pathology associated with community reproduction via fixed-fold
761 dilution

762 If Resource is unlimited, then there is no competition between H and M. According to Eq. 25, P(T)
763 increases linearly with M (0). P(T) also increases with H(0), since higher H(0) leads to higher Byproduct
zea and consequently higher fT gmdt in the exponent. Newborn communities can vary significantly in their N(0)
s due to stochastic fluctuations (with a standard deviation of v/Ny). Thus each cycle, communities with larger
66 N (0) (instead of higher f,,) will get selected. With unlimited Resource, the size of an Adult community has
7z 10 upper bound. After a fixed-fold dilution, N(0) also has no upper bound. In comparison, the average f,
7es  of different Newborns do not vary nearly as much (Figure 8).
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Supplementary Figures

A H: Monod kinetics, limiting R B M: Mankad & Bungay kinetics, limiting R and B
A R = RmBm 1 1
GHmax 9u= gHmaxR+—KHR G = Gmax Ruy+By ( Ry+1 * By+1 )
g:, GHMax RH g RM € R B
2 = Ohmax T "5 B e L
h R Lngax BBlZ1 if BM << RM
where gymax: max H growth rate "

Kpr: H's Monod K for R (R for 50% gpmax) where Ry=R/Kyr
Ru= R/Ky By=5/Kus

Figure 9: Figure 2-figure supplement 1. (A) H growth follows Monod kinetics, reaching half maximal
growth rate when R = Kgg. (B) M growth follows dual-substrate Mankad and Bungay kinetics. When
Resource R is in great excess (Rp; > Bjys) or Byproduct B is in great excess (Bys > Rjs), we recover
mono-substrate Monod kinetics (A).
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Figure 10: Figure 2-figure supplement 2. A comparison of dual-substrate models. Suppose that
cell growth rate depends on each of the two substrates S; and Sy in a Monod-like, saturable fashion. When
So is in excess, the S7 at which half maximal growth rate is achieved is K. When S; is in excess, the Sy at
which half maximal growth rate is achieved is K5. (A) In the “Double Monod” model, growth rate depends
on the two limiting substrates in a multiplicative fashion. In the model proposed by Mankad and Bungay
(B), growth rate takes a different form. In both models, when one substrate is in excess, growth rate depends
on the other substrate in a Monod-fashion. However, differences exist. For example, when % = ]S(Z =1,
the growth rate is predicted to be gma./2 by Mankad & Bunday model, and gyq./4 by the Double Monod
model. Mankad and Bungay model outperforms the Double Monod model in describing experimental data
of S. cerevisiae and E. coli growing on low glucose and low nitrogen. The figures are plotted using data from
Ref. [43].
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Figure 11: Figure 2-figure supplement 3. A comparison of birth models. We modeled exponen-
tial biomass growth in excess metabolites. Thick black line: analytical solution with biomass growth rate
(0.7/time unit). Grey dashed line: simulation assuming that biomass increases exponentially at 0.7/time
unit and that cell division occurs upon reaching a biomass threshold, an assumption used in our model. Color
dotted lines: simulations assuming that cell birth occurs at a probability equal to the birth rate multiplied
with the length of simulation time step (A7 = 0.05). When a cell birth occurs, biomass increases discretely
by 1, resulting in step-wise increase in color dotted lines at early time.
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Figure 12: Figure 2-figure supplement 4. The pathology of artificial community selection if community
function is defined as P(T")/M(0). Over the range of fp where M and H can coexist, P(T')/M(0) increases
as ¢pr(0) decreases.
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Figure 13: Figure 4 - Figure Supplement 1. Probability density functions of changes in relative
fitness due to mutations ( pas(As) ). (A) Suppose that green line represents the probability density
function of As, the relative fitness change in mutants. Then the probability P(0 < As < z) is the area of the
shaded region. (B) We derived pas(As) from the Dunham lab data [52] where bar-coded mutant strains were
competed under sulfate-limitation (red), carbon-limitation (blue), or phosphate-limitation (black). Error
bars represent uncertainty duas (the lower error bar is omitted if the lower estimate is negative). In the
leftmost panel, green lines show non-linear least squared fitting of data to Eq. 15 using all three sets of data.
Note that data with larger uncertainty are given less weight, and thus deviate more from the fitting lines.
For an exponentially-distributed probability density function, the average fitness effect is 1/slope. From the
green line on the right side, we obtain the average effect of enhancing mutations s; = 0.050 £ 0.002, and
from the green line on the left side, we obtain the average effect of diminishing mutations s_ = 0.067 +0.003.
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Figure 14: Figure 4-Figure Supplement 2. Mutation effects under epistasis. Distribution of
mutation effects at different current fp values are plotted. (Top) When there is no epistasis, distribution of
mutational effects on fp (Afp) are identical regardless of current fp. (Middle and Bottom) With epistasis
(see Methods Section 6 for definition of epistasis factor), mutational effects on fp depend on the current
value of fp. If current fp is low (left), enhancing mutations are more likely to occur while diminishing
mutations are less likely to occur; if current fp is high (right), the opposite is true.
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Figure 15: Figure 5-Figure Supplement 1. Community function declines to zero in the absence of
community selection. Without community selection, natural selection favors fast growers with improved
maximal growth rates and improved affinities for nutrients (A). Consequently, fp (B) and thus P(T) (C)
decrease to zero. Maximal growth rates of H and M (ggmae and garmaz), H’s affinity for Resource 1/Kpyg ,
and M’s affinity for Byproduct 1/K s p rapidly improve to their respective upper bounds, while M’s affinity
for Resource 1/Kjp/r improves more slowly. This is consistent with M’s growth being more limited by
Byproduct. P(T) is averaged across the two randomly selected Adult communities. §as,mams 9Hmazs a0d fp
are obtained by averaging within each randomly-selected Adult community and then averaging across the
two randomly-selected Adult communities. KgpeciesMmetabolite are averaged within each randomly-selected
Adult community, then across the two randomly-selected Adults, and finally inverted to represent average
affinity. Green dashed lines: upper bounds of phenotypes; Magenta dashed lines: fp optimal for community
function and maximal P(T) when all five growth parameters are fixed at their upper bounds and ¢,(0) is
also optimal for P(T). Note different x axis scales. Black, cyan, and gray curves show three independent
simulations.
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Figure 16: Figure 5-Figure Supplement 2. Improving maximal growth rate of Helper gy, does
not necessarily improve community function. We have chosen the ancestral (blue dashed line) and
the evolutionary upper bound (green dashed line) of ggmaq. such that improving ggma. improves community
function. Suppose we have chosen ancestral gg.m,q. at the grey dotted line, then higher g4, would lower
community function. The black curve is obtained by numerically integrating Eqs. 6-10 at different ggmax
values where fp is set to 0.4 and all growth parameters except for ggmq.. are set to their respective upper
bounds. N(0) is 100, and ¢57(0) is 0.7 (close to steady-state value).
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Figure 17: Figure 5-Figure Supplement 3. Improving maximal growth rates and nutrient af-
finities generally, but do not always, improve individual fitness and community function. In
all figures, solid and dashed lines respectively represent dynamics when fp = 0.41 (optimal for community
function if all growth parameters are fixed at their upper bounds; Figure 6A) and fp = 0.13 (optimal for
M monoculture production when Byproduct is in excess; Figure 6B). (A-D) Community function increases
as gnmaz, 1/ KMB y 9Hmasz OF 1/KpR increases when other growth parameters are fixed at their upper
bounds. For example, In (A), all growth parameters except for gnrmasz are at their upper bounds, and for
each combination of gymae and fp, the steady-state ¢y ss is calculated using equations in Methods Section
1. This steady-state ¢ar,ss is then used to calculate P(T'). (F-I) respectively show that mutant individuals
with gpmaz, 1/KMB 5 9Hmaz O 1/Kgr 10% lower than the upper bound have lower fitness. For example in
(F), a Newborn community has 70 M and 30 H. 90% of M have upper bound gasmae. = 0.7 (“upper bound”).
10% of M have gprmae = 0.63, 10% less than the upper bound (“mutant”). Other growth parameters are
all at upper bounds. The ratio between mutant and upper bound drops over maturation time, indicating
that M cells with mutant (lower) maximal growth rate have lower fitness. (E, J) When fp = 0.13 (black
dashed line) but not when fp = 0.41 (magenta line), increasing M’s affinity for Resource (1/K ) slightly
decreases both P(T") and individual fitness.
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Figure 18: Figure 5-Figure Supplement 4. At low fp, higher 1/K/r can lead to reduced M
growth rate. (A) The ratio between My, with low affinity for R (K]\?R = 2.5]72(0)_1) and Myign with
high affinity for R (K} = 3R(0)1) when their fp is equal to 0.1 (solid line), 0.2 (dotted line) and 0.3
(dashed line) are plotted over one maturation cycle. (B) P(T)) improves over increasing affinity K, when
fp is 0.1 (solid line), 0.2 (dotted line) and 0.3 (dashed line). The dependence of P(T) on K}, is rather

weak for low fp. For example, when K}, increases from R(0)~! to 3R(0)"!, P(T) increases only by 2%
and 0.6% for fp = 0.2 and fp = 0.1, respectively.
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Figure 19: Figure 6-Figure Supplement 1. Local optimality of community function P*(7T). We
start each Newborn community with total biomass N(0)=100, all five growth parameters at their upper
bounds, and f; = 0.41 and ¢3,(0) = 0.54 to achieve P*(T"). We then allow all five growth parameters and
fp to mutate while applying community selection. To ensure effective community selection (see the last
section of Results), during community reproduction, we fix N(0) to 100, and assign ¢r(0) to ¢a(T) of
the previous cycle. We find that all five growth parameters remain at their respective evolutionary upper
bounds. At the end of the first cycle (Cycle=1 in insets), even though fp has not changed, P(T') has already
declined from the magenta dashed line. This is because ¢,,(0) has changed via ecological interactions to
0.73, close to the steady state ¢y instead of the optimal ¢%,(0) of 0.54. Later, over hundreds of cycles, fp
gradually increases, which increases P(T) . However, P(T) is still below maximal. This is because species
composition gravitates toward steady state ¢ps ss which deviates from what is required for P*(T). See the
accompanying article for further discussions. §asmaz, GHmaz, and f p are obtained by averaging within each
selected Adult community and then averaging across the two selected Adults. Kgpeciesietabolite are similarly
averaged, and then inverted to represent average affinity. Green dashed lines: upper bounds of phenotypes;
Magenta dashed lines: f} and P*(T) when all five growth parameters are fixed at their upper bounds and

¢ (0) = ¢ (0).

«Time unit" *Rio)"! *Fp
x me l_’:' _______ — 4 2 0.2 3000 —_—
g £ e
1§08 1] g g . T 7
-[1S3 S 045
e _§ P S 2000 -
S 04f - 3 2 18
< 282 8% o4l 4 8 - -
H E o o 3 L 2
2 = S0 r 2 1000 4
S 0.2 1 o1 € S 005 4 9
x s = S o =
g 8 (i ©
s 1 1 1 1 0 1 1 1 1 E 0 1 1 1 1 0
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Cycles Cycles Cycles Cycles

Figure 20: Figure 6-Figure Supplement 2. Selection dynamics of M mono-species groups. Phe-
notypes averaged over selected groups are plotted. Because Byproduct is in excess, Kj;p terms are no longer
relevant in equations (Figure 10, Ry < Bjys). upper bounds of gyrma. and 1/K )y r are marked with green
dashed lines. Magenta lines mark maximal fp and P(T') when gamas and 1/K g are fixed at their upper
bounds and when Byproduct is in excess.
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Figure 21: . Figure 7-Figure supplement 1. Selection dynamics of communities of mono-adapted
H and M when allowing all parameters to vary. gamaz, 9Hmaz, 1/Knup and 1/K gy remain mostly
constant during community selection because mutants with lower-than-maximal values are weeded out by
natural selection as well as community selection. However, 1/K /g decreases slightly because at low fp, M
with a lower affinity for R (lowerl/Kjy/g) slight improves individual fitness while slightly decreasing com-
munity function (Figure 18). Garmazs GHmaz, and fp are obtained by averaging within each selected Adult
community and then averaging across the two selected Adults. KgpeciesMetabotite are similarly averaged, and
then inverted to represent average affinity. P(T) are averaged across the two selected Adults. Black, cyan
and gray curves are three independent simulations. Green dashed lines indicate upper bounds for growth
parameters. Magenta dashed lines: fp optimal for community function and optimal P(T) when all five
growth parameters are fixed at their upper bounds and ¢;(0) is also optimal for P(T).
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Figure 22: Figure 7-Figure Supplement 2. Fixing H and M cell numbers (instead of biomass) du-

ring community reproduction allows short-1 selection regimen to improve community function.
For left panels, the total cell number is fixed to | No/1.5]. For center panels, the ratio between M and H
cell numbers are fixed to Ip (T)/Ig(T), where In(T) and I (T) are the number of M and H cells in the
selected Adult community, respectively. For right panels, the total cell numbers are fixed to | Ny/1.5] and
the ratio between M and H cell numbers are fixed to Ip/(T)/Ig(T). See Methods Section 5 for details of
simulating community reproduction. fp is averaged across members of each selected community, and sub-
sequently averaged across the two selected communities. Community function P(T) is averaged across the
two selected communities. Black, cyan and gray curves are three independent simulations.
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Evolution dynamics of selected Adult communities
(A, B) At short maturation time

(T = 17, Resource is not exhausted in an average community), fixing both N(0) and ¢,(0) is required for
community function to improve. (C, D) At long maturation time (7" = 20, Resource is exhausted in an
average community), community function improves without needing to fix N(0) or ¢»r(0). When both are
fixed, community function improves even faster. fp is averaged across members of each selected community,
and subsequently averaged across the two selected communities. Community function P(T) is averaged
across the two selected communities. Black, cyan and gray curves are three independent simulations. At
this low mutation rate, because the population size of a community never exceeds 10%, a mutation occurs on
average every 5 cycles, resulting in step-wise improvement in both f,(T) and P(T).
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Figure 24: Figure 7-Figure Supplement 4. Evolution dynamics of selected Adult communities
under a different distribution of mutation effect. Here, the distribution of mutation effects is specified
by Eq. 15 where s, = s_ = 0.02 are constants. fp is averaged across members of each selected community,
and subsequently averaged across the two selected communities. Community function P(T) is averaged
across the two selected communities. Black, cyan and gray curves are three independent simulations.
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Figure 25: Figure 7-Figure Supplement 5. Evolution dynamics of selected Adult communities
when epistasis is considered. When we incorporate different epistasis strengths (epistasis factor of 0.3
and 0.8), we obtain essentially the same conclusions as when epistasis is not considered (Figure 7). fp is
averaged across members of each selected community, and subsequently averaged across the two selected
communities. Community function P(T) is averaged across the two selected communities. Black, cyan and

gray curves are three independent simulations.
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Figure 26: Figure 7-Figure Supplement 6. Evolution dynamics of selected Adult communities
when both fp and K, are allowed to mutate. Green dashed lines indicate upper bounds for growth
parameters. Magenta dashed lines: fp optimal for community function and optimal P(T") when all five
growth parameters are fixed at their upper bounds and ¢,/ (0) is also optimal for P(T'). fp is averaged across
members of each selected community, and subsequently averaged across the two selected communities. K j;r
is similarly averaged, and then inverted to represent average affinity. Community function P(T') is averaged
across the two selected communities. Black, cyan and“gray curves are three independent simulations.
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Figure 27: Figure 8-Figure Supplement 1. Variations in community function can arise from
non-heritable variations in Newborn compositions. An average Newborn community (solid lines)
has a total biomass of 100 with 75% M. (A) A “lucky” Newborn community (dotted lines), by stochastic
fluctuations, has a total biomass of 130 with 75% M. Even though the two communities share identical
fp = 0.1, the Newborn with 130 total biomass has its M growing to a larger size (left), depleting more
Resource (middle), and making more Product (right) if 7" is short. (B) A “lucky” Newborn community (dotted
lines), by stochastic fluctuations, has 100 total biomass with 65% M. Even though the two communities share
identical fp = 0.1, the Newborn with lower ¢3;(0) (dotted) has its M enjoying a shorter growth lag and
growing to a larger size (left), depleting more Resource (middle), and making more Product (right) if T is
short. In both cases, the difference between lucky (dotted) and average (solid) communities is diminished at
longer T' (T = 20) compared to shorter T' (T' = 17, dash dot line).

39


https://doi.org/10.1101/264689
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/264689; this version posted February 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

- References

77z [1] Trevor D. Lawley, Simon Clare, Alan W. Walker, Mark D. Stares, Thomas R. Connor, Claire Raisen,

778 David Goulding, Roland Rad, Fernanda Schreiber, Cordelia Brandt, Laura J. Deakin, Derek J. Pickard,
779 Sylvia H. Duncan, Harry J. Flint, Taane G. Clark, Julian Parkhill, and Gordon Dougan. Targeted resto-
780 ration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium
781 difficile disease in mice. PLoS pathogens, 8(10):€1002995, 2012.

752 [2] Souichiro Kato, Shin Haruta, Zong Jun Cui, Masaharu Ishii, and Yasuo Igarashi. Effective cellulose de-
783 gradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic
784 bacteria. FEMS Microbiology Ecology, 51(1):133-142, 2004.

7ss  [3] Stefanie Widder, Rosalind J. Allen, Thomas Pfeiffer, Thomas P. Curtis, Carsten Wiuf, William T.
786 Sloan, Otto X. Cordero, Sam P. Brown, Babak Momeni, Wenying Shou, Helen Kettle, Harry J. Flint,
787 Andreas F. Haas, Béatrice Laroche, Jan-Ulrich Kreft, Paul B. Rainey, Shiri Freilich, Stefan Schuster,
788 Kim Milferstedt, Jan R. van der Meer, Tobias Grogkopf, Jef Huisman, Andrew Free, Cristian Picioreanu,
789 Christopher Quince, Isaac Klapper, Simon Labarthe, Barth F. Smets, Harris Wang, Isaac Newton In-
790 stitute Fellows, and Orkun S. Soyer. Challenges in microbial ecology: building predictive understanding
701 of community function and dynamics. The ISME Journal, March 2016. 00001.

702 [4] Stephen R. Lindemann, Hans C. Bernstein, Hyun-Seob Song, Jim K. Fredrickson, Matthew W. Fields,
793 Wenying Shou, David R. Johnson, and Alexander S. Beliaev. Engineering microbial consortia for
704 controllable outputs. The ISME Journal, 10(9):2077-2084, September 2016.

705 [5] Jian Zhou, Qian Ma, Hong Yi, Lili Wang, Hao Song, and Ying-Jin Yuan. Metabolome profiling reveals
796 metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced
707 swarm motility. Applied and Environmental Microbiology, 77(19):7023-7030, October 2011. 00038.

s [6] R. E. Wheatley. The consequences of volatile organic compound mediated bacterial and fungal inte-
799 ractions. Antonie van Leeuwenhoek, 81(1-4):357-364, December 2002. 00123.

so  [7] Kwang-sun Kim, Soohyun Lee, and Choong-Min Ryu. Interspecific bacterial sensing through airborne
801 signals modulates locomotion and drug resistance. Nature Communications, 4:1809, 2013.

sz [8] Matthew F Traxler, Jeramie D Watrous, Theodore Alexandrov, Pieter C Dorrestein, and Roberto Kolter.

803 Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome.
804 mBio, 4(4), 2013.

sos  [9] A. Crameri, E. A. Whitehorn, E. Tate, and W. P. Stemmer. Improved green fluorescent protein by
806 molecular evolution using DNA shuffling. Nature Biotechnology, 14(3):315-319, March 1996.

sz [10] Manfred T. Reetz and José Daniel Carballeira. Iterative saturation mutagenesis (ISM) for rapid directed
808 evolution of functional enzymes. Nature Protocols, 2(4):891-903, April 2007.

soo [11] Eric T. Boder, Katarina S. Midelfort, and K. Dane Wittrup. Directed evolution of antibody fragments
810 with monovalent femtomolar antigen-binding affinity. Proceedings of the National Academy of Sciences,
811 97(20):10701-10705, September 2000.

sz [12] W. D. Hamilton. The genetical evolution of social behaviour I and II. Journal of Theoretical Biology,
813 7(1):1752, July 1964.

s1e  [13] John Maynard Smith. Group Selection and Kin Selection. Nature, 201(4924):1145-1147, March 1964.
sis  [14] Sewall Wright. Tempo and Mode in Evolution: A Critical Review. FEcology, 26(4):415-419, 1945.
a6 [15] George R. Price. Selection and Covariance. Nature, 227(5257):520-521, August 1970. 01240.

sz [16] Michael J. Wade. A Critical Review of the Models of Group Selection. The Quarterly Review of Biology,
s18 53(2):101-114, June 1978. ArticleType: research-article / Full publication date: Jun., 1978 / Copyright
819 (© 1978 The University of Chicago Press.

40


https://doi.org/10.1101/264689
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/264689; this version posted February 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

820

822

823

824

825

826

827

828

830

831

832

833

834

835

[17]

[18]

[19]
[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]
[34]

[35]

[36]

[37]

under aCC-BY-NC 4.0 International license.

William M Muir. Group selection for adaptation to multiple-hen cages: selection program and direct
responses. Poultry Science, 75(4):447-458, 1996.

David C. Queller and Joan E. Strassmann. Kin Selection and Social Insects. BioScience, 48(3):165-175,
March 1998.

Michael J Wade. An experimental study of kin selection. Ewvolution, pages 844-855, 1980.

Arne Traulsen and Martin A. Nowak. Evolution of cooperation by multilevel selection. Proceedings of
the National Academy of Sciences, 103(29):10952-10955, July 2006.

L. Lehmann, L. Keller, S. West, and D. Roze. Group selection and kin selection: Two concepts but one
process. Proc Natl Acad Sci USA, 104(16):6736-6739, April 2007.

Benjamin Kerr. Theoretical and experimental approaches to the evolution of altruism and the levels
of selection. FEzperimental Evolution: Concepts, Methods, and Applications of Selection Experiments,
pages 585—-630, 2009. 00006.

Herwig Bachmann, Frank J Bruggeman, Douwe Molenaar, Filipe Branco dos Santos, and Bas Teusink.
Public goods and metabolic strategies. Current Opinion in Microbiology, 31:109-115, June 2016. 00000.

Katrin Hammerschmidt, Caroline J. Rose, Benjamin Kerr, and Paul B. Rainey. Life cycles, fitness
decoupling and the evolution of multicellularity. Nature, 515(7525):75-79, November 2014.

Martin A. Nowak. Five Rules for the Evolution of Cooperation. Science, 314(5805):1560-1563, December
2006.

C. J. Goodnight and L. Stevens. Experimental studies of group selection: what do they tell us about
group selection in nature? The American Naturalist, 150 Suppl 1:559-79, July 1997.

Herwig Bachmann, Martin Fischlechner, Iraes Rabbers, Nakul Barfa, Filipe Branco dos Santos, Douwe
Molenaar, and Bas Teusink. Availability of public goods shapes the evolution of competing meta-
bolic strategies. Proceedings of the National Academy of Sciences of the United States of America,
110(35):14302-14307, August 2013.

John S Chuang, Olivier Rivoire, and Stanislas Leibler. Simpson’s paradox in a synthetic microbial
system. Science (New York, N.Y.), 323(5911):272-275, January 2009.

Wenying Shou. Acknowledging selection at sub-organismal levels resolves controversy on pro-cooperation
mechanisms. eLife, page €10106, December 2015.

R C Lewontin. The Units of Selection. Annual Review of Ecology and Systematics, 1(1):1-18, 1970.

D. S. Wilson. A theory of group selection. Proceedings of the National Academy of Sciences, 72(1):143—
146, January 1975.

Michael E Gilpin. Group selection in predator-prey communities, volume 9. Princeton University Press,
1975.

J. Maynard Smith. Group Selection. The Quarterly Review of Biology, 51(2):277-283, June 1976.

Michael Doebeli, Yaroslav Ispolatov, and Burt Simon. Towards a mechanistic foundation of evolutionary
theory. eLife, 6:623804, February 2017.

L. Chao and B.R. Levin. Structured habitats and the evolution of anticompetitor toxins in bacteria.
Proc Natl Acad Sci U S A, 78(10):6324-8, October 1981.

Hywel T. P. Williams and Timothy M. Lenton. Artificial selection of simulated microbial ecosystems.
Proceedings of the National Academy of Sciences, 104(21):8918-8923, May 2007. 00036.

William Swenson, David Sloan Wilson, and Roberta Elias. Artificial ecosystem selection. Proceedings
of the National Academy of Sciences, 97:9110-9114, 2000.

41


https://doi.org/10.1101/264689
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/264689; this version posted February 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

882

883

884

885

886

887

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

under aCC-BY-NC 4.0 International license.

W. Swenson, J. Arendt, and D.S. Wilson. Artificial selection of microbial ecosystems for 3-chloroaniline
biodegradation. Environ Microbiol, 2(5):564-71, October 2000.

Jeremy J. Minty, Marc E. Singer, Scott A. Scholz, Chang-Hoon Bae, Jung-Ho Ahn, Clifton E. Foster,
James C. Liao, and Xiaoxia Nina Lin. Design and characterization of synthetic fungal-bacterial consortia
for direct production of isobutanol from cellulosic biomass. Proceedings of the National Academy of
Sciences, 110(36):14592-14597, September 2013. 00024 PMID: 23959872.

Kang Zhou, Kangjian Qiao, Steven Edgar, and Gregory Stephanopoulos. Distributing a metabolic
pathway among a microbial consortium enhances production of natural products. Nature biotechnology,
2015.

Hyun-Dong Shin, Shara McClendon, Trinh Vo, and Rachel R. Chen. Escherichia coli Binary Culture En-
gineered for Direct Fermentation of Hemicellulose to a Biofuel. Applied and Environmental Microbiology,
76(24):8150-8159, December 2010. 00000.

Shen-Long Tsai, Garima Goyal, and Wilfred Chen. Surface Display of a Functional Minicellulosome
by Intracellular Complementation Using a Synthetic Yeast Consortium and Its Application to Cellu-
lose Hydrolysis and Ethanol Production. Applied and Environmental Microbiology, 76(22):7514-7520,
November 2010.

T Mankad and HR Bungay. Model for microbial growth with more than one limiting nutrient. Journal
of biotechnology, 7(2):161-166, 1988.

Sattar Taheri-Araghi, Serena Bradde, John T. Sauls, Norbert S. Hill, Petra Anne Levin, Johan Paulsson,
Massimo Vergassola, and Suckjoon Jun. Cell-Size Control and Homeostasis in Bacteria. Current Biology,
25(3):385-391, February 2015.

Babak Momeni, Kristen A Brileya, Matthew W Fields, and Wenying Shou. Strong inter-population
cooperation leads to partner intermixing in microbial communities. eLife, 2:¢00230, 2013. 00000.

Jeffrey E Barrick, Dong Su Yu, Sung Ho Yoon, Haeyoung Jeong, Tae Kwang Oh, Dominique Schneider,
Richard E Lenski, and Jihyun F Kim. Genome evolution and adaptation in a long-term experiment
with escherichia coli. Nature, 461(7268):1243, 2009.

Toon Swings, Bram Van den Bergh, Sander Wuyts, Eline Oeyen, Karin Voordeckers, Kevin J Verstrepen,
Maarten Fauvart, Natalie Verstraeten, and Jan Michiels. Adaptive tuning of mutation rates allows fast
response to lethal stress in escherichia coli. eLife, 6(22939), 2017.

Clifford Zeyl and J Arjan GM DeVisser. Estimates of the rate and distribution of fitness effects of
spontaneous mutation in saccharomyces cerevisiae. Genetics, 157(1):53-61, 2001.

Rafael Sanjuin, Andrés Moya, and Santiago F Elena. The distribution of fitness effects caused by
single-nucleotide substitutions in an rna virus. Proceedings of the National Academy of Sciences of the
United States of America, 101(22):8396-8401, 2004.

Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin,
George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soylemez,
et al. Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397-401, 2016.

Dominika M Wloch, Krzysztof Szafraniec, Rhona H Borts, and Ryszard Korona. Direct estimate of the
mutation rate and the distribution of fitness effects in the yeast saccharomyces cerevisiae. Genetics,
159(2):441-452, 2001.

Celia Payen, Anna B Sunshine, Giang T Ong, Jamie L Pogachar, Wei Zhao, and Maitreya J Dunham.
High-throughput identification of adaptive mutations in experimentally evolved yeast populations. PLoS
genetics, 12(10):e1006339, 2016.

Adam James Waite, Caroline Cannistra, and Wenying Shou. Defectors Can Create Conditions That
Rescue Cooperation. PLoS Comput Biol, 11(12):€1004645, December 2015. 00000.

42


https://doi.org/10.1101/264689
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/264689; this version posted February 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

207

9209

910

911

912

[54]

[55]

[56]

[57]

[58]
[59]
[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

under aCC-BY-NC 4.0 International license.

Richard E Lenski and Michael Travisano. Dynamics of adaptation and diversification: a 10,000-
generation experiment with bacterial populations. Proceedings of the National Academy of Sciences,
91(15):6808-6814, 1994.

Adam James Waite and Wenying Shou. Adaptation to a new environment allows cooperators to purge
cheaters stochastically. Proceedings of the National Academy of Sciences, 109(47):19079-19086, 2012.

Paul B Rainey and Katrina Rainey. Evolution of cooperation and conflict in experimental bacterial
populations. Nature, 425(6953):72, 2003.

Rafael U Ibarra, Jeremy S Edwards, and Bernhard O Palsson. Escherichia coli k-12 undergoes adaptive
evolution to achieve in silico predicted optimal growth. Nature, 420(6912):186, 2002.

Thomas Egli. Nutrition, microbial. Oxford: Elsevier Academic Press, 2009.
R Haselkorn. Heterocysts. Annual Review of Plant Physiology, 29(1):319-344, June 1978.

Ronald Aylmer Fisher. The genetical theory of natural selection: a complete variorum edition. Oxford
University Press, 1999.

Nick Colegrave. Sex releases the speed limit on evolution. Nature, 420(6916):664-666, 2002.

Philip J Gerrish and Richard E Lenski. The fate of competing beneficial mutations in an asexual
population. Genetica, 102:127, 1998.

Stephen T Chisholm, Gitta Coaker, Brad Day, and Brian J Staskawicz. Host-microbe interactions:
shaping the evolution of the plant immune response. Cell, 124(4):803-814, 2006.

Ruth E Ley, Micah Hamady, Catherine Lozupone, Peter J Turnbaugh, Rob Roy Ramey, J Stephen
Bircher, Michael L Schlegel, Tammy A Tucker, Mark D Schrenzel, Rob Knight, et al. Evolution of
mammals and their gut microbes. Science, 320(5883):1647-1651, 2008.

Kevin R Foster, Jonas Schluter, Katharine Z Coyte, and Seth Rakoff-Nahoum. The evolution of the
host microbiome as an ecosystem on a leash. Nature, 548(7665):43, 2017.

Luc De Vuyst, Raf Callewaert, and Kurt CrabbA©. Primary metabolite kinetics of bacteriocin bi-
osynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under
unfavourable growth conditions. Microbiology, 142(4):817-827, 1996.

Babak Momeni, Kristen A Brileya, Matthew W Fields, and Wenying Shou. Strong inter-population
cooperation leads to partner intermixing in microbial communities. eLife, 2, January 2013.

Wenying Shou, Sri Ram, and Jose M. G. Vilar. Synthetic cooperation in engineered yeast populations.
Proceedings of the National Academy of Sciences of the United States of America, 104(6):1877-1882,
February 2007. 00137.

Melanie JI Miiller, Beverly I Neugeboren, David R Nelson, and Andrew W Murray. Genetic drift opposes
mutualism during spatial population expansion. Proceedings of the National Academy of Sciences,
111(3):1037-1042, 2014.

Kai Zhuang, Goutham N Vemuri, and Radhakrishnan Mahadevan. Economics of membrane occupancy
and respiro-fermentation. Molecular systems biology, 7(1):500, 2011.

Joan B Peris, Paulina Davis, Jos¢é M Cuevas, Miguel R Nebot, and Rafael Sanjuan. Distribution of
fitness effects caused by single-nucleotide substitutions in bacteriophage f1. Genetics, 185(2):603-609,
2010.

Adrian WR Serohijos and Eugene I Shakhnovich. Merging molecular mechanism and evolution: theory
and computation at the interface of biophysics and evolutionary population genetics. Current opinion
in structural biology, 26:84-91, 2014.

43


https://doi.org/10.1101/264689
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/264689; this version posted February 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

952

953

954

955

958

959

9260

962

9263

9264

965

966

9268

9269

971

972

973

974

976

977

978

979

982

983

984

9286

987

988

289

9291

73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]
[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

under aCC-BY-NC 4.0 International license.

Adam Eyre-Walker and Peter D Keightley. The distribution of fitness effects of new mutations. Nature
reviews. Genetics, 8(8):610, 2007.

Michael A Stiffler, Doeke R Hekstra, and Rama Ranganathan. Evolvability as a function of purifying
selection in tem-1 S-lactamase. Cell, 160(5):882-892, 2015.

John W Drake. A constant rate of spontaneous mutation in dna-based microbes. Proceedings of the
National Academy of Sciences, 88(16):7160-7164, 1991.

Gregory 1. Lang and Andrew W. Murray. Estimating the Per-Base-Pair Mutation Rate in the Yeast
Saccharomyces cerevisiae. Genetics, 178(1):67-82, January 2008.

Sasha F Levy, Jamie R Blundell, Sandeep Venkataram, Dmitri A Petrov, Daniel S Fisher, and Ga-
vin Sherlock. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature,
519(7542):181, 2015.

Maureen E Hillenmeyer, Eula Fung, Jan Wildenhain, Sarah E Pierce, Shawn Hoon, William Lee, Michael
Proctor, Robert P St Onge, Mike Tyers, Daphne Koller, et al. The chemical genomic portrait of yeast:
uncovering a phenotype for all genes. Science, 320(5874):362-365, 2008.

Lilia Perfeito, Lisete Fernandes, Catarina Mota, and Isabel Gordo. Adaptive mutations in bacteria:
high rate and small effects. Science, 317(5839):813-815, 2007.

John H Gillespie. Molecular evolution over the mutational landscape. Evolution, 38(5):1116-1129, 1984.

H Allen Orr. The distribution of fitness effects among beneficial mutations. Genetics, 163(4):1519-1526,
2003.

Marianne Imhof and Christian Schlttterer. Fitness effects of advantageous mutations in evolving esche-
richia coli populations. Proceedings of the National Academy of Sciences, 98(3):1113-1117, 2001.

Rees Kassen and Thomas Bataillon. Distribution of fitness effects among beneficial mutations before
selection in experimental populations of bacteria. Nature genetics, 38(4):484, 2006.

Darin R Rokyta, Paul Joyce, S Brian Caudle, and Holly A Wichman. An empirical test of the mutational
landscape model of adaptation using a single-stranded dna virus. Nature genetics, 37(4):441, 2005.

Darin R Rokyta, Craig J Beisel, Paul Joyce, Martin T Ferris, Christina L. Burch, and Holly A Wichman.
Beneficial fitness effects are not exponential for two viruses. Journal of molecular evolution, 67(4):368,
2008.

Michael J Wiser, Noah Ribeck, and Richard E Lenski. Long-term dynamics of adaptation in asexual
populations. Science, 342(6164):1364-1367, 2013.

Lukasz Jasnos and Ryszard Korona. Epistatic buffering of fitness loss in yeast double deletion strains.
Nature genetics, 39(4):550, 2007.

Rafael Sanjuan, Andrés Moya, and Santiago F Elena. The contribution of epistasis to the architecture
of fitness in an rna virus. Proceedings of the National Academy of Sciences of the United States of
America, 101(43):15376-15379, 2004.

Aisha T Khan, Duy M Dinh, Dominique Schneider, Richard E Lenski, and Tim F Cooper. Negative
epistasis between beneficial mutations in an evolving bacterial population. Science, 332(6034):1193—
1196, 2011.

Santiago F Elena and Richard E Lenski. Test of synergistic interactions among deleterious mutations
in bacteria. Nature, 390(6658):395, 1997.

Carlos L Araya, Douglas M Fowler, Wentao Chen, Tke Muniez, Jeffery W Kelly, and Stanley Fields. A
fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements
of protein function. Proceedings of the National Academy of Sciences, 109(42):16858-16863, 2012.

44


https://doi.org/10.1101/264689
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/264689; this version posted February 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

902 [92] Hsin-Hung Chou, Hsuan-Chao Chiu, Nigel F Delaney, Daniel Segré, and Christopher J Marx. Diminis-
993 hing returns epistasis among beneficial mutations decelerates adaptation. Science, 332(6034):1190-1192,
994 2011.

eos  [93] Sergey Kryazhimskiy, Daniel P Rice, Elizabeth R Jerison, and Michael M Desai. Global epistasis makes
006 adaptation predictable despite sequence-level stochasticity. Science, 344(6191):1519-1522, 2014.

45


https://doi.org/10.1101/264689
http://creativecommons.org/licenses/by-nc/4.0/

