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Abstract

Long-term imaging of sensory cortex reveals a diverse range of stimulus response1

stability: some neurons retain stimulus responses that are stable over days whereas2

other neurons have highly plastic stimulus responses. Using a recurrent network3

model, we explore whether this observation could be due to an underlying diversity4

in the synaptic plasticity of neurons. We find that, in a network with diverse5

learning rates, neurons with fast rates are more coupled to population activity than6

neurons with slow rates. This phenomenon, which we call a plasticity-coupling7

link, surprisingly predicts that neurons with high population coupling exhibit more8

long-term stimulus response variability than neurons with low population coupling.9

We substantiate this prediction using recordings from the Allen Brain Observatory10

which track the orientation preferences of 15,000 neurons in mouse visual cortex.11

In agreement with our model, a neuron’s population coupling is correlated with12

the plasticity of its orientation preference. Finally, we show that high population13

coupling helps plastic neurons alter their stimulus preference during a simple14

perceptual learning task, but hinders the ability of stable neurons to provide an15

instructive signal for learning. This suggests a particular functional architecture: a16

stable ‘backbone’ of stimulus representation formed by neurons with slow synaptic17

plasticity and low population coupling, on top of which lies a flexible substrate of18

neurons with fast synaptic plasticity and high population coupling.19
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Introduction21

The brain encodes information about the external world via its neural activity. One aspect of such22

encoding is that neurons in sensory cortex often have a preferred stimulus which evokes a stronger23

response than other stimuli. These stimulus responses can change during learning or adaptation: if a24

particular stimulus feature is overexpressed within an environment, for example, more neurons will25

be recruited to encode this feature (Sengpiel et al., 1999). Advances in neural imaging techniques26

allow us to interrogate such changes by tracking stimulus responses of hundreds of neurons over27

many days in vivo (Andermann, 2010; Mank et al., 2008). These recordings reveal a substantial, and28

puzzling, variability in the long-term stability of responses in sensory cortex: some neurons retain29

highly stable preferences to specific stimuli, whereas the stimulus preference of other neurons change30

from day to day (Ranson, 2017; Clopath and Rose, 2017; Rose et al., 2016; Poort et al., 2015; Lütcke31

et al., 2013). The degree of stimulus response stability typically depends on brain region; whisking32

responses in mouse barrel cortex are highly plastic, whereas visual responses in mouse V1 are more33

stable but still exhibit fluctuations (Clopath and Rose, 2017; Lütcke et al., 2013). Moreover, it is34

possible to induce stimulus response plasticity through perturbations such as sensory deprivation35

(Rose et al., 2016), or to increase task-related stimulus response stability through rewarded learning36

(Poort et al., 2015).37

Current theories which address the long-term variability of stimulus responses primarily ask how38

motor learning occurs with unstable representations (Driscoll et al., 2017; Ajemian et al., 2013; Rokni39

et al., 2007), or seek to explain it as a form of probabilistic sampling (Kappel et al., 2017, 2015).40

Although the stability of neural representation is correlated with firing rate in hippocampal place cells41

(Grosmark and Buzsaki, 2016) and in visual cortex (Ranson, 2017), it is not known how cellular or42

network properties influence a neuron’s stimulus response stability (Clopath and Rose, 2017). We are43

therefore lacking a theory of why some neurons’ stimulus responses are more stable than others, and44

how this affects perception and learning. By investigating how synaptic plasticity mediates stimulus45

response variability, we aim here to establish how this diversity of stimulus response stability emerges,46

and whether it is functionally relevant.47

We propose that the observed diversity of stimulus response stability may be explained by a diversity48

of neurons’ inherent plasticity (or learning rate) within a network. Consequently, we explore how49

diverse learning rates across neurons impact synaptic connectivity in a recurrent network model of50

mouse visual cortex. We find that neurons with fast learning rates exhibit more variability of their51

stimulus selectivity than neurons with slow learning rates. Intriguingly, we also find that fast neurons52

have higher population coupling, a measure of how correlated an individual neurons activity is with53

the rest of the population (Okun et al., 2015).54

This unexpected plasticity-coupling link, in which more plastic neurons are also more coupled to the55

rest of the population, provides a mechanism for the diverse population coupling previously observed56

in sensory cortex (Okun et al., 2015). Moreover, the plasticity-coupling link predicts that neurons57

with high population coupling exhibit more long-term stimulus response variability than neurons58

with low population coupling. We substantiate this prediction with in vivo calcium imaging of mouse59

visual cortex from the Allen Brain Observatory (ABI, 2016), finding that a neuron is more likely to60

exhibit variability of its orientation preference if it has high population coupling.61

Finally, we explore the functional implications of both diverse population coupling and diverse62

learning rates within our network model. We find that strong population coupling helps plastic63

neurons alter their stimulus preference during a simple perceptual learning task, but hinders the ability64

of stable neurons to provide an instructive signal for learning. The plasticity-coupling link exploits65

this dependence by ensuring that highly plastic neurons - the substrate for perceptual learning - are66

strongly coupled to the population, while less plastic neurons are weakly coupled and act as a stable67

‘backbone’ of stimulus representation.68

Results69

2.1 A ‘plasticity-coupling link’ emerges in networks with diverse learning rates: fast70

neurons have higher population coupling than slow neurons71

Our aim is to explore whether the diversity of stimulus response stability can be explained by72

a diversity of neurons’ inherent plasticity (or learning rate) within a network. To this end, we73
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use network simulations to characterise the impact of diverse learning rates on recurrent synaptic74

connectivity in sensory cortex.75

We first explore the impact of diverse learning rates in a simple, fully connected network of rate76

neurons (Figure 1A, Methods). Excitatory recurrent synapses in our network undergo Hebbian77

plasticity and synaptic scaling, while inhibitory synapses undergo homeostatic inhibitory plasticity78

(Vogels et al., 2011). Extending traditional models of Hebbian plasticity in which synaptic weight79

updates depend only on the correlation of pre- and post-synaptic activity, we introduce diversity by80

assigning either a fast or slow Hebbian learning rate (α) to individual neurons. The learning rate is81

expressed postsynaptically, such that the synaptic input weights onto neurons with a large α are more82

plastic than those with a small α (Equation 3).83

Each neuron receives feedforward input from 1 of 4 possible visual stimuli representing gratings of84

different orientations, and independent noise. The Hebbian plasticity rule potentiates connections85

between neurons which share the same feedforward stimulus preference, due to their coactivity. This86

drives the emergence of strong bidirectional connections amongst stimulus-specific groups of neurons,87

while the remaining non-specific connections weaken (Figure 1B,C) (Ko et al., 2013; Clopath et al.,88

2010). Fast neurons develop these strong, specific connections sooner than slow neurons (Figure 1B,89

solid lines). However, the increased learning rate also leads to stronger synaptic weight fluctuations.90

These fluctuations occur both for synapses from neurons which share stimulus preference (specific91

connections) and for synapses from neurons which have different stimulus preference (non-specific92

connections). For slow neurons, in contrast, non-specific and specific connections tend towards either93

zero or the maximum synaptic weights respectively, remaining relatively stable after convergence94

(Figure 1B, black lines). This leads to connection specificity that is stronger and more stable compared95

with fast neurons (Figure 1D).96

The observed dependence of connection specificity on learning rate is conserved if, instead of just two97

values of α representing either fast or slow neurons, we simulate plasticity in a network of neurons98

with a diverse range of α (Figure 1E). Increasing α predominantly drives an increase in non-specific99

connections rather than a decrease in specific connections. This leads to an overall increase in the100

amount of synaptic input amongst neurons with high α.101

Population coupling is a recently characterised feature of neural activity which describes how102

correlated a neuron’s activity is with the overall population activity, and which can be measured103

from calcium imaging recordings of neural activity (Okun et al., 2015). Since population coupling104

is correlated with the amount of local synaptic input in cortical networks (Okun et al., 2015), this105

measure could be a useful and experimentally observable proxy for the specificity of recurrent106

connectivity in our networks. We therefore investigate its suitability by measuring the population107

coupling of neurons in our network after synaptic plasticity (Methods). Interestingly, population108

coupling increases with learning rate, closely following the dependence of non-specific connectivity109

on α (Figure 1E, red points).110

The dependence of a neuron’s population coupling on its learning rate α, which we call a ‘plasticity-111

coupling link’, could provide a framework for relating the functional role of a neuron within a112

network to its dynamics. We therefore explore conditions necessary for this plasticity-coupling link113

by embedding a single plastic neuron within a static network and varying key model parameters114

(Figure S1). A strong plasticity-coupling link requires both moderate amounts of noise within the115

network and relatively slow synaptic scaling compared with Hebbian plasticity, in agreement with116

experimental data (Turrigiano et al., 1998). We next investigate whether this plasticity-coupling link117

is robustly observed in more biologically detailed networks.118

2.2 Diverse population coupling emerges in cortical networks with diverse learning rates119

As the plasticity-coupling link is robustly observed in a fully-connected small network with simple120

stimulus responses, we next investigate i) whether the plasticity-coupling link is also present in larger121

networks which more accurately represent the synaptic connectivity and stimulus response properties122

observed in mouse visual cortex, and ii) whether the diverse population coupling observed in sensory123

cortex emerges simply by introducing diverse learning rates (Okun et al., 2015).124

We explore this in a network of 250 excitatory neurons with randomly generated Gabor receptive125

fields. This network has been shown to reproduce receptive field correlations and synaptic weight126

statistics that are observed in mouse visual cortex (Watanabe et al., 2016; Cossell et al., 2015) (see127
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Figure 1: Neurons with fast learning rates develop more non-specific connections, and higher
population coupling, than neurons with slow learning rates (A) Connection diagram of the re-
current network model with excitatory (E) and inhibitory (I) neurons. Dashed lines denote plastic
synapses and solid lines denote static synapses. (B) Synaptic weight dynamics during presentation
of random sequences of stimuli to the network. Synaptic inputs onto slow neurons (α = 1, gray)
and onto fast neurons (α = 5, black). Synapses between neurons which share the same feedforward
stimulus preference (specific) have solid lines, and synapses between neurons which have different
feedforward stimulus preference (non-specific) have dashed lines. (C) Excitatory synaptic weight
matrix of the recurrent network after synaptic plasticity. Neuron IDs are organised by feedforward
stimulus preference. For each of the 4 stimulus groups the first 6 neurons are slow (α = 1) and the
next 6 neurons are fast (α = 5). (D) Connection specificity (ratio of specific to non-specific synaptic
input strength) after synaptic plasticity for slow and fast neurons (left), and the standard deviation
over time of the connection specificity for slow and fast neurons (right). (E) Amount of non-specific
(light blue) and specific (dark blue) synaptic input for neurons in a network with diverse learning
rates, as the learning rate of the postsynaptic neuron is varied along a logarithmic scale. Population
coupling of neurons with different learning rates (red points).
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Methods section; Receptive-field based network model). We compare networks in which there is a128

uniform α across all neurons to networks with diverse α.129

Both networks with uniform α and networks with diverse α develop strong synaptic connections130

between neurons with similar receptive fields. There is, however, a broader range of summed synaptic131

inputs in diverse networks, when compared with uniform networks (Figure 2A). This occurs because132

the total excitatory synaptic input onto a neuron covaries with α in the diverse network (Figure 2B).133

In agreement with our previous observations, the population coupling of a neuron is determined by its134

total excitatory synaptic input (Figure 2C, blue line. r=0.29, p<1e-5, Spearman correlation). Diverse135

learning rates within a cortical network indeed lead to a broad distribution of population coupling,136

as observed by Okun et al. (2015) (Figure 2D, blue). Although the network with uniform α also137

exhibits some heterogeneity of population coupling, in this network a neuron’s population coupling is138

not correlated with the amount of synaptic input it receives (Figure 2C,D, green. p=0.52, Spearman139

correlation). This contradicts experiments which demonstrate a correlation between synaptic input140

and population coupling (Okun et al., 2015).141

We next investigate the long-term variability of stimulus selectivity within both networks by measuring142

the fluctuations of neuronal stimulus selectivity throughout a period of synaptic plasticity (Methods).143

We find that the magnitude of these fluctuations is independent of population coupling in the uniform144

network (p=0.4, Spearman correlation), but is correlated with population coupling in the diverse145

network (r=0.18,p=1e-5, Spearman correlation Figure 2E).146

We then characterise the dependence of population coupling and stimulus selectivity on the amplitude147

of external input noise, again for networks with either uniform or diverse α (Figure 2F). As the148

majority of excitatory synaptic input received by neurons in visual cortex is recurrent, we simulate149

a regime with relatively weak feedforward stimulus-related input and high noise for Figure 2A-E150

(Cossell et al., 2015; Lin et al., 2015). This results in a broader distribution of population coupling151

and weaker stimulus selectivity for networks with diverse α, compared to networks with uniform α152

(Figure 2F). The dynamics of cortical activity observed in vivo are therefore more closely captured153

by networks with diverse α, compared to networks with uniform α.154

Overall, these simulations show that the plasticity-coupling link observed in our small network155

model is robust in a larger network with receptive field properties and neuronal responses similar156

to mouse visual cortex. Networks with diverse α exhibit a broader range of population coupling157

than networks with uniform α. Moreover, diverse learning rates introduce a correlation between a158

neuron’s population coupling and its total excitatory synaptic input, in agreement with experimental159

observations (Okun et al., 2015). Taken together, diverse learning rates provide a parsimonious160

explanation for the diverse population coupling observed in sensory cortical networks.161

2.3 Experimental validation: population coupling is correlated with stimulus response162

variability in vivo163

We have demonstrated that the population coupling of a neuron in a recurrent network model depends164

on its inherent plasticity. This plasticity-coupling link predicts a correlation between a neuron’s165

population coupling and the variability of its stimulus selectivity. We now test this prediction using166

2-photon calcium imaging of visual cortex in awake adult mice (Methods). The data we analyse is167

publicly available and was collected by the Allen Brain Institute ABI (2016). Mice passively viewed168

drifting or static gratings, interleaved with natural movies, while the simultaneous responses of169

∼ 15, 000 excitatory neurons from 64 animals were recorded (Figure 3A). We measure the population170

coupling of each neuron over the entire recording session, and the preferred orientation of each171

neuron during the first 10 minutes and last 10 minutes of the experiment (Methods, Figure 3B). We172

then compare these two measurements of orientation preference to identify whether the preferred173

orientation of some neurons vary over the course of the experiment.174

There is a broad distribution of population coupling, in agreement with previous observations175

(Figure 3C) (Sedigh-Sarvestani et al., 2017; Okun et al., 2015). Roughly 60% of neurons express176

variability of their preferred orientation between the beginning and the end of the experiment.177

The distribution of changes in preferred orientation (∆ORIpref) is highly skewed towards smaller178

magnitudes. (Figure 3D).179
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Figure 2: Diverse population coupling from diverse learning rates in a cortical network model
(A) Distribution of summed synaptic input onto each neuron in networks with diverse learning rates
(blue), and networks with uniform learning rates (green) (B) Mean recurrent excitatory synaptic input
received by a neuron correlates with its learning rate, α. (C) The population coupling of a neuron is
correlated with the amount of recurrent synaptic input it receives for the network with diverse learning
rates (blue), as opposed to the network with uniform learning rates (green).(D) Diverse population
coupling occurs in our recurrent network model. The population coupling distribution is wider
for networks with diverse learning rates (blue) compared to networks with uniform learning rates
(green, p<1e-5, Levene test). (E) The variability of stimulus selectivity is correlated with population
coupling in networks with diverse learning rates (blue, r=0.18, p=1e-5, Spearman correlation), but
not in networks with uniform learning rates (green, p=0.4, Spearman correlation). (F) Dependence
of network properties on the amplitude of injected noise (σOU). Stimulus selectivity decreases with
increasing σOU for networks with both diverse and uniform learning rates (blue and green lines,
respectively). The distribution of population coupling broadens with increasing noise for networks
with diverse learning rates, but not for networks with uniform learning rates (blue and green dashed
lines, respectively). Panel A-E use σOU = 5.0 (shaded gray area).
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Population coupling is weakly but significantly correlated with the average change in preferred180

orientation, when pooling together neurons across all experiments (Figure 3E, r=0.04, p<1e-4,181

Spearman correlation). We characterise this dependence for each experiment by comparing the182

population coupling of neurons with variable orientation preferences (those with ∆ORIpref > 0)183

versus those with stable orientation preference. While there is substantial variability of the strength184

of the effect, the majority of experiments show a trend in which neurons with plastic orientation185

preferences have a higher mean population coupling than those with stable orientation preferences186

(Figure 3F, p<0.001, t-test). As the mean activity level of a neuron could conceivably determine its187

stimulus preference stability (Ranson, 2017; Grosmark and Buzsaki, 2016), we tested this and found188

no dependence of the tendency of a individual neuron to change stimulus preference on its average189

calcium fluorescence (p=0.17, Spearman correlation).190

(Okun et al., 2015) did not observe any correlations between population coupling of a neuron and its191

orientation selectivity. In contrast, our network model predicts that neurons with high population192

coupling are less selective than neurons with low population coupling. We tested whether there was193

this predicted dependence between population coupling and orientation selectivity in these data. We194

indeed found a weak anti-correlation between population coupling and orientation selectivity index195

(Figure S2, r=-0.05,p<1e-6, Pearson correlation).196

2.4 Diverse learning rates maintain both a stable backbone and a flexible substrate of197

stimulus representation198

Our analysis thus far explored the impact of diverse rates of plasticity on synaptic connectivity. We199

established a link between diverse population coupling and diverse stimulus response variability,200

both of which are observed in sensory cortex. We now explore the functional implications of diverse201

population coupling and learning rates within recurrent networks. In order to simplify our analysis202

we consider both forms of diversity in isolation.203

The presence of diverse rates of plasticity in a network suggests a dichotomy of roles: less plastic204

neurons could form stable stimulus representations while more plastic neurons could allow flexible205

representation. This could, for example, be beneficial during perceptual learning. We test this206

hypothesis by simulating an extended period of perceptual learning in our small network model207

(Methods, Figure 4A). We do this using a simple paradigm in which a randomly chosen feedforward208

stimuli is associated with an increased external input. This external input could be mediated by209

a reward, or some other top-down signal. Hebbian plasticity potentiates the recurrent synaptic210

connections from neurons which are tuned to the stimulus onto all neurons. This increases the211

selectivity of all neurons to the associated stimulus (Figure 4A).212

We evaluate the ability of our network to continually learn these stimulus associations in the case213

where α is slow for all neurons, α is fast for all neurons, or where there is diverse α (both slow and214

fast) for each feedforward stimulus group.215

We find that a network with only fast α quickly learns the stimulus associations (Figure 4A, bot-216

tom). However, repeated associations with neurons that do not share feedforward stimuli cause the217

specificity of recurrent connectivity to decrease, thus degrading the representation of feedforward218

stimuli (Figure 4A, top). Although neurons still form associations with the feedforward stimulus, this219

is because we keep the feedforward stimulus weights fixed; one can imagine that this feedforward220

selectivity may also degrade if these weights were plastic. Conversely, the network with only slow221

α retains a stable representation of the feedforward stimuli but performs poorly in representing the222

associated stimulus (Figure 4A). The network with diverse α overcomes these issues by having fast223

neurons which flexibly learn stimulus associations and slow neurons which maintain a ‘backbone’ of224

stimulus representation (see diagram, Figure 4B).225

2.5 The plasticity-coupling link enables efficient perceptual learning226

Having demonstrated the advantage of diverse learning rates within a network for perceptual learning,227

we now ask whether diverse population coupling has any impact on a network’s performance in228

this task. Given the plasticity-coupling link, we are particularly interested in whether the impact of229

population coupling on performance is dependent on a neuron’s rate of plasticity. To investigate this,230

we choose the extreme case in which there is a single neuron with plastic synaptic inputs embedded in231

an otherwise static recurrent network. Since all other synapses in the network are static (see diagram,232
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Figure 3: Population coupling is correlated with stimulus response variability in mouse visual
cortex in vivo (A) Diagram of stimulus and data analysis protocol (B) dF/F calcium fluorescence
traces of neurons (red traces) in an example experiment from the Allen Brain Observatory. Mean
activity is shown in black, and the population coupling of each neuron is indicated by its colour
changing from light to dark red with increased population coupling. (C) The population coupling
distribution of all neurons across all experiments (64 experiments, 15,281 neurons). (D) Absolute
difference in preferred orientation (∆ORIpref) between the beginning and the end of the recording
session. The distribution of ∆ORIpref is for all neurons across all experiments (both drifting gratings
and static gratings). (E) ∆ORIpref is correlated with population coupling (r=0.04, p<1e-4). Data
shown for all neurons across all experiments, binned by population coupling. Linear regression
fit for all datapoints (shaded gray area indicates 95% confidence interval). (F) Ratios of the mean
population coupling of neurons that change their preferred orientation (∆ORIpref > 0) versus mean
population coupling of neurons that conserve their preferred orientation (∆ORIpref = 0), for each
individual static grating (black) or drifting grating (gray) experiment. Dashed vertical line indicates
expected value if a neuron’s orientation preference variability is not dependent on its population
coupling (*** p<0.001, one sample t-test).
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Figure 4C), we focus on how synaptic inputs onto the plastic neuron evolve during learning. We233

adjust the population coupling (PC) of either the single plastic neuron (PCplastic) or the static neurons234

(PCstatic), and measure the ability of the plastic neuron to learn a stimulus association (Methods).235

We simulate perceptual learning by turning on an extra external input to all neurons in the network236

whenever the associated stimulus (red) is presented to the network (Figure 4C). We judge the plastic237

neuron to have learned the association if the synaptic weight from the presynaptic neuron selective to238

the associated stimulus becomes stronger than the weight from the presynaptic neuron (blue). We239

find that strongly coupling the plastic neuron to the population improves performance, while strongly240

coupling the static neurons to the population impairs performance (Figure 4D).241

We can understand this by considering that, for learning to occur, synaptic potentiation must happen242

between the static neuron corresponding to the associated stimulus (red) and the plastic neuron.243

Increasing the plastic neuron’s coupling to the rest of the population amplifies the correlation between244

the pre- and post- synaptic neuron when the associated stimulus is present, since the entire population245

receives an extra external input. On the other hand, strong coupling amongst the presynaptic static246

neurons decreases their stimulus selectivity, since they will be more co-active regardless of the247

stimulus identity. This corrupts the signal during stimulus association. These two effects combine,248

such that the new stimulus association is learned only when there is low population coupling amongst249

static neurons (PCstatic) and high population coupling for the plastic neuron (PCplastic) (Figure 4D,250

labelled Φ). In order to enhance perceptual learning with diverse learning rates, plastic neurons should251

therefore be more coupled to the rest of the population than stable neurons. Correlated diversity of252

population coupling and plasticity helps achieve this (Figure 2E), ensuring that neurons best suited to253

the necessary stimulus representation remain stable, while neurons best suited to learning stimulus254

associations remain flexible. The plasticity-coupling link therefore efficiently exploits the functional255

advantages conferred by both diverse learning rates and diverse population coupling.256

2.6 Diverse learning rates lead to networks with improved stimulus coding capabilities257

Until now we have considered the effect of population coupling on a network’s ability to learn258

stimulus associations. We are also interested in the impact of population coupling on a task that259

does not involve synaptic plasticity, since the differences in non-specific connectivity alone may260

affect a neuron’s computational capability. We choose stimulus decoding as a simple example, and261

measure performance at decoding pairs of stimuli in a static network, after it has gone through a262

period of synaptic plasticity (Methods). We compare three different network types; one which has263

been developed while it had only slow α, one developed with only fast α, and one developed with264

diverse α (Figure 4E). In a network with only slow α, and therefore low population coupling, stimulus265

decoding performs relatively well when there are high levels of noise in the input. Networks with266

only fast α perform relatively well when there are low levels of noise. A network with diverse α267

seems to advantageously combine both of these properties, so that its performance is high across the268

entire range of input strength and noise levels.269

Discussion270

We have studied the impact of diverse learning rates in a recurrent network model of visual cortex.271

Intriguingly, a plasticity-coupling link emerges in networks with diverse learning rates, in which272

neurons with fast learning rates are more coupled to population activity than neurons with slow273

learning rates. We substantiated a key prediction of our plasticity-coupling link with in vivo calcium274

imaging of mouse visual cortex from the Allen Brain Observatory (ABI, 2016), finding that a neuron275

is more likely to exhibit stimulus preference variability if it has high population coupling. Based276

on our findings we propose that the plasticity-coupling link efficiently combines stable and flexible277

stimulus representation.278

3.7 Stability and plasticity of stimulus responses279

The architecture of a plastic substrate of neurons on top of a stable ‘backbone’ (Figure 4B) has been280

hypothesised before, and there is some compelling experimental evidence for this proposal (Grosmark281

and Buzsaki, 2016; Clopath and Rose, 2017; Rose et al., 2016; Panas et al., 2015). In particular,282

tracking of hippocampal cell assemblies reveal subsets of either plastic, highly active neurons or rigid,283

less active neurons (Grosmark and Buzsaki, 2016). Likewise, a statistical-mechanical analysis of284
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Figure 4: Plasticity-coupling link enables both robust stimulus representation and a flexible
substrate for perceptual learning (A) The evolution of mean selectivity to the feedforward stimulus
(top) and a stimulus associated with an additional external input (bottom) in networks composed
either entirely of neurons with slow α (black), fast α (gray), or a mix of both fast and slow α (dashed
black). Shaded gray region indicates when the additional external input is present, and the coloured
circles indicate the stimulus the external input is associated with at that time (this switches every 25
seconds) (B) Synaptic connectivity after plasticity for a network of neurons with slow (small circles)
or fast (large circles) learning rates. Neurons in the network receive input selective to 1 of 4 possible
stimuli (colour denotes stimulus preference). Synaptic inputs onto fast neurons and slow neurons are
coloured gray and black respectively. The spatial organisation of neurons is for visualisation purposes
only.
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Figure 4: (C-D) Investigating the impact of population coupling on perceptual learning. (C) Coupling
of either the plastic neuron or static neurons to the population is set by adjusting PCplastic and PCplastic
respectively. Perceptual learning is simulated through an additional external input whenever the
preferred stimulus of the red neurons is present. This leads to the predominant synaptic weight onto
the plastic neuron (black) switching from the neuron with the same original preferred stimulus (blue)
to the neuron with the associated preferred stimulus (red). (D) Amount of perceptual learning which
occurs at the plastic neuron, as the population coupling of either the plastic neuron (PCplastic, x-axis)
or static (PCstatic, y-axis) is varied. Perceptual learning is quantified by the ratio of the red synaptic
weight (associated stimulus) to the blue synaptic weight (original preferred stimulus of the plastic
neuron) after plasticity. Red regions (Φ) indicate successful perceptual learning, and occur only when
PCplastic is high and PCstatic is low. (E) Relative stimulus decoding performance of fixed recurrent
networks after a period of plasticity in order to develop the network. Networks were developed using
either entirely neurons with fast learning rates, slow learning rates, or a 50/50 mix of both learning
rates. The feedforward stimulus strength (x-axes) and noise (y-axes) were varied along a logarithmic
scale. (F) Illustration of the synergistic effect of the plasticity-coupling link on perceptual learning.
The plasticity-coupling link ensures that slow neurons have low population coupling and fast neurons
have high population coupling, which panel D demonstrates is necessary for perceptual learning.

network activity in hippocampal cell cultures identified both neurons which are highly active and285

contribute predominantly to network stability, and neurons which exhibit more long-term activity286

fluctuations without compromising overall network stability (Panas et al., 2015). In primary visual287

cortex - which we model - neurons exhibit characteristic fluctuations of their stimulus selectivity288

during baseline measurements, but nonetheless tend to retain their preferred stimulus following289

recovery from sensory deprivation (Rose et al., 2016). This provides evidence for a stable ‘backbone’290

of recurrent connectivity which is resistant to sensory perturbations (Clopath and Rose, 2017). Ranson291

(2017) investigated the stability of locomotion-dependent modulation of visual responses across292

14 days and, in contrast to Grosmark and Buzsaki (2016), found that highly responsive neurons293

exhibited reasonably stable stimulus preference while weakly responsive neurons exhibit plastic294

stimulus preference. However, these experiments tracked different stimulus features - and over longer295

timescales - when compared with our study. Moreover, our inclusion of a homeostatic inhibitory296

plasticity rule that precisely controls excitatory firing rate precludes us from making predictions about297

the dependence of a neurons average firing rate and its propensity for stimulus preference plasticity298

(Vogels et al., 2011). Similar links between plasticity and population dynamics could emerge in other299

experiments that chronically image cortical network activity (Driscoll et al., 2017; Singh et al., 2015;300

Peron et al., 2015)301

Since the majority of experiments which track stimulus preference evolution do so during visual302

discrimination paradigms, it is likely that top-down influences such as attention or reward modulation303

play significant roles in their observed dynamics (Pakan et al., 2018; Caras and Sanes, 2017; Poort304

et al., 2015; Schoups et al., 2001). An exception is Goltstein et al. (2013), in which stimulus305

preference is measured in the anaesthetised state, meaning that top-down inputs are likely to be306

absent. Likewise, Ranson (2017) tracked stimulus response stability during passive viewing, similar307

to the experimental setup of the data we analyse (ABI, 2016). As well as top-down modulation,308

further features missing from our network model are a realistic inhibitory circuitry (Tremblay et al.,309

2016; Letzkus et al., 2015), and incorporating changes in network dynamics which occur during310

sleep (Grosmark and Buzsaki, 2016; Singh et al., 2015), both of which are widely viewed to play an311

important role in regulating the plasticity of neural representation.312

3.8 A plasticity-coupling link in vivo313

Our analysis of in vivo calcium imaging substantiates a key prediction of our network model by314

observing a correlation between the stimulus preference plasticity of a neuron and its population315

coupling (Figure 3D). Note that this relationship does not arise in our receptive-field network model316

with uniform learning rates (Figure 2E), so it is not a trivial consequence of any network model that317

exhibits diverse population coupling. Although the correlations we measured are quite small, this318

variability reflects what is observed in our network model (Figure 2E), and is not surprising given319

that there are likely many unobserved factors - aside from population coupling - which contribute to320

the dynamics of a neuron’s observed stimulus response. Indeed, our network with uniform learning321

rates demonstrates significant stimulus response variability (Figure 2E, green), but crucially does not322
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capture the correlation between this variability and population coupling which we observe both in323

vivo and in the network with diverse learning rates.324

An advantage of the Allen Brain Observatory is the large amount of data and easily replicable data325

processing pipeline which allows us to build upon previous work investigating population coupling326

in the same dataset (Sedigh-Sarvestani et al., 2017). Since the population coupling of a neuron is327

correlated across brain states, and is only weakly dependent on stimulus type and mean fluorescence,328

we believe that it provides a good measure of a neurons functional integration within the local network,329

and would - according to our model - therefore provide a reasonable estimate of its propensity for330

perceptual learning (Figure 4D) (Sedigh-Sarvestani et al., 2017; Okun et al., 2015). In agreement with331

our network model, and in contrast with observations from (Okun et al., 2015), population coupling332

is anti-correlated with orientation selectivity in the Allen Brain Observatory dataset (Figure S2).333

The disparity between these two experiments could be due to different experimental conditions,334

or the effect may not have been previously observed due to the smaller number of neurons used335

previously (n=431 in (Okun et al., 2015)). Moreover, our observation that the changes in stimulus336

preferences (∆ORIpref) are often non-zero but skewed towards small absolute values (Figure 3C) are337

in agreement with the hypothesis that stimulus preference is a slowly drifting property (Rose et al.,338

2016). Unfortunately, the experimental protocol limits us to directly comparing stimulus preference at339

only two timepoints; the beginning and end of a 62 minute imaging session (Figure 3A). Nonetheless,340

significant changes in synaptic efficacies can be expressed within this time (Meyer et al., 2014). We341

hope that these findings will stimulate further experiments that allow us to more precisely test for the342

presence of a plasticity-coupling link across longer timepoints, and during learning.343

3.9 Population coupling and neuron function344

Our network model provides a parsimonious explanation for the diverse population coupling recently345

observed in sensory cortex (Okun et al., 2015). Population coupling is dependent on the amount of346

recurrent synaptic input a neurons receives, in agreement with experimental data (Figure 2C). Note347

that this dependence is not present in networks with uniform learning rates, even though they too348

exhibit diverse population coupling. Moreover, the width of the population coupling distribution349

increases as the recurrent network approaches a dynamic regime dominated by high noise and350

diverse selectivity, typical in cortical networks (Figure 2F). These findings suggest that different351

population couplings may simply be a feature of varying learning rates and does not necessarily352

mean (although we cannot exclude it) that the observed diversity reflects entirely different cell classes.353

Furthermore, one can imagine alternative mechanisms that lead to diverse population coupling in354

recurrent networks, such as imposing heterogeneous targets for the number of synaptic inputs received355

by each neuron. Investigating such alternative mechanisms was outside the scope of our study, but356

would provide an interesting avenue for further theoretical research.357

The proposed plasticity-coupling link presents a counterintuitive interpretation of the role of ‘soloists’358

and ‘choristers’ originally described by Okun et al. (2015). While one may naively suppose that the359

weakly coupled ‘soloists’ are suited to undergo plasticity during learning, we propose that it is in fact360

the strongly coupled ‘choristers’ with a more plastic representation.361

The functional impact of population coupling on learning is crucial: in order to enhance perceptual362

learning, plastic neurons in recurrent networks should be more coupled to the rest of the population363

than stable neurons (Figure 4D,F). We find that high population coupling helps plastic neuron change364

their stimulus preference towards an associated stimulus, but hinders the ability of stable neurons to365

provide an instructive signal for learning. Correlated diversity of population coupling and learning366

rate therefore enables both robust stimulus representation (low α, PC) and a flexible substrate suitable367

for perceptual learning (high α, PC). Strikingly, this relationship is precisely what the predicted368

plasticity-coupling link ensures (Figure 4E). Moreover, a recent theoretical study of sensory decoding369

proposed that untuned neurons contribute to decoding when they are correlated with tuned neurons370

Zylberberg (2017). Again, this is the relationship predicted by our model, since plastic neurons are371

less tuned than rigid neurons and are more strongly coupled to the population (Figure 1D,E).372

3.10 Previous theoretical work373

There are many previous theoretical explorations of how diversity in the synaptic plasticity of in-374

dividual neurons affects learning. A recent study proposes a conceptually similar mechanism for375
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modulating the stability or flexibility of memory formation, by implementing either symmetric or376

asymmetric STDP learning rules (Park et al., 2017). Diversity in synaptic learning rates was also377

explored within the traditional machine learning framework, whereby fast weights store temporary378

memories of recent events, compared with slow weights which capture regularities in input structure379

(Ba et al., 2016). Our work is related to previous approaches for overcoming catastrophic forgetting,380

which is often observed in neural networks during learning (Grossberg, 1987; Carptenter and Gross-381

berg, 1987; McClelland et al., 1995; Fusi et al., 2005; Roxin and Fusi, 2013; Benna and Fusi, 2016).382

These approaches typically involve partitioning memories across timescales by implementing either383

synaptic states with different timescales, or neural architectures with different timescales. Here, we384

intead based our approach on experimental observations that suggest diverse learning rates within a385

sensory cortical network (Ranson, 2017; Clopath and Rose, 2017; Rose et al., 2016; Poort et al., 2015;386

Lütcke et al., 2013). Finally, individual synaptic updates in our model are defined by the learning rate387

of the postsynaptic neuron (Equation 3). Further work could explore whether our observed outcomes388

change if updates are instead dependent on the learning rate of the presynaptic neuron.389

The plasticity-coupling link’s impact on perceptual learning suggests a dichotomy of roles amongst390

neurons in a network, tied to a particular functional architecture: a stable ‘backbone’ of stimulus391

representation formed by neurons with slow synaptic plasticity and low population coupling, on top392

of which lies a flexible substrate of neurons with fast synaptic plasticity and high population coupling.393

Diverse learning rates naturally enable this architecture, and offer a compelling candidate mechanism394

for mediating both forms of diversity - population coupling and stimulus response stability - recently395

observed in cortical networks. Finally, the plasticity-coupling link provides neuroscientists with a396

means to assess the tendency of particular neurons to influence future learning: those which are highly397

coupled to population activity are most likely to express plasticity. Ongoing advances in chronic398

multi-neuron calcium imaging, alongside neuron-specific optogenetic stimulation, will allow us to399

further probe and exploit these possibilities.400
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Methods401

Our network model simulations were written in python with numpy and scipy.402

4.11 Neuron model403

For both the fully connected and the receptive field networks we use a simple firing rate neuron model,404

given by the transfer function g(x) defined below, and as used previously by Rajan et al. (2010);405

Hennequin et al. (2014).406

g(x) = 0 if x < 0

= (rmax − r0)tanh
(
x/(rmax − r0)

)
if x ≥ 0.

(1)

This leads to firing rates with a baseline of r0 and a maximum of rmax. Following Rajan et al. (2010),407

the firing rates yi of neuron i driven by external input Hi in a network are described below.408

dyi
dt

= −yi +
N∑
j=1

Wijg(yj) +Hi , (2)

where Wij is the weight of the synaptic connection from neuron j to neuron i.409

4.12 Modelling synaptic plasticity with diverse learning rates410

We use a simple Hebbian learning rule with homeostatic synaptic scaling to model synaptic plasticity411

of recurrent excitatory to excitatory (E-E) synapses (Gerstner and Kistler, 2002),412

dWEE
ij

dt
= αiyiyj − ζ

( NE∑
k=1

WEE
ik −WEE

total

)
(3)

where αi is the learning rate of the postsynaptic neuron and yj and yi are the activities of the pre- and413

postsynaptic neuron respectively. ζ is the time constant of synaptic scaling, and WEE
total is the target414

amount of total recurrent synaptic input which each neuron can receive under the synaptic scaling415

rule.416

This form of excitatory plasticity introduces competition amongst presynaptic synaptic weights and417

leads to the development of stimulus selectivity, as discussed in Ko et al. (2013). We use a homeostatic418

rule to model inhibitory synaptic plasticity of recurrent inhibitory to excitatory (I-E) weights (Vogels419

et al., 2011),420

dWIE
ij

dt
= ηyj(yi − y0) , (4)

where y0 is the homeostatic target firing rate, η is the learning rate, and W IE
ij is the weight of the421

synaptic connection from inhibitory neuron j to excitatory neuron i.422

Excitatory weights are bounded so that their values lie between 0 and wmax, and inhibitory weights423

are bounded so that they lie between −wmax-inh and 0.424

While including two homeostatic mechanisms in our network model may seem redundant, they play425

different regulatory roles. Inhibitory plasticity largely controls the balance of excitation and inhibition426

received by a neuron, ensuring that it operates within its dynamic range. Synaptic scaling ensures427

that the total amount of recurrent excitation in the network is kept fixed as we vary its external input,428

while also introducing competition between presynaptic weights so that stimulus selectivity emerges.429

The synergistic effect of including multiple forms of plasticity has been widely studied in theoretical430

studies (Zenke et al., 2015; Litwin-Kumar and Doiron, 2014; Triesch, 2007; Clopath et al., 2016).431

Note that the speed of all learning rates α, ζ, and η are artificially increased in order to reduce the432

computational times resources required to simulate our network model. The timescales of synaptic433

plasticity in our network models are in the order of hundreds of seconds, while synaptic plasticity434
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during perceptual learning occurs over the course of days in vivo. This increased learning rate435

does not qualitatively affect our results, as there is a sufficient separation of timescales between436

synaptic plasticity and network dynamics, and is a standard assumption in network models of synaptic437

plasticity (Zenke et al., 2015; Litwin-Kumar and Doiron, 2014).438

4.13 Fully connected network model439

The fully connected network consists of NE excitatory neurons and a global inhibitory neuron440

(NI = 1). The dynamics of both inhibitory (I) and excitatory (E) neurons are described by Equation 1441

and Equation 2. There is dense all-to-all synaptic connectivity in the E-E, E-I and I-E populations,442

and no I-I connectivity. Self-connections, or autapses, are not permitted in this network. W in443

Equation 2 is a square matrix with (NE +NI)2 elements.444

For Figure 1 we use a network with 48 excitatory neurons, and 4 input stimuli. Each neuron i has a445

preferred stimulus θpref
i , such that there are 12 neurons corresponding to each input stimulus. Each446

neuron receives its’ preferred stimulus input Hstim, and an independent noise source generated by an447

Ornstein-Uhlenbeck process, OU, with a mean of 0, variance of σOU and correlation time τOU. The448

external input Hi to a neuron i is therefore given by449

Hi(t) = δ(θpref
i − θinput(t))Hstim + OUi(t) . (5)

For Figure 1B-D, these input groups are further divided so that there are 6 slow neurons (with450

αi = αs) and 6 fast neurons (with αi = 5αs) per group. For Figure 1E, each input group of 12451

neurons contains a single neuron corresponding to each of the 12 learning rates. The learning rates452

are logarithmically spaced between 0.5αs and 75αs.453

All excitatory-to-inhibitory synapses are uniformly initialised with weights W EE
init , excitatory-to-454

inhibitory synapses with weights W EI
init, and inhibitory-to-excitatory synapses with weights W IE

init. We455

simulate the evolution of synaptic weights during visually evoked activity by sequentially presenting456

the network with a randomly chosen stimulus from the 4 input stimuli. Each stimulus is presented for457

500 ms. The total simulation time is 500 seconds, and synaptic weights are updated at each timestep458

with the learning rules given by Equation 3 and Equation 4.459

For Figure 1D, connection specificity is defined as the average ratio of specific to non-specific460

excitatory synaptic weights received by neurons. Synaptic inputs from neurons in the same input461

stimulus group as the postsynaptic neuron are specific (i.e. they share the same feedforward stimulus462

preference), while all other synaptic inputs are non-specific. Specificity fluctuations are defined as463

the standard deviation of the connection specificity over time, where specificity is sampled every464

second from 200 to 500 seconds.465

Table 1: Simulation Parameters
Hstim 8 r0 1.0 rmax 20.0 dt 0.05 ms
αs 2.0x10−6 Hz ζ 2x10−4 Hz η 1.0x10−5 Hz y0 5
wmax 0.042 wmax-inh 50 WEE

total 0.75
σOU 1 τOU 10 ms W EE

init 0.5wmax W IE
init 0.2

4.14 Measuring population coupling466

As introduced by Okun et al. (2015), the population coupling PCi of a neuron i is measured by467

calculating the Pearson correlation coefficient of each neurons’ activity xi with the average activity468

of the rest of the population;469

PCi = corr
(
xi,

1

N − 1

N∑
j 6=i

xj
)

. (6)

Synaptic weights are kept fixed during the population coupling measurement, while external input is470

as in Equation 5. We measured population coupling using 250 seconds of activity.471

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/265041doi: bioRxiv preprint 

https://doi.org/10.1101/265041
http://creativecommons.org/licenses/by/4.0/


4.15 Receptive-field based network model472

For Figure 2, we adapt a previously developed model of receptive field properties in mouse visual473

cortex (Watanabe et al., 2016). We add neuronal dynamics and, beginning with uniform connectivity,474

simulate synaptic plasticity as visual stimuli are presented to the network. This model is constructed475

by assigning receptive fields to each excitatory neuron from a 2D Gabor function,476

RF(x′, y′) = A exp
(−x′2

2σ2
x

− −y
′2

2σ2
y

)
cos(2πfx′ + φ)

x′ = x cosθ − y sinθ

y′ = x sinθ + y cosθ

(7)

where A is the amplitude, σx and σy are the standard deviations of the Gaussian, θ is the orientation,477

f is the frequency and φ is the phase of the receptive field. A network of 250 excitatory neurons with478

receptive fields is randomly generated from Equation 7, with f = 2, σx = σy = 0.5, φ ∼ (0, 2π),479

θ ∼ {π/4, π/2, 3π/4, ..., 2π}. As in the previous network, there is a single inhibitory neuron which480

all excitatory neurons project to, and receive inhibition from.481

Neurons are rate-based and have similar dynamics as in the simple network model (Equa-482

tion 1,Equation 2). Synaptic plasticity is also governed by the same learning rules (Equa-483

tion 3,Equation 4). Inputs are presented to the network in the form of 2D images, and the input to484

each neuron i for a given image Iext is determined by the pixel-wise dot product of that image with485

the neurons’ receptive field RFi, in addition to an independent noise term for each neuron given by486

an Ornstein-Uhlenbeck process;487

Hi(t) = Iext · RFi + OUi(t) . (8)
All excitatory-to-inhibitory synapses are uniformly initialised with weights W EE

init-RF and inhibitory-488

to-excitatory synapses with weights W IE
init-RF. We simulate the evolution of synaptic weights during489

visually-evoked activity by sequentially presenting the network with randomly chosen bars of different490

orientations . Each image is presented for 500 ms. The total simulation time is 500 seconds, and491

synaptic weights are updated at each timestep. All results in Figure 2 are pooled from 15 independent492

network instances, with 250 excitatory neurons in each network instance.493

We define the selectivity of each neuron as w̄specific − w̄non-specific, where wspecific are the synaptic494

weights from neurons which share the same receptive field orientation and wnon-specific are the synaptic495

weights from neurons which have a different receptive field orientation.496

4.16 The Allen Brain Observatory: 2-photon calcium imaging of visual responses in vivo497

We use data from the Allen Brain Observatory, a publicly available and curated survey of neural498

activity in adult mouse visual cortex. A comprehensive description of the experimental methods, data499

acquisition and data analyses are available as white papers published by the Allen Brain Institute500

(ABI, 2016).501

Briefly, GCaMP6F was expressed in forebrain excitatory neurons of transgenic mice line Ai93.502

Cranial surgery was performed to insert a window between p37-p63, followed by 2 weeks of503

habituation to the experiment setting. Mice were head-fixed on top of a rotating disk and could504

walk freely. 2-photon imaging experiments were conducted as the mouse passively viewed the505

stimulus protocol on a screen. The stimulus protocols included in our analysis consisted of either506

i) 10 minutes of drifting gratings, followed by 42 minutes of interleaved natural movies, drifting507

gratings and spontaneous activity, followed by another 10 minutes of drifting gratings, or ii) 8508

minutes of static gratings, followed by 45 minutes of interleaved natural movies, static gratings509

and spontaneous activity, followed by 9 minutes of static gratings (Figure 3A, see white paper for510

further details). Drifting gratings were presented at 8 uniformly separated directions and at 5 different511

temporal frequencies. Static gratings were presented at 6 uniformly separated orientations separated,512

5 different spatial frequencies and 4 different phases. 112 imaging experiments were initially included513

in our analysis.514

4.17 Measuring population coupling and stimulus response variability in vivo515

The Allen Brain Institute API provides functions which allow us to extract fluorescence traces516

and measure average stimulus response properties of individual cells during an experiment (ABI,517
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2016). Motion correction, ROI detection and segmentation, and the removal of neuropil fluorescence518

artefacts are automatically performed using the API. We customised scripts within this API so that519

we could measure population coupling and stimulus response properties under specific conditions520

and timeframes.521

We measure population coupling similarly to the network model analysis (Equation 6), but where a522

neuron’s activity is represented by calcium fluorescence dF/F. To ensure a reliable estimate of the523

population activity when calculating population coupling, we exclude any experiments in which less524

than 50 neurons were recorded. We also exclude any experiments in which the population couplings525

are not sufficiently consistent when using either half (randomly chosen) of the neurons to estimate526

population activity (r2 < 0.8, linear regression). This reduces the number of experiments in our527

analysis from 112 to 64, for a total of 15,281 neurons.528

We measure the preferred orientation of each neuron during both the first presentation of static529

or drifting gratings (ORIpref-1), and the final presentation of static or drifting gratings (ORIpref-2)530

(Figure 3A). The preferred orientation is defined as the grating that evoked the largest mean response531

across all trials. Note that each experiment contains only either static or drifting gratings, so there is532

no overlap between these two conditions. The absolute difference in preferred orientation is calculated533

as: ∆ORIpref = |ORIpref-1 − ORIpref-2|.534

4.18 Simulating perceptual learning535

For the perceptual learning simulation in Figure 4A, the inputHi to each neuron is simulated as before,536

but with an additional term which is active whenever the stimulus associated with the additional537

external input is present (Equation 9). We first simulate synaptic plasticity without any stimulus538

associations for 300 seconds (i.e. with Hassociated = 0), and then simulate perceptual learning (with539

Hassociated = 10). The identity of the associated stimulus is changed every 25 seconds to simulate540

continual learning.541

Hi(t) = δ(θpref
i − θinput(t))Hstim + δ(θassociated − θinput(t))Hassociated + OUi(t) (9)

Feedforward stimulus selectivity is defined as w̄specific

w̄non-specific
− 1, where wspecific are the synaptic weights542

from neurons which share the same feedforward stimulus preference and wnon-specific are the synaptic543

weights from neurons which have a different feedforward stimulus preference. Likewise, associated544

stimulus selectivity is defined as w̄associated
w̄non-associated

−1, wherewassociated are the synaptic weights from neurons545

whose feedforward stimulus preference is the associated stimulus, and wnon-associated are the synaptic546

weights from other neurons.547

4.19 Single plastic neuron embedded in a static network548

In order to systematically investigate the effect of population coupling on perceptual learning, we must549

keep the population coupling of both the static and plastic population fixed throughout the experiment.550

Since changes in the synaptic weights connecting both these populations will alter their population551

coupling, we overcome this by making these particular synapses functionally silent. That is, while552

their synaptic weight is updated depending on pre- and post-synaptic activity as before (Equation 3),553

these synapses do not contribute when calculating the activity of the static and plastic neurons. The554

activities of the static and plastic neurons (ystatic and yplastic) are therefore only determined by their555

external input and the activities of the population (ypop, Figure 4C), meaning that their population556

coupling can be systematically varied:557

dypop
i

dt
= −ypop

i +
N∑
j=i

Wijg(ypop
j ) +Hi ,

dyplastic
i

dt
= −yplastic

i + PCplastic

N∑
j=i

Wijg(ypop
j ) +Hi ,

dystatic
i

dt
= −ystatic

i + PCstatic

N∑
j=i

Wijg(ypop
j ) +Hi .

(10)

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/265041doi: bioRxiv preprint 

https://doi.org/10.1101/265041
http://creativecommons.org/licenses/by/4.0/


Wij is fixed for the duration of the simulation, while the synaptic weights from the static to the plastic558

population are updated as below;559

dW plastic
ij

dt
= αystatic

i yplastic
j − ζ

(Nplastic∑
k=1

W plastic
kj −WEE

total

)
. (11)

As before, the input Hi has an additional term which is active whenever the stimulus associated560

with the additional external input is present (Equation 9, i.e. whenever the red stimulus is being561

presented). We first simulate synaptic plasticity without any stimulus associations for 500 seconds (i.e.562

with Hassociated = 0), and then simulate perceptual learning (with Hassociated = 10) for 100 seconds.563

Perceptual learning is quantified by the ratio of the red synaptic weight (associated stimulus) to the564

blue synaptic weight (original preferred stimulus of the plastic neuron) after plasticity565

4.20 Measuring stimulus decoding performance566

We train a perceptron to decode the stimulus identity from the individual activity of all neurons in the567

network, using the scikit-learn python package. The average activity of each neuron across a 500 ms568

sampling period are used as inputs during training. For Figure 4E, performance at decoding pairs569

of stimuli simultaneously presented to the network is shown. Relative deviation from the average570

performance of a perceptron trained to decode pairs of stimuli (28 possible pairs from 8 stimuli) over571

all 3 network types is calculated. The relative deviations for each network type from the average572

across all networks types are shown (Figure 4E).573

4.21 Code availability574

Code will be made publicly available on github and modeldb, and can be made available to reviewers.575
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Supplementary materials685

Methods for Figure S1686

We simulate a network of 1 postsynaptic neuron and 10 presynaptic neurons. 3 of the presynaptic neurons share687

the same stimulus preference as the postsynaptic neuron and the remaining have different preferred stimuli. We688

then identify the parameter regime in which the coupling of the single plastic neuron to the rest of the population689

is correlated to its learning rate. To do so, we measure the population coupling of the postsynaptic neuron for a690

range of different learning rates from 0.5αs to 10αs , using a separate network instantiation for each value of α.691

We then estimate the slope of the relationship between population coupling and α using linear regression, across692

a range of values for the synaptic scaling rate (ζ) and noise magnitude (σOU).693
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Figure S1: Plasticity-coupling link requires moderate noise and slow synaptic scaling. The
slope of the linear dependence between α and population coupling within a network with diverse
α, for different values of the synaptic scaling rate (ζ) and injected noise (σOU). The presence of
noise introduces transient correlations across the network which lead to fluctuations of both specific
and non-specific synaptic weights. This ensures that non-specific synaptic weights do not all tend
towards zero. Likewise, if synaptic scaling is too fast compared with Hebbian plasticity - contrary to
experimentally observed timescales (Turrigiano et al., 1998) - then only specific synapses, which
share highly correlated inputs, can sustain strong weights while non-specific synapses tend towards
zero.
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Figure S2: Orientation selectivity index is anti-correlated with population coupling.
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