1	
2	Title
3	Hybrid de novo assembly of the draft genome of the freshwater mussel Venustaconcha
4	ellipsiformis (Bivalvia: Unionida).
5	
6	Authors
7	Sébastien Renaut ^{1,2,8} , Davide Guerra ³ , Walter R. Hoeh ⁴ , Donald T. Stewart ⁵ , Arthur E.
8	Bogan ⁶ , Fabrizio Ghiselli ⁷ , Liliana Milani ⁷ , Marco Passamonti ⁷ , Sophie Breton ^{2,3,8}
9	
10	Affiliations
11	¹ Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale,
12	Université de Montréal, Montréal, QC, Canada
13 14	 ² Quebec Centre for Biodiversity Science, Montréal, QC, Canada ³ Département de Sciences Biologiques, Université de Montréal, Montréal, QC,
15	Canada
16	⁴ Department of Biological Sciences, Kent State University, Kent, OH, USA
17	⁵ Department of Biology, Acadia University, Wolfville, NS, Canada
18	⁶ North Carolina Museum of Natural Sciences, Raleigh, NC, USA
19	⁷ Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of
20	Bologna, Bologna, Italy
21	⁸ corresponding authors: sebastien.renaut@umontreal.ca, s.breton@umontreal.ca
22	
23	
24	
25	
26	
27	
28	

29 Abstract

Freshwater mussels (Bivalvia: Unionida) serve an important role as aquatic ecosystem 30 31 engineers but are one of the most critically imperilled groups of animals. An 32 assembled and annotated genome for freshwater mussels has the potential to be 33 utilized as a valuable resource for many researchers given their ecological value and 34 threatened status. In addition, a sequenced genome will help to answer more 35 fundamental questions of sex-determination and genome evolution in bivalves exhibiting a unique "doubly uniparental inheritance" mode of mitochondrial DNA 36 37 transmission through comparative genomics approaches. Here, we used a combination 38 of sequencing strategies to assemble and annotate a draft genome of the freshwater 39 mussel Venustaconcha ellipsiformis. The genome described here was obtained by 40 combining high coverage short reads (65X genome coverage of Illumina paired-end 41 and 11X genome coverage of mate-pairs sequences) with low coverage Pacific 42 Biosciences long reads (0.3X genome coverage). Briefly, the final scaffold assembly 43 accounted for a total size of 1.54Gb (366,926 scaffolds, N50 = 6.5Kb, with 2.3% of 44 "N" nucleotides), representing 93% of the predicted genome size of 1.66Gb. Over one 45 third of the genome (37.5%) consisted of repeated elements and more than 85% of the 46 core eukaryotic genes were recovered. Finally, we reassembled the full mitochondrial 47 genome and found six polymorphic sites with respect to the previously published reference. This resource opens the way to comparative genomics studies to identify 48 49 genes related to the unique adaptations of freshwater mussels and their distinctive 50 mitochondrial inheritance mechanism.

51 Keywords: genome assembly, annotation, High Throughput Sequencing, Freshwater
52 Mussels, Unionida

53 Introduction

54 Through their water filtration action, freshwater mussels (Bivalvia: Unionida) serve important roles as aquatic ecosystem engineers (Gutiérrez et al. 2003; Spooner & 55 56 Vaughn 2006), and can greatly influence species composition (Aldridge et al. 2007). 57 From a biological standpoint, they are also well known for producing obligate parasitic 58 larvae that metamorphose on freshwater fishes (Lopes-Lima et al. 2014), for being 59 slow-growing and long-lived, with several species reaching >30 years old and some species >100 years old (see Haag & Rypel 2011 for a review), and for exhibiting an 60 61 unusual system of mitochondrial transmission called Doubly Uniparental Inheritance 62 or DUI (see Breton et al. 2007; Passamonti & Ghiselli 2009; Zouros 2013) for reviews). From an economic perspective, freshwater mussels are also exploited to 63 64 produce cultured pearls (Haag 2012). Regrettably however, habitat loss and degradation, overexploitation, pollution, loss of fish hosts, introduction of non-native 65 66 species, and climate change have resulted in massive freshwater mussel decline in the 67 last decades (reviewed in Lopes-Lima et al. 2017; 2018). For example, more than 70% 68 of the ~300 North American species are considered endangered at some level (Lopes-Lima et al. 2017). 69

70

While efforts are currently underway to sequence and assemble the genome of
the marine mussel *Mytilus galloprovincialis* (Murgarella et al. 2016), genomic
resources for mussels in general are still extremely scarce. In addition to *M. galloprovincialis*, the genomes of two other marine mytilid mussel species, i.e. the
deep-sea vent/seep mussel *Bathymodiolus platifrons* and the shallow-water mussel

76 *Modiolus philippinarum* have recently been published (Sun et al. 2017). In all cases, 77 genomes have proven challenging to assemble due to their large size (~ 1.6 to 2.4Gb) 78 and widespread presence of repeated elements (~30% of the genome, and up to 62% of 79 the genome for the shallow-water mussel *Modiolus philippinarum*, Sun et al. 2017). 80 For example, the *Mytilus* genome remains highly fragmented, with only 15% of the 81 gene content estimated to be complete (Murgarella et al. 2016). With respect to 82 freshwater mussels (order Unionida), no nuclear genome draft currently exists. An assembled and annotated genome for freshwater mussels has the potential to be 83 84 utilized as a valuable resource for many researchers given the biological value and 85 threatened features of these animals. Such studies are needed to help identifying genes essential for survival (and/or the genetic mechanisms that led to decline) and 86 87 ultimately for developing monitoring tools for endangered biodiversity and plan 88 sustainable recoveries (Pavey et al. 2016; Savolainen et al. 2013). In addition, a 89 sequenced genome will help answer more fundamental questions of sex-determination 90 (Breton et al. 2011; 2017) and genome evolution through comparative genomics 91 approaches (e.g. Sun et al. 2017).

92

Given the challenges in assembling a reference genome for saltwater mussels
(Sun et al. 2017; Murgarella et al. 2016), we used a combination of different
sequencing strategies (Illumina paired-end and mate pair libraries, Pacific Biosciences
long reads, and a recently assembled reference transcriptome (Capt et al. 2018) to
assemble the first genome draft in the family Unionidae. Hybrid sequencing
technologies using long read–low coverage and short read–high coverage offer an

99	affordable strategy with the advantage of assembling repeated regions of the genome
100	(for which short reads are ineffective) and circumventing the relatively higher error
101	rate of long reads (Koren et al. 2012; Miller et al. 2017). Here, we present a <i>de novo</i>
102	assembly and annotation of the genome of the freshwater mussel Venustaconcha
103	ellipsiformis.
104	
105	Methods
106	To determine the expected sequencing effort to assemble the Venustaconcha
107	ellipsiformis genome, i.e., the necessary software and computing resources required,
108	we first searched for C-values from other related mussel species. C-values indicate the
109	amount of DNA (in picograms) contained within a haploid nucleus and is roughly
110	equivalent to genome size in megabases. Two closely related freshwater mussel
111	species (<i>Elliptio</i> sp., c-value = 3; <i>Uniomerus</i> sp., c-value = 3.2), in addition to two
112	other well studied mussel groups (<i>Mytilus</i> spp., c-value = 1.3-2.1; <i>Dreissena</i>
113	<i>polymorpha</i> , c-value = 1.7) were identified on the Animal Genome Size Database
114	(http://www.genomesize.com). As such, we estimated the Venustaconcha genome size
115	to be around ~1.5-3.0Gb, and this originally served as a coarse guide to determine the
116	sequencing effort required, given that when the sequencing for Venustaconcha was
117	originally planned, no mussel genome had yet been published.
118	
119	Mussel specimen sampling, genomic DNA extraction and library preparation
120	Adult specimens of Venustaconcha ellipsiformis were collected from Straight River

121 (Minnesota, USA; Lat 44.006509, Long -93.290899) and sexed by microscopic

122	examination of gonad smears. Gills were dissected from a single female individual and
123	genomic DNA was extracted using a Qiagen DNeasy Blood & Tissue Kit (QIAGEN
124	Inc., Valencia, CA, USA) using the animal tissue protocol. The quality and quantity of
125	DNA, respectively, were assessed by electrophoresis on 1% agarose gel and with a
126	BioDrop mLITE spectrophotometer (a total of 15 μ g of DNA was quantified using the
127	spectrophotometer). For whole genome shotgun sequencing and draft genome
128	assembly, we used two sequencing platforms: Illumina (San Diego, CA) Hiseq2000
129	and Pacific Biosciences (Menlo Park, CA) PacBio RSII. First, three paired-end
130	libraries with insert size of 300b were constructed using Illumina TruSeq DNA Sample
131	Prep Kit. One mate pair library with insert sizes of about 5Kb was constructed for
132	scaffolding process using Illumina Nextera mate-pair library construction protocol. For
133	high-quality genome assembly, Pacific Biosciences system was employed for final
134	scaffolding process using long reads. Pacific Biosciences long reads (>10Kb) were
135	generated using SMRT bell library preparation protocol (ten SMRT cells were
136	sequenced). Construction of sequencing libraries and sequencing analyses were
137	performed at the Genome Quebec Innovation Centre (McGill University, Qc, Canada).
138	

139 *Pre-processing of sequencing reads*

We quality trimmed paired-end and mate-pair reads using TRIMMOMATIC 0.32 (Bolger
et al. 2014) with the options ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:6:10 MINLEN:36. This allowed removal of base
pairs below a threshold Phred score of three at the leading and trailing end, in addition

144 to removing base pairs based on a sliding window calculation of quality (mininum

145	Phred score of ten over six base pairs). Finally, if trimmed reads fell below a threshold
146	length (36b), both sequencing pairs were removed. We verified visually the quality
147	(including contamination with Illumina paired-end adaptors) before and after trimming
148	using FASTQC (Andrews 2010). This allowed us to only keep high quality reads prior to
149	the assembly steps.
150	
151	Following quality trimming, we used BFC (Li & Durbin 2009) to perform error
152	correction for the Illumina paired-end sequencing data. BFC suppresses systematic
153	sequencing errors, which helps to improve the base accuracy of the assembly and
154	reduce the complexity of the <i>de Bruijn</i> graph based assembly, described below.
155	
156	Corrected paired-end reads were subsequently used to identify the optimal K
157	value that provides the most distinct genomic k-mers using KMERGENIE v1.7016
158	(Chikhi & Medvedev 2014). We tested $k = 10$ to 100, in incremental steps of 10, and
159	we then refined the interval from 20 to 40, in incremental steps of 2 to get a more
160	precise estimate of K. Based on the best K value (k=42), KmerGenie was also used to
161	estimate genome size.
162	
163	Genome assembly strategy
164	We used ABYSS 2.0 (Jackman et al. 2017), a modern genome assembler specifically
165	built for large genomes and reads acquired by different sequencing strategies. ABYSS
166	2.0 works similarly to ABYSS (Simpson et al. 2009), by using a distributed de Bruijn
167	graph representation of the genome, therefore allowing parallel computation of the

168	assembly algorithm across a network of computers. In addition, the software makes							
169	use of long sequencing reads (Illumina mate-pair libraries and Pacific BioSciences							
170	long reads) to bridge gaps and scaffold contigs. Yet, as memory requirements and							
171	computing time scale up exponentially with genome size, for large genomes (>1Gb),							
172	these rapidly become very large (>100GB of RAM) and unpractical. Consequently,							
173	Jackman et al. (2017) introduced ABYSS 2.0, which employs a probabilistic data							
174	structure called a Bloom filter (Bloom 1970) to store a de Bruijn graph representation							
175	of the genome and, consequently, greatly reduces memory requirements and							
176	computing time. The Bloom filter allows removing from memory the majority of							
177	nearly identical k-mers likely caused by sequencing errors, as k-mers with an							
178	occurrence count below a user-specified threshold are discarded. The caveat is that it							
179	can generate false positive extension of contigs, but through optimization, this can be							
180	kept well below 5%, and in fact, false positives can be corrected later on in the							
181	assembly step (Jackman et al. 2017).							
182								
183	In the current study, we combined different types of high throughput							
184	sequencing to aid in assembling the genome (Table 1). ABYSS 2.0 (Jackman et al.							
185	2017) performs a first genome assembly step without using the paired-end information,							
186	by extending unitigs until either they cannot be unambiguously extended or come to an							
187	end due to a lack of coverage (uncorrected unitigs). This first de Bruijn graph							
188	representation of the genome is further cleaned of vertices and edges created by							
189	sequencing errors (unitigs). Paired-end information is then used to resolve ambiguities							
190	and merge contigs. Following this, mate-pairs are mapped onto the assembly to create							

191	<i>scaffolds</i> , and finally	/ long reads (Pacific	Biosciences long r	eads) and the

192 *Venustaconcha* reference transcriptome from Capt et al. (2018) were also mapped onto 193 the assembly to create *long-scaffolds*. This reference transcriptome was assembled 194 from a pool of sequences coming from four different male and female individuals and 195 further details are provided in Capt et al. (2018). Although ideally sequencing 196 information would all come from a single individual, the current study design did not 197 allow for this. In addition, given that coding sequences are conserved compared to 198 non-coding regions, it remains highly valuable to use a transcriptome in a *de novo* 199 genome assembly. 200 201 We ran the ABYSS 2.0 assembly stage (abyss-bloom-dbg) with a k-mer size of 202 41 (ABySS requires an odd number k-mer), a Bloom filter size of 24GB, 4 hash 203 functions and a threshold of k-mer occurrence set at 3. These parameters were chosen 204 after performing several test assemblies, in order to minimize the false positive rate 205 (<5%), maximize the N50 of the assembly and keep the virtual memory (95GB) and 206 CPU (24 CPUs) requirements within a reasonable computational limit for our 207 resources. In addition, we adjusted parameters at the mapping stage to create contigs, 208 scaffolds and long-scaffolds to maximize N50 (overlap required in re-alignments,

209 distance between mate-pairs, nb reads aligned to support assembly, see pipeline

210 available at https://github.com/seb951/venustaconcha_ellipsiformis_genome).

211

212 Genome completeness was assessed using BUSCO 3.0.2 (Benchmarking

213 Universal Single-Copy Orthologs, Simao et al. 2015). Briefly, BUSCO uses curated lists

214	of known core single copy orthologs to produce evolutionarily-informed quantitative
215	measures of genome completeness (Simao et al. 2015). Here, we tested both the
216	eukaryotic (303 single copy orthologs) and metazoan (978 single copy orthologs) gene
217	lists to assess the completeness of our genome assembly.
218	
219	Characterization of repetitive elements
220	Given that repetitive elements can occupy large proportions of a genome, the
221	characterization of their proportion and composition is an essential step during genome
222	annotation. RepeatModeler open-1.0.10 (Smit & Hubley 2015) was used to create an
223	annotated library of repetitive elements contained in the Venustaconcha genome
224	assembly (excluding sequences <1Kb). Then, with RepeatMasker open-4.0.7 (Smit et
225	al. 2015), we extracted libraries of repetitive elements for the taxa "Bivalvia" and
226	"Mollusca" from the RepeatMasker combined database (comprising the databases
227	Dfam_consensus-20170127 and RepBase-20170127) using built-in tools. Sequences
228	classified as "artefact" were removed from the last two libraries before the subsequent
229	steps. The three libraries were used alone and/or in combination (except for the
230	Mollusca+Bivalvia combination) to mask the cut-down assembly again with
231	RepeatMasker, specifying the following options: -nolow (to avoid masking low
232	complexity sequences, which may enhance subsequent exon annotation), -gccalc (to

calculate the overall GC percentage of the input assembly), -excln (to exclude runs of

 ≥ 20 Ns in the assembly sequences from the masking percentage calculations). Option -

species was used to specify the taxon for the runs with Bivalvia and Mollusca libraries,

while option -lib used to specify the *Venustaconcha* library and the combined ones.

237 Results summaries for the latter three runs were refined with the RepeatMasker built-in

tools. Linear model fit for genome size and repeats content for all available bivalve

239 genomes were calculated with R version 3.1.0 (R Core Team 2012), using the highest

240 masking value found for Venustaconcha .

241

242 *Genome annotation*

243 We used QUAST (Gurevich et al. 2013) to calculate summary statistics on the genome

assembly. In addition, QUAST uses a Hidden Markov Model to identify putative genes

in the final assembly (GLIMMERHMM Majoros et al. 2004). Following this, we

translated Open Reading Frames identified in the annotation files into protein

sequences using BEDTOOLS V2.27.1 (Quinlan & Hall 2010) and EMBOSS TRANSEQ

248 v6.6.0 (Rice et al. 2000) bioinformatics pipelines. These were then compared against

the manually curated UniProt database (556,388 reference proteins, downloaded

250 January 11th 2018, e-value cut-off of 10⁻⁵) using BLASTp (Altschul et al. 1990). These

steps were done on the long-scaffolds assembly, the masked long-scaffolds assembly

252 (with low complexity regions replaced with N), in addition to the broken long-

253 scaffolds assembly (scaffolds broken into smaller contigs by QUAST, based on long

stretches of N nucleotides).

255

256 *Mitochondrial genome*

Given the rare mode of mitochondrial inheritance of freshwater mussels and therefore
its evolutionary importance, we first aimed to check if the mitochondrial female
genome had been properly assembled. Using BLASTn (Altschul et al. 1990) with high

- stringency (E value <1e-50), we identified a fragmented mitochondrial genome. We
- then created a mt specific dataset containing 1,396,004 sequence reads by aligning
- 262 paired-end reads to the reference mt genome of Breton et al. (2009) (GenBank Acc.
- 263 No. FJ809753) using SAMTOOLS V1.3.1 and BEDTOOLS V2.27.1 (Li et al. 2009; Quinlan
- 264 & Hall 2010). We then rebuilt the mt genome *de novo* using ABYSS 2.0, testing
- 265 different k-mers (17-45). In addition, we aligned reads to the reference transcriptome
- using BWA v0.7.12-R1039 (H Li & Durbin 2009) and identified Single Nucleotide
- 267 Polymorphisms (SNPs) with respect to the reference mt genome using SAMTOOLS and
- 268 BCFTOOLS v1.3.1 (Li et al. 2009).

270

271 Results and Discussion

272	We generated 564M paired-end reads (2 X 100b) representing an average 65X
273	coverage of the genome (Table 1). This was complemented by 98M mate-pairs (5Kb
274	insert, 11X average genome coverage) and 103,000 Pacific Biosciences long reads
275	(0.3X average genome coverage), and a recently published reference transcriptome
276	comprised of 285,000 contigs (Capt et al. 2018). Filtering and trimming the raw
277	paired-end and mate-pair sequences removed about 5% of the total base pairs from
278	further analyses, indicating that the quality of the raw sequences was high (Table 1).
279	K-mer analysis indicated that the number of unique k-mers peaked at 42 and predicted
280	a genome assembly size of 1.66Gb (Figure 1), smaller than predicted genome size
281	according to C-value for other Unionida, but in general agreement with the recent draft
282	genome of the marine mussel Mytilus galloprovincialis (1.6Gb) and the deep-sea
283	vent/seep mussel (Bathymodiolus platifrons, 1.64Gb).
284	
285	Running the ABySS 2.0 assembly stage (abyss-bloom-dbg) led to a low False
286	Positive Rate (<0.05%). The N50 for the contig assembly was 3.2Kb with 551,875
287	contigs (discarding contigs <1Kb, given that small contigs likely represent artefacts
288	and provide little information for the overall genome assembly (Pavey et al. 2016;
289	Murgarella et al. 2016, see Table 2). Once these were corrected and paired-end, mate-
290	pairs and long read information were added, the scaffolds N50 increased to 5.5Kb,
291	with 2.3% of nucleotides represented as "N" (see Table 2 for the summary statistics
292	and Table 3 for overall genome assembly statistics acquired from QUAST analysis).

293 Adding the Pacific Biosciences long reads only slightly improved the scaffolds N50

294	(from 5.5 to 5.7Kb, Table 2) and slightly decreased the number of <i>long-scaffolds</i>
295	>1Kb (from 423,853 to 410,237), likely because our long read coverage was quite low
296	(0.3X, Table 1). In addition, it is also possible that the more error prone Pacific
297	Biosciences sequences, compared to Illumina paired-end reads, reduced their usability
298	(Miller et al. 2017). Once the reference transcriptome was added, it improved the N50
299	to 6.5Kb, and substantially decreased the number of long-scaffolds to 366,926. This
300	final long-scaffold assembly accounted for a total size of 1.54Gb (with 2.3% of "N"
301	nucleotides) and represented 93% of the predicted genome size of 1.66Gb. Yet, it
302	remained highly fragmented (366,926 scaffolds, Table 2). Genome annotation
303	statistics can also be viewed in html format and downloaded here:
304	https://github.com/seb951/venustaconcha_ellipsiformis_genome/tree/master/annotatio
305	n_quast_v3
306	
307	While assembly numbers (N50, number of scaffolds, etc.) are not directly

308 comparable with other recently published genomes given the diversity of sequencing 309 approaches (Illumina, 454, Sanger, PacBio), library types, sequencing depth and 310 unique nature of the genome themselves, they can give a broad perspective of the 311 inherent difficulties of assembling large genomes. The best comparison is probably 312 with the saltwater mussel, *Mytilus galloprovincialis*, giving their similar genome size 313 (1.6Gb for Mytilus vs 1.66Gb for Venustaconcha) and Illumina paired-end sequencing 314 approaches (32X for *Mytilus* vs 65X for *Venustaconcha*). While the *Mytilus* genome 315 project (Murgarella et al. 2016) did not utilize mate-pair libraries or Pacific Bioscience 316 long reads, they did make use of sequencing libraries with varying insert sizes (180,

317 500 and 800b). As such, they obtained a genome assembly quality relatively similar to 318 ours and consisting of 393 thousand scaffolds (>1Kb), with however a substantially 319 lower N50 (2.6Kb compared to 6.5Kb for *Venustaconcha*). The recently reported 320 genome for the deep-sea vent/seep mussel Bathymodiolus platifrons (1.64Gb) made 321 use of nine Illumina sequencing libraries with varying insert sizes (180 to 16Kb) and 322 an overall coverage of >300X. With this very thorough sequencing approach, the 323 scaffold N50 obtained was substantially higher (343.4Kb), but again the genome 324 remained highly fragmented, into >65 thousands scaffolds. As exemplified here, high 325 coverage sequencing libraries with varying insert sizes have become a broadly used 326 approach for large and complex genomes. In fact, it is implemented by default in many 327 genome assembly platforms (e.g. SoapdeNovo2, Luo et al. 2012, ALLPATHS-LG, Gnerre 328 et al. 2011). In the future, these libraries will likely be useful to further assemble the Venustaconcha genome, at least until these approaches are superseded by affordable, 329 330 error free, single molecule long read sequencing (Gordon et al. 2016; Badouin 2017) 331 or mapping approaches that allow reaching chromosome level assemblies such as 332 optical mapping (e.g. Bionano Genomics, San Diego, CA).

333

Results of the BUSCO (Simao et al. 2015) analyses showed that 664 (68%) of the 978 core metazoan genes (CEGs) were considered complete in our assembly. When the BUSCO analysis was extended to include also fragmented matches, 871 (89%) proteins aligned. Results were similar when compared against the 303 core eukaryotic genes (61% complete, 86% complete or fragmented, **Table 4**). When compared to the previously published reference transcriptome for *Venustaconcha*

340	ellipsiformis (Capt et al. 2018), we found fewer complete genes, but also fewer
341	duplicated genes (97.5% complete, and 24% duplicated in the reference transcriptome,
342	compared to 68.1% complete and 1% duplicated here). This likely reflects the fact that
343	the reference transcriptome is nearly complete, while the current reference genome is
344	still fragmented. However, the reference transcriptome also likely contains multiple
345	isoforms of the same genes, in addition to possible nematode contaminating sequences,
346	despite the authors' best efforts to minimize these problems. Previously analysed
347	molluscan genomes of similar size (Murgarella et al. 2016; Sun et al. 2017) have found
348	that 16% (Mytilus galloprovincialis, 1.6Gb), 25% (pearl oyster Pinctada fucata,
349	1.15Gb), 36% (California sea hare Aplysia californica, 1.8Gb) of the core eukaryotic
350	genes were complete. For their part Sun and collaborators (2017), identified 96% of
351	the core metazoan genes to be partial or complete in the deep-sea vent/seep mussel
352	Bathymodiolus platifrons (1.6Gb), again reflecting that the depth and type of
353	sequencing, in addition to the idiosyncrasies of each genome, can have considerable
354	influence on the end results.
355	
356	The custom Venustaconcha repeat library created de novo with RepeatModeler

contained 2,068 families, the majority of them (1,498, 72.44% of the total) classified
as "unknown". The genome masking performed with the Bivalvia and Mollusca
libraries had scarce performances (masking 2.38% and 2.59%, respectively; details in
Supplementary Table RM1), possibly because of the phylogenetic distance between *V. ellipsiformis*, which belongs to the early-branching bivalve lineage of
Palaeoheterodonta, and the other bivalve and mollusk species represented in the

363 database as well as their relative number of sequences. The custom Venustaconcha 364 library masked 37.17% of the genome, while the combined *Venustaconcha*+Bivalvia 365 masked 37.69% of the genome and the *Venustaconcha*+Mollusca reached 37.81%, the 366 highest masking percentage (Supplementary Table RM2). After refining, these raw 367 values slightly decreased to respectively 36.29%, 36.80%, and 36.91% 368 (Supplementary Table RM3). All these latter values of repeat content fall in the 32-369 39% range (the median for all species is 37%) where six out of the nine sequenced 370 bivalve species lie, irrespective of their genome size (M. philippinarum and R. 371 *philippinarum* are the furthest from this interval) (**Table 5** and **Supplementary Figure** 372 1). Although the number of species sequenced up to now is still low, this observation 373 indicates that repetitive elements may contribute differently to the total genome size 374 among the different bivalve taxa: indeed, the correlation between genome size and 375 repeats content is weak (Supplementary Figure 1). In both the *ab initio* masking with 376 the Venustaconcha library and the two combined ones, most of the identified repeats 377 are categorized as "unknown" (22.8% of the assembly), followed by retroelements 378 (LINEs 2.9%, LTR elements 2.3-2.4%, and SINEs 1.7%, for a total of 6.9% of the 379 assembly) and DNA elements (5.4-5.6% of the assembly) (Supplementary Table 380 **RM3**). Direct comparisons of these values with other species should be performed with caution, as the usually large "unclassified" portion of repeats might contain 381 382 species-specific variants of known elements (Murgarella et al. 2016) that may 383 therefore change the relative weight of each category on the total. 384

QUAST was used to calculate summary statistics and identify putative genes in
the final assembly using a hidden markov model (**Table 3**). Following this, 29,031;
14,195 and 25,544 Open Reading Frames were annotated using BLASTp against
UniProt database in the long-scaffolds, broken and masked long-scaffolds assemblies,
respectively.

390

391 Freshwater mussels, marine mussels, as well as marine clams are the only 392 known exception in the animal kingdom with respect to the maternal inheritance of 393 mitochondrial DNA (see Breton et al. 2007 for a review). Their unique system, 394 characterized by the presence of two gender-associated mitochondrial DNA lineages, has therefore attracted studies to better understand mitochondrial inheritance and the 395 evolution of mtDNA in general. Using BLASTN, we recovered 53 contigs matching to 396 397 the 15,975b female reference mt genome from Breton et al. (2009), indicating that the 398 mt genome was highly fragmented and likely improperly assembled with our current 399 approach, much like what was found in the *Mytilus galloprovincialis* genome draft of 400 Murgarella (Murgarella et al. 2016). As such, we created a dataset of mt specific 401 sequences that could be aligned to the mt genome (1,396,004 reads). This mt specific 402 dataset was then re-assembled *de novo*, using different k-mers (17-45). Using a k-mer 403 similar or larger to the one used in the overall assembly $(k \ge 41)$ resulted in a failed 404 assembly (no contigs created, data not shown), while using a k-mer <21 generated a 405 highly fragmented mt genome (data not shown). Using a k-mer between 21 and 39 406 generated one large contig of 16,024b comprising the entire mitogenome, with a 42b 407 insertion in the 16S ribosomal RNA. Given the different rate of evolution of mtDNAs,

408	it is likely that assembly parameters we used for the whole genome were not
409	appropriate for the V. ellipsiformis female mt genome. Finally, we also re-aligned the
410	mt specific dataset to the original mt genome of Breton et al. (2009) and found high
411	coverage (mean = $7,256X$, SD = 682) for most positions, while for three regions
412	coverage dropped below 300X (Figure 2). Six SNPs with respect to the reference were
413	also identified, indicating possible polymorphism, or sequencing error in the original
414	mt reference genome (Figure 2).

415

416 Conclusion

417 High throughput sequencing has the power to produce draft genomes that were only 418 reserved to model systems ten years ago. Here we report the first *de novo* draft 419 assembly of the Venustaconcha ellipsiformis genome, a freshwater mussel from the 420 bivalve order Unionida. Our assembly covers over 93% of the genome and contains 421 nearly 90% of the core eukaryotic orthologs, indicating that it is nearly complete. 422 However, as for other mussel genomes recently published, our genome remains 423 fragmented, showing the limits of high throughput sequencing and the necessity to 424 combine different sequencing approaches to augment the scaffolding and overall 425 genome quality, especially when a large fraction of the genome is comprised of 426 repetitive elements. In the future, the Venustaconcha genome will benefit from a larger 427 number of long read sequences, varying library size for paired-end sequencing, and the 428 use of genetic, physical or optimal maps to subsequently order scaffolded contigs into 429 pseudomolecules or chromosomes.

430

431 Abbreviations

- 432 BLAST: Basic Local Alignment Search Tool
- 433 b: base pairs
- 434 Kb: Kilobases
- 435 M: Million
- 436 Gb: Gigabases
- 437 GB: gigabytes
- 438 CPU: Central Processing Unit
- 439 DNA: Deoxyribonucleic acid
- 440 LINEs: Long interspersed elements
- 441 LTR: Long terminal repeats
- 442 ORF: Open Reading Frames
- 443 N80/50/20: weighted median statistic such that 80/50/20% of the entire assembly is
- 444 contained in contigs/scaffolds equal to or larger than this value.
- 445 L50 = minimum number of sequences required to represent 50% of the entire assembly
- 446 RAM: Random Access Memory
- 447 SINEs: Short interspersed elements
- 448

449 Data availability

- 450 Supporting data for this Genome Report will be made available on datadryad.org
- 451 Raw sequences are available in the SRA database with number SRP132483
- 452 (submission SUB3624229 to be release upon publication) and Bioproject accession
- 453 PRJNA433387. All scripts used in the analyses are available on github
- 454 (https://github.com/seb951/venustaconcha_ellipsiformis_genome).

455

456 Acknowledgments

- 457 Computations were made on the supercomputer briaree from Université de Montréal,
- 458 managed by Calcul Québec and Compute Canada. The operation of this supercomputer
- 459 is funded by the Canada Foundation for Innovation (CFI), the ministère de l'Économie,
- 460 de la science et de l'innovation du Québec (MESI) and the Fonds de recherche du
- 461 Québec Nature et technologies (FRQ-NT).

463 References

- Aldridge DC, Fayle TM, Jackson N. 2007. Freshwater mussel abundance predicts
- biodiversity in UK lowland rivers. Aquatic Conserv: Mar. Freshw. Ecosyst. 17:554–
 564. doi: 10.1002/aqc.815.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman, DJ, 1990. Basic local alignment
 search tool. Journal of molecular biology, 215(3), pp.403-410.
- Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data.
 https://www.bioinformatics.babraham.ac.ukprojectsfastqc.
- 471 Badouin H. 2017. The sunflower genome provides insights into oil metabolism,
- 472 flowering and Asterid evolution. Nature. 1–20.
- 473 Bloom BH. 1970. Space/time trade-offs in hash coding with allowable errors.
- 474 Communications of the ACM. 13:422–426. doi: 10.1145/362686.362692.
- Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
 sequence data. Bioinformatics. 30:2114–2120. doi: 10.1093/bioinformatics/btu170.
- 477 Breton S et al. 2009. Comparative Mitochondrial Genomics of Freshwater Mussels
- 478 (Bivalvia: Unionoida) With Doubly Uniparental Inheritance of mtDNA: Gender-
- 479 Specific Open Reading Frames and Putative Origins of Replication. Genetics.
- 480 183:1575–1589. doi: 10.1534/genetics.109.110700.
- 481 Breton S et al. 2011. Novel Protein Genes in Animal mtDNA: A New Sex
- 482 Determination System in Freshwater Mussels (Bivalvia: Unionoida)? Mol. Biol. Evol.
- 483 28:1645–1659. doi: 10.1093/molbev/msq345.
- Breton S, Beaupre HD, Stewart DT, Hoeh WR, Blier PU. 2007. The unusual system of
 doubly uniparental inheritance of mtDNA: isn't one enough? Trends Genet. 23:465–
- 486 474. doi: 10.1016/j.tig.2007.05.011.
- Breton S, Capt C, Guerra D, Stewart D. 2017. Sex Determining Mechanisms in
 Bivalves. Preprints. 1–23. doi: 10.20944/preprints201706.0127.v1.
- 489 Capt C et al. 2018. Deciphering the Link between Doubly Uniparental Inheritance of
- 490 mtDNA and Sex Determination in Bivalves: Clues from Comparative Transcriptomics.
- 491 Genome Biology and Evolution. 10:577–590. doi: 10.1093/gbe/evy019.
- Chikhi R, Medvedev P. 2014. Informed and automated k-mer size selection for
 genome assembly. Bioinformatics. 30:31–37. doi: 10.1093/bioinformatics/btt310.
- 494 Gnerre S et al. 2011. High-quality draft assemblies of mammalian genomes from
- 495 massively parallel sequence data. PNAS. 108:1513–1518. doi:
- 496 10.1073/pnas.1017351108.

- 497 Gordon D et al. 2016. Long-read sequence assembly of the gorilla genome. Science.
- 498 352:aae0344–aae0344. doi: 10.1126/science.aae0344.
- 499 Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool
- 500 for genome assemblies. Bioinformatics. 29:1072–1075. doi:
- 501 10.1093/bioinformatics/btt086.
- 502 Gutiérrez JL, Jones CG, Strayer DL, Iribarne OO. 2003. Mollusks as ecosystem
- engineers: the role of shell production in aquatic habitats. Oikos. 101:79–90. doi:
 10.1034/j.1600-0706.2003.12322.x.
- Haag WR. 2012. North American freshwater mussels: natural history, ecology, and
 conservation.
- Haag WR, Rypel AL. 2011. Growth and longevity in freshwater mussels: evolutionary
 and conservation implications. Biol Rev. 86:225–247. doi: 10.1111/j.1469-
- 509 185X.2010.00146.x.
- 510 Jackman SD et al. 2017. ABySS 2.0: resource-efficient assembly of large genomes
- 511 using a Bloom filter. Genome Res. 27:768–777. doi: 10.1101/gr.214346.116.
- Koren S et al. 2012. Hybrid error correction and de novo assembly of single-molecule
 sequencing reads. Nat Biotechnol. 30:693–700. doi: 10.1038/nbt.2280.
- Li H et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics.
 25:2078–2079. doi: 10.1093/bioinformatics/btp352.
- 516 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler 517 transform. Bioinformatics. 25:1754–1760. doi: 10.1093/bioinformatics/btp324.
- Li Y et al. 2017. Scallop genome reveals molecular adaptations to semi-sessile life and
 neurotoxins. Nature Communications. 1–11. doi: 10.1038/s41467-017-01927-0.
- Lopes-Lima M et al. 2014. Biology and conservation of freshwater bivalves: past,
 present and future perspectives. Hydrobiologia. 735:1–13. doi: 10.1007/s10750-0141902-9.
- Lopes-Lima M et al. 2018. Conservation of freshwater bivalves at the global scale:
 diversity, threats and research needs. Hydrobiologia. 1–14. doi: 10.1007/s10750-0173486-7.
- Lopes-Lima M et al. 2017. Conservation status of freshwater mussels in Europe: state
 of the art and future challenges. Biol Rev. 92:572–607. doi: 10.1111/brv.12244.
- Luo R et al. 2012. SOAPdenovo2: an empirically improved memory-efficient shortread de novo assembler. Gigascience. 1. doi: 10.1186/2047-217X-1-18.
- 530 Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and GlimmerHMM: two open

- 531 source ab initio eukaryotic gene-finders. Bioinformatics. 20:2878–2879. doi:
- 532 10.1093/bioinformatics/bth315.
- 533 Miller JR et al. 2017. Hybrid assembly with long and short reads improves discovery 534 of gene family expansions. 1–12. doi: 10.1186/s12864-017-3927-8.
- 535 Mun S et al. 2017. The Whole-Genome and Transcriptome of the Manila Clam
- 536 (Ruditapes philippinarum). Genome Biology and Evolution. 9:1487–1498. doi:
 537 10.1093/gbe/evx096.
- 538 Murgarella M et al. 2016. A First Insight into the Genome of the Filter-Feeder Mussel
- 539 Mytilus galloprovincialis Craft, JA, editor. PLoS ONE. 11:e0151561. doi:
- 540 10.1371/journal.pone.0151561.
- 541 Passamonti M, Ghiselli F. 2009. Doubly Uniparental Inheritance: Two Mitochondrial
- 542 Genomes, One Precious Model for Organelle DNA Inheritance and Evolution. Dna543 and Cell Biology. 28:79–89. doi: 10.1089/dna.2008.0807.
- 544 Pavey SA et al. 2016. Draft genome of the American Eel (Anguilla rostrata).
- 545 Molecular Ecology Resources. 17:806–811. doi: 10.1111/1755-0998.12608.
- Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing
 genomic features. Bioinformatics. 26:841–842. doi: 10.1093/bioinformatics/btq033.
- 548 R Core Team. 2017. *R: A Language and Environment for Statistical Computing*. R
 549 Foundation for Statistical Computing: Vienna, Austria.
- 550 Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European molecular biology open551 software suite. Trends Genet. 16:276–277.
- Savolainen O, Lascoux M, Merilä J. 2013. Ecological genomics of local adaptation.
 Nat Rev Genet. 14:807–820. doi: 10.1038/nrg3522.
- 554 Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015.
- 555 BUSCO: assessing genome assembly and annotation completeness with single-copy 556 orthologs. Bioinformatics. 31:3210–3212. doi: 10.1093/bioinformatics/btv351.
- 557 Simpson JT et al. 2009. ABySS: a parallel assembler for short read sequence data.
 558 Genome Res. 19:1117–1123. doi: 10.1101/gr.089532.108.
- 559 Smit A, Hubley R. RepeatModeler Open-1.0. (2008-2015).
- 560 httpwww.repeatmasker.org.
- 561 Smit A, Hubley R, Green P. RepeatMasker Open-4.0.(2013-2015).
- 562 Spooner DE, Vaughn CC. 2006. Context dependent effects of freshwater mussels on
- stream benthic communities. Freshwater Biology. 51:1016–1024. doi: 10.1111/j.1365-
- 564 2427.2006.01547.x.

- 565 Sun J et al. 2017. Adaptation to deep-sea chemosynthetic environments as revealed by 566 mussel genomes. Nat. ecol. evol. 1:0121–7. doi: 10.1038/s41559-017-0121.
- 567 Takeuchi T et al. 2012. Draft Genome of the Pearl Oyster Pinctada fucata: A Platform
- 568 for Understanding Bivalve Biology. Dna Research. 19:117–130. doi:
- 569 10.1093/dnares/dss005.
- 570 Wang S et al. 2017. Scallop genome provides insights into evolution of bilaterian
- karyotype and development. Nat. ecol. evol. 1:0120–12. doi: 10.1038/s41559-0170120.
- 573 Zhang G et al. 2012. The oyster genome reveals stress adaptation and complexity of 574 shell formation. Nature. 490:49–54. doi: 10.1038/nature11413.
- 575 Zouros E. 2013. Biparental Inheritance Through Uniparental Transmission: The
- 576 Doubly Uniparental Inheritance (DUI) of Mitochondrial DNA. Evolutionary Biology.
- 577 40:1–31. doi: 10.1007/s11692-012-9195-2.

			RawRawTrimmed reads (%)							SRA
Туре	Insert size (bp)	Read Length (bp)	No. Reads (paired)	Total length (mb)	No. Reads (paired)	Total length (mb)	Total length (% raw)	read length	coverage	accession
Paired-end	300	2X100	189,876,842	37,975	185,721,156	36,274	95.5	97.6		
Paired-end	300	2X100	195,394,768	39,079	191,002,987	37,319,	95.5	97.7		
Paired-end	300	2X100	178,820,287	35,764	174,954,230	34,224	95.6	98.9		
Total			564,091,897	112,818	551,678,373	107,818	95.6	98.1	65X	

580581 Table 1: DNA sequencing strategy.

582

579

583

bioRxiv preprint doi: https://doi.org/10.1101/265157; this version posted February 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Mate pair	5000	2X100	97,801,148	19,560	94,350,168	18,717	95.7	99.3	11X
Pacific Bioscience Long reads		4,406.4 (average)	103,096	454					0.27X
assembled transcriptome	1,170 (avera 301-5 (min-)	uge) 0,048	285,260	334					

587 Table 2: Assembly statistics (ABySS2.0).

assembly	n (x10e6)	n:1000	L50	min	N80	N50	N20	max	sum (x10e6)
raw unitigs	39.8	347,879	101,624	1,000	1,361	2,181	3,891	25,883	707
unitigs	18.5	444,734	127,617	1,000	1,485	2,452	4,273	25,944	984
contigs	14.0	551,875	141,012	1,000	1,704	3,117	5,817	39,408	1,449
scaffolds	13.7	423,853	92,607	1,000	2,303	5,477	9,099	45,260	1,539
long scaffolds (PacBio)	13.7	410,237	86,661	1,000	2,391	5,708	9,893	47,610	1,548
long scaffolds (PacBio +	13.6	366,926	58,906	1,000	2,534	6,523	16,660	298,135	1,549
transcriptome)									

589

590 n = number of contigs, n:1,000 = number of contigs of mininum length of 1,000, L50 = minimum number of sequences required to 591 represent 50% of the entire assembly, min = mininum length of sequences analysed, N80, N50, N20 = weighted median statistic such 592 that 80/50/20% of the entire assembly is contained in contigs equal to or larger than this value, max = maximum size of contig, sum = 593 sum of all contigs of size > min, assembly stage (*raw unitigs* = raw assembly, not taking into account paired-end information, *unitigs* 594 = filtering, merging and popping bubbles in *De Bruijn* graph, *contigs* = unitigs with paired-end information mapped, *scaffolds* = 595 contigs with mate-pairs information mapped, *long scaffolds* = scaffolds with PacBio / transcriptome information integrated). 596

Table 3: Assembly and annotation statistics for the long scaffold assembly.

599

QUAST Assembly statistics	long_scaffolds	long_scaffolds (> 1kb	long_scaffolds (> 1kb	
		scaffolds broken based	scaffolds, masked	
		on N streches)	assembly)	
Number of contigs (>= 0 b)	13,635,758	821,266	374,245	
Number of contigs (>= 1 kb)	371,706	549,364	374,245	
Number of contigs (>= 5 kb)	94,238	50,209	95,019	
Number of contigs (>= 10 kb)	26,952	5,151	27,030	
Number of contigs (>= 25 kb)	5,073	23	4,976	
Number of contigs (>= 50 kb)	1,456	0	1,427	
Total length (>= 0 b)	2,638,723,663	1,554,026,338	1,596,234,060	
Total length (>= 1kb)	1,590,292,198	1,425,294,273	1,596,234,060	
Total length (>= 5 kb)	1,000,983,904	360,423,103	1,003,000,325	
Total length (>= 10 kb)	541,545,133	64,766,821	538,648,016	
Total length (>= 25 kb)	231,252,884	687,249	226,147,564	
Total length (>= 50 kb)	107,178,666	0	104,739,660	
Number of contigs	371,706	821,266	37,4245	
Largest contig	313,274	44,597	31,3274	
Total length	1,590,292,198	1,554,026,338	1,596,234,060	

Estimated reference length	1,660,000,000	1,660,000,000	1,660,000,000
GC (%)	34.19	34.19	33.49
N50	6,656	2,812	6,627
number of N's per 100 kb	2,293.33	13.17	39,200.22
number of predicted genes (unique)	201,068	277,765	123,457
number of predicted genes (>= 300 b)	74,820	82,359	41,697
number of predicted genes (>= 1.500	18,539	14,338	11,897
kb)			
number of predicted genes (>= 3 kb)	6,511	3,289	4,375
number of annotated ORF (uniprot)	29,031	14,198	25,544

⁶⁰⁰

601 All statistics are based on contigs of size >= 1 kb, unless otherwise noted (e.g., "# contigs (>= 0 b)" and "Total length (>= 0 b)" 602 include all contigs.).

Table 4: Analysis of genome completeness using BUSCO 3.0.2 (Benchmarking Universal Single-Copy Orthologs, (Simao et al. 2015)).

	metazoa	eukaryota
Complete orthologs (C)	664 (68%)	185 (61%)
Complete and single-copy orthologs (S)	652 (67%)	181 (60%)
Complete and duplicated orthologs (D)	12 (1%)	4 (1%)
Fragmented orthologs (F)	207 (21%)	76 (25%)
Missing orthologs (M)	107 (11%)	42 (14%)
Total ortholog groups searched	978	303

Subclass	Order	Family	Species	Estimated genome size (Gb)	% of repeated elements
Palaeoheterodonta	Unionida	Unionidae	Venustaconcha ellipsiformis	1.66	37.81
Heterodonta	Veneroida	Veneridae	Ruditapes philippinarum	1.37	26.38
Pteriomorphia	Mytiloida	Mytilidae	Bathymodiolus platifrons	1.64	47.90
			Modiolus philippinarum	2.38	62.00
			Mytilus galloprovincialis	1.60	36.13
	Ostreoida	Ostreidae	Crassostrea gigas	0.55	36.00
		Pectinidae	Chlamys farreri	0.95	32.10
			Patinopecten yessoensis	1.43	38.87
	Pterioida	Pteriidae	Pinctada fucata	1.15	37.00
Pteriomorphia mean (s.d.)				1.39 (0.58)	41.43 (10.29
	Mytiloida mean (s.d.)			1.87 (0.44)	48.68 (12.95
	Ostreoida mean (s.d.)			0.98 (0.44)	35.66 (3.40)
		Pectinidae mean (s.d.)		1.19 (0.34)	35.49 (4.79)
all subclasses mean (s.d.)				1.41 (0.51)	39.35 (10.23

609 Table 5: Gene size and repeat elements

610 Estimates of genome size and percentage of repeated elements in the currently available bivalve nuclear genomes. Data for each single

611 species was retrieved from the literature (Takeuchi et al. 2012; Zhang et al. 2012; Murgarella et al. 2016; Mun et al. 2017; Yuli Li et

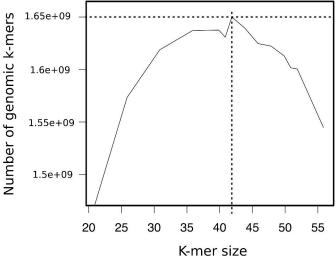
al. 2017; Wang et al. 2017). The genome size for *V. ellipsiformis* was based on k-mer analysis (see methods and Fig. 1). Mean and

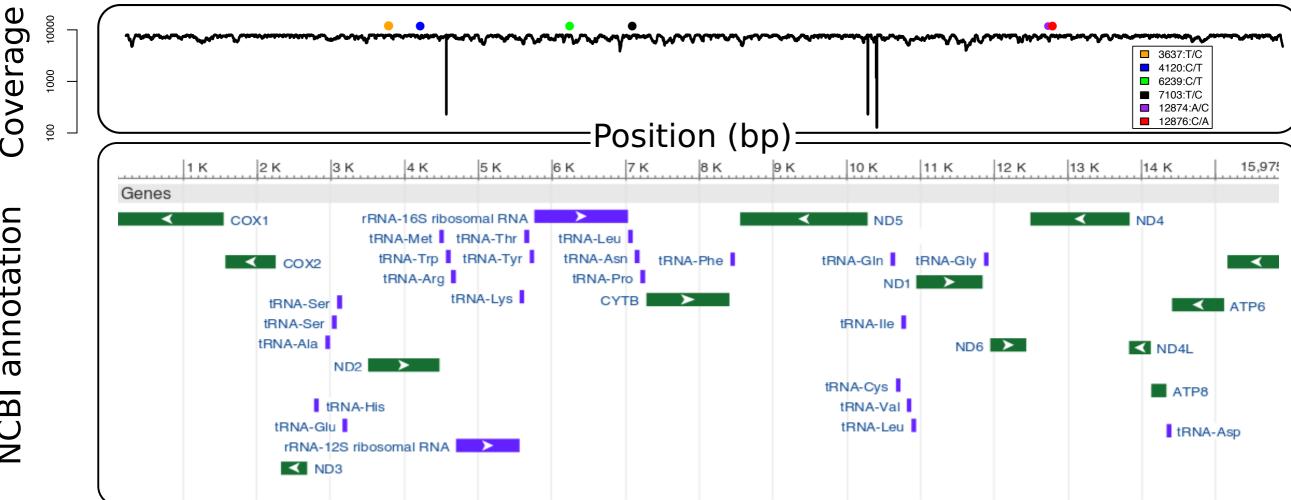
613 standard deviation (s.d.) values are also shown for the taxa comprising more than one species and for all subclasses, i.e. the class

614 Bivalvia.

615

under aCC-BY-NC-ND 4.0 International license.	not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made	bioRxiv preprint doi: https://doi.org/10.1101/265157; this version posted February 15, 2018. The copyright holder for this preprint
	. It is made available	(whi
	ilable	ch was


olo inguio negenas	618	Figure 1	Legends
--------------------	-----	-----------------	---------


- 619
- **620 Figure 1:** KmerGenie report for best k + predicted genome size.

621

- 622 **Figure 2:** Mitochondrial coverage based on sequence alignment and annotation (from NCBI). Six nucleotide positions were identified
- 623 in the legend as fixed for an alternative allele compared to the reference of Breton et al. (2009).

Predicted best k = 42Predicted assembly size = 1.657 Gb

annotatior Ш N N N