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Method: SVCA (spatial variance component analysis)

Abstract

Technological advances allow for assaying multiplexed spatially resolved RNA and protein
expression profiling of individual cells, thereby capturing physiological tissue contexts of
single cell variation. While methods for assaying spatial expression profiles are increasingly
accessible, there is a lack of computational approaches that allow for studying the relevance
of the spatial organization of tissues on cell-cell heterogeneity. Here, we present spatial
variance component analysis (SVCA), a computational framework for the analysis of spatial
molecular data. SVCA estimates signatures of spatial variance components, thereby
quantifying the effect of cell-cell interactions, as well as environmental and intrinsic cell
features on the expression levels of individual molecules. In application to a breast cancer
Imaging Mass Cytometry dataset, our model yields robust spatial variance signatures,
identifying cell-cell interactions as a major driver of expression heterogeneity. We also apply
SVCA to high-dimensional imaging-derived RNA data, where we identify molecular
pathways that are linked to cell-cell interactions.

Introduction

Experimental advances have enabled assaying RNA and protein abundances of single cells
in spatial contexts, thereby allowing to study single cell variation in tissues. Already, these
technologies have delivered new insights into tissue systems and the sources of
transcriptional variation (Battich, Stoeger, & Pelkmans, 2013; Bodenmiller, 2016), with
potential use as biomarkers for human health (Bodenmiller, 2016). Spatial expression
variation can reflect interactions between adjacent cells, or can be caused by cells that
migrate to specific locations in a tissue to perform their functions (e.g. immune cells).
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Different technologies allow for assaying spatially resolved expression profiles. Imaging
Mass Cytometry (IMC) (Giesen et al., 2014) and Multiplexed lon Beam Imaging (MIBI)
(Angelo et al., 2014) rely on protein labeling with antibodies coupled with metal isotopes of
specific masses followed by high-resolution tissue ablation and ionisation. IMC enables
profiling of over 40 targeted proteins with subcellular resolution. Other methods such as
MxIF and CyclF use immunofluorescence for protein quantification of tens of markers at a
time (Gerdes et al., 2013; Lin, Fallahi-Sichani, & Sorger, 2015). Increasingly, there also exist
optical imaging-based assays to measure single cell RNA levels. Mer-FISH and seqg-FISH
use a combinatorial approach of fluorescence-labeled small RNA probes to identify and
localise single RNA molecules (Chen, Boettiger, Moffitt, Wang, & Zhuang, 2015; Gerdes et
al.,, 2013; Lin et al., 2015; Shah, Lubeck, Zhou, & Cai, 2017)), which allows for measuring
larger numbers of readouts (currently between 140 and 250). In addition, there exist other
spatial expression profiling techniques such as Spatial Transcriptomics (Stahl et al., 2016),
which currently however do not offer single cell resolution and are therefore not adequate to
study cell-to-cell variation.

The availability of spatially resolved expression data represents an unprecedented
opportunity to disentangle largely unexplored sources of single cell variations: i) intrinsic
sources of variation due to difference in cell types or states (e.g. cell-cycle state), ii)
environmental effects from the cell microenvironment and iii) interactions between adjacent
cells. Yet, although experimentally spatial omics profiles can be generated with increasingly
high throughput, the required computational strategies for interpreting the resulting data are
only beginning to emerge. On the one hand, there exist methods for spatial clustering based
on single cell expression profiles (Achim et al., 2015), and to assess the overall relevance of
the spatial topology on gene expression (Svensson, Teichmann, & Stegle, n.d.). However,
these methods do not allow for directly assessing cell-cell interactions. On the other hand,
methods exist that can capture cell-cell interactions based on manual cell-type assignments
and predefined cellular neighbourhoods (Goltsev et al., 2018; Schapiro et al., 2017; Schulz
et al.,, 2018)(Levine et al., 2015). While these methods have already identified qualitative
insights into the interaction of cell types, they do not allow for quantifying the impact of
spatial effects on individual genes or proteins.

Here, we present Spatial variance component analysis (SVCA), a computational framework
to model spatial sources of variation of individual genes or proteins. SVCA allows for
decomposing the sources of variation into intrinsic effects, environmental effects and cell-cell
interactions. The model is parameterized based on continuous expression profiles, and in
particular avoids the need to define discrete cell types. We illustrate SVCA using data from
multiple technologies and biological domains, including IMC proteomics profiles data from
human cancer tissue and spatial single-cell profiles from the mouse hippocampus based on
segFISH. Across these applications, we find pronounced effects due to cell-cell interactions,
and we identify biologically relevant genes and pathways that participate in these processes.
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Results and Discussion

SVCA considers random effect components that capture i) intrinsic sources of variation due
to differences in cell types or states, ii) environmental sources of variation due to local
extracellular factors iii) source of variations due to cell-cell interactions (Fig. 1a). The effect
of these factors on molecular expression variability is modelled using a random effect model
(Fig. 1b). Importantly, SVCA does not require assigning cells to discrete cell types, but
instead is based on a continuous measure of cell-cell similarities estimated from the
covariance of their expression profiles (Fig. $1). Our random effect model also circumvents
the need to define discrete neighbours but instead weights interactions between pairs of
cells as a function of their distance (Fig. $1). The fited SVCA model provides a
decomposition of these sources of variation of individual genes and proteins, and the model
can be used to assess the significance of these respective components. The resulting spatial
variance signatures provides a compact summary of the drivers of expression variation in a
dataset (Fig. 1c).
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Figure 1 | Spatial variance component analysis (SVCA): approach and overview.

(@) SVCA allows for decomposing the variability of individual genes and proteins into i) cell
intrinsic effects (due to differences in intrinsic cell type or state, blue), ii) general
environmental effects that capture expression differences due to local extracellular factors
(green) and iii) a cell-cell interaction component that captures differences in expression level
attributable to different cellular composition of a cell’'s neighbourhood (yellow). (b) SVCA is
based on a random effect framework, considering additive contributions of these different
components (Methods). See Fig. S1 and Methods for details of how these random effect
components are defined.(c) SVCA output: gene-level break down of the proportion of
variance attributable to different components.
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Initially, we used simulated data to assess the statistical calibration and the accuracy of
SVCA variance estimates. Briefly, we generated expression profiles by sampling from the
model, using empirical parameters derived from 11 real datasets (Methods), including the
position of cells and the cell state covariance. First, we simulated expression profiles
assuming no interaction effects to assess the calibration of the corresponding test, finding
that the model yields conservative estimates (Fig. 2a). We also assessed the detection
power of the interaction test when simulating cell-cell interactions that explain increasing
proportions of the gene expression variance (Fig. 2c), and when varying the number of cells
in the dataset (Fig. 2d). Finally, we compared the estimated variance components for
cell-cell interactions with the simulated variance components, again observing that the model
estimates are conservative (Fig. 2b). Taken together, these results demonstrate that SVCA
can be used to estimate and test for spatial drivers of single cell variability, in particular
cell-cell interactions.
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Figure 2 | Validation of cell-cell tests and variance components using simulated data.

(a) Empirical false discovery rate for the cell-cell interaction test using data simulated from
the null. Shown is the empirical false discovery rate (FDR) as a function of the applied P
value threshold. (b) Proportion of variance due to cell-cell interactions estimated by SVCA
when varying the true proportion of variance explained (Methods). (c,d) Statistical power
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for the cell-cell interaction test (at family-wise error rate <1%), when varying the proportion of
variance explained by cell-cell interactions (¢) and when considering a subset of all cells for
model fitting (d). All cells were used for model fitting in ¢ (indicated using the asterix symbol).
For each panel, boxplots show the distribution of results across 110 simulated settings (11
images times 10 independent runs) and for 26 proteins. Rates in panel a, ¢, d (True Positive
Rate - TPR and False Discovery Rate - FDR) are computed across the 110 simulations for
each protein and estimated effects in panel b are averaged across simulations.

Application of SVCA to spatial proteomics data of breast cancer tissues

Next, we applied SVCA to a recent Imaging Mass Cytometry (IMC) dataset from human
breast cancers, consisting of 52 breast biopsies from 27 breast cancer patients with variable
disease grade and from different cancer subtypes, sampled from different tumour locations
(Schapiro et al.,, 2017). SVCA revealed substantial differences of cell-cell interaction
component across proteins, explaining up to half of the expression variability (Fig 3a).
Immune cell markers were enriched among the set of proteins with the strongest cell-cell
interaction effects: CD44, CD20, CD3 and CD68 had significant cell-cell interaction
components in 35, 34, 34 and 38 out of the 52 images respectively (FDR<1%,
Benjamini-Hochberg adjusted, Fig. 3a). We used bootstrapping to confirm the robustness of
the variance estimates (Fig. S$5), and we observed that a variance component model that
accounts for cell-cell interactions was able to more accurately impute gene expression
profiles than models that ignore such effects (Fig. 3b, Fig. S2).
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Figure 3 | Application of SVCA to 52 breast cancer samples profiled using IMC. (a)
Bottom panel: SVCA signatures for 26 proteins. Shown are averages of the proportion of
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variance explained by intrinsic effects, environmental effects and cell-cell interactions, across
52 images. Proteins are ordered by the magnitude of the cell-cell interaction component. Top
panel: The number of images with significant cell-cell interaction effects for the
corresponding proteins (FDR<1%, Methods, Fig S7). (b) Out of sample prediction accuracy
using SVCA and models of lower complexity, using 5 fold cross validation. Shown are
average coefficients (r?) between predicted and observed gene expression values, averaged
across proteins and images. Error bars correspond to plus and minus one standard deviation
indicating the variation across images and proteins. (c) First two principal components for 42
clinically annotated images, calculated based on the full variance component signature, with
individual images coloured by tumour grade. (d) Loadings of the variance components for
the two first PCs, showing the relevance of individual proteins and variance components.
Variations of the second principal component is driven by the relative values of the
environmental component and the local components for some key proteins.

We also observed substantial variations in the spatial variance signatures between individual
images (Fig. S4), motivating investigating the relationship between these differences and
clinical covariates, including tumour grade, ER status, PR status, HER2 status. Using
Principal Component Analysis, we identified tumour grade as the most important explanatory
variable for differences in spatial variance components (Fig 3c¢), followed by ER status and
PR status (Fig. S8). Inspection of the PCA loadings (Fig. 3d) identified the cell-cell
interaction component and the environmental component for a subset of proteins (including
PR and CD44) as the most informative SVCA feature affected by tumour grade. This was
also evident when comparing environmental and cell-cell interaction effects across tumours
of different grades (Fig. S9), showing a relative increase in the cell-cell interaction
component in higher grade tumours. This effect could in part be due to the increased cell
density in later stage tumours.

RNA-based datasets based on imaging technologies

SVCA can be used for the analysis of data from a broad range of spatially resolved
technology, including imaging-based assays. To explore this, we considered a mouse
hippocampus datasets, profiling 240 RNA expression levels in 21 distinct brain regions of a
single animal, using seqFISH (Shah et al., 2017). Leveraging the high-dimensionality of the
data, we sought to identify individual genes and pathways that are most linked to cell-cell
interactions.

Similarly to the IMC dataset, SVCA signatures were robust and could accurately predict
gene expression levels out of sample (Fig S17, S18, S19). After averaging SVCA signatures
across images, we used the reactome database (Croft et al., 2014) to identify pathways that
were enriched among genes with large cell-cell interaction components (Methods). 5
pathways showed a significant enrichment, with transmission across chemical synapses,
neurotransmitter release cycle and neuronal system among the ones with highest
significance (FDR<5%, considering 60 reactome pathways with three or more genes
contained in this dataset, Methods, Fig. 4c¢). For comparison, we also considered gene set
enrichment based on the average expression level of genes across images, which identified
distinct GO categories (fransmembrane transport and SLC-mediated transmembrane
transport), with only little overlap to the pathways identified from the cell-cell interactions.
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This demonstrates the complementarity of spatial and abundance-based signatures for
studying biological activity in tissues, as only the former accounts for the spatial structure of
the cells’ native environment.

Similarly to results obtained on the IMC datasets, spatial variance signatures were variable
across images, which is consistent with the high biological variability between the different
regions of the hippocampus imaged here reported in (Shah et al., 2017). Principal
components of the global spatial variance signature for the dorsal region clustered together,
irrespective of their CA1/CA3 location. Similarly, images from the Dentate Gyrus (DG) also
clustered together, and there was some proximity between signatures from the ventral
region, although with more variation between them (Fig. 4d,e). This is consistent with Shah
et al's observation that the ventral and dorsal regions of the CA1 and the CA3 mirrored each
other with respect to their cellular compositions, and that ventral regions are much more
heterogeneous in their cellular composition. Spatial Variance signatures for intermediate
regions, however, did not show much resemblance (Fig. 4d,f).
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Figure 4: seqFISH results:

(a) Spatial Variance signature averaged across images: top 20 genes for cell-cell
interactions. (b) Variance estimates distribution across images and proteins (¢) Top 10
enriched pathways out of 60 reactome pathways using a rank-based enrichment analysis
(see Methods) in the cell-cell interactions variance component averaged across images
(left) compared to the corresponding gene expression enrichments, averaged across images
(right). Colours denote statistical significance (negative log Benjamini-Hochberg adjusted P
values). (d) Spatial organisation of the mouse hippocampus Each dot corresponds to an
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image. Colours and shapes denote regions using the classification as in (Shah et al., 2017).
(e) First two principal components of the spatial variance signatures for individual images
from the DG, the dorsal region and the ventral region. The colours and shapes represent the
location of the biopsy in the hippocampus. (f) First two principal components of the spatial
variance signatures for all images.

We also applied SVCA to a breast cancer cell culture dataset profiled using the
mer-FISH technique (140 RNA expression levels) (Moffitt et al., 2016). The large spatial
domain and the number of cells imaged from a biological homogenous cell culture system
means that multiple field of views can be defined as technical replicates. Consistent with
this, the variance components of SVCA were highly consistent across images (Fig. $S10, Fig.
S$11, Fig. S12, Fig. S14), with average coefficients of variation for cell-cell interactions of
20-40%, compared to typically 75-150% (Fig. $13) for the IMC and seq-fish data (Fig. S4,
Fig. S20). These results further support the general applicability of the model to data from
different technology and the robustness of SVCA variance signatures.

Conclusion

We presented Spatial Variance Component Analysis (SVCA), a framework for the analysis of
spatially resolved molecular expression data. Our model computes a spatial variance
signature for individual mRNA or protein levels, decomposing their sources of variation into
spatial and non-spatial components. Most prominently, SVCA provides a quantitative
assessment of the effect of cell-cell interactions on the expression profile of individual
molecules. The model avoids the definition of cell types and neighbourhoods, instead using
continuous measure of cell state and euclidean distances between cells.

We have applied SVCA to multiple datasets that were generated using alternative
technologies, probing either RNA transcripts or proteins, thereby demonstrating the broad
applicability of the model. Across these applications, we observed that cell-cell interactions
substantially contributed to gene expression variation, which is consistent with previous
reports (Battich, Stoeger, & Pelkmans, 2015) and supports the concept that studying single
cell expression in the native context is important to understanding the sources of these
variations. We also showed that the variability of spatial variance signatures across samples
of the same biological system could be linked to different clinical contexts or to the internal
structure of a given organ, which underlines the biological relevance of these signatures.
Finally, using higher dimensionality data obtained from optical technologies, we found that
genes with largest cell-cell interaction components were enriched in specific pathways,
suggesting that spatial variance signatures could help us understanding biological activity in
tissue. These results suggest that analysing single cell data in their native context, with
SVCA or related methods, will help us understand how the spatial organisation of tissues
impact single cell biology.

Although we have tested the calibration and robustness of SVCA, the model is not free of
limitations. At present, the model does not account for technology specific noise and instead
assumes Gaussian distributed residuals, thus requiring suitable processing of the raw data
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such that these assumptions are sufficiently met (See Methods). Further development could
consider generalized LMMs, for example to couple the random effect component with a
negative-binomial likelihood. A second limitation of SVCA is that the model is univariate,
which means that individual genes or proteins are modelled independently from each other.
A multivariate model could account for relationships between genes involved in the same
pathways, either in an unsupervised manner or using prior knowledge (Buettner,
Pratanwanich, McCarthy, Marioni, & Stegle, 2017). Such approaches could give a more
comprehensive understanding of how biological processes are affected by tissue structure.

There is a growing appreciation of the role of spatial distribution of proteins, transcripts and
other molecules in determining tissues functioning and its deregulation in disease, with
potential value as predictors of clinical outcomes. This is largely driven by vigorous
development of novel technologies that enable us to capture such data (Aichler & Walch,
2015; Bodenmiller, 2016; Goltsev et al., 2018; Lin et al., 2017; Schulz et al., 2018). We
believe that the SVCA framework and extensions thereof will be of broad use to analyze this
burgeoning spatially-resolved molecular data to advance our understanding of the
pathophysiology of multiple diseases.
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