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Abstract:6

Ecological communities are comprised of both species and the biotic relationships among them.7

Biotic homogenization in species composition (i.e. increased site-to-site similarity) is recognized a8

common consequence of global change, but less is known about how species relationships change9

over space and time. Does homogenization of species composition lead to homogenization of10

species relationships or are the dynamics of species relationships decoupled from changes in11

species composition? To answer this question, we used long-term resurvey data to analyze12

changes in plant species association patterns between the 1950s and 2000s at 266 sites distributed13

among three community types in Wisconsin, USA. We used species associations (quanti�ed via14

local co-occurrence patterns) as a proxy for species relationships. Species pairs that co-occur15

more/less than expected by chance have positive/negative associations. Shifts in species16

associations consistently exceeded the shifts observed in species composition. Less disturbed17

forests of northern Wisconsin have converged somewhat in species composition but not much in18

species associations. In contrast, forests in central Wisconsin succeeding from pine barrens to19

closed-canopy forests have strongly homogenized in both species composition and species20

associations. More fragmented forests in southern Wisconsin also tended to converge in species21

composition and in the species negative associations, but their positive associations diverged over22
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the last half century. We conclude that long-term shifts in species relationships may be decoupled23

from those of species composition despite being a�ected by similar environmental variables.24

Keywords: beta diversity, long-term changes, species co-occurrence, species composition, species25

interactions, networks26

Introduction27

Global environmental changes including shifts in climate, land use and management, and species28

invasions are a�ecting many communities and ecosystems (Vitousek et al., 1997; Sala et al., 2000)29

and forming novel ecosystems (Hobbs et al., 2009). Global biotic homogenization (BH) is occurring30

as sites converge in their species composition (McKinney & Lockwood, 1999; Olden & Po�, 2003).31

This has been documented in several ecosystems, taxonomic groups, and spatial scales (e.g.,32

Rooney et al., 2004; Baiser et al., 2012; Li & Waller, 2015; Solar et al., 2015). Such declines in beta33

diversity adversely a�ect ecosystem functions (Olden et al., 2004) by reducing ecosystem services34

“insurance” e�ects (Loreau et al., 2003).35

Environmental changes can also modify relationships among species (e.g. interactions, Tylianakis36

et al., 2008; Blois et al., 2013). This may result in new predator-prey interactions (Rockwell et al.,37

2011), intensi�ed predation (Harley, 2011), changes in plant phenology leading to pollination38

mismatches (Hegland et al., 2009), and changes in non-trophic relationships among species such as39

species spatial association (Milazzo et al., 2013; Li & Waller, 2016). Species relationships may in fact40

be more sensitive and susceptible to environmental change, allowing them to act as a better41

indicator of change than species richness or composition (Tylianakis et al., 2008; Poisot et al., 2017).42

For example, relationships between a host and its parasites in the tropics changed in response to43

habitat modi�cation without changes in species composition (Tylianakis et al., 2007). Species44

relationships also play critical roles in maintaining biodiversity and ecosystem functions at both45

local and regional scales (Bascompte et al., 2006; Gotelli et al., 2010; Harvey et al., 2017). As a result,46
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monitoring species composition and species relationships simultaneously may provide a better47

understanding of how global change a�ects ecosystem structure and function (McCann, 2007;48

Valiente-Banuet et al., 2015).49

Recently, there has been an upsurge of interest in species relationships in the context of ecological50

networks (McCann, 2007; Morales-Castilla et al., 2015; Tylianakis & Morris, 2017). This re�ects51

important advances in the theory and methods of network analysis as well as its clear applications52

to conservation biology and restoration ecology (Cumming et al., 2010; Tylianakis & Morris, 2017).53

Ecological networks are composed of nodes and links where species are nodes and the54

relationships between them are links. Ecological networks provide a useful conceptual framework55

for studying species relationships and the complexity of biological systems. Nevertheless, most56

previous studies of species relationships focus on spatial variation in network structures, typically57

along some environmental gradient, rather than how these change over time (e.g. Mokross et al.,58

2014). Without long-term baseline data, it is di�cult to study how species relationship networks59

may vary over time (Laliberté & Tylianakis, 2010; Poisot et al., 2015). However, given the rapid60

change in abiotic and biotic conditions across ecosystems worldwide (Tylianakis et al., 2008),61

exploring the temporal dynamics of species relationships is necessary for assessing biodiversity62

under global change.63

Plant-plant relationships (e.g. facilitation, competition) form the foundation of plant community64

assembly, on which other types of relationships (e.g. trophic interactions in food webs, pollination65

interactions, host-parasite) build. Although plant-plant relationships are fundamental, they have66

received less attention than other types of ecological relationships. Part of the reason is that, while67

most other types of relationships can be detected by observations (e.g. pollination, predation,68

parasitism), plant-plant relationships are di�cult to observe and thus require experiments to69

quantify. Conducting such experiments quickly becomes intractable as the number of possible70

relationships scales with the square of the number of species.71

As an alternative to doing factorial experiments to detect how plant species interact, we can also72
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examine how species associate spatially. Species association patterns are regularly used in73

community ecology and biogeography as a proxy for species relationships (Gotelli, 2000). Previous74

studies have suggested that biotic interactions are the main driver of local species associations75

(Morales-Castilla et al., 2015). Species association at the local scale is possible despite or because of76

interactions with other species in the community after passing the environmental �lters.77

Consequently, we should be able to infer relationships among species based on how they co-occur78

locally (Gotelli, 2000; Araújo et al., 2011; Harris, 2016). Here, we use local-scale species association79

networks as proxies to represent species relationship networks. We use both terms80

interchangeably while acknowledge that we are not studying these relationships directly.81

To study long-term changes in plant-plant species relationships, we applied network analysis to82

three forest plant community types in Wisconsin, USA, sampled �rst in the 1950s then again in the83

2000s. Biotic homogenization in species composition has been observed in almost all of the plant84

communities in Wisconsin (Rooney et al., 2004; Rogers et al., 2008; Li & Waller, 2015). To85

understand whether plant-plant species relationships underwent similar homogenization in these86

communities, we examine long-term shifts in their species relationship networks here as inferred87

from species association patterns. We also ask whether species composition and relationships in88

these communities are a�ected by the same environmental variables in both time periods. Species89

associations may be inherently more labile than species composition (Poisot et al., 2017) re�ecting90

the large number of interactions present among species (with n species, we have (n2) possible91

species associations). Therefore, we hypothesize that changes in species relationship networks are92

decoupled from changes in species composition. Speci�cally, we do not expect biotic93

homogenization in species composition to necessarily be re�ected in changes in species94

association networks. We also hypothesize that species composition and relationships are driven95

by the same environmental factors given the fact that relationships are build on species identities.96

However, we do not expect these environmental factors to have the same e�ect over time given97

observed changes in land use and climate across these communities. In sum, we sought to98

demonstrate whether species relationships and species composition have similar responses to99
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global environmental change.100

Methods101

Vegetation data102

In the 1950s, John Curtis and his students and colleagues canvassed the state of Wisconsin to �nd103

the best remaining examples of natural vegetation then sampled 1000+ sites and diverse104

community types (Curtis, 1959). They only chose sites with no obvious disturbances and their105

plots were always at least 30m away from any edges. Within each site, they recorded the presence106

and absence of all vascular plants in each of many sampled 1-m2 quadrats. The number of quadrats107

sampled at each site varied but was usually 20. They were careful to archive all their original data108

in the Plant Ecology Laboratory at University of Wisconsin – Madison109

(http://www.botany.wisc.edu/PEL/, Waller et al., 2012). Here, we use data from three community110

types re-surveyed since 2000 using similar methods: northern upland forests (NUF, 108 sites),111

central sands pine barrens forests (CSP, 30 sites), and southern upland forests (SUF, 128 sites).112

Because the original sites were not permanently marked, we analyze data from these113

“semi-permanent” plots. The resurveys sampled 2-6 times as many quadrats per site as the original114

survey. All taxonomy was carefully synchronized between periods. To allow fair comparisons with115

matched sampling e�ort, we randomly sub-sampled the the 2000s survey data using the same116

number of quadrats as used in the 1950s. Collectively, we analyzed species presence/absence data117

from >5000 quadrats distributed among the same 266 sites in the two time periods.118

Environmental data119

We analyzed a suite of environmental variables to detect drivers of plant composition and120

association patterns. These variables fall into several major categories including: soil properties,121
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landscape variables, canopy shade, and climatic variables. We used Principal Component Analysis122

(PCA) to reduce the dimensionality of the soil variables (including soil nitrogen, proportions of123

sand and clay, pH, etc.) yielding two primary axes (soil_pc1, soil_pc2). We also used PCA to124

compute 2-axis summaries of landscape variables (landsc_pc1, landsc_pc2) for all sites except125

those in the Central Sand Plains. These variables were: proportions of di�erent land use types,126

road density, and house density, all computed for the area within 2km of each site. We did not have127

shade data for the northern and southern upland forests. We extracted local climatic variables128

based on average daily precipitation and minimal temperature for all sites using a Wisconsin129

climate database that covers 1950 to 2006 (Kucharik et al., 2010). These data derive from an130

extensive network of weather stations distributed throughout the state. Downscaled data were131

generated via spatial interpolation. To represent each period of sampling, we averaged climate132

variables over two �ve year periods: 1950-1954 and 2002-2006. This accounts for potential lags in133

species’ responses and inter-annual climatic variation.134

Plant association networks135

Within each vegetation type and time period, we constructed a quadrat by species matrix with136

rows for each quadrat (nested within a site) and columns for each species. Values in the cells of137

this matrix re�ect the presence or absence (1/0) of that species in that quadrat. We treat the 1-m2
138

quadrat as the sample unit here because plants that co-occur at this scale are most likely to also139

interact. We removed species occupying fewer than six quadrats at each period to exclude rare140

species and facilitate the determination of core species co-occurrence pairs. We then used this141

quadrat by species matrix to infer species pairs that are more or less likely to co-occur with each142

other as compared to random expectation according to two methods.143

Our �rst method is based on the traditional null model approach (Gotelli, 2000), which is144

commonly used to study species co-occurrence patterns. We calculated the partial C-score for each145

pair of species as (ci − mij)(cj − mij), where ci and cj are the number of quadrat occurrences of146
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species i and j and mij is the number of quadrats where both species occurred. We then shu�ed147

the cells of the quadrats by species matrix 5000 times using the �xed-�xed randomization148

algorithm. This null model maintains row and col sums (species richness within each quadrat and149

species frequency across all quadrats) of the matrix. In each iteration, partial C-scores for all150

species pairs were computed, generating a null distribution from the 5000 randomizations. This151

was then used to judge whether the observed C-score re�ects higher or lower co-occurrence than152

expected by chance. For more details, see Li & Waller (2016).153

A recent study concluded that this null model approach has relatively low power to infer true154

species interactions from co-occurrence patterns, suggesting the use of Markov networks instead155

(Harris, 2016). Unfortunately, current implementations of Markov networks are restricted to 20156

species or fewer (Harris, 2016) thus we could not apply them to our dataset. Instead, we use157

generalized linear models (GLMs) as our second method. GLMs have similar power as Markov158

networks (Harris, 2016) but extend to include many more species. For the GLMs, we �tted159

Bayesian regularized logistic regression to the presence/absence for each species (response) using160

the presence/absence of other species as predictors. This method generates two regression161

coe�cients and p-values for each species pair. We averaged these to estimate the strength of162

species interactions (cf. Harris, 2016). The two methods we employed yielded qualitatively similar163

results that both support our main conclusions. We therefore only report results from GLMs in the164

main text as these may have higher statistical power. For the C-score null model results, see the165

Appendix.166

With the list of positive and negative association species pairs, we built one positive association167

metaweb and one negative association metaweb for each vegetation type and time period. We then168

built positive and negative association networks for each site from these two metawebs by169

sub-setting the species observed at that site. This assumes that species relationships between170

species do not di�er across sites of the same vegetation type and time period. It therefore results in171

more conservative results. To remove this assumption, one can also build an association network172

for each site independently. However, we lacked the power to do this given the limited number of173
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quadrats (mostly 20) per site. Therefore, the association networks for each site in our analyses174

were derived from the metawebs instead of build independently.175

Data analysis176

Changes in spatial � diversity over time177

We �rst calculated pairwise beta diversity in both species composition and species association178

networks within each vegetation type and time period using the methods proposed by Legendre &179

De Cáceres (2013). For pairwise beta diversity of species composition, the input is a site by species180

matrix, with species abundances in the cells; for species association pairwise beta diversity, the181

input is a site by species pairs (non-random pairs inferred via methods described above) matrix. In182

this way, we treat each non-random species pair as a “species” in traditional community ecology183

analyses (cf. Poisot et al., 2017). We have also calculated pairwise beta diversity in species184

association networks using the method proposed by Poisot et al. (2012). This method divides beta185

diversity of interaction networks (�WT ) additively into �ST (dissimilarity of interactions due to186

species turnover) and �OS (dissimilarity of interactions established between species common to187

both networks). As we are forced to assume that species relationships do not change across sites188

within each vegetation type and time period (i.e., �OS = 0), the calculated �WT , a measure of beta189

diversity for site pairs, correlated tightly with those calculated from methods proposed by190

Legendre & De Cáceres (2013) (Pearson r > 0.98 for NUF sites as an example). Thus, we only use191

the methods proposed by Legendre & De Cáceres (2013) to calculate pairwise beta diversity. This192

approach allows us to directly compare pairwise beta diversity for species composition to beta193

diversity for species associations as both are calculated the same way. We compared pairwise beta194

diversity of each vegetation type between the 1950s and the 2000s using Wilcox paired tests.195

Lower (or higher) beta diversity in the 2000s suggests biotic homogenization (or di�erentiation).196

Given the number of sites in NUF (108) and SUF (126), we have a large number of pairwise beta197

diversity measures (5778 and 7875, respectively). Such large sample sizes make it possible to obtain198
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statistically signi�cant results that may not be biologically signi�cant. Therefore, we also test199

changes in beta diversity for each vegetation type using a distance-based permutational test for200

homogeneity of multivariate dispersion (PERMDISP, Anderson et al., 2006). PERMDISP calculates201

distance of each site to the centroid of the ordination space and then tests whether these distances202

are di�erent across groups (i.e. 1950s vs 2000s) with permutation tests. We also use results from203

PERMDISP to visualize species composition and association patterns for each vegetation type and204

time period.205

Within site changes over time206

To compare rates of change in species composition and species relationships over time, we207

calculated beta diversities between periods within each site (i.e. a site in the 1950s vs the same site208

in the 2000s), again using the Legendre & De Cáceres (2013) method. We then used paired t-test to209

examine whether these beta diversities re�ecting changes in species associations signi�cantly210

exceeded the beta diversities re�ecting changes in species composition (i.e., whether species211

associations changed more than species composition). To con�rm these results, we also applied212

Permutational Multivariate Analysis of Variance (PERMANOVA) to compare changes in species213

composition and species associations.214

Environmental drivers215

To understand environmental drivers for species composition and association networks, we216

conducted distance-based redundancy analysis (RDA) for each vegetation type and time period.217

We transformed species composition and association matrix into distance matrices with the218

Hellinger index (Legendre & Legendre, 2012). We used environmental variables as predictors in219

RDAs. To identify the most signi�cant environmental variables, we used forward variable selection220

and AIC-based statistics over 999 replicate runs for each matrix (c.f. Poisot et al., 2017). The order221

of variable selection provides insight into the importance of environmental variables with the222
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Table 1: Summary of species used and species associations for each vegetation type and time
period. Abbreviations: NUF, northern upland forests; CSP, central sand plains; SUF, southern
upland forests.

Type Date Species Used Pairs (Neg. Assoc.) Pairs (Pos. Assoc.) Pairs (Random) Total Pairs

NUF 1950s 146 91 (0.9%) 393 (3.7%) 10101 (95.4%) 10585
NUF 2000s 160 140 (1.1%) 473 (3.7%) 12107 (95.2%) 12720
CSP 1950s 61 31 (1.7%) 83 (4.5%) 1716 (93.8%) 1830
CSP 2000s 55 19 (1.3%) 72 (4.8%) 1394 (93.9%) 1485
SUF 1950s 225 220 (0.9%) 771 (3.1%) 24209 (96.1%) 25200
SUF 2000s 186 124 (0.7%) 522 (3%) 16559 (96.2%) 17205

earlier selected variables generally a�ecting species composition or the associations more. This223

analysis allowed us to study whether species composition and association are a�ected by similar224

sets of environmental variables in the same way and how these relationships changed over time.225

All analyses were conducted in R v3.4.0 (R Core Team, 2017).226

Results227

Across all vegetation types, the majority (>90%) species pairs co-occurred randomly at both time228

periods as inferred from the results using Bayes GLMs (Table 1). Among the non-random species229

pairs, more species pairs co-occurred positively than negatively across all vegetation types and230

time periods (Table 1).231

In the NUF region, species composition and the positive species associations had similar levels of232

dispersion in both time periods within the ordination space (Fig. 1), suggesting that233

homogenization did not occur. This was con�rmed by PERMDISP results (permutation test, all p >234

0.25, Table 2). However, pairwise site beta diversity calculated with methods proposed by Legendre235

& De Cáceres (2013) suggested no changes in positive associations but homogenization in species236

composition and di�erentiation in negative associations (Paired Wilcoxon test, both p < 0.001,237

Table 2).238
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Figure 1: Ordination of species composition and associations. Circles represent sites in the 1950s
while triangles represent sites in the 2000s. Note that although the periods overlapped considerably
in species composition, signi�cant species associations in the two time periods did not overlap at
all in any vegetation type. This suggests that species relationships di�er between the two time
periods in all vegetation types. The spread of sites within each time period / vegetation type re�ects
variation in species relationships across sites.
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In the CSP region, sites converged in ordination space in the 2000s when compared to 1950s (Fig.239

1). This suggests that these sites experienced homogenization in both species composition and240

species associations (positive and negative). Results from both Paired Wilcoxon test on pairwise241

beta diversity and PERMDISP (all p < 0.001, Table 2) con�rm this interpretation.242

Sites in the SUF region also showed a tendency to converge in species composition and negative243

associations between periods (Fig. 1). In contrast, positive associations tended to diverge. These244

results were supported by the parallel analyses of pairwise site beta diversity and PERMDISP (all p245

< 0.001 for paired Wilcoxon tests and all p < 0.035 for PERMDISP, Table 2).246

For all regions, shifts in beta diversity for the species association networks exceeded those for247

species composition (p = 0.001 within each site Fig. 2). Thus, it appears that species association248

networks have changed faster than species composition. Large turnover in species associations249

(positive or negative) may re�ect only slight changes in species composition.250

Species composition and species associations were largely in�uenced by the same set of251

environmental variables within each vegetation type and each time period (Table 3). For CSP and252

SUF in the 1950s, species composition and species association networks were a�ected by almost253

the same set of environmental variables. This pattern still holds for the SUF in the 2000s but less so254

for the CSP and the NUF sites. More importantly, the importance of environmental variables on255

plant communities has changed over time. For example, shade was most important for the CSP256

sites in the 1950s but lost importance by the 2000s. Soil properties there strongly a�ected the SUF257

sites in the 1950s became less important by the 2000s while climatic variables gained importance.258

Precipitation had the second most important e�ect on species composition of NUF in the 1950s but259

became least important in the 2000s.260
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Table 2: Homogenization in species composition does not always result in the homogenization of
species association networks. Numbers in the ave_1950 (pairwise) and ave_2000 (pairwise)
columns represent average pairwise beta diversity between sites within the same vegetation type
in the 1950s and the 2000s, respectively. Numbers in the ave_1950 (permdisp) and ave_2000
(permdisp) columns represent average distance to group centroid in the ordinations of sites
within the same vegetation type in the 1950s and the 2000s, respectively. The column direction
(pairwise) indicates directions of changes in the pairwise site beta diversity over time, tested
with paired Wilcoxon tests. The column direction (permdisp) indicates directions of changes
in the distance between sites and the ordination centroid over time, tested with permutation tests.
Abbreviations: Spe. Comp, species composition; Pos. Assoc., positive associations; Neg Assoc.,
negative associations, homog., homogenization; diff., di�erentiation, *, p < 0.05; **, p < 0.01; ***, p
< 0.001.

vegtype var2 ave_1950
(pair-
wise)

ave_2000
(pair-
wise)

ave_1950
(per-

mdisp)

ave_2000
(per-

mdisp)

direction
(pair-
wise)

direction
(per-
mdisp)

NUF Spe.
Comp.

0.595 0.588 0.513 0.509 homog.*** no
change

NUF Pos.
Assoc.

0.755 0.757 0.545 0.547 no
change

no
change

NUF Neg.
Assoc.

0.766 0.787 0.554 0.568 di�.*** no
change

CSP Spe.
Comp.

0.447 0.299 0.418 0.327 homog.*** homog.***

CSP Pos.
Assoc.

0.643 0.398 0.463 0.285 homog.*** homog.***

CSP Neg.
Assoc.

0.699 0.443 0.513 0.323 homog.*** homog.***

SUF Spe.
Comp.

0.572 0.546 0.516 0.497 homog.*** homog.*

SUF Pos.
Assoc.

0.712 0.744 0.511 0.538 di�.*** di�.**

SUF Neg.
Assoc.

0.769 0.713 0.553 0.517 homog.*** homog.***
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Figure 2: Changes in species composition and association of the same site over time. Each point
represents changes in beta diversity at the same site between the 1950s and the 2000s. Turnover in
species relationships appear to be much greater than the turnover in species composition.
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Table 3: Selected environmental variables for species composition and species associations. Numbers
are the order that variables are selected. ’-’ means that the environmental variable is not available.
Blank cells mean that these variables are dropped out.

type date var shade precip tmin soil_pc1 soil_pc2 landsc_pc1 landsc_pc2

NUF 1950s Spe. Comp. - 2 4 1 3 5
Pos. Assoc. - 4 2 1 3
Neg. Assoc. - 1 2 3 4

2000s Spe. Comp. - 5 1 2 3 4
Pos. Assoc. - 4 3 1 2 5

Neg. Assoc. - 5 1 3 4 2
CSP 1950s Spe. Comp. 1 2 - -

Pos. Assoc. 1 2 - -
Neg. Assoc. 1 2 - -

2000s Spe. Comp. 4 2 3 1 - -

Pos. Assoc. 1 3 2 - -
Neg. Assoc. 1 2 - -

SUF 1950s Spe. Comp. - 4 3 2 1 5
Pos. Assoc. - 4 3 2 1 5
Neg. Assoc. - 5 3 2 1 4

2000s Spe. Comp. - 1 2 3 4 5
Pos. Assoc. - 2 1 3 4 5
Neg. Assoc. - 1 2 3 4
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Discussion261

Few studies have quanti�ed changes in both species composition and species relationship262

networks over time (Burkle et al., 2016). It takes considerable e�ort to construct a single263

interaction network, let alone networks at multiple sites over two or more time periods. We found264

only two empirical studies on homogenization of ecological networks. Laliberté & Tylianakis265

(2010) found that deforestation homogenized parasitoid-host networks in tropical areas. Although266

they have temporal data of parasitoid-host networks (monthly samples for 17 months), their main267

conclusion was derived from spatial comparisons among di�erent land use categories. Kehinde &268

Samways (2014) examined biotic homogenization of insect–�ower interactions in vineyards269

managed under agri-environmental schemes in the Cape Floristic Region. They found no evidence270

of homogenization for interaction networks when comparing vineyards to natural sites.271

Our study may thus be the �rst to explore temporal changes in beta-diversity of species272

relationship networks. By using patterns of species co-occurrence to indicate species relationships273

and by using a valuable, high-resolution, long-term dataset, we were able to examine parallel274

changes in both community composition and species interaction networks. We found species275

relationship networks can homogenize, di�erentiate, or show no change through time in di�erent276

vegetation types regardless of the homogenization dynamics of species composition. Long-term277

changes in species composition and species interactions thus appear to be decoupled.278

In the northern upland forests (NUF) of Wisconsin, plant communities were relatively stable in279

terms of their species composition and species associations. Compared to other community types,280

NUF area has a lower human population, less land use change, and less habitat fragmentation. In281

this study, we found no overall changes in beta diversity of species composition and species282

associations when tested with PERMDISP. However, paired Wilcoxon test on beta diversity283

between site pairs suggested signi�cant homogenization in species composition, matching the284

conclusion (biotic impoverishment and homogenization) reached in a previous study of a subset of285

these sites (Rooney et al., 2004). Here, we also found no changes in the among-site diversity of286
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positive species associations but signi�cant di�erentiation in negative species associations. Given287

the large number of sites in NUF (108), the results of Wilcoxon tests may not be biologically288

signi�cant despite their statistical signi�cances. These results suggest that shifts in species289

composition may not occur in the same direction as shifts in species relationships.290

Plant communities in the central sand plains (CSP) historically were �re-maintained pine barrens291

with open canopies. However, they are succeeding into close-canopy upland forests because of �re292

suppression (Li & Waller, 2015). Fire suppression has resulted in homogenization in both species293

composition (Li & Waller, 2015) and functional trait composition (Li & Waller, 2017). This probably294

re�ects declines in habitat heterogeneity within these communities. In the 1950s, sites in the CSP295

had di�erent canopy coverage, forming mosaics of burned and unburned habitats to support296

di�erent plant communities. In the 2000s, however, sites were similar with each other in their297

canopy cover due to �re suppression and succession, �ltering out shade intolerant species (Li &298

Waller, 2017) and homogenizing plant communities (Li & Waller, 2015). Given these ecological299

changes, it is not surprising to �nd signi�cant homogenization in both positive and negative300

species associations in these communities.301

Sites in the southern upland forests (SUF) have been a�ected by development and land use changes302

more than any other plant community in Wisconsin (Rogers et al., 2008). Currently, most of these303

sites are fragmented and disturbed by nearby anthropogenic activities including roads,304

development, and agriculture. Previous studies suggest that habitat degradation and fragmentation305

tend to homogenize species composition by decreasing species diversity, which can also reduce306

network complexity and stability (Tylianakis et al., 2007; Laliberté & Tylianakis, 2010; Mokross et307

al., 2014). However, the fact that habitat fragmentation can result in greater di�erences in308

interaction network structure (Bordes et al., 2015) suggests that network simpli�cation (less nodes309

and/or edges) does not necessarily cause network homogenization. Networks can di�er across310

sites if individual networks contain unique interactions even if they show a general trend toward311

simpli�cation. In these SUF communities, the importance of species dispersal limitation and312

stochastic factors have increased while the importance of species interactions have decreased over313
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time (Li & Waller, 2016). It is thus likely that stochastic assembly processes are forming novel sets314

of interaction among species even though species diversity has decreased. Indeed, we found on315

average 116 signi�cant positive species pairs per site in the 1950s, but only 63 signi�cant positive316

pairs per site in the 2000s. Therefore, association network at each site was simpler in the 2000s317

(paired t-test, df = 125, t = 11.90, p < 0.0001). However, both Wilcoxon paired test on pairwise beta318

diversity of positive association networks and PERMDISP suggested that positive association319

networks in the 2000s have di�erentiated since the 1950s (Table 2). Therefore, in the SUF, we found320

homogenization of species composition but di�erentiation of species positive associations, despite321

the fact that we did not �nd landscape variables to be the most important ones for interactions in322

the SUF (results from the null model did pick up landscape variables as the most important323

variable for positive species interactions, appendix table S3).324

Although changes in species relationships are occurring faster than changes in species325

composition and appear decoupled from them, they appear to be a�ected by a similar set of326

environmental variables within each vegetation type and time period (Table 3). For example,327

species relationships and composition at the CSP in the 1950s were a�ected by the same set of328

environmental variables (canopy shade and soil); similar pattern found at the SUF and NUF even329

though with slightly di�erent orders for environmental variables (cf. Poisot et al., 2017). However,330

the importances of environmental variables for species relationships and compositions have331

changed over time for all vegetation types, especially CSP and SUF. For example, canopy shade332

was the most important variables for CSP sites in the 1950s, but it was dropped out in the 2000s.333

This is understandable because sites in the CSP are close-canopy forests now with very little334

variation in canopy cover. In the SUF, soil properties used to the most important variables for both335

interactions and compositions, but they were replaced by climatic variables in the 2000s. For the336

relatively stable sites in the NUF, we did not �nd such abrupt changes in the importances of337

environmental variables over time. These results suggest that species interactions and338

compositions are mostly a�ected by the similar set of environmental variables (though not339

identical). As global environmental changes accelerate, the relative importance of environmental340
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variables may also change, resulting in novel arrays of species and consequent species interactions341

(Blois et al., 2013; Milazzo et al., 2013).342

Here, we used species association (co-occurrence) patterns to represent species relationships as it343

was intractable to quantify interactions among hundreds of plant species. Species associations may344

give false positive (hypothesized links that does not exist in real system) relationships between345

species and may not detect all real interactions (Delalandre & Montesinos-Navarro, 2018; Freilich346

et al., 2018). However, our main goal is to study whole community dynamics rather than to347

pinpoint exact interactions between particular species pairs. For this purpose, species spatial348

association network is a necessary and useful proxy (Freilich et al., 2018) because it can provide349

valuable information regarding the net output of direct and indirect e�ects among multiple plant350

species (rather than exact pairwise interactions, Delalandre & Montesinos-Navarro, 2018).351

Furthermore, co-occurrence networks can also predict overall community responses to disturbance352

(Tulloch et al., 2018). To reduce the potential for bias, we studied species association patterns at a353

�ne spatial scale (1m2) and used statistical methods (Bayes GLMs) that have relatively high power354

for detecting species interactions (Harris, 2016). Furthermore, we used the null model method and355

reported its result in the appendix. Because both methods provide quantitatively similar results356

and reach the same conclusion, our conclusion that changes in species relationships and species357

composition are decoupled is likely to be robust. Consequently, our results about species358

association networks may also hold for species interaction networks.359

A necessary assumption in this study is that species relationships within each vegetation type and360

time period are consistent across sites. In reality, relationships between species can vary through361

space and time (Poisot et al., 2015). Because we lacked the data to analyze how species362

relationships may have di�ered over sites, we pooled data across sites to gain insights into the363

average nature of species relationships within each community. This makes our results364

conservative as accounting for variation in species interactions over sites could only show greater365

variation in network structure, strengthening our conclusion that temporal changes in species366

relationships and composition are decoupled.367
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Our results suggest that species relationships may not be experiencing a general trend toward368

homogenization as novel relationships may be forming in response to rapid global change. This369

opens important questions into how these changes in species relationships may a�ect community370

stability, ecosystem services, and species co-evolution. Studies of beta diversity in species371

relationships remain in their infancy (Burkle et al., 2016). Given the importance of species372

interactions and their potential unpredictable relationship with species composition, future373

empirical and theoretical research that investigates patterns, causes, and consequences of changes374

in beta diversity of interaction networks are needed.375

Conclusion376

Previous studies of long-term change in communities have mostly focused on species composition,377

often documenting biotic homogenization. Relationships among species, however, may be just as378

important in that they, too, can a�ect ecosystem function with important implications for379

conservation and restoration. Remarkably little is know about how species relationship networks380

shift in response to global environmental changes. Our study here, based on remarkably detailed381

long-term data, makes clear that these changes can be complex. Species relationship networks382

homogenized, di�erentiated, or remained unchanged among the three vegetation types. In383

contrast, species composition converged in all three. Although long-term changes in species384

composition and species relationships were decoupled in these communities, they were a�ected by385

similar sets of environmental variables. Their relative importance, however, changed between the386

1950s and 2000s particularly in the more disturbed communities. As environmental changes387

accelerate, we may see fewer but unique relationships among species. Taken together, these results388

highlight the need to study species relationships in addition to species composition as changes in389

relationships may not necessarily be predictable from changes in species composition.390
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