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ABSTRACT 1	

It is widely assumed that cells must be physically isolated to study their molecular profiles. However, 2	

intact tissue samples naturally exhibit variation in cellular composition, which drives covariation of cell-3	

class-specific molecular features. By analyzing transcriptional covariation in 7221 intact CNS samples 4	

from 840 individuals representing billions of cells, we reveal the core transcriptional identities of major 5	

CNS cell classes in humans. By modeling intact CNS transcriptomes as a function of variation in cellu-6	

lar composition, we identify cell-class-specific transcriptional differences in Alzheimer’s disease, among 7	

brain regions, and between species. Among these, we show that PMP2 is expressed by human but not 8	

mouse astrocytes and significantly increases mouse astrocyte size upon ectopic expression in vivo, caus-9	

ing them to more closely resemble their human counterparts.	 Our work is available as an online resource 10	

(http://oldhamlab.ctec.ucsf.edu) and provides a generalizable strategy for determining the core molecu-11	

lar features of cellular identity in intact biological systems. 12	
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INTRODUCTION 13	

Identifying the molecular features that define cellular identities is a fundamental goal of biological re-14	

search. Consequently, a number of methods have been developed to isolate cells for molecular profiling, 15	

including fluorescence-activated cell sorting (FACS), immunopanning (IP), and sorting of single cells 16	

(SC) or nuclei (SN). Although these methods are readily applied to many biological systems, their ap-17	

plicability to the adult human CNS has been limited by technical factors and practical considerations. 18	

For example, FACS, IP, and SC typically require fresh tissue and have therefore been mostly limited to 19	

surgical samples from a handful of CNS regions and individuals1-3. SN4, 5 is compatible with frozen tis-20	

sue but, like SC, suffers from technical noise caused by tissue dissociation, nucleus/cell capture, cDNA 21	

preamplification, and stochastic transcript coverage6. Furthermore, there is a trade-off between sequenc-22	

ing depth and the number of nuclei/cells that can be analyzed. 23	

 The adult human CNS is large, heterogeneous, and difficult to dissociate due to extensive mye-24	

lin. It consists of ~170 billion cells, about half of which are neurons7. The remaining cells consist mostly 25	

of oligodendrocytes, astrocytes, and microglia, which are collectively referred to as glia. Identifying 26	

transcriptional differences among neuronal and glial subtypes is an important goal, since the extent of 27	

heterogeneity among major CNS cell classes is not fully understood. However, overlooked in the focus 28	

on heterogeneity is the equally important question of what CNS cell subtypes have in common. For ex-29	

ample, is there a core set of genes whose expression is shared among all neurons? All astrocytes? Etc. 30	

Answering these questions will fill critical gaps in our understanding of CNS cell biology, produce nov-31	

el experimental and analytical strategies, and provide important insights into the cellular origins of CNS 32	

pathologies. ‘Bottom-up’ methods such as SC/SN are poorly suited to address these questions, since 33	

they are difficult to apply to the adult human CNS at scale. 34	

 Most gene expression studies of the human CNS have analyzed intact postmortem tissue sam-35	

ples. Because these samples are heterogeneous and cells must be destroyed to extract RNA, it is often 36	

assumed that these datasets contain no information about the cellular origins of gene expression. How-37	

ever, it is axiomatic that intact tissue samples from any biological system will exhibit variation in cellu-38	

lar composition. Therefore, when many intact tissue samples are analyzed, genes expressed with the 39	

greatest sensitivity and specificity in the same cell class should appear highly correlated, since their ex-40	

pression levels depend primarily on the proportion of that cell class in each sample8. In support of this 41	

reasoning, we previously discovered highly reproducible gene coexpression modules in microarray data 42	

from intact human brain samples that were significantly enriched with markers of major CNS cell clas-43	

ses9. These findings were replicated in studies of intact CNS transcriptomes from mice10, rats11, zebra 44	

finches12, macaques13, and humans14. 45	
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 Gene coexpression modules corresponding to major cell classes are therefore robust and predict-46	

able features of CNS transcriptomes derived from intact tissue samples. Furthermore, the same genes 47	

consistently show the strongest affinities for these modules, offering substantial information about the 48	

molecular correlates of cellular identity9. Over the past decade, thousands of intact, neurotypical human 49	

tissue samples from every major CNS region have been transcriptionally profiled with multiple technol-50	

ogy platforms. These data provide an unprecedented opportunity to determine the core transcriptional 51	

features of cellular identity in the human CNS from the ‘top down’ by integrating cell-class-specific 52	

gene coexpression modules from a large number of independent datasets. 53	

 

RESULTS 54	

Gene coexpression analysis of synthetic brain samples accurately predicts differential expression 55	

among CNS cell classes 56	

To illustrate the premise of our approach, we aggregated single-cell RNA-seq data from the adult human 57	

brain1 to create synthetic samples that mimic the heterogeneity of intact tissue (Fig. 1A). We performed 58	

unsupervised gene coexpression analysis of synthetic datasets and identified modules of coexpressed 59	

genes in each dataset that were maximally enriched with published markers15, 16 of astrocytes, oligoden-60	

drocytes, microglia, or neurons (‘cell-class modules’; e.g. Fig. 1A). Intuitively, the primary source of 61	

expression variation in a cell-class module is variation in the representation of that cell class in each 62	

sample. Mathematically, the vector that explains the greatest amount of expression variation in a coex-63	

pression module is its first principal component, or module 'eigengene' (Fig. 1A)17. This line of reason-64	

ing suggests that the eigengene of a cell-class module should approximate the relative abundance of that 65	

cell class in each sample. Because the precise cellular composition of each synthetic sample is known, 66	

we tested this hypothesis and found that actual cellular abundance was nearly indistinguishable from that 67	

predicted by cell-class module eigengenes (Fig. S1A). 68	

 To determine the affinity of each gene for each significant cell-class module, we calculated the 69	

Weighted Gene Coexpression Network Analysis measure of intramodular connectivity, or kME
18. kME is 70	

defined as the Pearson correlation between the expression pattern of a gene and a module eigengene. In 71	

the special situation of a cell-class module, kME therefore quantifies the similarity between the expres-72	

sion pattern of a gene and the relative abundance of that cell class in each sample. Because each sample 73	

is a heterogeneous mixture of cells, a high kME value for a cell-class module suggests that expression of 74	

the gene in that particular cell class is sensitive and specific. We tested this hypothesis by performing 75	

differential expression analysis of single-cell RNA-seq data for each cell class, restricting our analysis to 76	

exactly the same cells that were used to construct the synthetic brain samples. As shown in Fig. 1B, the 77	
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genes that are most significantly up-regulated in a given cell class also have the highest kME values for 78	

the corresponding cell-class module. We obtained nearly identical results by aggregating single-cell 79	

RNA-seq data from the adult mouse brain19 (Fig. S1B,C). These findings demonstrate that gene coex-80	

pression analysis of intact CNS samples can determine which genes are most differentially expressed 81	

among CNS cell classes. More generally, our results suggest that it is not always necessary to physically 82	

isolate cells in order to ascertain their defining transcriptional features. 83	

 84	

Integrative gene coexpression analysis of intact tissue samples reveals consensus transcriptional 85	

profiles of major CNS cell classes in humans 86	

To determine consensus transcriptional profiles of human CNS cell classes, we analyzed 7221 CNS 87	

transcriptomes from 840 neurotypical adult humans by combining data from eight studies14, 20-26 and one 88	

resource (www.brainspan.org). These data were generated from intact postmortem tissue samples using 89	

diverse technology platforms (Table S1) and collectively represent billions of cells. Each sample was 90	

assigned to one of 19 broad neuroanatomical regions, resulting in 62 regional datasets (Fig. 1C). After 91	

data preprocessing and quality control, each dataset consisted of ≥25 samples (median: 76) (Table S1). 92	

For each dataset, we performed unsupervised gene coexpression analysis and identified the module that 93	

was maximally enriched with published markers15, 16 of astrocytes, oligodendrocytes, microglia, or neu-94	

rons (Fig. 1D, Table S2). PC1 of these modules was used to estimate the relative abundance of each cell 95	

class over all samples and calculate genome-wide kME values (Fig. 1E,F). Finally, we combined kME 96	

values for significant cell-class modules from all 62 datasets, producing a single value (z-score) for each 97	

gene that quantifies its global expression fidelity for each cell class (Fig. 1G). Importantly, estimates of 98	

fidelity were highly robust to the choice of gene set used for enrichment analysis (especially for glia; 99	

Fig. S2). Canonical markers consistently had high fidelity for the expected cell class and low fidelity for 100	

other cell classes (Fig. 2A-D). High-fidelity genes were also significantly and specifically enriched with 101	

expected cell-class markers from multiple independent studies (Fig. 2A-D). Compared to glia, the distri-102	

bution of expression fidelity for neurons was compressed (Fig. 2A-D), likely reflecting neuronal hetero-103	

geneity among CNS regions. Genome-wide estimates of expression fidelity for major cell classes are 104	

provided in Table S3 and on our web site (http://oldhamlab.ctec.ucsf.edu). 105	

 

High-fidelity genes reveal the core transcriptional identities of major CNS cell classes in humans 106	

The genes with the highest expression fidelity for major CNS cell classes are consistently coexpressed 107	

across regions and technology platforms (Fig. S3). This consistency suggests that high-fidelity genes 108	

can provide an unbiased view of the core transcriptional identities of major cell classes, thereby reveal-109	
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ing novel cellular functions and biomarkers. We visualized the top 50 genes ranked by expression fideli-110	

ty for each cell class to compare their expression levels, mutation intolerance, literature citations, cellu-111	

lar localization, and protein-protein interactions (PPI) (Fig. 3A-D). Overall, absolute expression levels 112	

of high-fidelity genes were highest for neurons and lowest for microglia (Fig. 3A-D, red tracks). How-113	

ever, for each cell class there was a wide range of expression levels for high-fidelity genes, suggesting 114	

parallel regulatory mechanisms and/or differential transcript stability. 115	

To assess the tolerance of high-fidelity genes to loss-of-function (LoF) mutations, we analyzed 116	

data from the Exome Aggregation Consortium (ExAC), which summarizes the prevalence of coding mu-117	

tations in ~61K human exomes27. Unexpectedly, high-fidelity neuronal genes were significantly less tol-118	

erant to LoF mutations than high-fidelity glial genes (Fig. 3A-D, black tracks). To determine whether 119	

high-fidelity genes have been studied in their respective cell classes, we searched PubMed for each gene 120	

symbol and the name of the cell class (Fig. 3A-D, green tracks). Interestingly, many searches returned 121	

no citations, highlighting critical gaps in our understanding of CNS cell biology. For example, the top 122	

microglial gene (amyloid beta precursor protein binding family B member 1 interacting protein, or 123	

APBB1IP) is unstudied in microglia. 124	

 We examined the cellular localization of proteins28 encoded by high-fidelity genes and observed 125	

another distinction between neurons and glia. Among the proteins encoded by genes in Fig. 3A-D, 126	

membrane localization was reported for 33 in astrocytes, 22 in oligodendrocytes, and 30 in microglia, 127	

but only 13 in neurons (inside track). This result may reflect the homeostatic functions of glia as sensors 128	

and regulators of extracellular CNS environments. More generally, the non-random distributions of cel-129	

lular localizations suggest that high-fidelity genes are expressed at the protein level in the corresponding 130	

cell classes. To further explore this topic, we examined PPI29 among high-fidelity gene products for each 131	

cell class and observed significantly more interactions than expected by chance (Fig. 3A-D, interior 132	

lines). 133	

 Because high-fidelity genes should encode optimal biomarkers, we searched for high-fidelity 134	

genes in the Human Protein Atlas (http://www.proteinatlas.org) to identify novel reagents for labeling 135	

human CNS cell classes. We identified validated antibodies for PON2 (astrocytes), DBNDD2 (oli-136	

godendrocytes), APBB1IP (microglia), and CELF2 (neurons) (Fig. 3A-D). Dual immunostaining with 137	

canonical markers revealed almost perfect concordance in human frontal cortex (Fig. 3E-H). 138	

 

Gene coexpression analysis of intact tissue samples reveals the core transcriptional features of di-139	

verse CNS cell classes 140	
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Variation among intact tissue samples can also reveal transcriptional features of less abundant cell clas-141	

ses in the human CNS. Following the general strategy outlined in Fig. 1, we calculated genome-wide 142	

expression fidelity for human cholinergic neurons, midbrain dopaminergic neurons, endothelial cells, 143	

ependymal cells, choroid plexus cells, mural cells, oligodendrocyte progenitor cells, and Purkinje neu-144	

rons (Figs. 4, S4; Table S3). This analysis correctly assigned high-fidelity scores for canonical markers 145	

of these cells. For example, choline acetyltransferase (CHAT), the high-affinity choline transporter 146	

(SLC5A7), and the vesicular acetylcholine transporter (VACHT) were all ranked within the top ~0.2% of 147	

all genes for cholinergic neuron expression fidelity, while claudin 5 (CLDN5), tyrosine kinase with im-148	

munoglobulin like and EGF like domains 1 (TIE1), and platelet and endothelial cell adhesion molecule 1 149	

(PECAM1) were all ranked within the top ~0.3% of all genes for endothelial cell expression fidelity 150	

(Table S3). Comparisons with published gene sets revealed that high-fidelity genes were significantly 151	

and specifically enriched with expected markers of each cell class from multiple independent studies. 152	

Furthermore, novel markers predicted by our analysis were validated by in situ hybridization in the adult 153	

mouse brain30 (Figs. 4, S4). 154	

 155	

High-fidelity genes enable predictive modeling of gene expression in transcriptomes from intact 156	

tissue samples 157	

The reproducibility of gene coexpression modules corresponding to major cell classes (Table S2, Fig. 158	

S3) suggests that transcriptional variation among intact CNS samples can be modeled as a function of 159	

cellular abundance. We explored this topic systematically by performing multiple linear regression in 47 160	

CNS datasets with ³40 samples to determine how much expression variation in a shared set of ~9600 161	

genes could be explained by variation in the abundance of neurons, astrocytes, oligodendrocytes, and 162	

microglia. To estimate the relative abundance of each cell class in each dataset, we summarized the ex-163	

pression patterns of high-fidelity genes (Fig. 5A). To avoid circularity, we used a leave-one-out cross-164	

validation strategy to redefine high-fidelity genes for each dataset by recalculating expression fidelity 165	

for each cell class using the remaining 46 datasets (as in Fig. 1C-G). Prior to modeling, each dataset was 166	

downsampled (n=40) to facilitate comparisons of results; this process was performed iteratively to en-167	

sure robustness (Fig. 5A). 168	

 Implementing this strategy, we obtained several important results (Fig. 5B). First, using only one 169	

gene (with the highest fidelity) as a surrogate for each cell class, our models explained 32.2% of total 170	

transcriptional variation averaged over all datasets and up to ~50% in some datasets (vs. ~0.1% for per-171	

muted data). Second, increasing the number of gene surrogates/cell class (e.g. using the top 10 or top 50 172	

high-fidelity genes) provided only modest performance improvements (unless otherwise stated, subse-173	
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quent models used the top 10 high-fidelity genes). Third, prediction accuracy depended strongly on 174	

technology platform (p<10-7, ANOVA) but not CNS region (p=0.92, ANOVA). Among microarrays, 175	

older platforms fared substantially worse than newer platforms, while RNA-seq generally outperformed 176	

all microarrays. 177	

Despite their simplicity, our models explained >50% of expression variation, averaged over all 178	

datasets, for ~2000 genes (Fig. 5C). Over all genes, the average amount of expression variation ex-179	

plained by our models followed a sigmoid function (Fig. 5C). We benchmarked model performance 180	

against the maximal explanatory power of any 4 predictors by using PC1-4 from each dataset as covari-181	

ates for multiple regression. On average, PC1-4 explained 49.6% of total gene expression variation over 182	

all datasets (Fig. 5B). Thus, modeling gene expression in the human CNS as a function of neuron, astro-183	

cyte, oligodendrocyte, and microglia abundance achieved, on average, 72.0% of the maximal explanato-184	

ry power for all datasets and 80.1% for RNA-seq datasets (Fig. 5B). 185	

 We reasoned that model performance for RNA-seq might exceed that for microarrays since the 186	

latter have many probes for transcripts that are unlikely to be expressed in the CNS. We therefore strati-187	

fied genes by expression levels and examined model performance. As expected, predictive power de-188	

creased at lower expression levels, with the sharpest decline between the 3rd and 4th quartiles (Fig. 5D). 189	

We next explored how transcriptional variation related to variation in the abundance of individu-190	

al cell classes, sex, and age. We found that neuronal abundance explained more transcriptional variation 191	

than glial abundance (Fig. 5E). After controlling for variation in the abundance of major cell classes, 192	

model performance did not substantially improve by including sex or age as covariates (Fig. 5E). We 193	

further explored this topic by correlating the estimated abundance of each cell class with age in 32 CNS 194	

datasets. We found that neuronal and oligodendroglial abundance were negatively correlated with age, 195	

while astrocytic and microglial abundance were positively correlated (Fig. 5F). These results suggest 196	

that age-related changes in gene expression in bulk CNS transcriptomes are primarily driven by age-197	

related changes in cellular composition. 198	

 

Gene expression modeling applications 199	

The ability to predict gene expression in transcriptomes from intact CNS samples has substantial impli-200	

cations for many areas of neurobiological inquiry. We illustrate the relevance of this approach through 201	

comparative analysis of gene expression models in disease, among CNS regions, and between species. 202	

 

Application #1: Contextualizing disease genes and modeling gene expression in pathological sam-203	

ples 204	
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Using a curated database of results from genetic association studies31, we asked whether genes associat-205	

ed with CNS diseases are enriched among genes primarily expressed by astrocytes, oligodendrocytes, 206	

microglia, or neurons (Fig. 6A-B). Clustering of select CNS diseases by enrichment p-values revealed 207	

several interesting findings. First, with the exception of ALS, genes associated with neurodegenerative 208	

disorders were most enriched among genes expressed by microglia and astrocytes. Second, genes asso-209	

ciated with neurodevelopmental disorders, epilepsy, and psychiatric disorders were most enriched 210	

among genes expressed by astrocytes and neurons. Third, genes expressed by astrocytes consistently 211	

showed the greatest enrichment with candidate CNS disease genes. 212	

 Beyond broad associations between diseases and cell classes, gene expression modeling can also 213	

reveal which cell class is most likely to express a candidate disease gene. For example, we modeled 214	

gene expression for Alzheimer’s diseases (AD) risk genes as a function of neuronal, oligodendroglial, 215	

astrocytic, and microglial abundance in transcriptomes from intact neurotypical adult human temporal 216	

cortex (Fig. 6C). Expression levels of early-onset AD risk genes APP and PSEN1 were mostly ex-217	

plained by variation in neuronal and oligodendroglial abundance, respectively. In contrast, expression 218	

levels of late-onset AD risk genes APOE and TREM2 were mostly explained by variation in astrocytic 219	

and microglial abundance, respectively. These results were highly consistent across 47 CNS datasets 220	

(Fig. 6D). 221	

 Compared to control (CTRL) human brain samples, AD samples should contain fewer neurons 222	

and proportionately more glia. We tested this hypothesis by using expression patterns of high-fidelity 223	

genes to infer the relative abundance of neurons, astrocytes, microglia, and oligodendrocytes in 3 gene 224	

expression datasets from intact postmortem brain samples of CTRL and AD subjects32-34. We observed a 225	

highly significant decrease in neuronal abundance in AD in all datasets (Figs. 6E, S5A-B). In 2 out of 3 226	

datasets, there were significant increases in the relative abundance of astrocytes and microglia in AD, 227	

with similar trends in the third (Figs. 6E, S5A-B). Interestingly, there were no significant differences in 228	

oligodendrocyte abundance between CTRL and AD in any dataset (Figs. 6E, S5A-B). This strategy can 229	

help determine whether variable cellular composition is associated with diverse CNS disorders. 230	

 Because AD brain samples tend to have fewer neurons and proportionately more astro-231	

cytes/microglia than CTRL, differential expression analysis of intact tissue samples will reveal down-232	

regulation of neuronal transcripts and up-regulation of astrocytic/microglial transcripts. However, pre-233	

dictive modeling can identify cell-intrinsic transcriptional differences between CTRL and AD that are 234	

independent of changes in cellular composition. This strategy is analogous to that of Kuhn et al.35, ex-235	

cept here we use expression patterns of high-fidelity genes to estimate cellular abundance. Surprisingly, 236	

after controlling for differences in cellular composition between CTRL and AD, we identified many 237	
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genes that were consistently up-regulated in AD neurons (Fig. 6F, Table S4). These genes did not in-238	

clude canonical AD risk genes (Fig. S5C), but rather genes involved in protein ubiquitination, catabo-239	

lism, proteasome degradation, and mitochondrial function (Fig. S5D), suggesting efforts by AD neurons 240	

to mitigate the effects of misfolded protein aggregates. Examples are shown in Figs. 6G, S5. 241	

 

Application #2: Identifying transcriptional differences in major cell classes among CNS regions 242	

We recalculated expression fidelity separately for each CNS region with ≥3 datasets and performed hi-243	

erarchical clustering for each cell class (Fig. 7A-D). Regional differences in expression fidelity were 244	

greatest for neurons, with a clear bifurcation between cortical/subcortical structures (Fig. 7D-E). In con-245	

trast, expression fidelity for oligodendrocytes was very similar among brain regions (Fig. 7B,E). Com-246	

paratively, microglia and astrocytes exhibited more regional variation in expression fidelity than oli-247	

godendrocytes, but less than neurons (Fig. 7A,C,E). 248	

 We developed a conservative strategy to identify binary expression differences in major cell 249	

classes among human brain regions (Fig. 7F-G, Table S5). Using these criteria, many genes were pre-250	

dicted to distinguish regional subpopulations of neurons (Figs. 7H, S6). Using the same criteria, we 251	

found no evidence for binary expression differences among regional subpopulations of microglia or oli-252	

godendrocytes (Fig. 7H). However, we did predict binary expression differences among regional sub-253	

populations of human astrocytes (Fig. 7H-I). For example, CHRDL1 was predicted to be expressed by 254	

astrocytes in frontal cortex and striatum, but not by astrocytes in diencephalon and midbrain (Fig. 7I-K). 255	

To validate this prediction, we performed single-molecule fluorescent in situ hybridization (FISH) for 256	

Chrdl1 and Aldh1l1 in cortical and thalamic samples from mice. Aldh1l1 is expressed ubiquitously by 257	

astrocytes15 and was detected in mouse cortex and thalamus (Fig. 7J-L). Expression of Chrdl1 colocal-258	

ized with Aldh1l1 in mouse cortex but not thalamus (Fig. 7L), as predicted. 259	

 

Application #3: Identifying transcriptional differences in major CNS cell classes between species 260	

We analyzed 1346 mouse brain transcriptomes to determine genome-wide expression fidelity for astro-261	

cytes, oligodendrocytes, microglia, and neurons (Tables S1, S6; Fig. S7). Over all homologous genes, 262	

expression fidelity was significantly correlated between mice and humans for each cell class, with the 263	

greatest similarity for neurons (Fig. 8A). We note that the strong conservation of neuronal expression 264	

fidelity relative to glia is mirrored at the protein level: high-fidelity neuronal genes are significantly less 265	

tolerant to LoF mutations than high-fidelity glial genes (Fig. 3A-D, black tracks). These findings may 266	

indicate that neurons are under greater evolutionary constraint than glia. 267	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2018. ; https://doi.org/10.1101/265397doi: bioRxiv preprint 

https://doi.org/10.1101/265397
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11 

 We applied stringent criteria and identified 50 genes predicted to be ‘on’ in human CNS cell 268	

classes and ‘off’ in the corresponding mouse CNS cell classes (Fig. 8B, Table S7). Only 6 genes were 269	

predicted with the opposite pattern (Fig. 8B, Table S7), which may reflect the smaller number of mouse 270	

transcriptomes analyzed. ~85% of predicted transcriptional differences between humans and mice were 271	

in glia (Fig. 8B). Because these differences could reflect an evolutionary gain of expression in one spe-272	

cies or loss in the other, we analyzed 476 outgroup samples from chimpanzee and macaque brains (Ta-273	

ble S1). Of the 50 genes predicted to be expressed in human but not mouse cell classes, 29 were signifi-274	

cantly associated with the same cell class in at least one primate dataset; conversely, of the 6 genes with 275	

the opposite pattern, none was significantly associated with the same cell class in any primate dataset 276	

(Table S7). For example, expression variation of MRVI1 was largely explained by variation in astrocyte 277	

abundance in primates, but not mice (Figs. 8B, S8A-B). Conversely, expression variation of PLA2G7 278	

was largely explained by variation in astrocyte abundance in mice, but not primates (Figs. 8B, S8A-B). 279	

Single-molecule FISH in human and mouse cerebral cortex confirmed that expression of MRVI1 and 280	

PLA2G7 is specific to human and mouse astrocytes, respectively (Fig. S8C-D). 281	

 To provide proof of concept for the ability of our analyses to deliver functional insights into the 282	

unique biology of human brains, we focused on a major unexplained cellular phenotype, which is the 283	

fact that human astrocytes are much larger than mouse astrocytes (as well as non-human primate astro-284	

cytes)36. This phenotype has important implications for neuronal function, since the domain of one hu-285	

man astrocyte can encompass up to ~2MM synapses vs. only ~100K synapses for one mouse astrocyte36. 286	

We reasoned that genes expressed by human but not mouse astrocytes might contribute to this pheno-287	

type. We were particularly intrigued by peripheral myelin protein 2 (PMP2; Fig. 8B), which encodes a 288	

fatty-acid binding protein made by Schwann cells that is important for maintaining membrane lipid 289	

composition37. In the human CNS, expression of PMP2 was extremely high (mean percentile: 96.2) and 290	

largely explained by variation in astrocyte abundance, while in the mouse CNS expression of PMP2 was 291	

effectively absent (mean percentile: 11.2) and unrelated to variation in astrocyte abundance (Fig. 8B-D). 292	

Furthermore, independent RNA-seq data from human, chimpanzee, macaque, and mouse prefrontal cor-293	

tex38 revealed a monotonic increase in PMP2 expression from mouse to human (Fig. 8E). 294	

Immunostaining showed widespread PMP2 in human neocortical astrocytes (Fig. 8F). In con-295	

trast, PMP2 was undetectable in mouse neocortex (Fig. 8F), despite robust expression by Schwann cells 296	

(Fig. S8E). To test whether PMP2 could increase mouse astrocyte size in vivo, we delivered a viral con-297	

struct expressing PMP2 under an astrocyte-specific promoter to neonatal mouse brains and analyzed the 298	

morphology of transduced astrocytes after 42d (Fig. 8G). Forced expression of PMP2 in mouse astro-299	

cytes significantly increased their maximum diameter and number of primary processes (Fig. 8H-I). The 300	
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increase in maximum diameter corresponded to an increase in mouse astrocyte volume of ~50% (assum-301	

ing sphericity). To further validate this finding, we repeated the experiment with a different viral con-302	

struct and obtained nearly identical results (Fig. S8F). To our knowledge, these data provide the first 303	

molecular explanation for morphological differences between human and mouse astrocytes. More gen-304	

erally, our findings illustrate how variation among intact tissue samples can predict cell-class-specific 305	

transcriptional features with important functional implications for human neurobiology. 306	

 

DISCUSSION 307	

We have described a novel, ‘top-down’ approach to reveal the core transcriptional features of cellular 308	

identity via integrative gene coexpression analysis of intact tissue samples. Compared to ‘bottom-up’ 309	

methods such as FACS, IP, and SC/SN, the main advantages of our approach are as follows: i) elimina-310	

tion of the need for fresh tissue; ii) applicability to huge amounts of existing data; iii) elimination of 311	

technical variability caused by tissue dissociation and cDNA preamplification; iv) elimination of sam-312	

pling bias associated with cell/nucleus capture; and v) ability to derive highly robust inferences about 313	

the core transcriptional features of cellular identity based on aggregate analysis of billions of cells. 314	

Our approach also has important limitations. False-positive associations can result from technical 315	

factors such as batch effects or biological factors such as cellular collinearity. For example, we consist-316	

ently observed that genes with high expression fidelity for oligodendrocytes had higher expression fidel-317	

ity for microglia (and vice versa) than they did for astrocytes or neurons. Because oligodendrocytes and 318	

microglia are more abundant in white matter than gray matter39, variation in the ratio of white matter to 319	

gray matter in CNS samples drives covariation in the abundance of these cell classes and the genes that 320	

they express. False-negative associations can result from technical factors such as limitations in dynamic 321	

range/transcriptome coverage or probe failures, as well as biological factors such as alternative splicing. 322	

Notwithstanding these limitations, the genes with the highest expression fidelity for major CNS cell 323	

classes are already remarkably stable. 324	

 It is interesting to consider the ability of our approach to detect transcriptional signatures of less 325	

abundant cell classes (e.g. Figs. 4, S4). The ability to discern a gene coexpression signature of a cell 326	

class in transcriptomes from intact tissue samples depends on many factors, including its representation, 327	

the uniqueness and abundance of its transcripts, its stoichiometry with other cell types, the technology 328	

platform, the algorithmic approach, and the sampling strategy8. Some of these factors can be optimized 329	

to improve sensitivity. Ultimately, however, we envision future studies that combine the benefits of top-330	

down and bottom-up strategies to fully deconstruct the transcriptional architecture of biological systems. 331	
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 Our estimates of gene expression fidelity for major cell classes were highly robust to the choice 332	

of gene set used for enrichment analysis, but more so for glia than neurons. This result indicates that 333	

neuronal diversity may require additional strategies to optimize estimates of neuronal expression fideli-334	

ty, particularly on a regional basis. For example, the neuronal gene sets used in this study do not capture 335	

the transcriptional profile of cerebellar granule neurons, which is highly distinct14, 22, 26. To better ac-336	

count for neuronal diversity, future studies may utilize additional neuron subtype-specific or composite 337	

gene sets for enrichment analyses. 338	

Our results suggest that the functional identity of a cell class can be conceived as a vector of 339	

genes ranked by the fidelity with which they are expressed in that cell class relative to all other cells in 340	

the biological system of interest. An advantage of this framing is that it is inherently context-dependent. 341	

Beyond revealing novel biomarkers and cellular phenotypes, such definitions can provide ‘molecular 342	

rulers’ for measuring the validity of human cells derived in vitro for disease modeling and cell replace-343	

ment therapies. In addition, these definitions can be tested in de novo CNS transcriptomes for their abil-344	

ity to predict gene expression levels through mathematical modeling. 345	

 Multivariate analyses of CNS transcriptomes often use module detection/clustering methods or 346	

projection methods such as principal component analysis. Although these methods have produced many 347	

important insights, they are inherently descriptive and do not lend themselves easily to comparisons 348	

among independent datasets. Because the building block of any biological system is the cell, and cells 349	

are distinguished by the genes that they express, an alternative approach is to model expression levels of 350	

individual genes as a function of variation in cellular composition. We have shown how expression pat-351	

terns of high-fidelity genes can be used as covariates in multiple linear regression models for this pur-352	

pose. The resulting models are grounded in biology, easily compared among independent datasets, and 353	

capable of extracting cell-class-specific insights from intact tissue samples. Using this approach, we ex-354	

plored how predictive models of gene expression in transcriptomes from intact CNS samples can inform 355	

studies of aging, disease genes, pathological samples, regional heterogeneity, and species differences. 356	

We elaborate upon our findings in the Supplementary Discussion. 357	

 The analyses presented in this study are based on a simple idea: variation in cellular composition 358	

among intact tissue samples will drive covariation of transcripts that are uniquely or predominantly ex-359	

pressed in specific kinds of cells. Although we have focused here on gene expression, our approach can 360	

also be applied to other types of molecular data, thereby offering a generalizable strategy for determin-361	

ing the core molecular features of cellular identity in intact biological systems. 362	
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Fig. 1 | Rationale and workflow. A) Left: Single-cell RNA-seq data from adult human brain samples1 464	
were randomly aggregated to create 100 synthetic tissue samples. Right (top): Unsupervised gene coex-465	
pression analysis of synthetic samples revealed CNS cell-class modules that were highly enriched with 466	
markers of astrocytes, oligodendrocytes, microglia, or neurons. Cell-class module membership strength 467	
(kME) was calculated for all genes. Right (bottom): Using the same cells that were selected to create syn-468	
thetic samples, single-cell differential expression analysis was performed for all genes with respect to 469	
each cell class. B) kME values for synthetic cell-class modules accurately predicted the results of differ-470	
ential expression analysis for each cell class (n=10 synthetic datasets; ‘up’ / ‘down’ denote up- and 471	
down-regulated genes for each cell class). C) 62 datasets representing diverse CNS regions and technol-472	
ogy platforms were acquired and preprocessed (Table S1). D) Unsupervised gene coexpression analysis 473	
was performed for each dataset to identify modules of genes with similar expression patterns. Each 474	
module was summarized by PC1 (module eigengene). E) Published markers of each cell class were 475	
cross-referenced with all modules (Fisher’s exact test; Table S2). F) Cell-class module eigengenes were 476	
used to calculate the similarity between cellular abundance and genome-wide expression patterns (kME) 477	
over all samples. G) Genome-wide kME values for significant cell-class modules were combined to yield 478	
a global measure of expression ‘fidelity’ for each gene with respect to each cell class. Schematic: A gene 479	
has high fidelity for a cell class if its expression is sensitive (it is consistently expressed by members of 480	
that cell class) and specific (it is not expressed by members of other cell classes). 481	
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Fig. 2 | Integrative gene coexpression analysis of intact CNS transcriptomes reveals consensus 482	
transcriptional profiles of human astrocytes, oligodendrocytes, microglia, and neurons. A-D) Left: 483	
consensus gene expression fidelity distributions for human astrocytes (A), oligodendrocytes (O), micro-484	
glia (M), and neurons (N). Canonical markers are labeled in red (A), blue (O), black (M), and green (N). 485	
Right: gene expression fidelity distributions for published sets of markers (A1-3, O1-3, M1-3, N1-3; 486	
Methods) were cross-referenced with high-fidelity genes (z-score >50). Gray shading: significant en-487	
richment (Fisher's exact test). 488	
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Fig. 3 | The core transcriptional identities of human astrocytes, oligodendrocytes, microglia, and 489	
neurons include known and novel biomarkers. A-D) The top 50 genes ranked by consensus expres-490	
sion fidelity for astrocytes, oligodendrocytes, microglia, or neurons. Expression levels: averages of mean 491	
percentile ranks for all datasets. Mutation intolerance: ExAC27. PubMed citations: queries for gene + cell 492	
class (e.g. gene symbol + 'astrocyte'). Cellular localization: COMPARTMENTS28. Predicted protein-493	
protein interactions (PPI): STRING29. Link=combined score >350. P-values for observed # links based 494	
on 100K random samples of 50 genes. E-H) Novel markers of human astrocytes (PON2), oligodendro-495	
cytes (DBNDD2), microglia (APBB1IP), and neurons (CELF2) in adult human dorsolateral prefrontal 496	
cortex (DLPFC; E: L5/6; F,G: white matter; H: L2/3). Arrowhead: cell in inset. Scale bar: 50µm.  497	
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Fig. 4 | Variation among intact tissue samples reveals transcriptional signatures of human cholin-498	
ergic neurons, midbrain dopaminergic neurons, endothelial cells, and ependymal cells. A-D) Top: 499	
high-fidelity genes for each cell class (top 10 are shown) are consistently coexpressed in independent 500	
datasets. Middle: consensus gene expression fidelity distributions for each cell class with canonical 501	
markers of major cell classes labeled in green (neurons), red (astrocytes), blue (oligodendrocytes), and 502	
black (microglia). Gene expression fidelity distributions for published sets of markers (Al, A2, O1, O2, 503	
M1, M2, N1, N2, C1, C2, D1, D2, E1, E2, Ep1, Ep2; Methods) were cross-referenced with high-fidelity 504	
genes (top 3 percentile). Gray shading: significant enrichment (Fisher's exact test). Bottom: mouse in 505	
situ hybridization data30 for high-fidelity genes in dorsal striatum (A), ventral midbrain (B), cortex (C), 506	
and lateral ventricle (D). 	507	
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Fig. 5 | Variation in cellular abundance predicts gene expression in transcriptomes from intact 508	
CNS samples. A) Strategy for modeling gene expression in intact human CNS samples as a function of 509	
inferred cellular abundance. B) Total % variance explained (mean adj. r2) for ~9600 genes whose ex-510	
pression levels were modeled as a function of inferred astrocyte, oligodendrocyte, microglia, and neuron 511	
abundance in 47 datasets (subset to 40 samples; values are mean +/- 2 s.e.m., 10 iterations). C) Mean 512	
adj. r2 values for individual genes from (B) over 47 datasets. Grey envelope: loess smoothed C.I. (+/- 2 513	
s.e.m., 10 iterations). D) Mean adj. r2 values for genes from (B) grouped by mean expression quartiles 514	
(each point is one dataset). E) Mean adj. r2 values for 7 different models (restricted to datasets w/ sex 515	
and age: GSE46706, GTEx, GSE11882, GSE25219). F) Pearson correlation of inferred cellular abun-516	
dance with age (* p<0.05; ** p<0.01; **** p<0.0001, one-sample Wilcoxon signed-rank test). Horizon-517	
tal bars (D-F): median; points colored by technology platform. 518	
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Fig. 6 | Gene expression modeling offers new avenues for studying human CNS diseases. A) # genes  519	
associated with each human cell class (p<8.37x10-9, Bonferroni correction for # gene models). B) En-520	
richment analysis (Fisher's exact test) of genes from (A) with human CNS disease genes from Pheno-521	
pedia31. FDR-adjusted p-values (q-values) are shown40. C) Modeling results in human temporal cortex 522	
(TCX ABI; i.e. 1 dataset) for 4 AD risk genes. D) Modeling results for genes from (C) in 47 datasets 523	
(≥40 samples). E) Top 10 high-fidelity genes were used to estimate the relative abundance of neurons, 524	
astrocytes, microglia, and oligodendrocytes in DLPFC from control (CTRL) and AD33 (Fig. 4A). P-525	
values: Wilcoxon rank-sum test. F) Gene expression modeling in 3 datasets32-34 reveals consistent cell-526	
class-specific expression changes in AD after controlling for differences in cellular abundance (p<0.05 527	
based on 1000 permutations of sample labels). G) Examples of two genes that are up-regulated in AD 528	
neurons (top33; bottom34). 529	
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Fig. 7 | Regional expression fidelity and predictive modeling reveal astrocyte heterogeneity in the 530	
human brain. (A-D) Hierarchical clustering of human brain regions (excluding cerebellum) based on 531	
Pearson correlations among regional expression fidelity for each cell class (n=18451 genes, ≥3 da-532	
tasets/region). E) Distributions of correlations in (A-D). F) Workflow to predict regional expression dif-533	
ferences in specific cell classes. Significance threshold: p<2.67x10-8 (Bonferroni correction for total # of 534	
gene models). G) Analyzed brain regions: frontal cortex (FCX), striatum (STR), hippocampus (HIP), 535	
diencephalon (DI), and midbrain (MID). H) Total # of region-specific genes conservatively predicted 536	
for each cell class. I) Genes predicted to be expressed by human astrocytes in restricted brain regions. J) 537	
Modeling of CHRDL1 and ALDH1L1 (+ control) as a function of inferred astrocyte abundance in exam-538	
ple datasets (FCX/DI from ABI). K) Modeling results for same genes in 3 datasets (ABI, GTEx, and 539	
GSE46706). L) Single-molecule FISH of Chrdl1 and Aldh1l1 in mature mouse brain (P30). Scale bar: 540	
20µm. 541	
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Fig. 8 | Gene expression modeling identifies cell-class-specific transcriptional differences between 542	
humans and mice. A) Comparison of gene expression fidelity in humans and mice for each cell class. 543	
B) Predicted cell-class-specific transcriptional differences between humans and mice. Expression levels 544	
are from independent datasets3, 41 that were not used to predict species differences. PubMed citations 545	
obtained as in Fig. 3. C) Example modeling results in humans (Hs.PCX.ABI) and mice (Ms.GSE64398) 546	
(Table S1). SLC1A3 is expressed by astrocytes in both species and PMP2 by astrocytes in humans but 547	
not mice. D) Astrocyte modeling results and mean expression percentiles for genes in (C) from all da-548	
tasets. Error bars: s.e.m. E) SLC1A3 and PMP2 expression in human, chimpanzee, macaque, and mouse 549	
prefrontal cortex38. F) Immunostaining for PMP2 in adult human DLPFC and P42 mouse neocortex. Ar-550	
rowheads: cells in insets. Scale bar: 40µm. G) Experimental strategy for studying PMP2 effects on 551	
mouse astrocytes. H) Representative examples of CTRL and PMP2-infected astrocytes in mouse neo-552	
cortex. Dashed lines outline cell and max diameter through nucleus. Scale bar: 20µm. I) Quantification 553	
of max diameter and # of primary processes in CTRL and PMP2-infected astrocytes. n=4 animals/group, 554	
n>15 astrocytes/animal, mean ± s.e.m., Welch’s t-test, *** p<0.001. 555	
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