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Abstract 
During the last 50 years, the geographic range of the mosquito Aedes aegypti has increased 
dramatically, in parallel with a sharp increase in the disease burden from the viruses it 
transmits, including Zika, chikungunya, and dengue. There is a growing consensus that vector 
control is essential to prevent Aedes-borne diseases, even as effective vaccines become available. 
What remains unclear is how effective vector control is across broad operational scales because 
the data and the analytical tools necessary to isolate the effect of vector-oriented interventions 
have not been available.  We developed a statistical framework to model Ae. aegypti abundance 
over space and time and applied it to explore the impact of citywide vector control conducted 
by the Ministry of Health (MoH) in Iquitos, Peru, over a 12-year period. Citywide interventions 
involved multiple rounds of intradomicile insecticide space spray over large portions of urban 
Iquitos (up to 40% of all residences) in response to dengue outbreaks. Our model captured 
significant levels of spatial, temporal, and spatio-temporal variation in Ae. aegypti abundance 
within and between years and across the city. We estimated the shape of the relationship 
between the coverage of neighborhood-level vector control and reductions in female Ae. aegypti 
abundance; i.e., the dose-response curve. The dose-response curve, with its associated 
uncertainties, can be used to gauge the necessary spraying effort required to achieve a desired 
effect and is a critical tool currently absent from vector control programs. We found that with 
complete neighborhood coverage MoH intra-domicile space spray would decrease Ae. aegypti 
abundance on average by 67% in the treated neighborhood. Our framework can be directly 
translated to other interventions in other locations with geolocated mosquito abundance data. 
Results from our analysis can be used to inform future vector-control applications in Ae. aegypti 
endemic areas globally. 
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Author Summary 
Despite the growing threat of arboviruses, there is a dearth of ‘best practices’ for the primary 
vector control tools used in the field. In the absence of cluster randomized control trials, 
evidence on the utility (or lack thereof) of vector control interventions must be gleaned from 
ongoing control programs. Motivated by 12 years of household-level Ae. aegypti abundance 
surveys and neighborhood-level space-spray campaign data from Iquitos, Peru, we developed a 
new framework to model mosquito abundance. In spite of significant spatial and temporal 
heterogeneity, we identified a statistically significant and practically important impact of the 
local Ministry of Health space-spray campaign, specifically, a reduction of mosquito abundance 
of 67% when coverage was optimal. Our framework can be directly applied to other locations 
with geolocated mosquito abundance data and our findings can be used to both optimize 
resources within Iquitos as well as inform future vector-control interventions in Ae. aegypti 
endemic areas globally.  
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Introduction 
Aedes aegypti is the primary vector for multiple arboviruses [1]. Controlling these pathogens is of 

paramount importance, especially with recent invasions into the Americas of chikungunya and 

Zika, outbreaks of yellow fever reviving concerns of urban yellow fever epidemics, and the sub-

optimal performance of the only licensed dengue vaccine [2]. Until better options arise, 

controlling transmission by reducing the vector population remains the primary tool available 

to combat the Aedes-borne disease burden. 

A hemisphere-wide eradication campaign in the Americas in the 1950s and 1960s demonstrated 

that control of this mosquito can be a viable option for controlling disease from the viruses they 

transmit [3]. In the vacuum left by the cessation of that eradication program, which was likely 

exacerbated by urbanization and globalization of trade and human travel [4], Ae. aegypti 

recolonized significant portions of the Americas [5]. Current Aedes-transmitted disease control 

strategies lack the scale and support of the multi-country eradication effort. They are often 

developed and administered on a provincial or city-by-city basis and frequently ineffectively 

applied [6]. There is a notable lack of “best practices” to be followed [7] and an absence of 

rigorously collected, quantitative entomological data that can be used to inform vector control 

strategies [8]. Furthermore, resistance to various insecticides, particularly pyrethroids, further 

hinders the effectiveness of existing interventions [9]. Controlled laboratory experiments can 

assess the efficacy of an exact dosage of insecticide on a mosquito, but it is unclear how that 

translates to the real-world effectiveness of the application of that insecticide in, for example, a 

citywide space-spray campaign. Quantifying the effectiveness of real world control programs 

on mosquito populations is necessary to assess a program’s utility (or lack thereof) and to 

provide useful evidence for enhancing future intervention programs. 

There are three key factors that complicate the estimation of an intervention’s impact on Ae. 

aegypti population size. First, Ae. aegypti abundance is highly heterogeneous in space and time. 

Aedes aegypti population dynamics are strongly influenced by micro-climate [10, 11], they have a 

limited flight range (~100m [12]), and they exhibit fine-scale spatial clustering (30m in urban 

areas [13, 14]). Small seasonal fluctuations in weather or available larval habitats can affect Ae. 

aegypti population dynamics from year to year, or even month to month [14].  Variation in 

observed populations, therefore, can be just as likely attributed to environmental fluctuations as 

a mosquito control program.  

Second, to calculate a control program’s effect size, it is necessary to estimate what would have 

happened without an intervention; i.e., the counterfactual. In many locations, resources are 

limited and are directed towards control as opposed to surveillance. In the absence of 

substantial surveillance, it is extremely difficult to parse the impact of an intervention from 

natural variations in mosquito populations [6].  
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Third, accurately measuring Ae. aegypti abundance is difficult even under optimal 

circumstances [15]. Ae. aegypti is typically found in low abundances in and around human 

habitations, with sample sizes averaging sample of 1-5 adults per house [16]. Larval surveys do 

not capture variation or magnitude of adult abundance and miss cryptic habitats [17]. Most Ae. 

aegypti control programs do not have the personnel and procedures in place to estimate spatial 

and temporal variation in population abundance across cities, districts, or states, although there 

are some notable exceptions [18]. Large-scale, household-level measurements are required 

across multiple years using a consistent, reliable measurement method to characterize baseline 

spatio-temporal patterns in abundance, which is seldom done [19]. Overcoming measurement 

error represents a significant challenge, because Ae. aegypti is a low-abundance species, adults 

are difficult to collect, and there are no reliable entomological measures for risk of human 

arboviral infection and/or disease [20]. 

Iquitos, Peru, a city of approximately 370,000 and the largest urban center in the Peruvian 

Amazon, is endemic for Ae. aegypti and dengue viruses. Between 1999 and 2010, 176,352 

geolocated, household-level Ae. aegypti abundance surveys were conducted using hand-held 

mosquito aspirators (Figure 1), resulting in the capture of 48,015 female Ae. aegypti. Local 

Ministry of Health data was available on spatiotemporally explicit mosquito control efforts. The 

goals of the current work were two-fold. First, we developed a framework to model Ae. aegypti 

populations at a fine scale through space and time. Second, we used that framework to explore 

the impact of a city-wide vector control program by the Ministry of Health in Iquitos. 

Results 

Data overview 

Summary statistics of mosquito data indicated a substantial effort to capture mosquitoes each 

month; more than 500 individual female Ae. aegypti mosquitoes were captured during most 

months (Figure 2a). The average number of captured female Ae. aegypti mosquitoes per visit 

varied monthly (Figure 2b), with a considerable jump after switching from standard CDC 

backpack aspirators to a handheld “Prokopack” aspirator [21]; the increased catch is indicated 

by the vertical dashed line in Figure 2. The monthly coefficient of variation exhibited over-

dispersion. Many months had a standard deviation greater than 1.5 the mean (Figure 2c). In 

space, there was similar heterogeneity in mosquito abundance (Figure 3). Across zones of the 

city, average adult female Ae. aegypti captured per visit varied from 0.24 to 0.71. Spatially, the 

coefficient of variation exhibited considerably larger variation than temporally, with values 

ranging from 1.2 to 17.1.  
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Model development 

Model structure and offset 

From the base model (i.e., the model absent of any covariates other than the offset) 
overdispersion was clearly present (Poisson model AIC: 291417, negative binomial model AIC: 
194781). The remainder of this section, therefore, focuses exclusively on the negative binomial 
version of the models. The over-dispersion parameter of the negative binomial base model, �, 
was estimated to be 0.13. The fitted offset in an intercept and offset-only negative binomial 
model was 2.03 (1.99 – 2.08 95% CI). This value was used in all subsequent negative binomial 
models. 

Full model overview 

Due to the number of components of the mosquito abundance models, only key comparisons 
are detailed below. For a full description of all model comparisons, please see the 
supplementary information. The ‘full model’ structure is given in Figure 4. The fitted full model 
explained 10.3% of the deviance in the abundance data. In spite of the noise in the system that 
was unexplained, every component of the full model was found to be statistically significant 
(largest p-value was 2.5 � 10���, ��� 	 54.8, Table 1). The over-dispersion coefficient, �, was 
estimated at its highest value of any model investigated as 0.152.  

For each component of the full model, two comparisons are detailed below. First, a univariate 
model evaluation comparing a model with no covariates (other than the offset) to a model with 
only the corresponding component. Second, a ‘drop-one’ model evaluation comparing a model 
with all components except the corresponding component to the full model with all components; 
results are summarized in Table 1. Finally, within each component subsection, the 
corresponding component’s contribution to the full model is discussed. Due to the use of 
generalized additive models (GAMs) within each biotic and abiotic covariate, it was difficult to 
provide the actual functional form of the relationships. The exact functional forms are available 
upon request from the authors. 

Space  

The addition of a general spatial covariate to the base model improved fit (∆AIC = 1286). Space, 
however, was the second least significant addition to the base model. Conversely, dropping 
space from the full model caused the 2nd largest reduction of fit (∆AIC=1154), indicating that the 
variance explained by the spatial component was not explained by any other component. 
Again, all other covariates were aspatial. In the full model, the spatial component indicates a 
higher average abundance in the northeast and the southwest than other regions of the city 
(Figure 5a), with corresponding higher uncertainties in each of those locations (Figure 5b). 

Inter-annual time 
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The univariate and ‘drop-one’ analysis for the inter-annual temporal term were conducted on 
the smooth versions of this component, but results are almost identical to one that was constant 
within years. Incorporating year-to-year variation resulted in the 4th largest improvement on the 
base model (∆AIC = 1756). In spite of the presence of all the temporally varying climate 
covariates, the inter-annual time component also resulted in the 3rd largest reduction in model 
fit following its removal (∆AIC=976). Within the full model, it appears that the early 2000s had 
considerably higher average mosquito abundance than later years, with 2006 being the lowest 
estimated population (Figure 6a).  

Intra-annual time 

Seasonality alone performed relatively poorly, improving the model by the least amount of any 
component (∆AIC=730). The seasonal term still appeared to explain variation above and beyond 
the climate terms as indicated by a significant, but relatively moderate, reduction in fit of the 
full model when the seasonal term was removed (∆AIC=269). In the full model, there was an 
average low mosquito abundance in June and July and a peak around October (Figure 6b). 

Weather 

Each of the climate components significantly improved fit compared to the base model (Table 
1). Among the temperature covariates, the model that included minimum daily temperature 
performed better than when mean or maximum daily temperature were added to the base 
model (∆AIC=1800 versus ∆AIC=1324 and ∆AIC=1493, respectively). As such, it was retained for 
further evaluation. Across all components, wind on the day of collection had the largest overall 
impact on the base model (∆AIC=3137).  

The importance of wind was again found in the ‘drop-one’ analysis with the full model 
deteriorating the most following removal of wind (∆AIC=1721).  The least important component 
was precipitation, although it was still strongly significant (p-value of 1.3 � 10���). Daily 
temperature range, which was 2nd most important in the univariate analysis (∆AIC=1918), was 
2nd least detrimental to drop from the full model (∆AIC=113). 

The impact of each climate variable in concert with all other components and in isolation is 
discussed in the supplementary information and plotted in Figures S1-S5 and Figures S6-S9, 
respectively. 

 

Assessing vector control 

Inclusion of the intervention term further improved fit compared to the full model (∆AIC=144). 
Inspection of the fitted shape-constrained additive model (SCAM) revealed that the smooth for 
control was linear (edf = 1). To simplify the model, we reverted to the GAM version of the 
model with the intervention term entering linearly. 
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The negative binomial model has a log link, so terms that enter ‘linearly’ in the model relate to 
the response exponentially. The coefficient for the intervention term was found to be -1.1 
(standard error 0.09). Figure 7 shows the predicted impact of various levels of intervention on a 
hypothetical home where, in the absence of control (or “dose response curve”), 0.45 female Ae. 

aegypti mosquitoes were expected to be collected. If all the homes were sprayed across the zone 
(i.e., the intervention coverage was 1), we would expect to see a 67% reduction to 0.15 
mosquitoes. If half of the homes in a zone were sprayed, and thus the ‘intervention coverage’ 
was 0.5, we would expect to see a reduction to 0.26 mosquitoes in that same hypothetical home; 
a 43% reduction. 

 

Discussion 
Our aims were two-fold. First, to identify the dose-response curve between neighborhood-level 

spraying interventions and neighborhood Ae. aegypti population abundances. To achieve in the 

face of substantial spatio-temporal variation in mosquito population abundances and 

imperfectly sampled mosquito populations, we had to achieve our second goal, to develop a 

mosquito abundance-modeling framework. Our model had to account for both biotic and 

abiotic drivers of mosquito population dynamics and provide counter-factual estimates of what 

mosquito populations might have looked like had spraying not been conducted. By applying 

our model to Iquitos, Peru, we identified interpretable relationships between climatic covariates 

and mosquito populations, as well as, site-specific spatial variation, with some regions of the 

city appearing to over- or under-produce mosquitoes consistently through the study period. 

When we then added an analysis of the existing space-spraying campaigns conducted by the 

Iquitos Ministry of Health, we found a diminishing return dose-response curve where, under 

optimal settings, we would expect to see a 67% reduction in female Ae. aegypti abundance from 

pre-intervention levels. This means that even a perfectly enacted Ministry of Health space-

spraying campaign would not be adequate to reduce mosquito populations to zero.  

Univariate analyses conducted on each climatological covariate revealed and confirmed 

relationships between key features of local climate and mosquito population dynamics. For 

temperature, precipitation, relative humidity, and daily temperature range, the effect of climate 

on mosquito abundance was not isolated to a particular lagged covariate. As expected, weather 

that directly influenced mosquito dynamics a few generations in the past indirectly influenced 

the number of mosquitoes collected on any given day. These results, and results from our full 

model analyses, highlight the importance of measuring daily weather when estimating 

mosquito abundance baselines. Our modeling approach continuously integrates data from the 

day of capture back through 30 days in the past, and we found significantly different influences 

of these weather variables at various lags. Factors that are rarely measured, such as maximum 
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wind speed, were found to be strongly significant and should be considered for future 

entomological studies on Ae. aegypti abundance. Previous analysis also found that winds may 

influence the spatial patterns of dengue transmission in Iquitos [22]. It was not possible for us to 

assess the reason why high wind speeds was associated with higher capture rates in homes, but 

a positive relationship between wind speed and aspirator collection of Ae. aegypti is a plausible 

explanation. Windy conditions may increase the probability that mosquito sequester in indoor 

locations that are less effectively sampled than during more calm days.  

Our analysis of neighborhood spraying accommodated a variety of potential functional forms 

for the dose-response curve, yet the model-selection process yielded the simple, exponential 

decay as the approach with more support in explaining the data. Perhaps it is unsurprising that 

we found a diminishing return relationship between spray effort and mosquito reduction, and it 

may be that the true optimal effectiveness of the intervention we analyzed was a 67% reduction 

in adult mosquitoes. Importantly, this analysis ignored the likely super-linear increase in costs 

that would be associated with increasing effort. In the absence of an analysis that incorporates 

cost explicitly, it is difficult to recommend to a ministry of health that complete coverage is the 

only goal. Even a 50% coverage still achieved a reduction of mosquito abundance by 43%, and 

this would likely be considerably less costly to enact. 

Although our study is based on a large data set, analysis of over 175,000 individual home visits, 

we were not able to overcome all of the inherent limitations associated with mosquito 

abundance estimation. Aedes aegypti have cryptic landing and larval development sites [23, 24]. 

Aspiration, even when conducted by a team of trained professionals, is an imperfect method to 

fully survey a house. Our Ae. aegypti abundance estimates for Iquitos underrepresent the true 

number of mosquitoes within the city. We similarly lacked spatially varying climate data. 

Climate at the local airport may not represent conditions in the houses where mosquitoes were 

collected. Microclimates that vary at the same scales as neighborhood blocks have been shown 

to influence Ae. aegypti ecology [25] and biting habits [26]. The metric we used to assess the 

impact of intervention for our analysis is an imperfect match to account for exactly which 

houses did and did not receive an intervention on which days. Although the data available in 

Iquitos was very detailed, even in this setting, more careful collection of what was done when 

and where would improve the ability to disentangle the effects of interventions from other 

factors. As efforts to control arbovirus transmission continue, cataloging detailed intervention 

activities should be a priority so that more of the work being done can be used to inform future 

control approaches.  

A significant limitation of our analyses was that it does not attempt to link mosquito abundance 

with virus transmission intensity. Mosquito abundance is only one of many spatio-temporally 

varying drivers of mosquito-borne pathogen transmission. Dengue virus transmission intensity 
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in Iquitos varies from year to year [27]. An analysis of human dengue cases in Iquitos indicated 

that the incidence of people with symptomatic disease was negatively correlated to insecticide 

space spraying efforts only when the intervention was conducted early in the virus 

transmission season [28]. Our analyses indicate that interventions should have had an impact 

on mosquito populations independent of season. Spatially, there is substantial evidence that 

human movement is a strong driver of the spatial patterns of DENV transmission [29, 30]. It is 

unlikely, therefore, that targeting an intervention based solely on a model of mosquito 

abundance would capture all of the places contributing most to transmission. Although we 

expect that reducing mosquito populations will correlate with a reduction in transmission risk 

in many instances, our modeling framework is intended to serve as a part of a greater 

integrated modeling approach that attempts to optimally target interventions given adequate 

knowledge of the ecology of the mosquito vector, its human hosts, and the pathogen.  

Results from our analyses demonstrate that, even in the face of considerable unexplained 

variation, drivers of mosquito abundance can be identified and even a weak correlate for 

intervention effect size can identify a significant control impact. We provide a statistical 

framework that can be used to establish a mosquito abundance baseline in space and time. With 

a baseline, we are able to assess the impact of mosquito control on abundance by estimating the 

difference between the observed number of mosquitoes caught and the expected number 

caught if there was no intervention. Understanding the spatial scales of mosquito heterogeneity 

and mosquito control is essential for accurately accounting for variation in transmission risk 

during the design and execution of vaccine and vector control trials [31].  Likewise, an 

improved understanding of heterogeneity can inform the application of vector population 

reduction (e.g., genetically engineered mosquitoes [32]) and population replacement (e.g., 

Wolbachia) programs [33]. In the absence of reliable and accurate estimates of mosquito 

abundance, vector control programs will likely miscalculate, overestimate or underestimate, the 

required initial intensity and effect size of their intervention. The approaches described in our 

framework are intended to help address this gap by identifying site-specific drivers of mosquito 

abundance across different spatial and temporal scales in a diversity of ecological and 

epidemiological contexts. 

 

Materials and Methods 

Data  

Ethics Statements Entomological survey data were collected under protocols approved by 

Institutional Review Boards at the University of California at Davis, Tulane University, Emory 

University, San Diego State University, Liverpool School of Tropical Medicine, London School 

of Tropical Medicine and Hygiene, Peruvian National Institute of Health, Naval Medical 
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Research Center, Bethesda, and U.S. Naval Medical Research Unit No. 6. The latter included 

Peruvian representation, in compliance with all US Federal and Peruvian regulations governing 

the protection of human subjects. All protocols were reviewed and approved by the Loreto 

Regional Health Department, which oversees health research in Iquitos. 

Mosquito Collection Data: Adult Ae. aegypti were collected in Iquitos households as part of 

ongoing prospective cohort studies (Table S1).  Sampling schemes varied with different study 

designs and were concentrated in the northern two districts of Iquitos (Maynas and Punchana), 

with the exception of some non-residential sites in 2004-2005, one October 2006 survey, and a 

2009-2011 randomized cluster study carried out in the southern district of San Juan. Daily 

entomological surveys (methodology described in detail by Morrison et al. and Schneider et al. 

[19, 34]) were carried out Monday through Friday, between the hours of 0700 and 1300, by the 

same 6 two-person collection teams from 28 January 1999 through 8 February 2011. Briefly, each 

survey consisted of a short questionnaire, inspection of the household for water-holding 

containers, and collection of adult mosquitoes initially using a backpack aspirator (Clark) and 

then, beginning in June 2009, a Prokopack Aspirator [21].   

Mosquito control methods  

Ministry of Health Control (MOH) Activities were irregular prior to 2002, when the first well-
organized city-wide emergency mosquito control campaigns were initiated. Starting in 2002, 
stable entomological (both surveillance and control) teams distributed the larvicide temephos to 
wet containers focusing on permanent or semi-permanent water or abandoned containers (i.e., 
tires and appliances) and when possible destruction of smaller containers. In theory, these 
teams visited neighborhoods at approximately 3-month intervals, but coverage rates were 
highly variable between the 34 zones designated by the MOH. The first well organized and 
comprehensive city-wide campaign was carried out between 23 October 2002 and 24 January 
2003.  Focal application of temephos was followed by 3 weekly cycles of door to door intra-
domicile space spray with Deltamethrin (0.25%).  Another large disease outbreak led to a 
similar city-wide campaign initiated in December 2004.  Smaller more spatially focused 
interventions, which were administered with backpack sprayers, occurred in February 2003, 
October 2003, January 2005, February 2006, and November 2006. During these interventions the 
chemicals used varied between Alphacypermethrin and Deltamethrin. Adulticiding was not 
carried out in 2007. More geographically limited activities were carried out in the first and the 
last trimester of 2008 and the first trimesters of 2009 and 2010 with either alphacypermetrin or 
cypermetrin.  Spray schedules were developed by MOH zone. Coverage levels were not 
recorded. 

Mosquito collections were carried out in the context of three vector intervention trials.  The first 
was carried out on 12 city-blocks between February and December 2005 and included a one-
time application of a residual formulation of lambdacyhaltrin followed by treatment of larval 
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habitats with BTI at monthly intervals.  In the second, from March 2007 to December 2007 a 
control trial based on clusters of 5 city blocks in each of 10 MOH zones was treated with a 
different larvicide; either temephos or pyriproxyfen. This study did not include adulticiding. In 
the third, from September 2009 through 2010 a randomized cluster trial evaluated Deltametrin 
treated curtains in the San Juan District. Treated curtains were distributed among houses in 10 
clusters of 1-3 city blocks each. The MOH interventions were done independent of whether a 
home was within a control or a treatment area. 

 

Climate Data: Daily climate data for Iquitos was acquired and processed as in Stoddard et al 

[28]. Briefly, daily measures of temperature (mean, minimum, and maximum), precipitation, 

maximum wind speed, and dew point were attainted from a US National Oceanic and 

Atmospheric Administration (NOAA) weather station located at the Iquitos International 

Airport. Weather data was used to generate daily temperature range and relative humidity. 

Because there was only one NOAA station in Iquitos, we had no measurement of spatial 

variation in climate covariates in our analyses. We applied the same weather data to all houses 

identically.  

 

Model development 

Poisson regression: From first principles, count data (such as the number of mosquitoes 

captured inn a given house on a given day) can be modeled using a Poisson distribution . Given 

the presence of covariates that could drive changes in the expected number of mosquitoes 

caught per visit across space and time, this extends to a Poisson regression model. A common 

difficulty with count data is that the variance is often considerably larger than the mean; i.e., 

over-dispersion. When over-dispersion is present, a Poisson model is no longer appropriate. 

There are multiple alternative options, including zero-inflated Poisson, negative-binomial, and 

zero-inflated negative-binomial. Throughout, when possible, all options were fit. To assess the 

relationship between the variance and the mean for the regression models, we plotted a version 

of the coefficient of variation that was more appropriate for skewed data [35]: 

������ 	 ����� � 1 

where �� is the standard error of prediction �� in log space; i.e., untransformed back to the 

natural scale. 

The final model structure is given in Figure 4. Below, the model structure is broken down in its 

constituent parts with each part describing the covariates used, as well as the way in which they 

enter the full model. 
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Offset: On 1 August 2009, collections switched from backpack aspirators to Prokopack 

aspirators. Previous analysis indicated that the Prokopack aspirators doubled the number of 

mosquitoes collected and, as such, a different offset was used after this date. Before that date, 

the offset was set to 1, and the offset afterwards was fit by maximizing the likelihood of the base 

model. The confidence interval for the offset was calculated using the profile likelihood 

technique, which inverts the single parameter likelihood ratio test (Figure S12). 

Space and Time: Simple summary statistics and graphical summaries (Figure 2, Figure 3) 

were consistent with results from other studies [13, 14], which showed that there was spatial 

and temporal variation in mosquito abundance in Iquitos. To account for this variation while 

avoiding enforcing any particular functional form to these relationships, flexible splines were 

incorporated for both abiotic spatial and abiotic temporal drivers of variation. For space, a two-

dimensional smooth incorporated the exact location of each home, while two one-dimensional 

smooths incorporated inter- and intra-annual temporal variation. These smooths were then fit 

within the framework of a generalized additive model (GAM). We implemented these models 

using the mgcv package [36] in R. 

Climate: The influence of each climatological covariate on Ae. aegypti population dynamics and 

the probability of collecting adult Ae. aegypti is complex . Because both the underlying dynamics 

and the effects of the observation process are estimated simultaneously within the count 

regressions, particular functional forms of these relationships do not necessarily follow directly 

from those observed in controlled experiments. For example, the relationship between 

temperature and mosquito survival is generally clear. At both low and high temperatures, 

mosquitoes are less likely to survive than at moderate temperatures. In field settings, however, 

temperature fluctuates throughout each day and from day to day. Temperature on any given 

day accounts for only a part of the total contribution of “temperature” on the eventual number 

of mosquitoes caught. Moreover, because field conditions are not a controlled experiment, 

unmeasured covariates that occur collinearly, such as collector bias or temperature may alter 

the fitted relationship between temperature and mosquito abundance. Typically, lagged 

covariates account for the expected effect of past weather on current observations, with the 

length of the lag either estimated or fixed based on previous studies. This approach ignores the 

cumulative effect of all past weather on eventual observations, with at most only a few lagged 

covariates attempting to capture the entirety of the past.  

A recently developed modeling tool, distributed lag models [37], estimates the relative weights 

that each moment in the past exerts on the present, integrating across the past. Because the 

relationships between climate and mosquito population dynamics are frequently non-linear, we 

incorporated non-linear functional forms (i.e., splines) to account for both the relationship 

between the covariate and the response as well as the lag weights. The resulting models for the 
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climate covariates were distributed lag non-linear models (DLNMs). The exception in this 

analysis was that maximum wind speed was not assumed to influence population dynamics, 

only the probability of capturing mosquitoes on the given day. As such, maximum wind speed 

was incorporated with no lag and was included in the models as a one-dimensional smooth. 

Due to the number of parameters and covariates in this exercise, the type of smooth as well as 

the number of knots in lag space and covariate space for each DLNM was selected to be the 

same. Specifically, natural splines were used throughout for climate covariates, and lag and 

covariate space degrees of freedom were set to 3. This allowed for a moderate amount of 

flexibility within the lag and covariate relationships. All maximum lags were set at 30 days to 

avoid overfitting. We implemented the DLNM component of our models within the dlnm 

package [37] in R. 

Intervention: One of the drawbacks from the flexibility of GAMs is that they may select for 

biologically impossible relationships. Here, ‘intervention effort’ represented the number of 

homes within a zone that were sprayed. While a high value of this covariate for a given home 

did not imply that this home actually received treatment, it did imply that more of the area 

around that home was treated. Thus, for this analysis, we enforced a monotonically non-

increasing relationship between ‘intervention effort’ and abundance. The shape of the 

relationship was allowed to be non-linear, but as effort increased, we forced abundance to not 

increase. If the data only supported a positive relationship between effort and abundance, the 

result of our assumption would be a fitted relationship that was a flat line. Each time we 

incorporated the shape-constrained additive model, we did so within the scam package [38] in 

R. 

Model fitting and selection: Before model fitting, each variable was centered and 

standardized. The final models presented were fit, when possible, using restricted maximum 

likelihood (REML), because this approach reduces bias and over-fitting of the smooth splines 

[39]. Models were also fit maximizing the likelihood as well as generalized cross-validation 

(GCV). Model selection within the GAM framework can be approached in several ways. Within 

these analyses, since we focused mostly on REML models, we predominantly used Akaike 

information criterion (AIC), but every comparison selection that used GCV or maximizing 

likelihoods would have made the same decision. For all results in the main text, we give results 

both in terms of ∆AIC for REML models and likelihood ratio tests for maximum likelihood 

models. The full model was built in the following order; after each step, if necessary, the model 

was reduced. First, spatial covariates were added. Second, the non-climate temporal covariates 

were added. Third, the climate covariates were added. The “full” model was then reduced by 

sequentially dropping each covariate and assessing AIC scores. After reduction, the control 

covariate was added to the model. The final model was again reduced to assess the shape of the 

control effect. All calculations were done with R 3.3.1 [40]. 
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Assessing vector control 

Mosquito control data documented which zone of the city was covered, the number of homes 

within the zone, and the number of homes that received treatment. There was no information 

on exactly which homes within a zone were sprayed. Most control efforts consisted of three 

sequential applications of insecticide in the same zone over the course of one to two weeks. 

Across sequential applications, there was no indication of whether the same subset of homes 

received all, some, or none of the treatments. Consequently, in our analyses we were not able to 

incorporate ‘control’ at the household level. Instead, we applied vector control to entire zones of 

the city simultaneously. For each home in a treated zone, we defined the ‘intervention effort’ as 

the percent of the homes that were treated. Although homes that were not treated have imputed 

non-zero ‘intervention effort’ scores, this covariate had the desired properties such that if the 

score was equal to 0, we were certain that all homes in a zone were not treated, and if it was 

equal to 1, we were certain that all homes in the zone were treated. 

Results from recent neighborhood studies in Iquitos indicate that Ae. aegypti populations return 
to baseline within 3 weeks of an indoor insecticide space spraying application (ACM 
unpublished data). As a result, we not only imputed ‘intervention efforts’ to each home in a 
zone during the period of spraying, but we also extended the spray “effect” to 3 weeks after the 
end date of spraying. When a zone received multiple sequential interventions, the ‘intervention 
efforts’ did multiply. Rather, if two interventions in the same zone occurred within 3 weeks of 
each other, the ‘intervention effort’ for each round of spraying was calculated separately for 
each day and the maximum effort across rounds was retained (Figure S10). 
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Figures & Tables 

Figure 1: Collection locations and Ministry of Health Zones Ministry of Health Zones are 
plotted with thick black outline. All but three had some level of mosquito collection (grey 
background), with each house-hold aspiration indicated by a black circle. 

Figure 2: Collection effort by month, 1999-2010. Panel A: Number of collections per month are 
plotted. Panel B: Average number of female Ae. aegypti collected inside each house are plotted. 
Panel C: Coefficient of variation per month of number of female Ae. aegypti collected are plotted. 

Figure 3: Coefficient of variation by space. By MoH Zone, the mean number of female Ae. 

aegypti caught per visit are plotted. Size of circle indicates average number caught and color of 
circle indicates coefficient of variation. 

Figure 4: Model structure Base model included only the offset due to collection method 
changes. The full model contained all spatial and climatological covariates. The final model then 
added the intervention data. 

Figure 5: Fitted spatial variation in female Ae. aegypti abundance. Panel A: Estimated number 
of female Ae. aegypti that would be caught during a house-hold aspiration held on April 28th, 
2001. The choice of this date was arbitrary but necessary to incorporate the climatological 
covariates. Panel B: Estimated coefficient of variation on number of mosquitoes for April 28th, 
2001. 

Figure 6: Fitted temporal variation in female Ae. aegypti abundance. Panel A: Estimated 
between-year (intra-annual) variation in the number of female Ae. aegypti that would be caught 
during a house-hold aspiration conducted at a home in the center of the city across the study 
period with 95% uncertainty. The choice of a home in the center of the city was arbitrary but 
necessary to incorporate the spatial variation. Panel B: Estimated within-year (inter-annual) 
variation in number of female Ae. aegypti that would be caught during a house-hold aspiration 
conducted at a home in the center of the city in 2001 with 95% uncertainty. This choice was 
arbitrary but necessary to incorporate intra-annual variation. 

Figure 7: Dose-response curve for the Ministry of Health space-spray intervention. Expected 
changes in number of female Ae. aegypti captured with 95% uncertainty as a function of impact 
of various levels of intervention effort on a home in the center of the city measured on April 
28th, 2001. These choices (home in the center of the city, the date of April 28th, 2001) are all 
arbitrary but necessary to account for spatial and temporal variation. 

Table 1: Univariate and drop-one model results. Across each covariate, univariate and drop-
one model statistics are listed.  
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Supporting Information 

Results from the base model confirmed that there was statistically significant over-dispersion 

(Poisson model AIC: 291417, negative binomial model AIC: 194781). The base model (with only 

the offset as a covariate) performed poorly in some cases, with the Poisson model explaining 0% 

of the deviance and the negative binomial model explaining 3.9%. Including an additional two-

dimensional smooth representing abiotic/unexplained spatial variation significantly improved 

fit (Poisson model AIC: 287633, negative binomial model AIC: 196340). The addition of the two 

abiotic temporal smooths further increased fit significantly (Poisson model AIC: 280361, 

negative binomial model AIC: 193940). For comparison purposes, a model without the spatial 

smooth, but with the two temporal smooths was fit as well. The model with only the temporal 

variation accounted for performed better that the model with the spatial smooth (Poisson model 

AIC: 284082 vs 287633, negative binomial model AIC: 195178 vs 196340). 

Among the temperature covariates, the model that included minimum temperature performed 

better than when mean or maximum temperature were included (negative binomial AIC of 

192539 versus 192588 and 192857, respectively). The full model increased the deviance 

explained considerably (5.6% and 10.3% respectively). The ‘drop one’ test did not identify any 

covariates that should be dropped (Table 1). Judged by the change in AIC, the least influential 

covariate for the negative binomial model was daily temperature range, with a drop in fit 

corresponding to an increase in AIC of 95. The most influential covariate was maximum wind 

speed, with a drop in fit corresponding to an increase in AIC of 1721. 

The inclusion of the control covariate further improved the fit. Inspection of the fitted SCAM 

model revealed that the smooth for control effort was found to be linear. To simplify the model, 

we reverted to the GAM model with control effort entering linearly. For the negative binomial 

model, the final model with control effort linearly added to the reduced model, improving AIC 

by a further 144 points. 

To show the relationship between any given covariate and the response for all plots from the 

final model, we held all other covariates constant. Unless otherwise indicated, all plots 

represent the abundance in the center of the city on 28 April 2001, with all climatic drivers set to 

their mean and no control assumed. This date was chosen because it was estimated to have the 

highest expected abundance.  

The final model clearly captured variation in space (Figure 5, Figure S11). On 28 April 2001, the 

range of expected mosquitoes found per visit varied from almost 0.5 up to 3 with the highest 

expected abundance in the far north. There was a greater coefficient of variation on the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/265751doi: bioRxiv preprint 

https://doi.org/10.1101/265751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

periphery of the city, with a noticeable increase in the north where the greatest expected 

mosquito counts occurred. Within-year variation (Fig 6b) showed clear seasonality, with the 

most mosquitoes expected late in the year and the fewest in June and July. These dates matched 

the timing of the dry and wet seasons in Iquitos. After controlling for the influence of climate, 

2002 was the year with the lowest mosquito abundance (Figure 6a). Wind speed had a strongly 

non-linear relationship with abundance, with higher counts typically observed on windier days 

(Figure S1). 

The DLNM relationships were each plotted in a similar manner to each other. In the left panel, 

the z-axis shows the multiplicative effect of various combinations of lag and climate value. The 

lag axis shows the effect of climate up to 30 days in the past, while the front axis shows the 

range of values of the covariate. For each of these figures, interpretation requires envisioning 

what the value of the covariate was over the course of the past 30 days and then averaging over 

this curve on the surface, somewhat analogous to line integrals. The predicted values were all 

centered on the mean climate value, so each surface is constant at 1 for the mean climate value 

across lags. For the remaining 6 panels, slices of the surface were taken and plotted with 95% 

confidence intervals. The center panels display the relationship across different lags between 

the climate variable at the lowest, middle, and highest values observed and expected mosquito 

counts. These represent the expected relationship between the climatic driver and mosquito 

abundance when the climatic driver was held constant at that value over the past 30 days. The 

right panels slice the DLNM surface across lags of 0, 10, and 20 days. These represent the 

relationship between the climatic driver and mosquito abundance at the moment of capture as 

well as 10 and 20 days in the past. Again, for the right panel, the relationship was plotted using 

the mean climatic value as the reference value. These relationships go through 1 with a 

vanishing confidence interval at that point. 

For the full model, it is important to note that identified relationships are different than in 

univariate climate models due to collinearity in the climate covariates. The variation captured 

by each climatological driver must be interpreted in the presence of all other drivers. For 

minimum temperature (Figure S2), there was an almost quadratic relationship between lag and 

response for low temperatures and essentially no multiplicative effect for high temperatures 

across lags. Precipitation was skewed right with the mean value of 0.96. As such, the reference 

value was close to the lowest observed value and thus the top center panel of Figure S3 shows 

no multiplicative effect by construction. Conversely, large rainfall a month in the past resulted 

in an increased expected count. Similarly, large rainfalls 2 weeks before capture reduced 

expected abundance. For daily temperature range (Figure S4), large variation in daily 

temperature 30 days in the past increased the expected number of mosquitoes caught. For low 

variations in daily temperature, there was only a small effect. Recall that in the full model, daily 

temperature range was the covariate closest to being dropped. The relationship between 
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relative humidity (Figure S5), time, and expected mosquitoes caught was complex. Iquitos is in 

the Amazon Basin where the environment is quite humid throughout the year; relative 

humidity ranges from 61% to almost 100%. ‘Moderate’ humidity of 84.6% was used as the 

baseline because this was the mean estimated daily relative humidity and thus had no 

multiplicative effect on mosquito abundance. Either ‘drier’ or wetter environments may 

increase or decrease abundance depending on when in the development stage of the mosquito 

the weather changes. 

For the univariate climate models, relationships changed between each driver and response. 

These models were fit with all non-climatic drivers and then only a single climatic driver at a 

time. This allowed for a more direct interpretation of the climate variable’s influence on 

mosquito abundance. When minimum temperature and abundance were assessed in isolation 

(Figure S6), the relationship more closely matched the expectation derived from survival studies 

[41]. At both high and low temperatures, abundance was expected to decrease relative to 

moderate temperatures. That relationship was mostly constant in lag space, with only 

substantial curvature at extremely low temperatures, where expected counts were already 

decreased in all cases. The relationship between precipitation and abundance also changed from 

the full model. At a lag of 0, there was a mostly monotonically increasing relationship between 

precipitation and expected abundance, while at earlier lags this relationship was reduced 

(Figure S7). Daily temperature’s relationship to abundance switched in some cases (Figure S8) 

relative to the multivariate analysis with high variation in daily temperature a month in the 

past, resulting in a large decrease in expected mosquito abundance. For relative humidity 

(Figure S9), at moderate lags the relationship followed expectation, with higher humidity 

resulting in higher abundance. At no lag, the relationship was quadratic, with a decrease in 

expected abundance at both high and low relative humidity levels. In this context, ‘low’ is still 

61% relative humidity. 
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Figures 

Figure S1: Effect of max wind speed on mosquito abundance. Expected number of female Ae. 

aegypti captured with 95% uncertainty as a function of wind speed on a home in the center of 
the city measured on April 28th, 2001. These choices (home in the center of the city, the date of 
April 28th, 2001) are all arbitrary but necessary to produce estimated counts that account for 
spatial and temporal variation. 

Figure S2: Effect of lagged daily minimum temperature on mosquito abundance in the full 

model. Panel A: The relationship between minimum temperature (x-axis), lag up to 30 days (y-
axis), and relative rate of number of mosquitoes caught (z-axis) is plotted. Panel B, D, and F plot 
slices of the surface along the temperature axis with corresponding uncertainty. Panel C, E, and 
G plot slices of the surface along the lag axis with corresponding uncertainty. 

Figure S3: Effect of lagged daily precipitation on mosquito abundance in the full model. 

Panel A: The relationship between precipitation (x-axis), lag up to 30 days (y-axis), and relative 
rate of number of mosquitoes caught (z-axis) is plotted. Panel B, D, and F plot slices of the 
surface along the temperature axis with corresponding uncertainty. Panel C, E, and G plot slices 
of the surface along the lag axis with corresponding uncertainty. 

Figure S4: Effect of lagged daily temperature range on mosquito abundance in the full 

model. Panel A: The relationship between daily temperature range (x-axis), lag up to 30 days 
(y-axis), and relative rate of number of mosquitoes caught (z-axis) is plotted. Panel B, D, and F 
plot slices of the surface along the temperature axis with corresponding uncertainty. Panel C, E, 
and G plot slices of the surface along the lag axis with corresponding uncertainty. 

Figure S5: Effect of lagged daily relative humidity on mosquito abundance in the full model. 

Panel A: The relationship between relative humidity (x-axis), lag up to 30 days (y-axis), and 
relative rate of number of mosquitoes caught (z-axis) is plotted. Panel B, D, and F plot slices of 
the surface along the temperature axis with corresponding uncertainty. Panel C, E, and G plot 
slices of the surface along the lag axis with corresponding uncertainty. 

Figure S6: Effect of lagged daily minimum temperature on mosquito abundance in a 

univariate model. Panel A: The relationship between minimum temperature (x-axis), lag up to 
30 days (y-axis), and relative rate of number of mosquitoes caught (z-axis) is plotted. Panel B, D, 
and F plot slices of the surface along the temperature axis with corresponding uncertainty. 
Panel C, E, and G plot slices of the surface along the lag axis with corresponding uncertainty. 

Figure S7: Effect of lagged daily precipitation on mosquito abundance in a univariate model. 

Panel A: The relationship between precipitation (x-axis), lag up to 30 days (y-axis), and relative 
rate of number of mosquitoes caught (z-axis) is plotted. Panel B, D, and F plot slices of the 
surface along the temperature axis with corresponding uncertainty. Panel C, E, and G plot slices 
of the surface along the lag axis with corresponding uncertainty. 
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Figure S8: Effect of lagged daily temperature range on mosquito abundance in a univariate 

model. Panel A: The relationship between daily temperature range (x-axis), lag up to 30 days 
(y-axis), and relative rate of number of mosquitoes caught (z-axis) is plotted. Panel B, D, and F 
plot slices of the surface along the temperature axis with corresponding uncertainty. Panel C, E, 
and G plot slices of the surface along the lag axis with corresponding uncertainty. 

Figure S9: Effect of lagged daily relative humidity on mosquito abundance in a univariate 

model. Panel A: The relationship between relative humidity (x-axis), lag up to 30 days (y-axis), 
and relative rate of number of mosquitoes caught (z-axis) is plotted. Panel B, D, and F plot slices 
of the surface along the temperature axis with corresponding uncertainty. Panel C, E, and G 
plot slices of the surface along the lag axis with corresponding uncertainty. 

Figure S10: Schematic of the functional form for the impact of intervention coverage on the 

relative abundance of mosquitoes. The multiplicative effect of the intervention effort reduces 
mosquitoes from baseline from the beginning of the intervention round through 3 weeks past 
the end of the intervention round. If two intervention rounds overlap, the effect is assumed to 
be the larger of each individual impacts and not additive. The SCAM component of the model 
fits the function ����. 

Figure S11: Fitted spatial variation in female Ae. aegypti abundance. Panel A: Estimated 
number of female Ae. aegypti that would be caught during a house-hold aspiration held on April 
28th, 2001 displayed as a contour plot. The choice of this date was arbitrary but necessary to 
incorporate the climatological covariates. Panel B: Estimated coefficient of variation on number 
of mosquitoes for April 28th, 2001 displayed as a contour plot. 

Figure S12: Profile likelihood for the offset. Using the base model, the offset was varied from 
its maximum likelihood estimate to identify the profile likelihood confidence interval. 

Movie S1: Predicted abundance of mosquitoes through space and time. Figure 5a is replotted 
for the first day of each week across the study period. The time-series is representative of the 
single point in the South-West of Iquitos indicated by an open circle on the 3-D surface. 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

Capture method (constant)
• Before 8/10/2009, offset = 1
• After 8/10/2009, offset = fit by m.l.e.

+ 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴

+ 𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴

+ 𝐼𝐼𝐴𝐴𝐼𝐼𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐼𝐼𝑇𝑇𝐼𝐼𝐴𝐴

∼ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝐼𝐼

+ 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐴𝐴𝐼𝐼𝐴𝐴

GAM
• 2-D on latitude and longitude 

converted to UTM

GAM
• Inter-annual variation
• Intra-annual variation (cyclic cubic spline)

GAM
• Wind Speed 

DLNM
• Temperature 
• Precipitation
• Relative Humidity
• Daily Temperature Range

SCAM (Reduced to linear)
• Coverage

Negative Binomial abundance model description

‘Base’ model

‘Full’ model

‘Final’ model
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 Univariate model versus base model
 

Drop-one model versus full model
 

mle method REML method mle method REML 

method 

Δ�� 

����
�

 

of LRT 

test 
p-value 

Δ��� 

 
� Δ�� 

����
�

 of 

LRT test 
p-value 

Δ��� 

 
� 

Space 28.1 1286 <2e-16 1229 0.137 27.9 1154 <2e-16 1098 0.147 

Inter-annual 6.8 1756 <2e-16 1738 0.139 7.5 976 <2e-16 959 0.147 

Intra-annual 8.9 730 <2e-16 716 0.134 8.7 269 <2e-16 256 0.151 

Mean 

Temperature 

9 1324 <2e-16 1306 0.131  - - - - 

Maximum 

Temperature 

9 1493 <2e-16 1475 0.132  - - - - 

Minimum 

Temperature 

9 1800 <2e-16 1800 0.133 9 232 <2e-16 214 0.151 

Precipitation 9 1424 <2e-16 1406 0.131 9 54.8 2.5e-13 37.3 0.152 

Relative 

Humidity 

9 1492 <2e-16 1475 0.132 9 215 <2e-16 198 0.151 

Daily 

Temperature 

Range 

9 1918 <2e-16 1900 0.134 9 113 <2e-16 94.3 0.152 

Wind 2.9 3137 <2e-16 3075 0.137 2.9 1726 <2e-16 1721 0.152 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/265751doi: bioRxiv preprint 

https://doi.org/10.1101/265751
http://creativecommons.org/licenses/by-nc-nd/4.0/


E
xp

ec
te

d 
fe

m
al

es
 c

ap
tu

re
d 

pe
r 

vi
si

t

Max wind speed

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 8 17 25 34 42

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/265751doi: bioRxiv preprint 

https://doi.org/10.1101/265751
http://creativecommons.org/licenses/by-nc-nd/4.0/


3D graph of Minimum
Temperature effect

R
elative
R

ate

Minimum

Temperature

Lag

10
12

15
17

20
22

25

0

5

10

15

20

25

30

0.4
0.6

0.8
1

1.2
1.4

Slices in Minimum
Temperature dimension

Minimum
Temperature = 9.1

0.
2

0.
6

1.
0

1.
4

1.
8

2.
2

R
el

at
iv

e
R

at
e

Minimum
Temperature = 16.9

0.
2

0.
6

1.
0

1.
4

1.
8

2.
2

R
el

at
iv

e
R

at
e

Minimum
Temperature = 24.9

Lag
0 5 10 15 20 25 30

0.
2

0.
6

1.
0

1.
4

1.
8

2.
2

R
el

at
iv

e
R

at
e

Slices in 
lag dimension

Lag = 0

0.
2

0.
6

1.
0

1.
4

1.
8

2.
2

R
el

at
iv

e
R

at
e

Lag = 10

0.
2

0.
6

1.
0

1.
4

1.
8

2.
2

R
el

at
iv

e
R

at
e

Lag = 20

Minimum
Temperature

10 12 15 17 20 22 25

0.
2

0.
6

1.
0

1.
4

1.
8

2.
2

R
el

at
iv

e
R

at
e

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/265751doi: bioRxiv preprint 

https://doi.org/10.1101/265751
http://creativecommons.org/licenses/by-nc-nd/4.0/
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3D graph of Precipitation effect
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3D graph of Daily Temperature
Range effect
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3D graph of Relative
Humidity effect
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