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Abstract Metabolic reprogramming is one of the defining features of cancer and abnormal metabolism is associated 

with many other pathologies. Molecular imaging techniques capable of detecting such changes have become 

essential for cancer diagnosis, treatment planning, and surveillance. In particular, 18F-FDG (fluorodeoxyglucose) 

PET has emerged as an essential imaging modality for cancer because of its unique ability to detect a disturbed 

molecular pathway through measurements of glucose uptake. However, FDG-PET has limitations that restrict its 

usefulness in certain situations and the information gained is limited to glucose uptake only.13C magnetic resonance 

spectroscopy theoretically has certain advantages over FDG-PET, but its inherent low sensitivity has restricted its 

use mostly to single voxel measurements. We show here a new method of imaging glucose metabolism in vivo that 

relies on a simple, but robust and efficient, post-processing procedure by the higher dimensional analog of singular 

value decomposition, tensor decomposition. Using this procedure, we achieve an order of magnitude increase in 

signal to noise in both dDNP and non-hyperpolarized non-localized experiments without sacrificing accuracy. In 

CSI experiments an approximately 30-fold increase was observed, enough that the glucose to lactate conversion 

indicative of the Warburg effect can be imaged without hyper-polarization with a time resolution of 12 s and an 

overall spatial resolution that compares favorably to 18F-FDG PET. 

Keywords: Dynamic Nuclear Polarization, In Vivo Imaging, 13C magnetic resonance spectroscopy, glucose 

metabolism, signal processing 

Introduction 

Molecular imaging seeks to characterize the fundamental molecular pathways inside organisms in a non-

invasive manner. Since the rapid growth of tumors requires an abnormal metabolism to sustain it, imaging 

metabolism offers the possibility of detecting the transformation of tumors to a more aggressive phenotype1 and of 

adapting treatment plans quickly in response to changes in cellular metabolic activity.2 Relatively few tools exist 

for molecular imaging in vivo. Of these, PET using the glucose analog 18F-FDG is the most prominent. While 18F-

FDG PET is an essential tool for cancer diagnosis, staging, and treatment management,3 it also has its limitations. 

Specificity is limited in organs like the brain with a high normal glucose uptake.4 Non-cancerous inflammation4 and 

benign neoplasms5 can give false positives. The background anatomical image must be taken on a different scanner, 

which can give rise to mis-registration errors.6  Resolution in commercial PET scanners is also limited to 4-10 mm, 

although there are efforts to increase this limit.7 The radioactivity generated by PET requires careful planning to 

prevent overexposure and accidental spills.8 Finally, the information from 18F-FDG PET is limited to glucose uptake 

and phosphorylation, which means downstream metabolites like lactate and TCA cycle intermediates are invisible 

to the technique.  

Glucose imaging by CEST MRI was developed to overcome some of the limitations of 18F-FDG PET. In 

glucose CEST MRI, glucose uptake is indirectly detected by saturation transfer from the exchangeable protons of 

glucose to water, which affords a large increase in sensitivity relative to direct detection.9, 10 Due to spectral overlap, 

the excitation process is not entirely specific and analysis of glucose uptake is also complicated by the strong pH 

dependence of the exchange rate.11 Also the imaging time can be quite long if adequate spatial resolution is desired.   
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A more direct and specific way to track in vivo metabolism is to follow the metabolism of exogenous tracers 

by magnetic resonance spectroscopy or spectroscopic imaging (MRS/MRSI).  The breakdown of labeled exogenous 

metabolic tracers can be tracked non-invasively and precisely by 13C MRS. This has the advantage over static 

techniques, which measure the equilibrium state that may stem from many processes. However, widespread use of 
13C MR in the clinic has been limited by poor sensitivity stemming from three fundamental reasons. First, even in 

the best-case scenario, the effective concentration of an exogenous contrast agent is at least 1000 times lower than 

that of the water signal detected in conventional MRI. Further complicating the issue, 13C has a low gyromagnetic 

ratio, which translates into a relative sensitivity only ~2-6% that of 1H for an equivalent number of nuclei. Finally, 

metabolic processes are inherently transient. The usual approach to overcoming low sensitivity is to simply acquire 

the signal for longer and average the scans. Often, however it is the metabolic flux, which is of interest rather than 

the steady-state concentrations, as enzymatic rates are a direct link to the activity of metabolic enzymes that are 

potential targets in cancer and other pathologies. Long signal averaging makes non-invasive interrogation of the 

rate impossible.  

Dissolution dynamic nuclear polarization (dDNP) was developed to enhance signal to noise 13C MR and 

make rapid dynamic imaging of 13C labeled substrates and their metabolic products possible. Dynamic nuclear 

polarization makes use of the fact that unpaired electrons in a paramagnetic molecule can be aligned to a magnetic 

field to a much greater extent than the atomic nuclei with spins detected by MRI. This alignment can then be 

transferred to the atomic nuclei for detection. Since the signal in MRI is proportional to the degree of alignment, 

this polarization transfer results in a very large increase in the MRI signal, > 10,000 times in favorable 

circumstances.12  This process occurs most efficiently at low temperatures near ~1 K. By rapidly dissolving the 

frozen tracer and bringing it quickly to room temperature, a polarization sufficient to conduct metabolic MRI can 

be realized. After dissolution, the polarization decays by the liquid state spin lattice relaxation time of the target 

nuclear spin. 

As a technique, dDNP is an impressive technical achievement and has demonstrated tremendous potential 

for metabolic imaging in vivo13, 14 but it has its limitations, especially in a clinical setting. Hyperpolarization is 

limited to a small set of molecules whose relaxation time is long enough that the enhanced polarization is not lost 

before the kinetics can be determined. Many key metabolites, such as glucose, have short relaxation times, and are 

difficult, or impossible, to image with dDNP for this reason. Since one of the fundamental limitations of 13C MRI 

is noise, it is logical that a method that reduces noise can greatly extend the utility of the technique. We show here 

that by considering the natural sparsity of the signal matrix, it is possible to get an order of magnitude improvement 

in SNR using rank reduction of the signal tensor by tensor factorization. The increase in signal to noise is large 

enough that it may be possible perform dynamic 13C tracer imaging of some 13C tracers without DNP. 

SVD Based Low Rank Denoising for Dynamic Single Voxel spectroscopy 

We start by considering the simplest example, the dynamic non-localized pulse-acquire experiment (the 

same method can also be applied to dynamic localized spectroscopic imaging), as it can be described by basic 

concepts of linear algebra.15 A key observation is that after the injection of a tracer, the intensities of peaks change 

as the tracer is broken down to its metabolites, but the chemical shifts are largely invariant. The time independence 

of the chemical shifts suggests the spectral and kinetic information are separable; an n x m signal matrix M can 

therefore be written as a linear combination of a small number of vectors representing spectra (u) multiplied by an 

equal number of vectors representing kinetics (v):16 

𝐌 = 𝜎1u𝟏v1
𝑇 + 𝜎2u𝟐v2

𝑇 ⋯ 𝜎𝑛u𝒏v𝑛
𝑇 = 𝐔𝚺𝐕𝐓  Eq. 1 

The singular value decomposition (SVD) theorem guarantees any matrix can be reconstructed fully from n 

vectors (where n < m) in this manner and the weights σ are equal to the square roots of the eigenvalues of MTM. 

In reality, the true signal is corrupted by noise. Noise reduction is achieved by reducing the rank of M, which is 

the vector space spanned by the columns (spectra) of M. More intuitively, the rank of M is the number of 

independent spectra n in Eq. 1. A rank of 1 implies the signal can be completely described as a single spectrum 

which decays with a single time profile. The spectra and time profile can be any arbitrary shape, but it is uniform 

in this case - no individual peak in the spectra decays at a different rate than any other. A signal matrix with a rank 
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of 2 can be described as a linear combination of two 

spectra, with two distinct time profiles. A rank 3 matrix 

is a linear combination of three spectra with three 

distinct time profiles and so on. It is easy to see from 

this definition that we expect the rank (r) of the noise 

free matrix to be approximately equal to the number of 

metabolites in the sample, since noise is random and 

not correlated in either frequency or time. To get an 

approximation to M of rank r, we simply set the lowest 

r-n diagonal entries in Σ in Eq. 1 equal to zero. This 

result is guaranteed by the Eckart–Young–Mirsky 

theorem to be the best low rank approximation in the 

least squares sense to the original signal matrix M.17 

Since the noise-free solution is inherently low rank by 

the biochemistry of the problem, this solution is also 

likely to be an excellent approximation to the noise-free 

signal.  

This method was first tested on data obtained 

from 41 mice by following the metabolism of a 

hyperpolarized 13C tracer in a single pulse (not spatially 

resolved) MRI experiment. A volume of 300 µL of a 98 

mM solution of hyperpolarized [1-13C]pyruvate was 

injected into the tail vein of nude mice bearing tumor 

xenografts in the left leg. Cancer cells exhibit the 

Warburg effect and have higher lactate than the normal 

tissue. The dissolution process involved in making 

hyperpolarized pyruvic acid is not always perfect, 

resulting in spectra of varying quality. Under optimized 

conditions, the signal is strong enough after DNP that 

the main pyruvate (173 ppm) to lactate (185 ppm) 

conversion can be easily quantified without additional 

signal processing. In others, the signal is barely 

detectable. Since the biochemistry is the same in each of 

these cases, we know a priori the peak positions and 

approximate kinetics in the noisy data. This property 

makes the pyruvate dDNP experiment an excellent test 

platform for the accuracy of signal reconstruction. 

SVD Based Low Rank Denoising Gives an Order of Magnitude Improvement in SNR in DNP 13C Tracer 

Experiments 

Figure 1A shows an example of noisy pyruvate and lactate peaks in a dDNP experiment. The smaller peaks 

corresponding to alanine and pyruvate hydrate are completely buried within the noise. Even averaging 5 scans 

together is insufficient to accurately quantify the lactate or to detect the minor peaks. Averaging also results in a 

significant loss of time resolution (Figure 1A). Rank reduction by SVD gives a substantial (9.3 fold) improvement 

in signal to noise (Figure 1C). If we define signal to noise as the maximum value of the most intense peak divided 

by the standard deviation of the signal in a region of the where no peak is expected, signal to noise increased by 

nearly an order of magnitude (mean=9.4, median=7.3) after rank reduction to a rank of 5 (Figure 1D).  

 

 

Figure 1 SNR improvement in noisy data using rank 
reduction (A) Dynamic data from a 13C pyruvate tracer 
single pulse dynamic nuclear polarization experiment 
with low signal to noise. (B) Signal from A averaged 
over 5 scans. Even with averaging, the signal is too weak 
to be quantified accurately. (C) Signal reconstruction 
using rank reduction to a rank of 5. The peaks 
corresponding to the two main metabolic products 
pyruvate and lactate are now clearly visible in the 
reconstructed spectra, along with two minor peaks 
corresponding to alanine and pyruvate hydrate side 
products. (D) Histogram of the SNR improvement using 
rank reduction (r=3) over 41 mice.  SNR is defined here 
as the intensity of the maximum signal divided by the 
standard deviation in a 40 point region of the spectrum 
where signal is known not to be present. (E and F) Slice 
from A and C showing the 9 fold SNR enhancement after 
reconstruction.  
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Previously Undetectable Peaks Can be Quantified by Low Rank Denoising 

This level of noise reduction enables some 

measurements that were previously considered 

difficult. The bicarbonate provides information on 

the balance between the glycolytic and oxidative 

metabolic pathways18, 19 and in combination with the 

CO2 signal can serve as a measure of intracellular 

pH.20 The bicarbonate signal is difficult to detect in 

the raw spectra even in hyperpolarized experiments 

(Figure 2A and C)18.  After rank reduction by SVD, 

the bicarbonate signal becomes evident (Figure 2B 

and D) and breakdown of pyruvate through the citric 

acid cycle in the oxidative phosphorylation pathway 

can be followed (Figure 2F). The detection of the 

bicarbonate peak at the expected position shows that 

rank reduction in the kinetic domain gives an actual 

increase in sensitivity, as opposed to the cosmetic 

improvement that eliminates both noise and true 

weak signals from some other noise suppression 

techniques. 21  

Higher SNR Translates to More Precise Kinetic 

Fitting 

The performance seen in Figures 1 and 2 

may not be universal as noise reduction algorithms 

are often sensitive to the characteristics of the signal. 

In particular, large dynamic ranges are often 

problematic for many noise reduction algorithms. 21  

To confirm the generality of the method, we also 

tested the method using hyperpolarized [2-
13C]pyruvate. C-1 labeled pyruvate restricts analysis 

to the first steps of the TCA cycle as the 13C label is 

released as 13C-bicarbonate. Hyperpolarized [2-
13C]pyruvate allows tracking further downstream in 

the TCA cycle and into other metabolic pathways.22, 23 The data using hyperpolarized [2-13C]pyruvate shows a 

dominant C-2 pyruvate peak at 208 ppm and weak peaks near the noise level corresponding to the downstream 

metabolites 5-glutamate and 1-acetyl-carnitine at 184 ppm and 175 ppm, among other peaks (Figure S1B). The 

downstream metabolite peaks are less than 1% of the substrate signal. Rank reduction to a rank of 5 independent 

species substantially improves the signal to noise of later time points where the weaker downstream metabolite 

peaks are no longer visible in the raw signal (compare Figure S1C to S1E). The signal to noise increase translates 

to a corresponding increase in the accuracy of the kinetic reconstruction. The 8.3-fold increase in SNR translates to 

a 50 fold increase in the precision of the influx rate k1 corresponding to the conversion of pyruvate to glutamate 

through the TCA cycle and a 200 fold increase in the precision of the loss rate k2 corresponding to signal loss 

through relaxation and transformation to other metabolites. (compare Figure S1H to S1G). The same data was also 

tested with another state of the art denoising technique, wavelet shrinkage. While wavelet shrinkage using soft 

thresholding on individual spectra was unsuccessful in significantly reducing the noise (Figure S1D), SVD rank 

reduction (Figure S1E) was able to detect and quantify the weak peaks by using the additional information present 

in the entire time course. 

Figure 2 Detection and quantification of weak peaks using 
rank reduction Left Raw data from a pyruvic acid DNP 
experiment from Figure 1 with high signal to noise. Pyruvate 
(173 ppm) is converted to lactate (185 ppm). Only the pyruvate, 
lactate, and pyruvate hydrate signals are quantifiable. Right 
Rank 5 reconstruction of the raw data. In the raw data (A and 
C), the bicarbonate peak at 162.5 ppm is not detectable even 
though the overall signal to noise is high. Using the low rank 
approximation (B and D) a kinetic profile of bicarbonate 
metabolism can be obtained (F). No prior information about the 
bicarbonate signal or kinetics was used.   
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Denoising Does Not Bias Relative Intensities or Kinetics 

Rank reduction could introduce bias into curve-fitting of the kinetics, limiting its usefulness as a noise 

reduction technique. One method to test bias is to simulate realistic spectra and time courses and test the accuracy 

of the method by kinetic modeling in the presence of increasing amounts of noise.  The pyruvate DNP experiment 

of Figure 1 is used as a test case. Nonlinear regression is sensitive to small levels of noise and curve fitting was 

imprecise with even modest noise levels (Figure S2). Since potential bias was difficult to measure with curve-

fitting when the measurements are so imprecise, we used an alternate technique, the Area Under the Curve (AUC) 

approach, which is more robust against noise as the kinetic constants are derived from a ratiometric sum over all 

time points. Any potential bias introduced by SVD can therefore be measured at high levels of noise by this method 

even when traditional curve-fitting fails. The drawback is that transporter uptake cannot be quantified and the 

method is difficult to apply to models more complicated than three site exchange.  

The accuracy of SVD reconstruction depends on the SNR of the metabolite peak. When the noise level is 

significantly less than the metabolite peak (SNR of the metabolite peak >10), no bias is introduced by SVD; the 

kinetic constants of all metabolites can be recovered accurately by the AUC method when SVD is used with a rank 

of 5 or higher (Figure S2). Since the SNR of the pyruvate and lactate peaks is almost always above 10 in DNP 

experiments, any effect of SVD on these metabolites will be minimal in most cases. The kinetics of bicarbonate can 

also be recovered without bias at all levels of noise (Figure S3A). At higher levels of noise; however, there is a 

slight tendency for the alanine signal to drift towards the kinetics of the stronger pyruvate signal (Figure S3B). The 

pyruvate to alanine conversion rate is overestimated by ~ 10% when SVD reconstruction. The origin of this error 

is that at low SNR the 4th and 5th kinetic eigenvectors that 

differentiate the kinetics of alanine from the other signals 

become indistinguishable from noise. While this suggests 

the error could be corrected by using a larger rank in the 

reconstruction, adding more eigenvectors decreases the 

precision to the point that the method becomes ineffective. 

However, the effect is modest and confined to the alanine 

signal under ordinary conditions. Overall, the simulations 

suggest rank reduction by SVD does not introduce a 

significant bias into measurements of either kinetics or 

intensities in DNP experiments under normal conditions. 

Synthetic data is less reliable for testing denoising 

algorithms than actual data due to the assumed idealities in 

the simulation. Noise in real data may show a frequency or 

time dependence that may differ from an ideal Gaussian 

white noise distribution,24 and kinetics often do not exactly 

follow simple models. To test the accuracy of rank 

reduction on a more realistic sample, we performed a 13C 

MRI DNP experiment using hyperpolarized [1-
13C]pyruvate, with excitation pulses alternating between a 

10º pulse on odd scans and 2º pulses on even scans to 

generate high and low noise datasets from the same sample 

(Figure 3). SVD reduction of the low flip angle signal to a 

rank of five gave a 3-fold increase in signal to noise. The 

kinetic profiles of the reconstructed pyruvate, pyruvate 

hydrate, and lactate signals, which have relatively strong 

signals that could be accurately measured even at low flip 

angles, closely match the high flip angle signal when 

normalized for intensity (Figure 3B-D). The reconstructed 

Figure 3 Accuracy of low rank SVD reconstruction. 
(A) Pyruvate signal after the injection of hyperpolarized 
1-

13
C pyruvic acid using 2° or 10° flip angles on the odd 

and even pulses respectively. Even with a reduction to 
one fifth the original signal the kinetic profile of 
pyruvate (B), lactate (C), pyruvate hydrate (D), and 
alanine (E) are reconstructed almost exactly by SVD 
(colored lines). The bicarbonate signal (F) contains only 
a minor error in the breakdown constant, despite the 
pyruvate hydrate signal being almost undetectable in the 
raw data (grey dots). 
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signal of alanine also nearly exactly matches the high-power signal despite the significant noise in the low power 

signal (Figure 3E). Only the very weak bicarbonate signal, which is completely unrecognizable in the raw signal 

(Figure 3F), shows a slight error in reconstruction.  

Dynamic Single Voxel Spectroscopy of Glucose Metabolism without DNP 

The results from DNP experiments 

encouraged us to try the SVD processing on 

molecules less amenable to hyperpolarization than 

pyruvate. Increased glucose uptake to meet the 

increased energetic and synthetic demands of 

increased cell growth is common feature of many 

cancers25, 26, which  makes glucose a primary 

target for metabolic imaging through both PET27 

and MRI techniques like CEST.28, 29 

Unfortunately, the short T1 of glucose causes 

rapid relaxation of the hyperpolarized signal, 

meaning most of the signal is lost before 13C 

glucose enters the glycolytic pathway.30 Figure S4 

shows the results from a tail vein injection of 50 

µL of 100 mM uniformly 13C labeled glucose, 

deuterated at all non-exchangeable protons to 

increase T1 (see Table S1), into a mouse with a 

leg xenograft from the Hs766t metastatic 

pancreatic carcinoma cell line. Even with 

deuteration, most of the hyperpolarized signal is 

lost within the first ten seconds and unavailable for 

detection of downstream metabolic products 

(Figure S4). Nothing besides the glucose peak can 

be detected in the raw signal (Figure S4).  In the 

signal rank reduced by SVD; however, a very faint 

signal of approximately 0.5% the intensity of the 

glucose peak can be seen at 184 ppm 

corresponding to the 1- position of lactate. Like the 

glutamate and bicarbonate signals before, SVD 

brings the weak lactate signal up to detectability.  

 With hyperpolarized glucose, the DNP 

scans were of limited value due to the rapid signal 

decay. The success of SVD rank reduction in 

suppressing noise encouraged us to image 

uniformly labeled glucose solutions without hyperpolarization. The first studies were non-localized spectroscopy 

experiments similar to the ones described above. Figure 4 shows the results before and after SVD rank reduction 

from a tail vein injection of 350 µL of 555 mM uniformly 13C labeled glucose into a mouse with a leg xenograft 

from the Hs766t cell line taken on a 9.4 T scanner (see Materials and Methods for details). The scans show a gradual 

uptake of glucose and a subsequent breakdown to lactate and alanine, reflecting transport limited uptake and the 

primarily aerobic glycolysis in this particular cell line.31 Every peak of both the α- and β anomers of glucose were 

identified and quantified (Figure 4D-F). Glucose-6-phosphate was identified as a shoulder of the 6’ carbon of 

glucose with distinctly different kinetics32 (Figure 4E-F). In addition to alanine, lactate, glucose, and glucose, 

glucose-6-phosphate, a weak peak belonging to glycogen at 99 ppm32 was identified in some of the samples with 

high signal to noise. As a control, the experiment was repeated in a mouse without a tumor xenograft. No glucose 

peaks could be seen in the absence of a tumor (Figure S5), confirming the signal originates from the enhanced 

Figure 4 Dynamic Single Voxel Spectroscopy of Glucose 
Metabolism without DNP (A) Raw 13C signal after injecting 50 mg 
of uniformly 13C labeled glucose into the tail vein of a mouse with a 
MiaPaca xenograft without hyperpolarization. (B) The same signal 
after rank reduction by SVD to a rank 5. (C) Raw 13C signal after 
1000 seconds. (D) The same signal as (C) after rank reduction by 
SVD. While only the lipid signal could be detected clearly in the raw 
signal, every peak of both the α- and β anomers of glucose can be 
identified and quantified in rank reduced signal. Peaks belonging to 
lactate, alanine, and glucose 6-phosphate can also be identified in the 
rank reduced signal. (E) Stacked plot showing the evolution of the 
glucose signal in an experiment with high SNR. Glucose-6-
Phosphate (G6P) can be identified as a growing shoulder along some 
of the glucose peaks. (G) Kinetics of the metabolite peaks identified 
from (D) 
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uptake and retention of glucose in tumors. The overall time-scale of glucose metabolism approximately matched 

previous 13C measurements but with greatly increased time resolution.33 Previous measurements were limited by 

signal-to-noise to taking one spectra every 5 minutes, while a quantifiable signal can be acquired using rank 

reduction every 3.2 s. The increased temporal resolution allowed measurement of the rate of uptake of glucose, 

which was challenging with the previous 13C measurements, and difficult even with PET imaging.34, 35 The 

experiments in Figure 4 were made on a 9.4 T scanner, which is not clinically widely available. With an eye towards 

eventual clinical translation, we made corresponding measurements at 3T (Figure S6). Although the lactate signal 

was not resolved, possibly because decoupling was not implemented, both glucose uptake and metabolism could 

be clearly quantified. 

Extending SVD into Higher Dimensions through Tensor Decomposition 

SVD is a strictly two-dimensional matrix method 

and cannot be used directly on images of this type. In 

order to adapt this method to higher dimensional data 

typical of dynamic, volumetric, and spectroscopic 

medical imaging experiments, a different method is 

proposed. The individual voxels can be treated 

independently and denoised by SVD but the fewer time 

points are acquired for each voxel in an imaging 

experiment. Because noise reduction power of SVD 

varies with the matrix size by Q / r, where Q is the smallest 

matrix dimension and r is the predicted rank,36 using SVD 

to denoise individual voxels is not powerful enough for 

imaging experiments (see below).  

Treating voxels independently ignores the 

correlation between voxels and the low rank structure of 

the overall image37. A multidimensional analog of the 

SVD, the Tucker Decomposition, can be used to find a 

low rank reconstruction of the entire image.  Similar to the 

SVD, the Tucker Decomposition factorizes an n-

dimensional tensor X into a core tensor G of the same 

dimensions as the original data array and a set of n factor 

matrices {A,B,C,…}:38 

𝐗 = 𝐆 ⋅ 𝐀 ∙ 𝐁 ⋅ 𝐂 ⋯ = ∑ ∑ ⋯ ∑ 𝑔𝑖𝑗𝑘a𝑖⨂b𝑗

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

⨂c𝑘 ⋯ 

where ⨂ refers to the tensor outer product. While SVD decomposes a data matrix into a linear combination of 

vectors, the Tucker Decomposition decomposes a higher dimensional data tensor into a multilinear combination 

of matrices corresponding to images and time-dependent spectra (see Figure 5). Like the SVD, the core tensor 

can be truncated to suppress noise while retaining as much of the signal as possible. The use of a more complex 

basis allows the underlying structure of the data to be represented in a more compact and natural way, which 

translates to more effective denoising when the distribution of signals is not random.39 

Dynamic CSI Imaging of Glucose Metabolism without DNP by Tensor Decomposition Rank Reduction 

 Figure 6 shows the results from dynamic chemical shift imaging of a 50 mg bolus of [U-13C]glucose 

injected into the tail vein of a mouse with a leg xenograft from the MiaPaca cell taken at 9.4 T before and after 

tensor decomposition. One image was taken every 48 s. The raw image is predominantly noise (Figure 6C) with 

no discernable signal detectable in the voxel (Figure 6E and F). A very weak glucose signal can be detected in 

some voxels by using voxel by voxel SVD with a high threshold for rank reduction (Figure 6G and H), a roughly 

Figure 5: Methods of data reduction for a data 
tensor. For simplicity, the data tensor is shown here as a 
three dimensional object. The actual data tensor in the 
dynamic CSI experiment is four dimensional. (A) SVD 
of individual voxels. Each voxel is treated 
independently and rank reduced by SVD. (B) 
Matricization. The I  J  K  L four dimensional data 
tensor is unfolded into a two dimensional (I+J+K)  L 
matrix. The resulting matrix is then rank reduced by 
SVD and then refolded to the original dimensions of the 
data tensor (C) Tensor Decomposition. The I  J  K  
L data tensor is factorized into a set of factor matrices 
multiplied by a sparse tensor with the same dimensions 
as the original data set. Rank reduction is obtained by 
truncating the values along each dimension.  
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3-fold improvement in SNR compared to the raw signal (see Figure 6M). More aggressive rank reduction distorts 

the image by suppressing the signal in some of the voxels. The multi-dimensional nature of the tensor decomposition 

is essential to its success, unfolding the data into a 2D matrix and then using SVD low rank reconstruction (similar 

to the initial step of the LORA technique (see methods)40, Figure 5B) resulted in a 3-fold less improvement in SNR 

on this data set (Figure 6I and J). Only by tensor factorization is a clear glucose signal detectable in each of the 

time traces, giving on average a ~31 fold improvement in SNR (Figure 6M). The improvement in SNR is large 

enough that the SNR for each time point is actually higher than the SNR obtained by averaging over the entire time 

course of 90 min (450 scans) and sufficient to image the lactate signal in addition to the lipid and glucose signals. 

The time traces from the CSI images show relatively rapid uptake of glucose within the tumor that reaches a plateau 

Figure 6: Dynamic 
13

C CSI Imaging of Glucose Metabolism without DNP. CSI imaging of a mouse leg Hs766t 
xenograft after a 50 mg glucose injection. An 8x8 image of the tumor bearing mouse leg was acquired by chemical shift 
imaging every 48 seconds for 90 minutes. The final image was zero-filled to 16x16. Each is voxel 0.15 cm x 0.15 cm x 1.6 
cm in size. (A) The  glucose region of the spectra for scan 44 overlaid on the anatomical image after tensor  decomposition. 
(B) The kinetics. (C and D) Contour maps created from the peak maximums of the glucose and lactate 

13

C signals at the 
time points indicated.   While the raw images are uninterpretable, the images after tensor decomposition closely conforms 
to the boundaries of the tumor and a clear difference in the between the kinetics of glucose and lactate can be detected. 
Effect of signal processing on SNR (E to L) The spectrum of central voxel at the indicated time points using different 
processing techniques. (E and F) No peaks are evident in the raw signal. (G and H) Using SVD on each voxel 
independently slightly improves SNR, enough to detect a very weak glucose signal (I and J) Introducing global correlations 
by matricizing the data tensor and using a single SVD simultaneously on all the data yields a detectable but still noisy 
glucose signal. (K and L) Tensor decomposition allows a more natural representation of the dour dimensional signal, which 
translates into greatly improved signal to noise (SNR=27). (M) Histogram of the SNR with each technique over 14 mice. 
Tensor factorization yields a 31 fold improvement in SNR, approximately 3 times better than matricization. 
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within approximately 10 min, a similar time scale as the non-localized experiment. Glucose uptake is almost entirely 

localized within the tumor with a clear separation from lipid signal originating from the gluteal fat pad in the upper 

leg (Figure 6A).  13C lactate builds up slowly as glucose is broken down (Figure 6C and D). To our knowledge, 

this represents the first successful dynamic imaging of tracer metabolism in vivo through 13C MRSI without dynamic 

nuclear polarization.30  

Noise reduction without a spectral dimension 

Spectroscopic imaging is difficult in hyperpolarization experiments due to the irreversible loss of 

hyperpolarization, which sets a limit on how many scans can be acquired before the signal becomes undetectable. 

One method of rapidly acquiring a metabolite specific image is to use a fast imaging sequence like EPI in 

combination with spectrally selective pulses switching the excitation profile on alternate scans to center on different 

metabolites. The result is a series of images that correspond to the distribution of the metabolite in time.  

To test the usefulness of the low rank approximation on these types of experiments, as well as other dynamic 

MRI experiments where spectral information is not available, we tested low rank reconstruction on spectrally 

selective EPI images of lactate metabolism after the delivery of a bolus of hyperpolarized 13C-1-pyruvate. In the 

raw data, only the kidneys and part of the liver can be seen in the individual time points making the goal of following 

pyruvate metabolism at the organism level difficult. Using tensor reconstruction, the signal to noise is improved by 

a factor of 3 (Figure S6). With the increase in signal to noise, the heart became visible and the liver and kidneys 

were more clearly defined.  With the reconstructed model, it is possible to trace the production of lactate through 

the body, detected in the heart by frame 3 and being retained in the liver and kidneys until frame 12. While the 

increase in signal to noise is less impressive than in spectral images, it does show that tensor factorization may be 

a viable technique for increasing the SNR in low signal, low complexity images.  

Discussion 

The possibility of using 13C MRI for molecular imaging was investigated early on in the history of MRI but 

is not used routinely once it became apparent that the SNR was insufficient for imaging. If this limitation can be 

overcome, 13C MRI with uniformly labeled 13C glucose may become an alternative/complementary technique to 
18F-FDG PET. We show here that this limitation is not as formidable as may have once seemed. The key to this 

development is a relatively simple but efficient and robust post-processing noise suppression technique that takes 

advantage of the common underlying structure in metabolic imaging experiments, particularly those with a kinetic 

component. There have been a number of attempts at denoising individual magnetic resonance spectra, either 

specifically in the context of MRSI or more generally throughout the NMR field. The methods can be divided into 

those that attempt to denoise the free induction decay (FID) signal in the time domain (Cadzow reduction41, 42 aka 

HLSVD42, 43, HTLS44-46 and Pade transform methods) and those that attempt to directly denoise the MR spectrum 

in the frequency domain. Time domain methods make the assumption that the signal originates from a small set of 

ideal Lorentzian peaks with well-defined frequencies, intensities, and line widths.47 From this assumption, a variant 

of the rank reduction through SVD procedure is employed to distinguish true peaks from false noise peaks, using a 

sliding window to convert the FID signal into a matrix. In ideal conditions, this results in a perfect, noise-free 

spectrum. However, the true rank of the noise-free signal is difficult to estimate a priori from the FID. Imperfect 

shimming, magnetic susceptibility artifacts, or chemical exchange processes can cause a deviation from ideal line-

shapes. Any peak with a non-ideal line-shape manifests as multiple Lorentzian peaks in the fitting procedure. For 

example, the residual water peak in 1H MR can only be modeled by at least 4 Lorentzian peaks.48 In many cases, 

weak peaks like the bicarbonate peak in Figure 2 are suppressed by this procedure in the presence of strong peaks 

since most of the degrees of freedom are used in modeling more accurately the line-shape unless the rank is set to 

a fairly large number, which has the undesirable consequence of creating spurious peaks. Quantitation may also be 

difficult in many cases unless the spectrum is largely noise free.49 To surmount these problems, one variant of the 

LORA technique 49-55 uses a low rank approximation in the spatial domain before attempting to denoise the FID of 

individual spectra. The method is not perfect in suppressing artifact peaks and necessarily results in a loss of spatial 

resolution.  
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Other methods denoise the MR spectrum directly. The total variation approach uses a smoothing operator 

to dampen sharp discontinuities that likely reflect noise.56 Wavelet methods seek to decompose the signal into sub-

signals of increasing complexity, with the highest complexity signals, which likely represent noise, thrown out.57, 58 

Maximum entropy methods take a similar approach form the perspective of information theory. These methods 

have the disadvantage of low sensitivity in the sense that they tend to flatten weak peaks21 and may eliminate other 

fine details of the spectra.  

Despite their differences, all of these methods operate in the level of individual spectra. By considering 

rank reduction in the kinetic domain specifically, where the signal matrix is particularly sparse and possesses a 

natural connection to the underlying chemistry, it is possible to achieve an order of magnitude or more 

improvements in SNR without sacrificing resolution or accuracy. This level of enhancement can detect dynamic 

signals in the presence of large amounts of noise (Figure 1) and quantify weak signals even in the presence of much 

stronger signals (Figure 2). For dDNP experiments, this opens up the possibility of using lower flip angles and 

doses than are currently being used. Since the transverse magnetization after the ith pulse in dDNP depends on the 

flip angle α according to sin(α)cosi-1(α), improvements in SNR coupled with low flip angles may enable the 

detection of metabolites further downstream than is currently possible. Higher signal-to-noise is also useful in 

expanding the range of chemical probes amenable to DNP. Substrates with low polarization efficiencies or short T1 

relaxation times like glucose (Figures 4 and 6) can be quantified more easily using SVD or tensor factorization. 

Finally, higher SNR may open up the possibility of off-site hyperpolarization through the brute force approach,59, 

60 which would eliminate the largest barrier for clinical use. 

  Some challenges associated with the translation of 13C glucose imaging into a clinical technique remain to 

be overcome. The 2g/kg dose used in this study is about three times larger than the maximum tolerated IV dose. 61 

Whole body imaging as done in 18F-FDG PET/CT will be difficult with the technique. To get adequate resolution 

in humans, the number of k-space points will need to be larger, around 64x64 for a brain scan with a FOV of 

approximately 190 mm and 3 mm voxels, for example. This will result in unacceptably long acquisition time for 

each scan if conventional CSI imaging is used since each k-space point is phase encoded and requires a separate 

RF excitation and data acquisition. These are not insurmountable difficulties and could possibly be addressed with 

a faster imaging sequence, improved 1H decoupling, and parallel imaging.  

Conclusions:   

Materials and Methods 

Mouse Models 

The animal experiments were conducted according to a protocol approved by the Animal Research Advisory 

Committee of the NIH (RBB-159-2SA) in accordance with the National Institutes of Health Guidelines for Animal 

Research. Female athymic nude mice weighing approximately 26 g were supplied by the Frederick Cancer Research 

Center, Animal Production (Frederick, MD) and housed with ad libitum access to NIH Rodent Diet #31 Open 

Formula (Envigo) and water on a 12-hour light/dark cycle. Xenografts were generated by the subcutaneous injection 

of 3 ×106 MiaPaCa-2 (America Type Cell Collection (ATCC), Manassas, VA, USA) or Hs766t (Threshold 

Pharmaceuticals, Redwood City, CA, USA) pancreatic ductal adenocarcinoma cells. Both cell lines were tested in 

May 2013 and authenticated by IDEXX RADIL (Columbia, MO) using a panel of microsatellite markers 

13C MRS with Dynamic Nuclear Polarization 

[1-13C]pyruvic acid (30 μL), containing 15 mM TAM and 2.5 mM gadolinium chelate ProHance (Bracco 

Diagnostics, Milano, Italy), was hyperpolarized at 3.35 T and 1.4 K using the Hypersense DNP polarizer (Oxford 

Instruments, Abingdon, UK) according to the manufacturer’s instructions. Typical polarization efficiencies were 

around 20 %. After 40-60 min, the hyperpolarized sample was rapidly dissolved in 4.5 mL of a superheated HEPES 

based alkaline buffer. The dissolution buffer was neutralized with NaOH to pH 7.4. The hyperpolarized [1-
13C]pyruvate solution (96 mM) was intravenously injected through a catheter placed in the tail vein of the mouse 

(12 μL/g body weight). Hyperpolarized 13C MRI studies were performed on a 3 T scanner (MR Solutions, 

Guildford, UK) using a home-built 13C solenoid leg coil. After the rapid injection of hyperpolarized [1-13C]pyruvate, 
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spectra were acquired every second for 240 s using a single pulse acquire sequence with a sweep width of 3.3 kHz 

and 256 FID points.  

Dynamic 13C Glucose MRS without DNP 

Magnetic resonance spectroscopy was performed on either a 9.4 T Biospec 94/30 horizontal scanner or a 

MR Solutions 3 T horizontal scanner.  The coil assembly for the mouse leg consists of 3 16 mm independent wire 

loops that are each terminated with a double balanced tune/match network to the 50 Ohm characteristic impedance 

of the coaxial cable.  The two 13C coils are geometrically decoupled because they have their radiofrequency field 

orthogonally oriented.  Those coils are fed with radiofrequency currents with a 90° phase difference. One of the 

coils has a solenoidal shape and the other is constructed by two saddle loops with 120 arcs (quasi-Helmholtz pair), 

arranged coaxially to the solenoidal coil. The 1H coil is a double sized surface coil coaxially arranged to the 

solenoidal coil. The proton coil has integrated 13C frequency traps and the 13C coils have integrated 1H frequency 

traps to minimize coupling between them. A bandpass filter was used to minimize contamination of the 13C signal 

by the 1H decoupling pulse.  

Each mouse was anesthetized during imaging with isoflurane 1.5–2.0% administered as a gaseous mixture 

of 70% N2 and 30% and kept warm using a circulating hot water bath. Both respiration and temperature were 

monitored continuously through the experiment and the degree of anesthesia adjusted to keep respiration and body 

temperature within a normal physiological range of 35-37º C and 60-90 breaths per min. Anatomical images were 

acquired with a RARE fast spin echo sequence62 with 15 256×256 slices of 24 mm × 24 mm× 1 mm size with 8 

echoes per acquisition, a 3 s repetition time, and an effective sweep width of 50,000 Hz. Samples were shimmed to 

20 Hz on the 9.4 T with first and second order shims using the FASTMAP procedure.63 Non-localized spectra of 

glucose without DNP at 9.4 T were acquired with the NSPECT pulse-acquire sequence using maximum receiver 

gain, a repetition time of 50 ms, Ernst Angle excitation of 12º, 256 FID points, a sweep width of 198.6 ppm, 16 

averages per scan, and 4500 scans for a total acquisition time of 1 hour. MLEV16 decoupling64, 65 was applied 

during acquisition using -20 dB of decoupling power and a 0.2 ms decoupling element. The decoupling pulse was 

centered on the main proton lipid resonance at 1.3 ppm. Data at 3 T was acquired similarly except decoupling could 

not be applied efficiently on this scanner and was omitted. 

Signal processing: 

For non-localized (two dimensional) experiments, the first 67 points of the FID in the time dimension were 

removed to eliminate the distortion from the group delay corresponding to the 13 ms dead time of the Bruker 9.4 

T.66 The FID was Fourier transformed and the phase estimated by the entropy minimization method of Chen et al,67 

as implemented in MatNMR.68 The baseline was estimated by a modification of the Dietrich first derivative method 

to generate a binary mask of baseline points,69 followed by spline interpolation using the Whittaker smoother70 to 

generate a smooth baseline curve.71 The final correction adjusts for the limited number of points in the frequency 

dimension by continuation of the FID by linear prediction. The 189 points of the FID remaining after truncation in 

the first step were extrapolated to 1024 points using the “forward-backward” linear prediction method of Zhu and 

Bax.72 Fourier transforming the FID of the transients from each voxel individually generated the final spectrum. 

The method proved difficult to apply to the chemical shift imaging experiments and no preprocessing was applied. 

Spectra for chemical shift imaging experiments are shown in magnitude mode.  

Low Rank Reconstruction: 

 For the two-dimensional signal matrices generated by non-localized pulse acquire experiments, the rank 

reduced signal was generated by truncating the SVD by setting the N-r diagonal values of the singular value matrix 

S to 0, where N is the number of rows in S and r is the predicted rank. The predicted rank was set to 5 unless 

otherwise specified, which is equal to the number of independent species in the pyruvate DNP experiment. For the 

four-dimensional imaging experiments, three methods were tried as described in Figure 7. (1) Applying truncated 

SVD to each voxel independently (2) Unfolding the four-dimensional tensor into a two-dimensional matrix and 

applying truncated SVD (a simplified version of LORA49) (3) Factorizing the four-dimensional tensor by tensor 

decomposition. The predicted rank was set to 10 for voxel-by-voxel SVD and 16 for the matricization technique, 
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which is the smallest rank which does not introduce substantial distortions in the time averaged image (for example, 

the inappropriate bleed through of the lipid signal into the tumor mass) as measured by a comparison of the 

reconstructed and raw time averaged signals. Tensor decomposition was achieved through higher order orthogonal 

iteration73 in the Matlab NWay package.74 A tensor rank of 8 in the temporal and spatial dimensions and 6 in each 

spatial dimension was used for the glucose and CSI images. 

Supporting Information Figures 

 

Figure S1 SVD rank reduction improves the precision of kinetic fitting. (A) The raw signal resulting from the 
brain of an Wistar rat after injection of an 37 mg bolus of pyruvate 13C-labeled at the 2 position. (B) Spectrum 
averaged over the 40 s time course. The signal has a very high dynamic range with the metabolites having an 
intensity only 0.5% of the main 2-pyruvate peak. (C) Spectrum 20 seconds after injection. In the raw signal, the 
metabolites are near the noise level, which is not significantly improved by (D) wavelet denoising. By contrast, 
SVD rank reduction to a rank of 5 results in a significant reduction of noise (E) so that the signal resembles the 
spectra averaged over all time points (F). For glutamate at 184 ppm, the noise in the baseline of the raw signal 
means the curve fitting is ill-conditioned and the kinetic constants cannot be recovered with any accuracy. (H) 
Improvement in the signal to noise at longer time points by SVD removes the instability and allows reconstruction 
of the kinetics with greater precision. 
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Figure S2 Precision of curve-fitting of the alanine peak in a synthetic data set expressed as (A) R-

Squared or (B) Root Mean Squared Error (RMSE).  Use of rank reduction by SVD yielded precise 

curve-fitting over a large range of signal to noise, while the precision of curve-fitting of the raw data to 

the biexponential equation 𝑦 = 𝐴(𝑒−𝑘1𝑡 − 𝑒−𝑘2𝑡) declined dramatically when the SNR of the 

metabolite peak became less than 10. 

(A) 

(B) 
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Figure S3 Accuracy of SVD rank reduction from reconstruction of a simulated data set. (A) 

Bicarbonate-to-pyruvate ratios as a function of the SNR of the bicarbonate peak from the raw and a 

rank 5 SVD reconstruction (B) Same as above except for the pyruvate peak. A slight bias in the SVD 

reconstruction exists for the alanine peak at low (<10) signal-to-noise ratios.  SVD reconstruction 

yielded an unbiased estimate at all noise levels for the bicarbonate peak. 
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(A) 

(B) (C) 

(D) (E) 

Figure S4 (A) Evolution of a hyperpolarized U-
13

C-
2

H glucose tracer after being injected directly into 

an Hs766t leg xenograft. (B) The spectrum at the point of maximum intensity at 24 seconds. Despite 

the high signal to noise, the only detectable peaks in the spectrum are from glucose with no evidence 

of metabolic turnover. (C) The same spectrum after rank reduction to a rank of 3. A doublet near the 

expected position of lactate is now apparent. (D and E). Kinetics of the main glucose and lactate peaks. 

The lactate peak decays more slowly than the pyruvate peak, reflecting the eventual breakdown of 

glucose into lactate.   
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 (A) 

(B) 

(C) 

Figure S5 Comparison of Glucose Metabolism 
13

C signal after injecting 50 mg of uniformly 
13

C 

labeled glucose into the tail vein of a mouse with a MiaPaca xenograft without hyperpolarization 

after rank reduction. (B) The same experiment on a mouse without a tumor xenograft. (E) Kinetics 

of the signal at 60.5 ppm. No uptake is detectable in the leg without a xenograft, only the constant 

background signal from lipid glycerol groups.  
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(A) 

(B) 

Figure S5: (A) Evolution of the 
13

C signal at 3T after IV injection of 50 mg U-
13

C glucose. The 

dashed line indicates the time of injection. (B) Kinetics of the glucose signal. 
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Figure S6 Denoising of Image Data Using Tensor Decomposition. Top Left One slice from a 20 time point 

image set of lactate production following the injection of hyperpolarized pyruvate centered on the heart. The data 

was acquired using a spectral selective pulse sequence that yields a series of images for each metabolite, one image 

for each time point. Top Right The same data using the Tensor Decomposition; reducing the rank from 

[32,32,10,20] to [16,12,8,4]. Bottom The corresponding images from a slice centered on the liver and kidneys. In 

both cases a roughly 3 fold improvement in signal to noise is observed. 
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