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Abstract 

Motivation 

Currently there are no tools specifically designed for annotating genes in phages. 

Several tools are available that have been adapted to run on phage genomes, but due 

to their underlying design they are unable to capture the full complexity of phage 

genomes. Phages have adapted their genomes to be extremely compact, having 

adjacent genes that overlap, and genes completely inside of other longer genes. This 

non-delineated genome structure makes it difficult for gene prediction using the 

currently available gene annotators. Here we present THEA (The Algorithm), a novel 

method for gene calling specifically designed for phage genomes. While the compact 

nature of genes in phages is a problem for current gene annotators, we exploit this 

property by treating a phage genome as a network of paths: where open reading 

frames are favorable, and overlaps and gaps are less favorable, but still possible. We 

represent this network of connections as a weighted graph, and use graph theory to 

find the optimal path.  

Results 

We compare THEA to other gene callers by annotating a set of 2,133 complete phage 

genomes from GenBank, using THEA and the three most popular gene callers. We 

found that the four programs agree on 82% of the total predicted genes, with THEA 

predicting significantly more genes than the other three. We searched for these 

extra genes in both GenBank’s non-redundant protein database and sequence read 

archive, and found that they are present at levels that suggest that these are 

functional protein coding genes. 
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Availability and Implementation 

The source code and all files can be found at: https://github.com/deprekate/THEA 

Contact 

Katelyn McNair: deprekate@gmail.com 
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Introduction 

Phages, viruses that infect bacteria, provide unique challenges for bioinformatics. There 

is a limit to how much DNA can be packaged in a capsid, and therefore phage genomes 

are generally short, typically in the range 20-100 kb. By necessity, their genomes are 

compact: phage genes are shorter than their bacterial homologs, are frequently co-

transcribed, and adjacent open reading frames often overlap (Kang et al., 2017). In a few 

cases, phage genes are encoded within each other (Cahill et al., 2017; Summer et al., 

2007).  In contrast, bacterial genes are longer, separated by intergenic spacers, and 

frequently switch strands (Kang et al., 2017). There are no bioinformatics tools 

specifically designed to identify genes in phage genomes, so algorithms designed to 

identify bacterial genes are typically used (Katelyn McNair, Ramy K. Aziz, Gordon D. 

Pusch, Ross Overbeek, Bas E. Dutilh, and Robert Edwards, 2017). However, many of 

those algorithms rely on information that is not available and calculations that are not 

possible with short genomes. For example, there are no conserved genes in phage 

genomes that can be used to build training sets (Rohwer and Edwards, 2002), fewer genes 

means the statistics used to identify start codons are less accurate, and because many 

phage proteins have no homolog in the databases, similarity searches are unreliable 

(Roux et al., 2015). 

Here, we introduce a novel method for gene identification that is specifically designed for 

phage genomes. We presume that since phages have physical limits on their genome sizes 

they contain minimal non-coding DNA.  This supposition allows us to take a completely 

novel approach to phage gene identification, tiling opening reading frames to minimize 

non-coding DNA bases.  We treat a phage genome as a network of paths in which open 
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reading frames are more favorable, and overlaps and gaps are less.  We solved this 

weighted graph problem using the Bellman-Ford algorithm (Ford, 1956; Bellman, 1958).  

 

Materials and Methods 

The first step in creating a weighted graph is finding the open reading frames.  By 

default, we allow for three start codons (ATG, GTG, TTG), and three stop codons (TAA, 

TAG, TGA). The default minimum length of an ORF is 90 nucleotides. In the weighted 

graph, an ORF is represented as an edge between a pair of nodes: one node is the start 

codon and the other the stop codon.  The open reading frames are then connected to 

nearby open reading frames, creating an edge in the graph that is either an overlap or gap 

(Figure 1).  To save computing time, and for simplicity, we only connect ORFs within ± 

300 bp of each other.  When there is a very large span without an ORF, we connect ORFs 

on each side of the region. For each edge we calculate a weight depending on the feature 

type: ORF, overlap, or gap.  The weight of an ORF is calculated by finding the 

probability of not encountering a stop codon, then taking the negative multiplicative 

inverse of this probability.  This weight is modified by the GC frame plot score, start 

codon type, and ribosomal binding site score (Equation 1).    Since little is currently 

known about the diversity of ribosomal binding sites in phages, we used the same 

likelihood RBS binned-system used by Prodigal (Hyatt et al., 2010). We calculated a 

normalized global probability start codon score by counting the start codons in 2,133 

phage genomes and then normalizing to one.  We introduce the “GC frame plot score” 

(GCFP), which we calculate by identifying the frame with the maximum GC content over 

a 120 bp window for each codon across all ORFs that start with ATG, and then normalize 
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to one.  To account for the first possible start codon not being the correct start site, we 

trim off a third of the first codons, yielding a set of three position scores between 0 and 1, 

with 1 being the maximal frame.  Then for each ORF we modify each codon’s Pstop value 

by the GCFP score for that particular codon. We repeat this calculation to also find the 

minimum GC content frame.    

      ���� � �∏��������
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���� � 	
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	�    (1)    

Overlap and gap weights are scaled to the ORF coding scores.  Overlap weights are 

calculated by finding the average of the two coding weights of the ORFs in the overlap, 

and then exponentiating by the length of the overlap (Equation 2). If a strand switch 

occurs, then a strand switch penalty of 20 is added.  This penalty is the multiplicative 

inverse of the probability of a strand switch occurring, calculated from our set of 

annotated genes. 

       �������� � ������
�
          (2) 

The gap weights are calculated by finding the probability of a random codon not being a 

stop codon across the entire genome. This probability is then exponentiated by the length 

of the gap, and then the positive multiplicative inverse is taken (Equation 3).   If a strand 

switch occurs, then a penalty is added to the gap weight.  For gap lengths over 300 bp we 

move to a linear penalty scoring calculation. 

        ���� � �����
�     (3) 

For each of the above weights, the multiplicative inverse is taken to transform the 

probabilities into “distances” to create a weighted graph network.  The weights for open 

reading frames are negated; to denote these edges as favorable in the network.  The 

Bellman-Ford algorithm is then used to find the shortest path through the network.   
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We compared gene identification between THEA and the three most popular gene callers: 

GeneMarkS, Glimmer, and Prodigal, using a set of 2,133 complete phage genomes from 

GenBank (Benson et al., 2017).  We did not include 9 Mycoplasma and Spiroplasma 

phages, which use an alternative genetic code.  We ran THEA and each of the three 

alternative gene callers with default (or “phage”) parameters on each phage genome. 

To help mask out function, but non protein coding regions of the genomes, we used the 

program tRNAscan-SE to find the tRNA genes in each genome.  To compare the 

algorithms, we counted the number of open reading frames predicted by each respective 

algorithm, and compared those predictions to the corresponding genes in GenBank.  The 

source code and all files can be found at: https://github.com/deprekate/THEA 

Results 

Validating phage genome annotation is frustrated by the lack of “true” phage annotations. 

There are few published phage proteomics studies (e.g., pmid: 26864518 25467442), and 

in those studies the raw proteomics data is not provided. Rather the authors only indicate 

which ORFs are matched, frequently using proprietary software. This precludes our 

ability to use proteomics data to validate gene identification in phages.  Many of the 

current phage genome annotations in GenBank are filled with false positives. For 

example, in the Shiga toxin converting phages (NC_004913 and NC_004914), every 

ORF longer than 160 bp has been annotated as a protein coding gene. There are also 

abundant examples of false negatives, protein coding genes present in the genome that 

were not identified by the annotation software. The most obvious false negatives are 

genes shorter than 100bp, since this is an often-used arbitrary minimum cutoff. Small 

genes that do not show strong coding signals, such as shared homology to known or 
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hypothetical genes in the databases or shared codon usage, are often excluded by other 

gene annotators in an effort to minimize false positives. 

We calculated the number of genes predicted by each algorithm and compared them to 

the genes reported in GenBank. In total, we identified 225,518 genes from 2,133 phage 

genomes. Almost 200,000 genes were predicted by all four algorithms (Figure 1).  

 

Figure 1. Comparison of THEA gene calls to those of three other gene annotation 

programs. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/265983doi: bioRxiv preprint 

https://doi.org/10.1101/265983
http://creativecommons.org/licenses/by-nc/4.0/


 9 

 

THEA predicted 15,105 genes that were not predicted by other gene prediction 

algorithms. Several lines of evidence suggest that these are phage genes are real.  We first 

looked to see if these genes were in GenBank’s non-redundant (nr) protein database 

(Benson et al., 2017) and found significant similarity to 23% of them (expect value < 10-

10).   This low percentage of hits is expected, since phage proteins will only have hits 

between 1-30% to known genes (Dutilh et al., 2012).  This vast quantity of unknown 

phage genes is known as the “phage dark matter”.  To search phage dark matter for 

additional hits, we performed nucleotide blast against GenBank’s Sequence Read 

Archive (SRA) to identify ORFs predicted by any program and presumptively non-

coding ORFs not predicted by any program (i.e., all DNA stretches not interrupted by a 

stop codon). At the time of the search, the SRA comprised 1.3 trillion reads across 93,330 

metagenomes, totalling almost 200 terabytes of data. Due to time and computational 

constraints, we limited the search to the first 100,000 sequences of each metagenome. We 

hypothesized that potential ORFs that did indeed encode a protein would occur more 

often in metagenomes, due to an underlying functional homology, and that potential 

ORFs that did not actually encode a protein would be found less frequently.  For each 

read, we take the top hit (expect value < 10-10) and determine the set it is in (“ANY”, 

“THEA ONLY”, and “NONE”).  We sum the number of hits to each set per metagenome, 

then divide by the number of bases in that set.  We found that both the “ANY” and 

“THEA ONLY” gene calls occurred at similar orders of magnitude, while the “NONE” 

gene calls occurred much less frequently (Supplemental Fig. 1).  This suggests that the 

gene calls that were unique to THEA, are indeed real protein encoding genes, and as 

such, are seen more often in phage genomes.   
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One of the unique features of THEA is that it is essentially reference free; aside from the 

GC frame plot score.  Other programs, such as GeneMark and Glimmer, use hidden 

Markov models that require a priori knowledge of the composition of protein encoding 

genes.  This is problematic when annotating phage genomes, since most potential ORFs 

do not have homology to any known gene.  Prodigal is also unique in that it does not 

require a precomputed training set; however, it relies on a training set that is generated 

solely from the input genome.  This is problematic when annotating phage genomes, 

since small genomes do not provide enough candidates to create a robust training set.  In 

addition, many phage genes are horizontally transferred, and thus have different 

properties and signals from each other.  Future versions of THEA will include the option 

to use these various gene properties, including hexamer frequency, codon bias, and non 

Shine-Dalgarno ribosomal binding site detection, and will also provide a mechanism to 

mask functional noncoding bases, such as those in RNAs, repeats, and att sites to further 

increase the accuracy of the gene calls.    
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