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Abstract 

Rapid advances in next-generation sequencing technologies have dramatically changed our 
ability to perform genome-scale analyses of human genomes. The human reference genome used 
for most genomic analyses represents only a small number of individuals, limiting its usefulness 
for genotyping. We designed a novel method, HISAT-genotype, for representing and searching 
an expanded model of the human reference genome, in which a comprehensive catalogue of 
known genomic variants and haplotypes is incorporated into the data structure used for searching 
and alignment. This strategy for representing a population of genomes, along with a very fast and 
memory-efficient search algorithm, enables more detailed and accurate variant analyses than 
previous methods. We demonstrate HISAT-genotype’s accuracy for HLA typing, a critical task 
in human organ transplantation, and for the DNA fingerprinting tests widely used in forensics. In 
both applications, HISAT-genotype not only improves upon earlier computational methods, but 
matches or exceeds the accuracy of laboratory-based assays. 

One Sentence Summary 
HISAT-genotype is a software platform that has the ability to genotype all the genes in an 
individual's genome within a few hours on a desktop computer.  
 

Advancements in sequencing technologies and computational methods have enabled 
rapid and accurate identification of genetic variants in the human population. The individual 
genomic data revealed through these advancements along with relevant clinical and 
environmental information promise to help improve predictions for cancer risk, inform lifestyle 
choices, generate more accurate clinical diagnoses, reduce adverse drug reactions and other 
negative side effects of treatments, and improve patient outcomes through better-targeted 
therapies. Although massive sequencing projects over the past decade such as the 1,000 
Genomes Project [1, 2], GTEx [3], GEUVADIS [4, 5], and the Simons Simplex Collection 
(SSC) [6, 7] have generated trillions of reads that are available from public archives [8], our 
ability to make use of these enormous data sets is quite limited. One important limitation is that 
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analyses must rely on the alignment of sequencing reads against the human reference genome 
[9], which does not reflect genetic diversity across individuals and populations. Sequences from 
other humans, particularly those not included in the samples used for constructing the human 
reference, may align incorrectly or not at all when they originate from a region that differs from 
the reference genome. This reliance on a single reference genome can introduce significant 
biases in downstream analyses, and it can miss important disease-related genetic variants if they 
occur in regions not present in the reference genome. 

A series of large-scale projects in recent years have yielded >110 million SNPs (in 
dbSNP [10]) and >10 million structural variants (in dbVar [11]). Although these variants 
represent a valuable resource for genetic analysis, current computational tools do not adequately 
incorporate them into genetic analysis. For example, >3,000 alleles of the HLA-A gene, which 
must be matched precisely between donors and recipients of organ and stem cell transplants, 
have been identified. Representing and searching through the numerous alleles of even one gene 
has been a challenge requiring a large amount of compute time and memory. Computational 
methods have thus focused on genotyping one or a few genes because whole-genome genotyping 
has simply been impractical. 

To address these challenges, we have developed a novel indexing scheme that uses a 
graph-based approach to capture a wide representation of genetic variants with very low memory 
requirements. We have built a new alignment system, HISAT2 (ccb.jhu.edu/software/hisat2), 
that enables fast search through the index. HISAT2 is the first and currently the only practical 
method available for aligning raw sequencing reads to a graph that captures the entire human 
genome. Our graph-based alignment approach enables much higher alignment sensitivity and 
accuracy than standard, "linear" reference-based alignment approaches, especially for highly 
polymorphic genomic regions. Using HISAT2 as a foundation, we developed HISAT-genotype 
to compute the HLA type and the DNA "fingerprint" of a human using standard whole-genome 
sequencing data. Because HISAT-genotype works well for multiple highly diverse genes and 
genomic regions, we expect that it will be straightforward to extend it to many more known 
variants in human genes. HISAT-genotype is open-source software freely available at 
http://www.ccb.jhu.edu/software/hisat-genotype. 
 

Results 
To demonstrate the capability of HISAT-genotype, we describe results from two 

experiments: (1) genotyping the human leukocyte antigen genes (HLA-A, HLA-B, HLA-C, 
HLA-DQA1, HLA-DQB1, HLA-DRB1), which are among the most diverse human genes; and 
(2) evaluating DNA fingerprinting loci using 13 markers plus the sex-determining marker gene 
Amelogenin, which are widely used in criminal forensics to identify individuals.  

HLA typing. The IMGT/HLA Database [12] encompasses >16,000 alleles of the HLA gene 
family. We built a HISAT2 index of the human genome that incorporates all of these variants, 
which increased the computational resource requirements only slightly as compared to an index 
without the variants. For highly polymorphic regions such as those containing the HLA genes, 
HISAT2 is more sensitive than other short-read aligners; e.g., on one of our data sets, HISAT2 
maps 12–100% more reads to the HLA genes than Bowtie2 [13](Table S1). 
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The HLA allele nomenclature uses a set of four numbers from left to right to designate 
alleles first classified by (1) allele group according to serological and cellular specificities, then 
further sub-grouped by (2) protein sequence, and similarly subcategorized according to (3) 
coding and then (4) noncoding sequences; e.g., HLA-A*01:01:01:01 is a specifier for one allele 
of the HLA-A gene. HISAT-genotype reports alleles for all four fields, unlike many other 
programs, which tend to report a subset of the numbers (typically the first two numbers). We 
conducted computational experiments using Illumina’s Platinum Genomes (PG), which consists 
of 17 genomes (CEPH pedigree 1463, Supplementary Figure 1) that have been sequenced 
previously (whole genome sequencing data are available [14], hereafter referred to as PG data). 
Alleles of HLA-A, HLA-B, and HLA-C for the NA12878, NA12891, and NA12982 genomes 
have been identified using targeted sequencing [15]. A recent study [16] reported the alleles of 
all six HLA genes for the 17 genomes by applying several computational methods to the PG 
data, with the results corresponding to the pedigree. Our experiments show that HISAT-
genotype's results exactly match known alleles and computationally identified alleles of the six 
genes for the 17 genomes, and that its speed surpasses other currently available methods, 
primarily due to HISAT-genotype’s alignment engine, HISAT2 (Table S2 and Supplementary 
File 1).  

In addition to identifying alleles for each genome, HISAT-genotype is the first method 
that can use raw sequence data to assemble and report full-length sequences for both alleles of 
each of the 6 HLA genes, including exons and introns (Fig 1 and Supplementary Figure 2). The 
complete sequences of HLA-A reported by HISAT-genotype on the 17 genomes are all in perfect 
agreement with those previously reported. Its assembled sequences for HLA-B, HLA-C, HLA-
DQA1, and HLA-DQB1 are nearly identical to the previously reported ones. The sequences 
assembled for HLA-DRB1 are accurate but somewhat fragmented, consisting of a small number 
of contigs. Greater read lengths should enable HISAT-genotype to produce complete sequences 
for the HLA-DRB1 gene. 

In a separate experiment, we compared HISAT-genotype with the Omixon genotyping 
system [17], an established commercial platform, using whole genome sequencing (WGS) data 
from the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) 
[18] (Supplementary File 2). Table 1 shows a high concordance rate between the two methods 
for the allele group and protein sequences (the first two numbers of the HLA classification); 
more specifically, a concordance of ³0.97 for genotyping of HLA-A, HLA-B, HLA-C, and 
HLA-DQA1; 0.91 for HLA-DQB1; and 0.87 for HLA-DRB1. Tests using the CAAPA data also 
revealed a handful of novel sequences of HLA-A and other HLA genes (Fig 2 and 
Supplementary Figure 3). 
 

 First number (e.g., A*01) First and second numbers (e.g., A*01:01) 

 Both 
alleles 

matched 

One 
allele 

matched 

No 
allele 

matched 

Concordance Both 
alleles 

matched 

One 
allele 

matched 

No 
allele 

matched 

Concordance 

HLA-A 913 4 0 0.998 883 33 1 0.981 

HLA-B 911 6 0 0.997 877 40 0 0.978 

HLA-C 915 2 0 0.999 880 34 3 0.978 
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HLA-
DQA1 

884 33 0 0.982 868 45 4 0.971 

HLA-
DQB1 

917 0 0 1 753 164 0 0.911 

HLA-
DRB1 

861 56 0 0.97 698 205 14 0.873 
 

Table 1. Concordance between HISAT-genotype and Omixon on HLA-typing of 917 genomes from the 
CAAPA (Consortium on Asthma among African-ancestry Populations in the Americas) collection. 
Concordance is calculated as the total number of alleles matched between both programs divided by the total 
number of alleles. For example, for the HLA-A gene, HISAT-genotype and Omixon agree on the allele group 
(the first number of the HLA type) for both alleles for 913 genomes, agree on one allele for 4 genomes, and 
agree on no alleles for 0 genomes. Thus, the concordance for HLA-A is 0.998 = (913 ´ 2 + 4) / (917 ´ 2). 
HISAT-genotype reports HLA types with all four fields specified (e.g., A*24:02:01:01), while Omixon 
reports HLA types with either two numbers (e.g. A*69:01) or three numbers (A*24:02:01); therefore matches 
were evaluated using only the first two numbers. 

 
 

 
Fig 1. HISAT-genotype's typing and assembly of HLA genes. 
The figure shows an abridged example of HISAT-genotype's assembly output. (Supplementary 
Figure 2 shows the full assembly output for NA12892, one of the Illumina Platinum genomes.) 
The two bands shown at the top are the two known alleles predicted by HISAT-genotype, in this 
case A*02:01:01:01 in dark yellow and A*11:01:01:01 in dark green. Each blue stripe indicates 
the location of a specific genomic variant with respect to the consensus sequence of the HLA-A 
gene. a. Shorter bands indicating read alignments whose color is determined according to their 
degree of compatibility with either of the initially predicted alleles. If a read is equally compatible 
with both alleles, it is shown in white. b. Two alleles assembled de novo by HISAT-genotype 
shown in yellow and green, which agree perfectly with the known alleles shown at the top.  

 

a.	Read	alignment

b.	Assembly

A*02:01:01:01

A*11:01:01:01

Initially	predicted	alleles	
by	HISAT-genotype
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Fig 2. A novel HLA-A allele identified with strong computational evidence. 
This figure shows an abridged example of HISAT-genotype's assembly output. At the top are 
shown the two initially predicted alleles, which are the best matches of the data to previously-
known HLA-A alleles. The green assembled allele at the bottom, which was generated de novo 
by HISAT-genotype's assembler, has one variant different from the predicted allele, 
A*24:02:01:01. Two reads shown in green support the variant. See Supplementary Figure 3 for 
more detailed output from a similar case found in LP6005093-DNA_E03 (a CAAPA genome) at 
the 2,780th base. 

DNA fingerprinting. DNA fingerprinting analysis has been widely used in criminal investigations 
and paternity testing since its introduction in the mid-1980's. It considers a set of 13 highly 
polymorphic regions that in combination can uniquely identify individuals or their close 
relatives. The billions of reads in a whole-genome sequencing run include those from the 13 
genomic regions used for DNA fingerprinting analysis. In addition to running HISAT-genotype 
on the WGS data, we performed traditional wet-lab based DNA-fingerprinting using DNA 
samples of the 17 PG genomes (Epstein-Barr virus transformed B-lymphocytes), which were 
purchased from the Coriell Institute, and a DNA fingerprinting kit, PowerPlex® Fusion System 
from Promega.  
HISAT-genotype’s initial results for the PG data almost perfectly match our wet-lab results for 
11 out of 13 DNA fingerprinting loci on all 17 genomes and correctly determines sex (using the 
Amelogenin locus) for all 17 genomes (Supplementary File 3 and Supplementary File 4). In 
order to identify the potential sources of the discrepancies for the two loci, we examined PG’s 
raw sequencing data and found that the NIST database used by HISAT-genotype (Supplementary 
File 5) was missing some alleles of the 17 PG genomes (Supplementary File 6). After 
incorporating the missing alleles, HISAT-genotype's results perfectly match the wet-
lab results for all but 8 cases, which are highlighted in yellow in Supplementary File 7.  

Assuming there are no germline and somatic mutations in the PG cell lines, an analysis of the 8 
disagreements indicates that HISAT-genotype is correct in all 8 cases. For example, on genome 
NA12886 at locus D5S818, HISAT-genotype reports two alleles 10 and 12, and the wet-lab 
method reports three alleles 9, 10, and 12. The pedigree information (Supplementary Figure 1) 

a.	Read	alignment

b.	Assembly

A*03:01:01:01

A*24:02:01:01

Initially	predicted	alleles	
by	HISAT-genotype

Novel	allele	whose	one	(known)	variant	is	different	
from	the	closest	allele	in	the	database.
The	variant	is	strongly	supported	by	two	reads.



shows that NA12886’s father (NA12877) has two alleles 10 and 11, and the mother (NA12878) 
has homozygous allele 12, suggests that allele 9 detected by the wet-lab method is likely a false 
positive. Another example is NA12877’s D3S1358 locus, for which HISAT-genotype gives 
more specific results that consist of two different alleles 16 and 16', which are of the same length 
but are slightly different in their sequences (allele 16: TCAT followed by three repeats of TCTG, 
then followed by twelve repeats of TCTA; and allele 16': TCAT followed by two repeats of 
TCTG, then followed by thirteen repeats of TCTA). Because the two alleles have identical 
lengths, the wet-lab method cannot distinguish them and reports just one allele.  

The current implementation of HISAT-genotype requires exact sequences of alleles, though this 
requirement can be somewhat relaxed when performing DNA fingerprinting. On the other hand, 
knowledge of exact sequences allows us to identify alleles more specifically at base-level 
resolution.  

 
Algorithmic details 

Here we describe the algorithms underlying HISAT2 and HISAT-genotype. HISAT2 
implements a novel graph-based data structure along with an alignment algorithm to enable fast 
and sensitive alignment of sequencing reads to a genome and a large collection of small variants. 
HISAT-genotype uses HISAT2 as an alignment engine along with additional algorithms to 
perform HLA-typing and DNA fingerprinting analysis.  
Graph representation of human populations and alignment (HISAT2). 

 
Fig 3. Graph representation of indels and 
mutation 
Starting with a 6-bp reference sequence, 
GAGCTG (top), the lower graph 
incorporates three variants: a single 
nucleotide variant (A/T), a 1-bp deletion (T), 
and a 1-bp insertion (A). 

G A G C T G

T A

G A G C T G

Reference	sequence	(6-bp	long)

Graphical	representation	of	a	population

Single	Nucleotide
Polymorphism

1-bp	Insertion

1-bp	Deletion



The reference human genome currently used by most researchers was assembled from 
data representing only a few individuals, with over 70% of the reference genome sequence 
coming from only one person [9]. By its very design, the reference does not include genomic 
variants from the human population. Sequence alignment protocols based on this single reference 
genome are sometimes unable to align reads correctly, especially when the source genome is 
relatively distant from the reference genome. HISAT2 begins by creating a linear graph of the 
reference genome, and then adds insertions, deletions, and mutations as alternative paths through 
the graph. Fig 3 illustrates how variants are incorporated using a very short reference sequence, 
GAGCTG. In the graph representation, bases are represented as nodes and their relationships are 
represented as edges. The figure shows three variants: a single nucleotide polymorphism where T 
replaces A, a deletion of a T, and an insertion of an A. Although the example shows only 1-base 
polymorphisms, insertions of up to 20 bps and deletions of any length can be incorporated. 

 

 
Fig 4. Prefix-sorting the graph. 
The original graph, with 9 nodes and 12 edges, is 
augmented so that prefixes can be sorted. The 
augmented graph has 11 nodes and 14 edges. Each 
node has a unique numerical node ID shown in blue 
to indicate its lexicographical order (1 being the 
first) with respect to the other nodes in the graph. 
The node labeled with ‘Z’ demarcates the end of the 
reference sequence. 

Any path in the graph defines a string of bases that occur in the reference genome or one 
of its variants. For example, the path G -> A -> G -> C defines the string GAGC. Strings can be 
ordered lexicographically; e.g., AGC comes before GTG, which comes before TGZ. A special 
symbol, Z, is used to indicate the end of the graph and to properly sort strings. To allow fast 

Prefix-sorted Graph

G A G C T G Z

T A
Original graph

Outgoing
edge(s)

Incoming
edge(s)

Node 
rank

First Last Node 
rank

1 A G 1

2 A T 2

3

C

C

C

G 3

Z 4

A

T

5

4 G

5 G Z 6

6 G A

C

T

77 G

8 T

9 T C 8

10 T G 9

11
Z

Z

C 10

G 11
Prefix-sorted graph

G A G C T G Z

T

4 1 
(rank)

5 3 8 7 11

9

A
2

G
6

T
10

Prefix-doubling and pruning



alignment of queries (reads) to the genome graph, we first convert the graph into a prefix-sorted 
graph using a method developed by Sirén et al [19]. This prefix-sorted graph is more appropriate 
for search and storage. The prefix-sorted graph is equivalent to the original one in the sense that 
they define the same set of strings. In a prefix-sorted graph, nodes are sorted such that any 
strings from a node with a higher lexicographic rank appear before any strings from a node with 
a lower rank. For example, any string from the node ranked first (node A in Fig 4), such as 
AGCTGZ, comes before any strings from any other nodes. An equivalent table for this prefix-
sorted graph is shown in Fig 5. The table stores two types of information. For outgoing edges, 
given node rankings 1 to 11, the label of each node is stored according to the number of outgoing 
edges it has. Here node rankings as also referred to as node IDs. For example, node 1 has one 
outgoing edge, from A to G, so this node’s label A is stored once, as shown in the first row under 
“First” of the “Outgoing edge(s)” columns. Node 3 has three outgoing edges, so this node’s label 
C is stored 3 times. For incoming edges, given the node rankings, the labels of the preceding 
nodes are stored. For example, node 1 has one incoming edge from the node labeled G, so this G 
is stored once, in the first row under “Last” of the “Incoming edge(s)” columns. Node 5 has two 
incoming edges from nodes labeled A and T, so A and T are stored accordingly. 

 

 
Fig 5. A prefix-sorted graph and its tabular representation. 
The graph on the left shows 11 nodes and 14 edges. Each node has a unique numerical 
node ID shown in blue to indicate its lexicographical order (1 being the first) with 
respect to the other nodes in the graph. The table on the right has two columns under 
Outgoing edge(s) that show the node IDs and their labels repeated according to the 
number of their outgoing edges (i.e. node 3, labeled C, is repeated three times with 3 
outgoing edges to nodes 7, 8, and 10, respectively). The table has two columns under 
Incoming edge(s) that show the node IDs and the 14 labels for the preceding nodes (i.e. 
G is the preceding label for node 1, A and T for node 5). The table is more compact in 
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memory usage than the graph representation. 

Although edges are not directly stored using node IDs as depicted in Fig 5, we can 
implicitly construct the edge information using a very important property of the table 
representation, called Last-First (LF) mapping. The Last-First mapping property says that the ith 
occurrence of a certain label in the last column corresponds to the ith occurrence of that label in 
the first column. For example, Node 3 in Fig 5 has an incoming edge from the node labeled G. 
This is the second occurrence of G in the last column of the table, which corresponds to node 5 
in the first column. This indirect representation of edges leads to a substantial reduction in 
storing the table.  

 

 
Fig 6. Space efficent representation of the table in Fig 5 
In the two ‘Node rank’ columns on the left, since node ranks are given in consecutive and 
increasing order, one bit (0 or 1) can be used to represent a node rank instead of 4 bytes 
(any number between 0 and 4,294,967,295) to manage offsets for a human genome. 1 and 
0 are used to indicate a new node rank and to indicate an additional outgoing or incoming 
edge that a node has, respectively. To retrieve a node rank, simply summing up the 1s 
gives rise to that node’s rank. Since the labels in the ‘First’ column are already sorted, five 
numbers are enough to represent the column, 2 for As, 3 for Cs, 4 for Gs, 3 for Ts, and 2 
for Zs. In the ‘Last’ column, two bits are used to represent each label: 00 for A, 01 for C, 
10 for G, and 11 for T. 00 is also used to represent Z. HISAT2 internally resolves whether 
00 represents A or Z. The right table is the space efficient representation of the left table 
after these transformations. 

The table representation can be further compacted using the scheme illustrated in Fig 6. 
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Fig 7. Graph FM index (GFM) 
The size of each block is 128 bytes consisting of 32 4-byte cells. Each block stores: (1) four 4-
byte numbers for the accumulated numbers of occurrences of A, C, G, and T up to that block, (2) 
one 4-byte number for the accumulated number of 1s up to the block in the Node rank (Outgoing 
edges) of the right table in Fig 6, (3) one 4-byte number for the row number of the Node rank 
(incoming edge) corresponding to the accumulated number of 1s indicated in (2), (4) 208 labels 
(or nucleotides) corresponding to the Last column of the right table in Fig 6, and (5) 208 ‘OUT’ 
bits and 208 ‘IN’ bits corresponding to the Node rank columns of the right table in Fig 6.  

In order to perform the LF mapping, the number of times that a “Last” column label of a 
given row r occurs up to and including r needs to be identified, which involves counting 
occurrences from the top of the table down to row r. This counting would be prohibitively time-
consuming for the 3-Gb human genome. To accelerate the process, the table is partitioned into 
small blocks of only hundreds of rows. Additional numbers are stored within each block 
recording the number of occurrences of a specific base that appear up to that block. We also 
optimized the local counting process. This overall indexing scheme is called a Graph FM index 
(GFM) (Fig 7). 
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Fig 8. Alignment of a small 3-bp query using a graph FM index 
The figure illustrates how to align a 3-bp query, TAG, whose TG corresponds to the last two 
nucleotides of the original reference sequence, GAGCTG, and A is a 1-bp insertion as shown in 
Fig 3. Searching from the right end of the query to the left, the nodes labeled ‘G’ are first 
selected (node IDs ‘4’, ‘5’, ‘6’, and ‘7’). Then the incoming edges of those nodes are examined 
to identify which has a preceding base ‘A’. Nodes ‘5’ and ‘7’ qualify, with preceding nodes ‘1’ 
and ‘2’. These in turn are examined to determine which of these nodes is preceded by a base ‘T’. 
Only one of the two nodes, node ‘2’, has a preceding node, ‘8’, whose label corresponds to ‘T’. 
Node ‘8’ is chosen as a mapped location for the query. This is the final alignment of the query 
shown in the prefix-sorted graph, and additional algorithms convert it to the corresponding 
alignment in the original graph. 

Fig 8 illustrates how a query that contains a known one-base insertion is aligned to the 
genome using a GFM. 
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Fig 9. Hierarchical Indexing, i.e., Hierarchical Graph FM index (HGFM) 
Hierarchical indexing consists of two types of indexes: (1) a global index that represents the 
entire human genome and (2) 55,172 overlapping local indexes that collectively cover the 
population. When both are Graph FM-indexes, a genome plus a large collection of variants can 
be searched simultaneously. 

To further improve both speed and accuracy, we modified the hierarchical indexing 
scheme from HISAT [20] to create a Hierarchical Graph FM index (HGFM). In addition to the 
global index for representing the human genome plus a large collection of variants, we built 
thousands of small indexes, each spanning ~57 Kb, which collectively cover the reference 
genome and its variants. This approach provides two main advantages: (1) it allows search on a 
local genomic region (57,344 bps), which is particularly useful for aligning RNA-seq reads 
spanning multiple exons, and (2) it provides a much faster lookup compared to a search using the 
much larger global index, due to the local index's small size. In particular, these local indexes are 
so small that they can fit within a CPU's cache memory, which is significantly faster than 
standard RAM. 

Our implementation of this new scheme uses just 6.2 GB for and index that represents the 
entire human genome plus ~14.5 million common small variants, which include ~1.5 million 
insertions and deletions available from dbSNP. The incorporation of these variants requires only 
60~80% additional CPU time compared to HISAT2 (among the fastest alignment programs) 
searching the human genome without variants, and it obtains greater alignment accuracy for 
reads containing SNPs (Tables S3 and S4). 
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Building off of HISAT2, the next step is to design a graph representation by incorporating 
known genomic variations and to perform genotyping on a sequencing data set. There is 
currently no centralized database for the many known genomic variants in human populations. 
Instead, each database has its own data format and naming conventions. To address this 
challenge, we parsed exterior databases for human genes or genomic regions and converted them 
into an intermediate format upon which several HISAT-genotype algorithms are conveniently 
built. We created a graph genome, called a Genotype genome, which is specifically designed to 
aid in carrying out genotyping as illustrated in Fig 10. In addition to variants and haplotypes, the 
genotype genome includes some additional sequences inside the consensus sequence shown in 
yellow, resulting in substantial differences in coordinates with respect to the human reference 
genome. Thus, it is important to note that a Genotype genome should not be used for purposes 
other than genotyping analysis. 

 

 
Fig 10. Construction of the Graph Human Reference, i.e. a Genotype Genome 
The figure illustrates how HISAT-genotype extends the human reference genome (GRCh38) by 
incorporating known genomic variants from several well-studied genes, DNA fingerprinting loci, 
and common small variants (i.e. variants with minor allele frequencies of ³1%) from the dbSNP 
database. In a, the process begins with analyzing information found in the selected databases to 
construct consensus sequences. The IMGT/HLA database includes over 15,500 allele sequences 
for 26 HLA genes. A consensus sequence for each HLA gene is constructed based on the most 
frequent bases that occur in each position of the multiple sequence alignments. The NIST 
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STRBase database contains allele sequences for 13 DNA fingerprinting loci. Because the 
sequences of the 13 loci are short tandem repeats, HISAT-genotype chooses the longest allele for 
each locus as a consensus sequence. In b, the human reference is extended by replacing the HLA 
genes and 13 DNA fingerprinting loci with their consensus sequences. In c, the known genomic 
variants are then incorporated into the extended references using nodes and edges. Common 
small variants from dbSNP such as single nucleotide polymorphisms, deletions, and insertions, 
are also incorporated into the extended reference. In HISAT-genotype this graph reference is 
called a Genotype genome, upon which a HISAT2 index is built. 
 

In contrast to linear-based representations of the human reference augmented by sequences 
representing gene alleles, graph representations are much more efficient in terms of memory 
usage and/or alignment speed, as illustrated in Fig 11. When working with whole-genome 
sequencing data, using the right reference/index is crucial. Much greater alignment accuracy can 
be achieved by using a reference that most closely matches the genome where reads were likely 
to originate. Using the wrong reference (e.g. just a few genes instead of the whole genome) can 
lead to reads being incorrectly aligned, as depicted in Fig 12. 
 

 
Fig 11. Alternative yet limited approaches to graph representation 
Linear reference based representations of many alleles of genes are quite limited in terms of 
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memory usage and/or alignment speed, and have the issue of increased mapping ambiguity. In a 
and b, a reference consisting of only alleles of genes of interest can introduce significant 
mapping bias by mapping reads from regions not included in the restricted reference, as 
illustrated in more detail in Fig 12. In c, the current human reference may not be able to map 
many reads if they originated from alleles that are substantially different from the human 
reference allele. In d, a reference consisting of the human reference and numerous alleles of 
HLA genes enables mapping of reads from even substantially different alleles. Most of the HLA-
typing methods if not all, such as HLA-VBSeq [21], HLA*PRG [22], Kourami [16], and 
Graphtyper [23], are based on c, d, or a combination thereof in order to identify HLA gene reads, 
after which HLA-VBSeq uses an a approach, and HLA*PRG, Kourami, and Graphtyper use a 
small-scale graph representation as descibed in b to perform typing. Kourami assembles only 
exons of HLA genes, while HISAT-genotype is able to assemble full-length sequences of HLA 
genes including exons and introns. However, including this many additional alleles introduces 
considerable mapping ambiguity as most of the alleles are nearly identical to one another, and as 
a result reads are mapped to many alleles. This approach tends to work on a small number of 
genes or genomic regions, otherwise, as illustrated in e, including alleles of all known genes and 
genomic regions would require a tremendous amount of memory and greatly increase mapping 
ambiguity. 
  



 
Fig 12. Incorrect reference leading to mis-alignment and bias 
An illustration of the benefits of using the right reference/index when working with 
sequencing reads. The figure shows the alignment of reads to the whole genome (upper 
right) and to one particular genomic region denoted as Region 3 (lower right). When 
using the whole genome for aligning the six example reads, reads are perfectly aligned 
to the correct regions (regions 1, 2, 3, 4, 5, and 6). However, if the example reads are 
aligned using only one particular region (e.g. Region 3), five out of the six reads are 
incorrectly aligned to that region because alignment programs allow for a few 
mismatches. This excessive and loose alignment is a significant source of bias in 
analyzing genes or genomic regions. For example, in order to identify and extract reads 
that belong to the HLA-DRB1 gene from whole genome sequencing reads, one may 
attempt to align them only to the HLA-DRB1 gene region. In our experiment, we found 
that this strategy produced 1100 times more reads mapped to HLA-DRB1, compared to 
the alignments we obtained using the whole genome for alignment and extraction 
(HLA-DRB1 only vs. whole genome: 51844x vs. 46.1x coverage on NA12878, the 
latter being close to the expected 53.4x coverage). Thus, alignment accuracy can be 
greatly enhanced by using the right reference. 
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Once reads are extracted that belong to a particular gene or genomic region using a Genotype 
genome, HISAT-genotype performs further downstream analyses based on the read alignments: 
(1) typing and (2) gene assembly.  

Typing is the process of identifying the two alleles (or the one allele if homozygous) for a 
particular gene that best match a given sequencing data set as shown in Fig 13. 
 

 
Fig 13. Two alleles of an HLA gene 
a. Each person has two versions of a gene or a genomic region (e.g. HLA-A 
gene), shown in the figure in yellow with variants in blue, one version from the 
mother and the other from the father. b. The IMGT/HLA database includes 
many sequences for some key exons involved in core functions of proteins of 
HLA genes, but it contains far fewer complete sequences comprising all exons, 
introns, and UTRs of the genes. For example, 3,644 alleles have been classified 
so far for HLA-A. Although all alleles of HLA-A have known sequences for 
exon 2 and exon 3 (e2 and e3 in the figure), only 383 alleles have full-length 
sequences available. The sequences for the rest of the alleles (3,261 alleles) 
include either only all the exons (e1 to e8) or a subset of them. For other HLA 
genes, HLA-B has 4,454 alleles, for 416 of which full sequences are available. 
HLA-C has 3,290 alleles, with only 590 fully sequenced, HLA-DQA1 has 76 
alleles with 53 fully sequenced, HLA-DQB1 has 978 alleles with 69 fully 
sequenced, and HLA-DRB1 has 1,972 alleles, with only 43 fully sequenced. 
The chromosome 6 image is extracted from Fig 4-11 in Molecular Biology of 
Cell 5th ed. 
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Because allele sequences are either only partially (just including exons) or fully (exons 
and introns) available, HISAT-genotype first identifies two alleles based on the sequences 
commonly available for all alleles, e.g. exons. During this step, HISAT-genotype first chooses 
representative alleles from groups of alleles that have the same exon sequences. Next it identifies 
alleles in the representative alleles that are highly likely present in a sequenced sample. Then the 
other alleles from the groups with the same exons as the representatives that remain candidates 
are included again for assessment during the next step. Second, HISAT-genotype further 
identifies candidate alleles based on both exons and introns. HISAT-genotype applies the 
following statistical model in each of the two steps to find maximum likelihood estimates of 
abundance through an Expectation-Maximization (EM) algorithm [24]. We previously 
implemented an EM solution in our Centrifuge system [25], and we integrated that solution into 
HISAT-genotype with modifications to the variable definitions as follows. 

Model 𝐿 𝛼 ∣ 𝐶 =
𝛼&𝑙&
𝛼()

( 𝑙(
𝐶*&

)
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Likelihood of a particular composition of 
allele abundance α, given the read 
alignments to alleles 
𝑅: number of reads 
𝐴: number of alleles 
𝛼&: abundance of allele 𝑗, with a sum of 1 for 
all 𝐴 alleles 
𝑙&: length of allele 𝑗 
𝐶*&: 1 if read 𝑖 is aligned to allele 𝑗 and 0 
otherwise 

Expectation 
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𝑛&: the estimated number of reads assigned to 
allele 𝑗 

Maximization 
(M-step) 𝛼&3 =

𝑛&/𝑙&
𝑛(/𝑙()

(+,
 

𝛼&3: the updated estimate of allele 𝑗’s 
abundance. 𝛼3 is then used in the next 
iteration as 𝛼. 

HISAT-genotype finds the abundances 𝛼 that best reflect the given read alignments, that is, the 
abundances that maximize the likelihood function 𝐿 𝛼 ∣ 𝐶  above by repeating the EM 
procedure no more than 1000 times or until the difference between the previous and current 
estimates of abundances, |𝛼& − 𝑎&3|)

&+, , is less than 0.0001. 

Here are some examples of typical abundances of alleles. If the sample has two alleles, a1 and a2, 
that exactly match the two alleles of the database, a1 and a2 are assigned abundances of 
approximately 0.5 each. If instead the sample is homozygous for that particular gene, the allele is 
assigned abundance of 1.0. If the sample has one allele (a1) exactly matching the database and 
the other (anovel) that does not perfectly match any allele but closely matches two alleles in the 
database (a2 and a3), we may ascertain an abundance of 0.5 for a1, 0.25 for a2, and 0.25 for a3. 
When paired-end reads of ³100 bp with a sequencing depth of at least 30-50x coverage are used, 
HISAT-genotype is able to assemble full-length alleles and determine whether they are novel by 
comparing the assembled alleles with known alleles in the database, as described below. 

 



 

 

  

Fig 14. Guided k-mer assembly graph 
HISAT-genotype splits aligned reads into fixed length segments called k-mers. For example, in 
the simplified case, reads are 5 nucleotides long and k is 3. A pair of reads are aligned at the 3rd 
location and the 10th location of the graph representation for the HLA gene, respectively. This 
example shows three k-mers from the left read alignments. This read consists of three k-mers, 
TCG, CGC, and GCT (the three k-mers from the right read would be similarly defined). 
Similarly, k-mers are extracted from other aligned reads (not shown here) and constitute the 
graph. When reads have the same k-mer, the graph has one path. When reads have different k-
mers, the graph has a corresponding number of branches. One path traversing the graph from left 
to right constitutes one potential allele sequence. This graph is here referred to as a guided k-mer 
assembly graph, with guided emphasizing that k-mers are placed according to their aligned 
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locations. 

Instead of directly assembling reads based on overlapping relations among reads (e.g. 
overlap-layout-consensus assembly approaches), HISAT-genotype splits aligned reads into fixed 
length segments called k-mers. These k-mers form an assembly graph (Fig 14) that enables the 
systematic assembly of alleles by handling noise and resolving assembly ambiguities.  

 

 
Fig 15. Assembly of two full-length alleles through guided k-mer assembly graph 

As normal cells are expected to have two alleles if heterozygous or one allele if 
homozygous, one of the three k-mers in Fig 15a is likely to be from noise, meaning errors, 
generated during the sequencing or alignment stage. HISAT-genotype eliminates one of them by 
using the number of reads that support each k-mer as evidence. For example, if the k-mers shown 
in green and yellow are supported by 3 reads each, while the k-mer in red is only supported by 
one read, the program simply then removes the k-mer in red from the graph. After noise removal 
(Fig 15b), it is not yet clear which k-mers are linked to which k-mers from the same allele. For 
example, it remains undetermined whether CGC shown in green is connected to TCG in yellow 
or CCG in green. Pair information is then used to resolve this allele ambiguity. Suppose there are 
three pairs that support CGC and CCG in green, one of them like the example paired-end reads 
in the figure, and three pairs that support the k-mers in yellow. Drawing upon this pair-end read 
information, it can be determined that the k-mers shown in green come from the same allele, and 
similarly for the k-mers in yellow as illustrated in Fig 15c. In the case of two alleles having a 
large chunk of DNA sequence in common, fragments from which a pair of reads originate may 
not be long enough to resolve assembly ambiguity. For example, two known alleles 
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A*01:01:01:01 and A*11:01:01:01 of NA12878 have the same ~1,200 bp sequence in the middle 
while typical lengths of fragments range from 600 to 800 bps. In order to fully assembly alleles, 
HISAT-genotype makes use of alleles in the database to combine partial alleles into full-length 
alleles. This approach enables HISAT-genotype to assemble correctly all HLA-A alleles for the 
PG genomes, although this assembly can introduce bias toward alleles in the database. Due to 
many variants including insertions and deletions incorporated in the Genotype genome, it is often 
observed that a read can be locally aligned in multiple ways at approximately the same location 
as illustrated in Fig 16a in gray, where only one alignment is actually correct. If a program 
selects an incorrect local alignment, then that may in turn lead to choosing the wrong allele. 
HISAT-genotype handles such cases by choosing the most likely alignment using the 
aforementioned statistical model and EM method. 

 

 
Fig 16. HISAT-genotype’s assembly output 
The figure shows an abridged example of HISAT-genotype’s assembly output – see 
Supplementary Figure 4 for the full assembly output for NA12878 (one of the PG genomes) in 
PDF format. The first two bands are two alleles predicted by HISAT-genotype, in this case 
A*01:01:01:01 in dark green and A*11:01:01:01 in dark yellow. Each blue stripe indicates 
where there is a specific genomic variant with respect to the consensus sequence of the HLA-A 
gene. a. Depiction of shorter bands indicating read alignments whose color is determined 
according to their degree of compatibility with either the initially predicted alleles. If a read is 
equally compatible with both alleles, it is shown in white. Some reads can be locally aligned, i.e. 
aligned to virtually the same location with just different variants, such as when reads are aligned 
with or without deletions near their ends, in which case reads are displayed in gray. b. Since the 
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two predicted (in fact true/known) alleles share a large common sequence, pair information is not 
enough to assemble full-length alleles, but only partial assemblies. c. So instead, making use of 
the predicted alleles enables the two full-length alleles to be assembled.  

The algorithms described above are general enough to perform analysis of other regions of the 
human genome, as illustrated by HISAT-genotype's accurate typing of 13 DNA fingerprinting 
loci plus the sex locus of the 17 platinum genomes. 
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