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Abstract 
Skillful control of movement is central to our ability to sense and manipulate the world. 
Dexterous acts depend on cerebral cortex[1-10], and the activity of cortical neurons is 
correlated with movement[11-15]. By isolating the neural dynamics that command skilled 
movements from those that reflect other processes (such as planning and deciding to 
move), we were able to characterize and manipulate the motor commands underlying 
prehension. We showed that in mice trained to perform a reach / grab / supination / 
bring-to-mouth sequence (volitional prehension), multiple forms of optogenetic stimuli in 
sensorimotor cortex resulted in an involuntary, complete movement (opto-prehension). 
This result suggested that the trained brain could robustly transform a variety of aberrant 
stimuli into the dynamics sufficient for prehension. We measured the electrical activity of 
cortical populations and detailed limb kinematics during volitional prehension and opto-
prehension. During volitional prehension, neurons fired before and during specific stages 
of the movement, and the population collectively tiled the entire behavioral sequence. 
During opto-prehension, most neurons recapitulated their volitional prehension activity 
patterns, but a physiologically distinct subset did not. On trials where the liminal 
optogenetic stimulus failed to produce these dynamics, movement did not occur, 
providing further evidence that a specific pattern of neural activity was causally coupled 
to prehension. Having identified these dynamics, we next tested their robustness to brief, 
closed-loop perturbation. Regardless of where along the reach we optogenetically halted 
cortical activity and the movement, relief of suppression resulted in cortical dynamics 
that immediately recapitulated all steps of the prehension program, and the animal 
completed the behavior. By combining electrophysiology and optogenetic perturbations, 
we have identified and characterized the cortical motor program driving a learned, 
dexterous movement sequence. 
 
Main 
Reaching, grasping, and object manipulation play a central role in the lives of mammals 
with prehensile forelimbs. The musculoskeletal complexity of the limb poses a 
challenging control problem for the central nervous system, which must orchestrate 
precisely-timed patterns of activity in many muscles to perform a wide diversity of tasks. 
Cortex is thought to be critical for producing these patterns, and single-unit recording 
studies have demonstrated that the activity of cortical neurons is correlated with muscle 
tension and limb kinematics. In order to dissect the role of sensorimotor cortex in 
dexterous movement, we developed a prehension task for head-fixed mice, in which 
animals learned over several weeks to reach for and grab a food pellet at a memorized 
position and deliver it to the mouth following an auditory cue (fig. 1a). Using high-speed 
video and computer vision techniques, we captured the animals’ behavior and extracted 
the timing of ‘waypoints’ indexing the stages of the movement (lift hand from the perch, 
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open hand, grab food pellet, supinate hand, and bring hand to mouth), as well as three-
dimensional hand position (fig. 1b, supplementary video 1). To study neural dynamics 
during the behavior, we used silicon probes to record spiking activity (mean 19 well-
isolated units per recording) from a total of 584 neurons in sensorimotor cortex (fig. 1b, 
1c, 1d), which showed strong fluctuations in firing rate around the movement. A majority 
of cells (453/584) were modulated before and during prehension, with a net rate 
increase for 243/584, and a decrease for 210/584 (fig. 1d; rank sum test on pre- and 
peri-lift spike counts with Benjamini-Hochberg correction, q < .05). While the responses 
of individual cells were highly consistent across trials (fig. 1c), we observed a wide 
diversity of patterns across neurons, including increases, decreases, and multi-phasic 
responses (fig. 1d). Single neurons can fire at selective points in the spatial trajectory of 
the hand (fig. 1e, supplementary video 2, extended data fig. 1c, rank sum test on the 
variance of the hand position at spike times versus the full trajectory, p = 8e-26), and the 
population tiled the entire extent of the behavior (extended data fig. 1d). Because 
movement is most likely generated by the coordinated activity of large ensembles, we 
examined the dynamics of the population activity. The population activity during reaching 
was highly precise: neural variability decreased sharply at movement onset (extended 
data fig. 1a, b)[16]. We estimated the trial-by-trial trajectory of the neural population 
using Gaussian Process Factor Analysis (GPFA)[17] and found that the neural trajectory 
was closely linked to movement (fig. 1f). Thus, mouse sensorimotor cortex generates a 
complex, time-varying signal tightly coupled to the reach-to-grasp-to-mouth movement 
sequence. 
 
We wanted to confirm that this signal is sent out of the cortex to destinations that might 
lead to the production of movement. Cortex has two major output systems, the 
intratelencephalic (IT) system, which projects to the contralateral cortex and striatum, 
and the pyramidal tract (PT) system, which targets the pontine gray and the spinal cord. 
An adeno-associated virus (AAV) optimized for retrograde transmission (rAAV2-
retro)[18] was used to induce expression of the genetically-encoded calcium indicator 
jRCaMP1b[19] so that the activity of each of these cortical output systems could be 
imaged. We found neurons of both projection classes that were robustly modulated 
during reaching (extended data fig. 1e, 1f), but the degree of modulation was higher in 
PT than IT neurons (p = 8e-9, rank sum test on mean post-pre ΔF/F; extended data fig. 
1g). Thus, cortical signals during reaching are sent to targets of both the IT and PT 
systems, but are more strongly represented in the pyramidal tract. 
 
Although our analysis of spiking patterns establishes a clear correspondence between 
cortical dynamics and prehension, it is unclear whether this relationship is causal. We 
used optogenetic circuit perturbations in conjunction with electrophysiology to determine 
the necessity and sufficiency of neural dynamics for driving the movement. By optically 
stimulating inhibitory neurons expressing channelrhodopsin (ChR2), we were able to 
silence the spiking of putative excitatory neurons (fig. 2a) in VGAT-ChR2-EYFP mice. 
This inactivation produced two striking behavioral effects. First, inactivation blocked the 
initiation of reaching (fig. 2b, extended data fig. 2a, 2b). Second, at the offset of the laser 
stimulus, mice rapidly performed a reach (opto-prehension). These opto-prehensions 
were initiated with shorter reaction times than cued reaches (fig. 2b, median reaction 
time 94 ms vs 212 ms, p = 9e-14, rank sum test), suggesting that the inactivated region 
of cortex is downstream of areas involved in early stages of the volitional behavior, such 
as processing the cue and deciding to reach. Furthermore, it was possible to induce 
opto-prehensions even in the absence of a preceding cue (fig. 2b, magenta traces), and 
these also had shorter latencies than voluntary reaches (median reaction time 110 ms, p 
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= 3e-14, rank sum test). Thus, sensorimotor cortex appears to be a necessary and 
sufficient locus for triggering the movement sequence. 
 
The ability to optogenetically initiate a skilled movement enables a direct comparison of 
the neural dynamics underlying voluntary and involuntary (opto-prehension) versions of 
the behavior. Activity patterns shared between the two conditions likely reflect the core 
motor program that animals learned to execute during training, while signals only 
present during voluntary reaches may represent volitional signals. Examination of the 
peri-lift firing rates (fig. 2c, left) showed that activity of many neurons before and during 
the execution of the movement was strikingly similar between voluntary and opto-
prehensions. Similarly, we compared the position of the hand at spike times in both 
conditions, and found many were closely matched (fig 2d, supplementary videos 2 and 
3, extended data fig. 2f). Taken together, these results show that the firing profiles of a 
subset of neurons were recapitulated between voluntary and opto-prehension. Other 
neurons had firing patterns that differed between the two conditions (fig 2c, extended 
data fig. 2g). Neurons that exhibited higher peri-lift rates during voluntary prehension 
were distinguished by higher baseline firing rates (q = 1.4e-5, rank sum test, fig. 2c, 
right). While firing rates have previously been used to classify cortical neurons, future 
work will be required to further characterize these cells. 
 
We adopted two further approaches to characterize the similarities between the neural 
dynamics of voluntary and opto-prehensions. First, we used a neural decoding method 
to predict the times of movement waypoints from single neurons and from population 
spiking activity. After training classifiers for each waypoint (lift, hand open, etc.) on a 
subset of voluntary trials, we used these classifiers to predict waypoint times on the 
remaining voluntary trials and on opto-prehension trials. Population-based classifiers 
predicted each waypoint around its onset time on both voluntary and opto-prehensions 
(fig. 1b, 2e, extended data fig. 1i). Single-neuron-based classifiers also exhibited high 
prediction accuracy (extended data fig. 1h), and this accuracy was matched between 
voluntary and opto-prehensions (Spearman’s rho = 0.69, p < 10e-20, extended data fig. 
2c). Second, using GPFA, we computed the average population state at grab time on 
half the voluntary trials and then computed the distance of the neural population to this 
target state for the remaining voluntary and opto-prehension trials. When prehension 
occurred for either of these conditions, we found that this neural state distance 
decreased as the hand approached the pellet (fig. 2f, extended data fig. 2e, 
supplementary videos 4, 5). However, when the cortical network failed to generate the 
appropriate dynamics, the mouse did not reach to the target (fig. 2g, extended data fig. 
2e). Post-laser firing rates were higher when opto-prehension was evoked than when no 
post-laser grab occurred, and these rates began to diverge around 20 ms after laser 
offset (extended data fig. 2d). Because this difference in firing rates emerged before the 
initiation of opto-prehension, it was likely driven by a difference in feedforward motor 
commands, rather than sensory feedback from the limb. These results show that a 
specific dynamical pattern starts and drives the complete movement program, 
regardless of whether this pattern is initiated voluntarily following a cue or evoked by 
optogenetic stimulation. 
 
Cessation of VGAT-ChR2-EYFP stimulation leads to the dynamics sufficient for evoking 
prehension; are these dynamics generated only by this particular perturbation, or can 
other stimuli also evoke the behavior? To address this question, we drove ChR2 
expression selectively either in putative IT neurons or putative PT neurons using cell-
type selective mouse lines (Tlx3(PL56)-Cre and Sim1(KJ18)-Cre, respectively)[20]. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/266320doi: bioRxiv preprint 

https://doi.org/10.1101/266320


	

	

Activation of putative IT neurons blocked the movement and induced rapid opto-
prehensions at laser offset (fig. 3a, extended data fig. 3a), similar to activation of VGAT+ 
neurons. Activation of putative PT neurons, by contrast, only partially blocked the 
movement, and less robust opto-prehension was induced at laser offset (fig. 3d, 
extended data fig. 3b). Following both perturbations, if opto-prehension was evoked, 
cortical dynamics moved towards the grab state (fig. 3b, 3e), and it was possible to 
decode lift times from single-neuron firing patterns after the offset of the laser (fig. 3c, f). 
Thus, direct activation of excitatory projection cell types can also disrupt and then extract 
the program of a skilled movement. 
 
The combination of optogenetics and electrophysiology revealed the necessary and 
sufficient cortical dynamics that initiate the reach-to-grab sequence, but does cortex 
provide only a “go” signal, or does it orchestrate the full sequence? If cortical dynamics 
are required throughout the entire movement, then briefly perturbing these dynamics 
during an ongoing reach should disrupt or halt the movement. We tested this hypothesis 
by using real-time detection of movement onset to trigger a brief activation of the VGAT-
ChR2-EYFP cortical neurons. This perturbation interrupted the reach, but following laser 
offset, the animals were able to quickly recover and successfully execute the full 
movement sequence (fig. 4a). Does cortex re-generate the normal dynamics driving 
movement after the perturbation, and if so, where do the dynamics resume? The spatial 
and neural distance to the target decreased rapidly after the laser offset (fig. 4b, 4c), and 
the spatial distribution of spikes on interruption trials largely recapitulated the voluntary 
pattern (fig. 4d, extended data fig. 4a). In order to address the question of where the 
dynamics restart, we applied the neural decoder to population activity after termination of 
the laser. Following the end of the perturbation, cortex reproduced the dynamics driving 
lift, and proceeded to generate the entire neural sequence (fig. 4e, extended data fig. 
4b). Taken together, these results demonstrate that sensorimotor cortex does not merely 
initiate the behavior, but instead provides a continuous signal that controls the full 
movement sequence from lift to at mouth. 
 
Discussion 
The mammalian forelimb is a sophisticated effector having many degrees of freedom, 
highly complex mechanics, and the ability to sense and manipulate the environment. Our 
results demonstrate that cortical dynamics contain the temporally rich signals required to 
control skilled forelimb movements. While recent studies have argued that rodent 
sensorimotor cortex is involved in the online control of only dexterous movements of the 
hand[21, 22], we find that cortex is necessary and sufficient for coordinating the 
spatiotemporal pattern of muscle activity across the entire limb and movement 
sequence, not merely at the distal joints during object manipulation. 
 
By simultaneously recording neural dynamics and leveraging the optogenetic toolbox 
available in the mouse, we show that multiple, aberrant optogenetic stimuli can be 
funneled into the structured pattern of cortical activity driving prehension. This raises the 
possibility that during normal prehension, upstream brain regions might be able to trigger 
the behavior by generating an unstructured “go” signal, which the cortex then transforms 
into the time-varying control signal. This highly stereotyped neural trajectory must result 
from changes in cortex and associated connections that constitute the engram of a 
complex motor skill acquired over weeks of learning[23-27]. An animal’s full behavioral 
repertoire likely requires a collection of engrams for different movements; how these 
compete during action selection and execution will require future investigation. The 
combination of optogenetic control and recently-developed techniques for marking, 
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monitoring, and manipulating neural ensembles at cellular resolution should facilitate 
study of how motor skills are stored and retrieved[28-30]. 
 

Methods 
 
Behavioral task and video analysis 
Mice were fitted with head posts, food restricted, and trained to reach for food pellets, as 
described previously[8]. Behavior was recorded at 500 Hz (IORodeo, BIAS: Basic Image 
Acquisition Software) using two high-speed cameras (PointGrey, Flea3), which were 
calibrated to allow 3D triangulation of hand position (Caltech Camera Calibration 
Toolbox for Matlab). Two types of information were extracted from video: ethograms 
labeling the frames in which lift, hand open, grab, supination, hand at mouth, and chew 
occurred, obtained using the Janelia Automatic Animal Behavior Annotator, and the 
position of the hand in space, obtained using the Animal Part Tracker. All procedures 
were approved by the Institutional Animal Care and Use Committee at Janelia Research 
Campus (protocol 13-99). 
 
Automatic behavior classification 
Using an adaptation of the Janelia Automatic Animal Behavior Annotator (JAABA)[31], 
we trained automatic behavior classifiers which input information from the video frames 
and output predictions of the behavior category -- lift, hand-open, grab, supination, at-
mouth, and chew. We adapted JAABA to use Histogram of Oriented Gradient (HOG)[32] 
and Histogram of Optical Flow (HOF)[33] features derived directly from the video frames, 
instead of features derived from animal trajectories. The automatic behavior predictions 
were post-processed as described previously [8] to find the first lift-hand-open-grab and 
supination-at-mouth-chew sequences.  
 
Electrophysiological recordings 
Neural recordings were performed using the Whisper acquisition system (Janelia 
Applied Physics and Instrumentation Group) and 64-channel silicon probes 
(NeuroNexus A4x16-Poly2-5mm-23s-200-177-A64 or Janelia “Hires” 4x16 probes). 
These probes consisted of four shanks with 16 contacts at the tip of each, over a depth 
of 345µm (NeuroNexus) or 320µm (Janelia probes). On the day before the experiment, a 
small craniotomy was made over sensorimotor cortex contralateral to the limb, and a 
stainless steel reference wire was implanted in visual cortex. During the recording 
session, the probe tips were positioned at bregma +0.5mm, 1.7mm lateral, and slowly 
lowered to a depth of ~900µm from the cortical surface, and a silicone elastomer (Kwik-
Sil, World Precision Instruments) was applied to seal the craniotomy. At the end of the 
session, the probe was removed, and the craniotomy was re-sealed with silicone to 
allow a subsequent session on the following day. Signals were amplified with a gain of 
200 and digitized to 16 bits at 25-50 kHz, and spike sorting was performed with 
JRClust[34]. 
 
Optogenetic manipulations 
Cell-type specific expression of ChR2 was achieved by either using VGAT-ChR2-EYFP 
mice expressing ChR2 in inhibitory neurons (Slc32a1-COP4*H134R/EYFP, The Jackson 
Laboratory), or by crossing a Cre driver line to a Cre-dependent ChR2 reporter mouse, 
Ai32 (Rosa-CAG-LSL-ChR2(H134R)-EYFP-WPRE, The Jackson Laboratory). 
Experiments were performed in VGAT-ChR2-EYFP (n = 9), Tg(Tlx3-Cre)PL56Gsat  X 
Ai32 (n = 3), Tg(Sim1-Cre)KJ18Gsat X Ai32 (n = 4), or Tg(Rbp4-Cre)KL100Gsat X Ai32 
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(n = 2) mice. An optical fiber (200 µm or 400 µm, NA 0.39, Thorlabs) was coupled to a 
473 nm laser (LuxX 473-80, Omikron Laserage) and positioned 2-4 mm over 
sensorimotor cortex in the head fixation apparatus, as described previously. A blue light 
emitting diode array was directed at the animal’s eyes throughout the session in order to 
mask the laser stimulus. Three trial types were used: control trials, in which the cue was 
presented with no laser stimulation, laser + cue trials, in which both were presented, and 
laser-only trials, in which the laser was turned on without a cue or food administration. A 
two-second laser stimulus (40 Hz sine wave) was initiated synchronously with the cue 
for VGAT-ChR2-EYFP mice, or 200 ms before cue onset for Tlx3-Cre X Ai32 and Sim1-
Cre X Ai32 mice. Laser power was calibrated to the minimum level necessary to block 
reaching in probe experiments in the final days of training; this ranged from 10-50 mW at 
the fiber tip for VGAT animals, and 0.5-6 mW for Tlx3 and Sim1 animals. In interruption 
experiments, a region of the video frame between the average lift and hand open 
locations was identified using BIAS software, and a contrast change in this region was 
used to open the laser shutter for 50-100 ms. 
 
Two-photon imaging 
Expression of the red-shifted calcium indicator jRCaMP1b was targeted selectively to 
pyramidal tract (PT) or intratelencephalic (IT) neurons by injecting rAAV2-retro-SYN-Cre 
into the pontine gray and AAV-2/1-SYN-FLEX-RCaMP1b into sensorimotor cortex (n = 3 
mice), or by injecting rAAV2-retro-CAG-RCaMP1b into the contralateral striatum (n = 2) 
or ipsilateral pontine nuclei (n = 1). Pontine injections were targeted to lambda -3.9 mm, 
lateral 0.4 mm, at depths of 5.2, 5.4, 5.6, and 5.8 mm in each mouse, as described 
previously[35]. Striatum injections were targeted to bregma +0.4 mm, lateral 2.5, at 
depths of 2.2, 2.4, and 2.6 mm. Five injections were targeted to sensorimotor cortex at 
depths of 0.6 mm. Injection volumes were 50 µl at each site. Animals were fitted with 
head posts and cranial windows over sensorimotor cortex (2.2 mm window, Potomac 
Photonics, at bregma +0.6mm, lateral 1.6), food deprived, and trained to reach. Imaging 
was performed using a Fidelity-2 1070 nm laser (Coherent) on two microscopes, using 
either a 16X Nikon CFI LWD Plan Fluorite Objective (0.80 NA, 3.0 mm WD) or a custom 
objective (Jenoptik Inc), NA 1.0. Images were motion-corrected (cross-correlation 
method, Thunder Library), and regions of interest were defined manually (ImageJ). 
 
Statistical analysis 
Peri-lift firing rates (Fig 1d, 2c). For each neuron, lift-centered spike trains were 
smoothed with a Gaussian kernel (σ = 50 ms) and averaged across trials. Lift 
modulation was assessed using a rank sum test comparing the raw spike counts in a 
500 ms window centered at lift +200 ms with counts in a 500 ms window centered at lift -
750 ms. Multiple comparisons were corrected using the false discovery rate framework 
(q < 0.05). For comparison of firing rates on voluntary and opto-prehensions (fig. 2c), a 
rank sum test was performed for each neuron and peri-lift time bin. 
 
Spike-triggered hand position (Fig. 1e, 2d, 4d, E1d, E2f, E4a, supplementary videos 2, 
3). Hand trajectories were extracted from lift -100 ms to supination +100 ms, and 
trajectories were aligned across datasets by applying a procrustes transformation to the 
within-dataset mean trajectories. The hand position was extracted at the time of each 
spike. A kernel density estimator (σ = 1.5mm) was used to obtain the spatial density of 
spikes, as well as the spatial density of the hand over the entire trajectory. The full-
trajectory density was subtracted from the spike-triggered position density, and iso-
density-difference contours were extracted at the following ratios of the peak density 
difference: +/- 0.02, 0.4, 0.6, 0.8, 0.95, 1. Three-dimensional surface plots of these 
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positive and negative contours (Fig. 1e, 2d, 4d, E1d) were generated for voluntary and 
interruption trials, and trials were compared by overlaying two-dimensional projections of 
the positive contours (Fig. 2d). In order to quantify the similarity between firing patterns 
on voluntary and opto-prehensions, we analyzed the pairwise distances between spike-
triggered hand positions. If the spatial firing pattern on opto-prehensions recapitulates 
the pattern on normal reaches, then a randomly-chosen spike from an opto-prehension 
should lie closer to a randomly-chosen spike from the same neuron on a normal reach 
than to a randomly-chosen spike from a randomly-chosen neuron. Thus, for each 
neuron, we computed two distributions by bootstrapping with 50000 resamples. The first 
was the distribution of distances from the hand position at the time of a randomly-
selected spike on an opto-prehension to the position at the time of a spike from that 
neuron on a normal reach. The second was the distribution of distances from a 
randomly-selected spike on a opto-prehension to a spike from a pool consisting of 50 
spikes from each neuron in the full dataset. The medians of these distributions for each 
neuron were then compared (Fig. E2f, E4a). 
 
Gaussian Process Factor Analysis (GPFA) and neural distance (Fig. 1f, 2f, 2g, 3b, 3e, 
4b, 4c, E2e, supplementary videos 4, 5). Neural population activity was reduced to a 
five-dimensional latent variable space using GPFA[17] (bin size 20 ms). The target 
spatial and neural states were defined using the three-dimensional position of the hand, 
and the five-dimensional latent variable representation of sensorimotor cortex obtained 
using GPFA, respectively. In both cases, the states were sampled at grab times, and the 
target state was defined to be the central location of the grab-triggered states, computed 
using convex hull peeling[36]. Only the even control trials were used to calculate the 
target states. The Euclidean distance from the target was then computed for each trial 
and time point, and the resulting distance curves were centered either on grab time (Fig. 
2f, 4b, E2e [upper]) or laser offset (Fig. 2g, 4c, E2e [lower]). 
 
Neural decoder (Fig. 1b, 2e, 3c, 3f, 4e, E1h, E2c, E4b) 
We trained a classifier to predict the mouse’s behavior (lift, hand-open, grab, at-mouth, 
supination, chew, or none-of-the-above) from its neural activity. The behavior category 
label used for training this neural decoder was itself the output of an automatic classifier 
of behavior category from video of the animal behaving, trained using JAABA. We 
labeled time points within 10 ms of the video-based lift, hand-open, and grab of the first 
lift-hand-open-grab sequence as lifts, hand-opens, and grabs, respectively, and time 
points within 10 ms of the video-based supination, at-mouth, and chew of the first 
supination-at-mouth-chew sequence were labeled as supination, at-mouth, and chew, 
respectively. Time points more than 30 ms from these video-based behavior labels were 
labeled as none-of-the-above. We trained both population-level neural decoders and 
single-neuron decoders. For population-level neural decoders, neural activity from all 
neurons between 0 and 100 ms before a given time point were used to predict behavior 
category at that time point. Neural activity in the 100 ms time window was represented 
as a 110n-dimensional vector, where n is the number of neurons, encoding spike rates 
in sub-windows corresponding to Gaussians of varying bandwidths (2.5, 5, 10, 12.5, 15, 
20, 25, 35, 50, 75, 100 ms) and offsets (-18, -16, …, -2, 0 ms) truncated to within the 
100  ms window. We trained a multiclass, one-vs-all linear Support Vector Machine 
(SVM) to predict behavior category on voluntary reaches, with equal class priors. While 
the classifier was only trained on voluntary reaches, we applied it to laser-evoked 
reaches as well, to investigate the relationship between the neural activity sequence 
during voluntary and laser-evoked reaches. Single-neuron decoders were trained as 
above, but using 110-dimensional input corresponding to a single neuron. 
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Fano factor (Fig. E1a, E1b). For each neuron, lift-centered spike counts were computed 
in 50 ms bins. In each bin, the Fano factor was defined to be the slope of the regression 
line through the variance-vs-mean plot for all neurons[16]. 
 
Supplementary video captions 
Video 1: Head-fixed prehension behavior and hand tracking. The video shows raw 
images from two cameras capturing the movement sequence, along with the 
triangulated three-dimensional location of the paw. 
 
Video 2: Spatial position of the hand at spike times during voluntary prehension. The 
video shows the three-dimensional position of the hand during each voluntary 
prehension in an experimental session (green), along with the hand position at spike 
times for example neurons 1 (left) and 4 (right). Spikes occurring in the current trial are 
magenta, while spikes in earlier trials are yellow. The relative density of spikes (iso-
density-difference contours between the hand position at spike times and the hand 
position over the full trajectory) is overlaid; red represents regions with many spikes, and 
blue represents regions with few spikes. Scale bars are 5 mm. 
 
Video 3: Spatial position of the hand at spike times during opto-prehension. As in video 
2, but for opto-prehensions in the same dataset. Hand position at spike times is 
indicated in cyan. 
 
Video 4: Neural population activity and hand position during voluntary and opto-
prehension, centered on cue. Neural state, computed using GPFA, is shown in the left 
panel, and hand position is shown in the right panel. Each point corresponds to a single 
trial, with yellow indicating voluntary prehension and blue indicating opto-prehension. Lift 
and grab times are green and magenta, respectively. 
 
Video 5: Neural population activity and hand position during voluntary and opto-
prehension, centered on grab. As in video 4, but trajectories are aligned to the grab time. 
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Figure 1: Neural dynamics in sensorimotor cortex during a prehension task. a, Experimental setup. Head-fixed mice 
reached for a pellet of food following an acoustic cue during recording and optogenetic perturbation of cortical 
activity.  b, Raw video, electrophysiological recordings, mouse behavior, and neural decoding on a single trial. 
Three-dimensional hand trajectories and the timing of each waypoint in the behavioral sequence were extracted 
from video using computer vision methods. c, Spike raster plots and peri-event time histograms for four example 
neurons, centered on lift. d, Average z-scored firing rates and mean firing rates for all 584 motor cortical neurons. 
During prehension, most neurons exhibited increases (42%) or decreases (36%) in spike counts around lift (rank 
sum test with Benjamini-Hochberg correction, q < 0.05). e, Left: spatial locations of the hand at spike times for two 
example neurons. Right: difference between the spatial density of the spike-triggered hand position and the density 
of the hand position over the full trajectory. Shaded regions represent iso-density-difference contours; many spikes 
occur in the red regions, and few spikes occur in the blue regions. f, Neural population states for single trials, 
estimated using Gaussian Process Factor Analysis (GPFA). Circles correspond to lift times. Colors indicate normally 
timed reaches (yellow), early reaches (lift before cue, purple), and trials without a reach (red).
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Single-neuron lift decoding accuracy for Sim1-Cre X Ai32 mice.
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Extended data figure 2: Characterization of voluntary prehension and opto-prehension. a, Upper: lift times for the example 
dataset in figure 1. Yellow and blue curves represent densities for control and laser trials, respectively, and ticks represent 
single trials. Lower: distribution of reaction times from cue to lift (yellow, control trials) and from the end of the laser to lift 
(blue, laser + cue trials). b, Fraction of trials with lifts immediately following the cue (cue to cue +500 ms), during the laser 
epoch (cue +500 ms to laser end), after the laser (end of laser to end +500 ms), and trials with no lift in VGAT-ChR2-EYFP 
mice. c, Zero-lag decoding accuracy for single neurons on control and laser trials. d, Lower: normalized post-laser-end firing 
rates for trials with (blue) and without (red) opto-prehensions. For each post-laser window duration, the normalized firing 
rate for a given neuron is the rank of the spike counts in the window, divided by the duration of the window. The curves 
show the average values across the sample of neurons. Upper: difference between normalized firing rates on trials with and 
without post-laser grabs. e, Upper: grab-centered spatial (left) and neural (right) distance to target for control and laser trials, 
pooled over all datasets using VGAT-ChR2-EYFP mice. Lower: laser-end-centered distance to target on laser trials with and 
without rebound reaches. f, Similarity of spatial distribution of the hand at spike times during voluntary prehension and 
opto-prehension. X-axis: median spatial distance from a spike on a control trial for a given neuron to a spike on a control 
trial for a randomly-selected neuron. Y-axis: median spatial distance from a spike on a laser trial to a spike on a control trial 
for the same neuron. Rank sum test, p = 1.3e-6. g, Comparison of firing rates during voluntary and opto-prehension. Left: 
average lift-centered firing rate z-scores, sorted by the q-values for the comparison between firing rates on voluntary and 
opto-prehensions. Right: lift-centered z-scores for laser trials. h, Left: differences in firing rate z-scores between control and 
laser. Right: q-values for rank-sum test, color-coded by whether the firing rate is higher on control or laser trials.
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a b

Extended data figure 3: Behavior summary for perturbation of excitatory subpopulations. a, Fraction of trials with lifts 
immediately following the cue (cue to cue + 500ms), during the laser epoch (cue + 500ms to laser offset), after the laser 
(offset of laser to offset + 500ms), and trials with no lift in Tlx3-Cre X Ai32 mice. b, Lift times, as in a, for Sim1-Cre X Ai32 
mice.
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Extended data figure 4: Comparison of neural activity on control and interrupted reaches. a, X-axis: median spatial 
distance from a spike on a control trial for a given neuron to a spike on a control trial for a randomly-selected neuron. 
Y-axis: median spatial distance from a spike on a laser interruption trial to a spike on a control trial for the same neuron. b, 
Decoding of behavioral waypoints from neural data on laser interruption and control trials. The upper panels show the 
decoding results for laser interruption trials, as in figure 4e. The lower panels show the decoding for matched control trials 
in which the hand was in the same position as on a corresponding interruption trial at the beginning of the laser period.
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Question Approach Result

What are the neural dynamics in mouse 
motor cortex during the reach-to-grab 
sequence?

Record neural ensemble activity during 
the movement.

Single neurons have highly reliable 
responses across trials, but the 
population exhibits a diverse range of 
response patterns tiling the entire 
movement sequence.

Where in the brain does the cortex 
distribute reach-related signals?

Image activity of identified projection 
classes during the movement.

Both intratelencephalic (striatum-project-
ing) and pyramidal tract (pons-, medulla-, 
and spinal-projecting) neurons are active 
during the movement, but  this activity is 
more pronounced in pyramidal tract 
neurons.

Is cortex necessary and sufficient for 
generating the movement sequence?

Activate inhibitory neurons during the 
task.

Silencing cortex blocks voluntary 
prehension (necessity), and termination 
of silencing induces a rapid opto-prehen-
sion (sufficiency).

Do neural dynamics reflect motor 
commands?

Compare dynamics during voluntary and 
opto-prehension using (1) peri-lift firing 
rate statistics, (2) spatial analysis of hand 
position at spike times, (3) neural 
decoding of behavior waypoints from 
neural activity, and (4) distance-to-target 
analysis with Gaussian Process Factor 
Analysis.

Neural dynamics during opto-prehension 
largely recapitulate dynamics during 
voluntary prehension. However, a subset 
of neurons had different firing patterns in 
the two reach types, and cells with higher 
peri-lift firing rates during voluntary 
prehension were distinguished by higher 
baseline firing rates outside of the 
behavior.

Are these dynamics robust to multiple 
types of perturbation?

Activate projection-class-specific 
subtypes of excitatory neurons while 
recording neural ensembles during the 
movement.

Activation of subsets of excitatory 
neurons blocked voluntary prehension 
and induced opto-prehension. Neural 
dynamics during opto-prehension 
recapitulated the dynamics during 
voluntary prehension.

Are these dynamics required continously 
throughout the movement sequence?

Silence cortex in the middle of the 
movement while recording neural 
ensembles.

Mid-movement cortical inactivation halted 
behavior, and following this perturbation 
cortical dynamics restarted and drove 
completion of the full movement 
sequence.
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Extended data figure 5: Diagram of the relationship between the experiments and results.
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