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Abstract 
 
Skillful control of movement is central to our ability to sense and manipulate the world. A 
large body of work in nonhuman primates has demonstrated that motor cortex provides 
flexible, time-varying activity patterns that control the arm during reaching and grasping. 
Previous studies have suggested that these patterns are generated by strong local 
recurrent dynamics operating autonomously from inputs during movement execution. An 
alternative possibility is that motor cortex requires coordination with upstream brain 
regions throughout the entire movement in order to yield these patterns. Here, we 
developed an experimental preparation in the mouse to directly test these possibilities 
using optogenetics and electrophysiology during a skilled reach-to-grab-to-eat task. To 
validate this preparation, we first established that a specific, time-varying pattern of 
motor cortical activity was required to produce coordinated movement. Next, in order to 
disentangle the contribution of local recurrent motor cortical dynamics from external 
input, we optogenetically held the recurrent contribution constant, then observed how 
motor cortical activity recovered following the end of this perturbation. Both the neural 
responses and hand trajectory varied from trial to trial, and this variability reflected 
variability in external inputs. To directly probe the role of these inputs, we used 
optogenetics to perturb activity in the thalamus. Thalamic perturbation at the start of the 
trial prevented movement initiation, and perturbation at any stage of the movement 
prevented progression of the hand to the target; this demonstrates that input is required 
throughout the movement. By comparing motor cortical activity with and without thalamic 
perturbation, we were able to estimate the effects of external inputs on motor cortical 
population activity. Thus, unlike pattern-generating circuits that are local and 
autonomous, such as those in the spinal cord that generate left-right alternation during 
locomotion, the pattern generator for reaching and grasping is distributed across 
multiple, strongly-interacting brain regions. 
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Introduction 
  
Reaching, grasping, and object manipulation play a central role in the lives of mammals 
with prehensile forelimbs. The musculoskeletal complexity of the limb poses a 
challenging control problem for the central nervous system, which must coordinate 
precisely-timed patterns of activity across many muscles to perform a wide diversity of 
tasks. The motor cortex is a brain region involved in the control of dexterous forelimb 
movement (1-11). In nonhuman primates, motor cortical lesions impair the coordination 
of the hand and fingers (3), and the activity of motor cortical neurons is closely linked to 
muscle activation, joint torques, and limb kinematics (4, 8, 10). In rodents, stimulation of 
motor cortex generates limb twitches (12, 13), chronic lesions impair dexterity (14, 15), 
and optogenetic inactivation blocks the initiation and execution of reaching (16, 17). 
However, several studies have concluded that motor cortex may play a fundamentally 
different role in rodents than in primates (18), such as tutoring other brain regions during 
learning (19, 20) or suppressing actions (21). 
  
The function of motor cortex during reaching in nonhuman primates has been 
characterized by the dynamical systems model for reaching (rDSM) (1, 2, 22). This 
model proposes that the motor cortex and the arm are both dynamical systems that are 
linked through the firing rate output of motor cortex, r(t) (fig. 1a). Muscle activity, m(t) = 
G(r(t)), is determined by these firing rates, where G is a function describing how the 
lower motor centers transform the cortical output. Muscle activity, in turn, determines 
how the position and velocity of the joint centers in the arm, x(t), change over time. The 
arm kinematics evolve according to d/dt x(t) = F(m(t),x(t)), where F is a function 
describing the musculoskeletal mechanics. Motor cortical activity, r(t), evolves over time 
according to d/dt r(t) = h(r(t)) + u(t) as a result of two distinct influences: the local 
recurrent dynamics imposed by the architecture of motor cortex, which are described by 
a function h(r(t)) of the current state of motor cortex, and external input from other brain 
regions, described by a function of time, u(t). The external input, u(t), reflects the 
combined contribution of other brain regions, such as other cortical areas and thalamus, 
to changes in motor cortical firing rates. This input is not identical to the firing rates of the 
neurons in upstream brain regions; rather, it represents the effect those upstream firing 
rates have on firing rates in motor cortex. 
  
How do these two influences work together to generate the motor cortical output? One 
possibility is that the intrinsic circuitry of motor cortex contains all the machinery required 
to produce the time-varying output once it has been set to the appropriate initial 
condition; that is, the motor cortical dynamical system is largely autonomous from its 
inputs during movement execution, and the pattern results from the strong, local 
recurrent contribution, h(r(t)) (fig. 1b). Indeed, previous studies have focused on the role 
of recurrent dynamics in motor cortical pattern generation, and have suggested that 
external inputs may contribute by setting up the appropriate initial state during 
movement preparation (23, 24), while motor cortex is autonomous during movement 
execution (2, 22, 25). An alternative possibility, however, is that motor cortex is an input-
driven dynamical system: that is, recurrent dynamics are not sufficient to generate the 
pattern, but that strong drive from external inputs, u(t), is required throughout the 
movement (fig. 1c). Here, we test these hypotheses by first validating a mouse system 
for motor cortical control of skilled reaching using electrophysiology and optogenetics, 
then using this experimental approach to show that the motor cortex is not autonomous 
during movement execution, but must be driven by strong external input. 
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Cortical population recordings during reaching 
 
While the rDSM is widely accepted as a model for cortical control of reaching in 
primates, it is unclear whether it is appropriate for rodents. Thus, we first tested whether 
the model describes the function of motor cortex in mice. One key requirement of the 
rDSM is that motor cortex must produce a time-varying output during reaching. In order 
to check this premise, we used a prehension task we developed for head-fixed mice 
(16), in which animals learned over several days to weeks to reach for and grab a food 
pellet at a memorized position and deliver it to the mouth following an auditory cue (fig. 
1d). Using high-speed video and computer vision techniques, we captured the animals’ 
behavior and extracted the timing of waypoints indexing the stages of the movement (lift 
hand from the perch, open hand, grab food pellet, supinate hand, and bring hand to 
mouth), as well as three-dimensional hand position (fig. 1e; supplementary video 1). To 
study neural population activity during normal movement (supplementary fig. 1a), we 
used silicon probes to record spiking activity (mean 21 well-isolated units per recording) 
from a total of 843 neurons in forelimb motor cortex, which showed strong fluctuations in 
firing rate around the movement (fig. 1e-g). A majority of cells (646/843) were modulated 
before and during reaching, with a net rate increase for 330 and a decrease for 316 (fig. 
1f; rank sum test on pre- and peri-lift spike counts with Benjamini-Hochberg correction, q 
< .05). While the responses of individual cells were highly consistent across trials (fig. 
1f), we observed a wide diversity of patterns across neurons, including increases, 
decreases, and multi-phasic responses (fig. 1g). These activity patterns are qualitatively 
similar to those observed in the primary motor cortex of nonhuman primates performing 
dexterous behaviors (8, 10). 
 

Mouse motor cortex is a limb controller  
 
Is this time-varying signal critical for producing the movement, as required by the rDSM? 
Two alternatives to the rDSM are that the cortical output must simply increase beyond a 
threshold to trigger movement, or that it must decrease below a threshold in order to 
ungate the movement. Neither of these threshold hypotheses is compatible with the 
rDSM: under the rDSM, a change in the motor cortical firing rate from the baseline to 
another constant value across a threshold will produce a change from one level of 
muscle activation to another constant value, but such a constant level of muscle activity 
cannot generate a complex, multi-step movement. In order to test the subthreshold 
hypothesis, we silenced excitatory neurons (and thus motor cortical output) by activating 
inhibitory neurons in VGAT-ChR2-EYFP mice (fig. 2a, left). This perturbation blocked the 
initiation of movement (fig. 2b, left, supplementary fig. 2a), ruling out the possibility that 
reaches are triggered when motor cortical output decreases below a threshold. In order 
to test the suprathreshold hypothesis, we activated intratelencephalic neurons (Tlx3-Cre 
X Ai32 mice; fig. 2a, center), which project to other motor cortical areas and the striatum, 
or pyramidal tract neurons, which project to the spinal cord and brainstem (Sim1-Cre X 
Ai32; fig. 2a, right). In both cases, the optogenetic perturbation blocked the initiation of 
reaching (fig. 2b, center and right; supplementary fig. 2b-c). These experiments rule out 
the possibility that motor cortical output to other motor cortical regions and the striatum, 
or to the spinal cord and brainstem, must simply increase above a threshold to trigger 
reaching. Taken together, these results suggest that reaching is not produced by shifts 
in the overall level of motor cortical output, but by a specific time-varying pattern. 
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According to the rDSM, moving the arm to the target following a motor cortical 
perturbation would require motor cortex to regenerate the activity patterns that would 
normally drive reaching. Following the release of each motor cortical perturbation, we 
frequently observed kinematically normal post-laser reaches (fig. 2b; supplementary fig. 
3a-b) (16). The reaches occurred with a shorter reaction time than on control trials 
following the VGAT and Tlx3 perturbations (supplementary fig. 2d-e), and they also 
occurred following laser stimulation in the absence of a cue (fig. 2b, magenta bars; 
supplementary fig. 2a-c). The neural activity patterns during reaches following each of 
the three perturbations largely recapitulated the patterns observed on control trials (fig. 
2c, supplementary videos 2-3), and the neural state approached the average neural 
state at the time of grab from control trials (supplementary fig. 3d-h). The neural activity 
did not return to the initial state observed on control trials, but immediately generated the 
pattern for reaching following the end of the perturbation (supplementary fig. 4). In order 
to further compare the patterns of neural activity driving control and post-perturbation 
reaching, we trained a decoder to estimate the velocity of the hand from motor cortical 
firing rates. Even though the decoder was trained only on control trials (see methods), it 
was possible to decode the hand velocity from motor cortical activity following each of 
the three perturbations relatively well (supplementary fig. 5), further demonstrating that 
the neural patterns during post-laser reaches mostly recapitulated those occurring during 
normal reaching. 
  
The rDSM maintains that the cortical output is coupled to the motor plant throughout the 
execution of movement, not merely at the initiation. When we briefly silenced motor 
cortex in the middle of a reach, the progression of the hand to the target halted, and 
following this inactivation, the motor cortical activity rapidly recovered, driving the hand 
to the target (fig. 2d). We were able to decode hand velocity from neural activity 
following the end of the perturbation (fig. 2e). Pairs of trials with similar post-perturbation 
hand observed velocities also had similar decoded velocities, suggesting that the output 
of the motor cortex can compensate for aberrant initial post-perturbation hand positions 
on a trial-by-trial basis (fig. 2f). Taken together, these results show that motor cortex is 
strongly coupled to the motor plant, and must generate a time-varying pattern throughout 
the entire movement sequence in order to control reaching, consistent with the rDSM. 
 

The motor cortical dynamical system is input-driven, not autonomous 
 
After establishing that the rDSM (fig. 1a) describes the role of motor cortex during 
reaching in mice, we next sought to determine whether the motor cortical dynamical 
system is largely autonomous (fig. 1b) - that is, driven by its own local recurrent 
dynamics - or whether it is driven by strong external inputs (fig. 1c). In order to address 
this question, we observed that silencing motor cortex in VGAT-ChR2-EYFP mice fixes 
motor cortex to a constant state not only within the laser-on epoch on a given trial, but 
also across trials (supplementary fig. 1b; supplementary fig. 6a). This implies that the 
recurrent contribution to the dynamics will also be constant across trials during the laser-
on epoch, and that trial-to-trial variability in neural activity following the release of the 
laser will reflect external inputs. Indeed, when we compared trials on which a post-laser 
reach occurred with trials with no reach (fig. 3a), we found that the two trial types started 
in the same initial state during laser-on, but rapidly diverged following the release of the 
laser (fig. 3b). The same was true at the single-trial level: on trials where the neural 
activity did not approach the average neural state at grab, the hand did not approach the 
pellet (fig. 3c). Because the initial neural state during the laser - and thus the contribution 
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of recurrent dynamics to changes in firing rate - was the same for the reach and no-
reach condition, the difference between conditions was driven by differences in external 
input (fig. 3d). The rDSM allowed us to directly estimate this difference in inputs by 
subtracting the firing rate derivatives of the two conditions (fig. 3e; see methods). The 
observation that motor cortex can diverge from the same initial state in different types of 
trials and drive different behaviors suggests that external inputs may play a key role in 
producing the activity pattern for reaching. 
  
If the motor cortex is strongly input-driven, then blocking or interrupting the input pattern 
should perturb both motor cortical activity and arm kinematics. In order to test this 
hypothesis directly, we implanted optical fibers above motor thalamus in VGAT-ChR2-
EYFP mice. This enabled us to activate inhibitory terminals in this region, which has 
been shown to suppress activity in the projections to motor cortex (fig. 4a) (26). 
Thalamic inactivation at the start of the trial blocked the initiation of coordinated reaching 
(fig. 4b), and inactivation in the middle of the reach interrupted the progression of the 
hand to the target (fig. 4c, supplementary fig. 8). These results demonstrate that external 
inputs are required to control the hand throughout the entire movement. 
  
If external inputs strongly drive motor cortical activity, what signals do these inputs 
provide? In order to address this question, we again silenced motor cortical activity in 
VGAT-ChR2-EYFP mice, putting the motor cortical network - and thus the contribution of 
recurrent dynamics - in the same initial state at the end of the perturbation on different 
trials. When we removed the motor cortical inactivation, we allowed the network to 
recover on some trials, but immediately silenced the thalamus on other trials. This 
thalamic inactivation blocked reaching following the removal of motor cortical 
suppression, and the animal frequently reached to the target following the removal of 
thalamic inactivation (fig. 4d; supplementary fig. 9a). These post-thalamic-inactivation 
reaches were generated by the same neural pattern that drove reaching on control trials 
and post-motor-cortical-inactivation trials (supplementary fig. 9b). Thalamic inactivation 
did not act by merely silencing motor cortical spiking; firing rates during this epoch 
fluctuated extensively (fig. 4e; supplementary fig. 9c). Population activity with and 
without thalamic inactivation began in the same initial state, but rapidly diverged after the 
end of motor cortical suppression (fig. 4f). This indicates that external inputs drove the 
motor cortical activity when the motor cortex was released and thalamus was not 
perturbed (fig. 4g). We estimated the difference in external inputs between the two 
conditions (see methods), revealing dimensions of neural activity with a strong influence 
of external input signals (fig. 4h). These input differences were not step functions, but 
were multi-phasic within the first 200 ms following the end of motor cortical inactivation. 
This suggests that external inputs do not merely provide tonic drive, but rather shape the 
time-varying pattern of motor cortical activity required to generate reaching. 
  

Discussion 
  
Using a combination of electrophysiology, optogenetic perturbations, and behavioral 
tracking, we found that the motor cortex of the mouse, like the primate motor cortex, is a 
dynamical system that produces a time-varying pattern controlling the arm. We then 
used this experimental preparation and the dynamical systems framework to dissect, for 
the first time, the neural mechanism that generates this pattern. We found that the motor 
cortex is not an autonomous pattern generator, in which strong recurrent dynamics 
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produce the output; rather, it must be driven strongly by external input during the 
initiation and execution of movement. 
 
How do local dynamics and inputs interact to produce the cortical output pattern? In the 
extreme case of an autonomous system, the entire pattern can be produced without 
input (fig. 1b), while at the other extreme, the pattern may be inherited almost entirely 
from the inputs (fig. 1c). Our results rule out alternatives near the extreme of autonomy: 
when inputs are removed, the motor cortex does not merely produce a corrupted or 
scaled-down version of the normal pattern, but instead moves to a new fixed point (fig. 
4f). Most likely, the local dynamics and inputs interact to produce this pattern. 
Furthermore, it is possible that this interaction is nonlinear; that is, the evolution of 
cortical activity over time might be described by d/dt r(t) = ϕ(r(t),u(t)). 
  
Studies in nonhuman primates have emphasized the role of external inputs in setting up 
the appropriate initial state in motor cortex for movement generation, and have 
suggested that motor cortex is largely autonomous during movement execution. By 
contrast, after we set motor cortex to three distinct aberrant initial states, motor cortex 
rapidly generates the appropriate pattern for reaching (fig. 2c) without returning to the 
initial state observed on control trials (supplementary fig. 4). This is consistent with 
previous results showing that in a mid-movement switching task, cortex can bypass the 
normal preparatory state (27). Inactivation of external inputs to motor cortex prevents 
progression from aberrant states to the activity pattern driving reaching (fig. 4d-f). Thus, 
a specific initial state in motor cortex is not required for movement generation; rather, 
external inputs are capable of compensating for aberrant initial states and driving the 
appropriate pattern. 
  
What information do external inputs convey? When we inactivated motor cortex in the 
middle of a reach, we removed trial-to-trial variability in neural activity during the laser-on 
epoch (supplementary fig. 6d), so that any information about differences in hand position 
on different trials was erased from motor cortex. Following this perturbation, we decoded 
hand velocity from neural activity (fig. 2e), and found that pairs of trials with similar 
observed velocity profiles had similar decoded velocity profiles (fig. 2f). This suggests 
that upstream brain regions have information about the current and target state of the 
arm, then route this information through motor cortex to compensate for the perturbation. 
Some of this information might come from relatively direct proprioceptive relays through 
the thalamus. An intriguing possibility, however, is that signals about the state of the arm 
and the target might be maintained through persistent activity in another area, such as 
the frontal cortex on the same side, or by the contralateral cortex. 
  
Motor cortical inactivation in the absence of a cue often produced post-perturbation 
neural pattern for movement, along with a coordinated reach to the target. One 
explanation for this phenomenon might be that the intrinsic motor cortical firing rate 
derivative, h(r(t)), was large in the inactivated state (due, for example, to 
hyperpolarization-activated conductances), and was able to initiate the normal pattern 
for reaching without any external input, whether or not a cue had been presented 
previously. The observation that silencing thalamus after motor cortical inactivation 
blocked post-motor-cortical-inactivation reaching, however, suggests that intrinsic motor 
cortical factors, h(r(t)), are inadequate to generate the appropriate pattern. Instead, 
perturbation of motor cortex may initiate the command for reaching in other brain areas, 
and this command may be unmasked when a reach is initiated following the end of the 
perturbation. 
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Previous studies of motor cortex have suggested that it operates autonomously during 
reaching, much like the spinal networks for locomotion: once the pattern has been 
initiated, strong recurrent dynamics within the local network complete it (2, 22, 25). By 
contrast, we have shown that this pattern can only be produced by strong external input 
that is maintained throughout the entire movement. In this view, motor cortex integrates 
signals from diverse brain areas, including the cerebellum and basal ganglia, and 
translates these signals into the language of the lower motor centers. While motor cortex 
is a bottleneck for descending motor commands, its activity patterns are crucially molded 
by its embedding within a vast and distributed network of loops between muscles, the 
sensory periphery, subcortical regions, and other cortical areas. 
 

Methods 
  
Behavioral task and video analysis 
Mice were fitted with head posts, food restricted, and trained to reach for food pellets, as 
described previously (16). All data in this manuscript, including those from the behavioral 
experiments, are previously unpublished. WaveSurfer (http://wavesurfer.janelia.org/) 
was used to control the behavioral stimuli. Video of the behavior was recorded at 500 Hz 
using BIAS software (IO Rodeo, available at https://bitbucket.org/iorodeo/bias) and two 
high-speed cameras (PointGrey, Flea3), which were calibrated to allow 3D triangulation 
of hand position (Caltech Camera Calibration Toolbox for Matlab, 
http://www.vision.caltech.edu/bouguetj/calib_doc/). Two types of information were 
extracted from video: ethograms labeling the frames in which lift, hand open, grab, 
supination, hand at mouth, and chew occurred, obtained using the Janelia Automatic 
Animal Behavior Annotator (https://github.com/kristinbranson/JAABA), and the position 
of the hand in space, obtained using the Animal Part Tracker 
(https://github.com/kristinbranson/APT). All procedures were approved by the 
Institutional Animal Care and Use Committee at Janelia Research Campus (protocol 13-
99). 
  
Automatic behavior characterization 
Using an adaptation of the Janelia Automatic Animal Behavior Annotator (JAABA) (28), 
we trained automatic behavior classifiers which input information from the video frames 
and output predictions of the behavior category -- lift, hand-open, grab, supination, at-
mouth, and chew. We adapted JAABA to use Histogram of Oriented Gradients (29) and 
Histogram of Optical Flow (30) features derived directly from the video frames, instead of 
features derived from animal trajectories. The automatic behavior predictions were post-
processed as described previously (16) to find the first lift-hand-open-grab and 
supination-at-mouth-chew sequences. For the long-duration thalamic perturbation 
experiments (fig. 4c, supplementary fig. 8), we used the last lift detected before laser 
onset for aligning data. Tracking of hand position was performed using the Animal Part 
Tracker (APT) software package. Hand position was annotated manually for a set of 
training frames, and the cascaded pose regression algorithm was used to estimate the 
position of the hand in each remaining video frame. 
  
Electrophysiological recordings 
Neural recordings were performed using the Whisper acquisition system (Janelia 
Applied Physics and Instrumentation Group) and 64-channel silicon probes 
(NeuroNexus A4x16-Poly2-5mm-23s-200-177-A64 or Janelia 4x16 probes). These 
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probes consisted of four shanks with 16 contacts at the tip of each, over a depth of 
345µm (NeuroNexus) or 320µm (Janelia probes). On the day before the experiment, a 
small craniotomy was made over motor cortex contralateral to the limb, and a stainless 
steel reference wire was implanted in visual cortex. During the recording session, the 
probe tips were positioned at bregma +0.5mm, 1.7mm lateral, and slowly lowered to a 
depth of ~900µm from the cortical surface, and a silicone elastomer (Kwik-Sil, World 
Precision Instruments) was applied to seal the craniotomy. At the end of the session, the 
probe was removed, and the craniotomy was re-sealed with silicone to allow a 
subsequent session on the following day. Signals were amplified with a gain of 200 and 
digitized to 16 bits at 25-50 kHz, and spike sorting was performed with JRClust (31). 
Spike sorting code is available at https://github.com/JaneliaSciComp/JRCLUST. 
  
Optogenetic manipulations 
Cell-type specific expression of ChR2 was achieved by either using VGAT-ChR2-EYFP 
mice expressing ChR2 in inhibitory neurons (Slc32a1-COP4*H134R/EYFP, The Jackson 
Laboratory), or by crossing a Cre driver line to a Cre-dependent ChR2 reporter mouse, 
Ai32 (Rosa-CAG-LSL-ChR2(H134R)-EYFP-WPRE, The Jackson Laboratory). 
Experiments were performed in VGAT-ChR2-EYFP (n = 13), Tg(Tlx3-Cre)PL56Gsat  X 
Ai32 (n = 3), Tg(Sim1-Cre)KJ18Gsat X Ai32 (n = 3), or Tg(Rbp4-Cre)KL100Gsat X Ai32 
(n = 2) mice (32). Experiments were attempted in three additional mice (VGAT-ChR2-
EYFP, n = 2, and Tg(Sim1-Cre)KJ18Gsat X Ai32 , n = 1), but were aborted due to the 
poor quality of the electrophysiological signals. An optical fiber (200 µm or 400 µm, NA 
0.39, Thorlabs) was coupled to a 473 nm laser (LuxX 473-80, Omikron Laserage) and 
positioned 2-4 mm over motor cortex in the head fixation apparatus, as described 
previously. Five VGAT-ChR2-EFYP mice were implanted with an optical fiber over motor 
thalamus (bregma -1.1 mm, lateral 1.3 mm, depth 3.3 mm). A blue light emitting diode 
array was directed at the animal’s eyes throughout the session in order to mask the laser 
stimulus. Three trial types were used: control trials, in which the cue was presented with 
no laser stimulation, laser + cue trials, in which both were presented, and laser-only 
trials, in which the laser was turned on without a cue or food administration. A two-
second laser stimulus (40 Hz sine wave) was initiated synchronously with the cue for 
VGAT-ChR2-EYFP mice, or 200 ms before cue onset for Tlx3-Cre X Ai32 and Sim1-Cre 
X Ai32 mice. Laser power was calibrated to the minimum level necessary to block 
reaching in probe experiments in the final days of training; this ranged from 10-50 mW at 
the fiber tip for VGAT animals, and 0.5-6 mW for Tlx3 and Sim1 animals. In mid-reach 
interruption experiments, a region of the video frame between the average lift and hand 
open locations was identified using BIAS software, and a contrast change in this region 
was used to open the laser shutter for 50-100 ms (for cortical inactivation), or for 2000 
ms (for thalamic inactivation). All optogenetic perturbations were unilateral, on the side 
opposite the reaching arm. 
  
Data analysis 
Peri-lift firing rates (fig. 1g). For each neuron, lift-centered spike trains were smoothed 
with a Gaussian kernel (σ = 50 ms) and averaged across trials. Lift modulation was 
assessed using a rank sum test comparing the raw spike counts in a 500 ms window 
centered at lift +200 ms with counts in a 500 ms window centered at lift -750 ms. Multiple 
comparisons were corrected using the false discovery rate framework (q < 0.05). 
  
Trial-averaged principal component analysis (fig. 2c, 3b, E4). Peri-lift firing rates were 
extracted by smoothing the spike trains with a Gaussian kernel (σ = 50 ms for fig. 2c, 3b, 
E4; σ = 25 ms for fig. 4f) , Z-scored using the mean and standard deviation of firing rates 
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on control trials for lift-centered analyses or cortex inactivation trials for laser-centered 
analyses, and averaged within each trial type for each neuron. The window used was -
100 ms to 350 ms around each lift (fig. 2c, E4), -250 ms to +250 ms from the end of 
cortical inactivation (fig. 3b), -500 ms to +500 ms of the end of the cortical inactivation 
(fig. 4f, blue), or -500 ms from the start of cortical inactivation to +500 ms from the end of 
the thalamic inactivation (fig. 4f, green). Principal component coefficients were fit using 
control trials only for lift-centered analyses (fig. 2c, E4), or cortex inactivation only (fig. 
4f), and scores were then extracted for all trial types. For the lift-aligned PCA analyses, a 
control trial was included if lift and grab occurred within 500 ms following the cue, and a 
laser trial was included if lift and grab occurred within 500 ms of the end of the laser. 
  
Gaussian Process Factor Analysis (GPFA) and neural distance (fig. 2d, 3c, E3a, E3d-g, 
E7a-b, supplementary videos 2, 3). Neural population activity was reduced to a five-
dimensional latent variable space using GPFA (bin size 20 ms) (33). A region of the 
dataset in which the recordings were stable was selected by finding the time interval and 
subset of neurons that maximized the quantity (usable neurons) X (usable seconds). 
The target spatial and neural states were defined using the three-dimensional position of 
the hand, and the five-dimensional latent variable representation of motor cortical activity 
obtained using GPFA, respectively. In both cases, the states were sampled at grab 
times, and the target state was defined to be the central location of the grab-triggered 
states, computed using convex hull peeling (34). Only 50% of the control trials were 
used to calculate the target states. The euclidean distance from the target was then 
computed for each trial and time point, and the resulting distance curves were centered 
either on grab time (fig. E3d-g) or the end of the laser (fig. 2d, 3c, E7a-b). In order to test 
the robustness of the distance analysis, the distance analysis was also performed using 
the same procedure with a variable number of GPFA factors ranging from three to seven 
(fig. E3g), and in the original high-dimensional firing rate space (fig. E3h) using a range 
of smoothing bandwidths σ = 25, 50, 75, 100, and 125 ms. 
  
Estimation of difference in external input contributions (fig. 3e, 4h). We use the rDSM to 
calculate the difference in the contribution of external inputs between conditions 
following the end of cortical inactivation. Suppose we have two types of trial, A and B. In 
fig. 3e, these types correspond to trials in which a post-laser reach occurred or did not 
occur, and in fig. 4h, they correspond to trials in which thalamus was perturbed following 
the end of cortical inactivation and trials in which the thalamus was not perturbed. Let 
rA(t) and rB(t) denote the population activity (principal component scores) on these trial 
types, and suppose the cortical inactivation ends at t = 0. 
  
For t ≤ 0, we have fixed rA(t) = rB(t) = 0 (see supplementary fig. 6). Let ε > 0.  According to 
the rDSM, 
  
rA‘(t) - rB‘(t) = ( h(rA(t)) + uA(t) ) - ( h(rB(t)) + uB(t) ), 
h(rA(0)) = h(0) = h(rB(0)). 
  
Thus, for small ε, 
  
h(rA(ε)) ≈ h(rB(ε)), so 
uA(ε) - uB(ε) = rA‘(ε) - rB‘(ε) - ( h(rA(ε)) - h(rB(ε)) )  ≈ rA‘(ε) - rB‘(ε). 
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Thus, subtracting the derivative of population activity for the two conditions allows us to 
estimate the difference in the contributions of external inputs shortly after the end of 
cortical inactivation. 
  
Direction of neural trajectories (fig. E4). This analysis addresses the question of whether 
neural activity for post-laser reaches first returned to the control baseline state. For each 
perturbation (VGAT, Tlx3, and Sim1), we estimated the population activity on control 
reaches, rc(t), and post-laser reaches, rl(t), using the first six principal component scores. 
These captured 98%, 99%, and 97% of the variance in control reaches for VGAT, Tlx3, 
and Sim1, respectively. At each point in time around the lift, we computed the derivative 
and divided by the norm of the derivative. This yielded the direction in population activity 
for control and laser reaches (see fig. E4a), shown by the yellow and blue arrows in fig. 
(E4b-d). We compared the similarity between the control and laser directions at each 
point in time by computing the inner product between them. This yielded the yellow 
curves in the right panels in E4b-d. We then computed the difference between the 
population activity in the laser condition and the initial control state and normalized it to 
have length one; this resulted in the direction from the state in the laser condition to the 
initial control state at each point in time, shown by the red arrows in the left panels of fig 
E4b-d. We then found the similarity between this direction and the direction of the laser 
trajectory by computing their inner product, shown in the red curves in the right panels of 
fig. E4b-d. This analysis suggests that following the perturbations, the neural population 
recapitulated the pattern for reaching without returning to the control initial state. 
  
Neural decoding: design of the decoder (fig. 2e, E5) A linear filter was designed to 
decode 3D hand velocities from neural activity during reaches. The decoded hand 
velocities were then used as proxies for the components of neural activity relevant to 
movement in order to assess the effect of different types of pre-lift perturbations (VGAT, 
Tlx3, Sim1) on the neural activity during reach (pre-lift perturbation analysis), and to 
assess the variability in the neural trajectories following the post-lift perturbation (VGAT) 
of motor cortex (post-interruption variability analysis). 
  
For decoding, both the 3D hand trajectories (500 Hz, see ‘Behavioral task and video 
analysis’) and the multiunit neural activity (counts of all detected spikes on each 
recording channel with 2 ms bins, no single unit identification) were smoothed with the 
same Gaussian kernel (σ = 25 ms). Velocities were numerically derived from smoothed 
hand trajectories using a central difference filter of order 8. Firing rates were Z-scored 
with respect to the activity at rest (computed combining 1.5s windows preceding the start 
of each trial) and then processed with Principal Component Analysis (PCA) for denoising 
and dimensionality reduction. Channels with mean absolute Z-scores greater than 100 
during movement (e.g. for units with standard deviations very close to zero) were 
excluded from further analysis. 
  
The decoder uses time-invariant coefficients to decode the hand velocity at any given 
time as a linear combination of the 15 most recent samples of neural activity (hence up 
to 28ms in the past) projected to the first few Principal Components. For all datasets 
analyzed (each corresponding to a different experimental session), PCA was performed 
on the data matrix obtained combining all control and post-laser neural trajectories (after 
end of perturbation). The decoder coefficients were obtained by regressing (ordinary 
least square sense, implemented via QR factorization in Matlab) velocity data against 
PCA-reduced neural data in a subset of trials (training set). The choice of the trials to 
include in the training set, and the procedure for choosing the number of Principal 
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Components to use in the decoder, varied slightly between the two types of analysis as 
described below. 
  
Neural decoding: pre-lift perturbation analysis Hand velocities were decoded during 
reaches (lift-to-grab) which occurred within the first 500ms after the cue (for control 
trials) or within the first 500ms after the end of perturbation (for laser trials). Within each 
dataset, the training set used in fitting the decoder coefficients was comprised of a 
majority of control trials (3/5th). An additional subset of control trials (1/5th) was used to 
cross-validate the optimal choice of the number of PCA components to use in the 
decoder, as follows. For any choice of number of components to keep (up to 95% of 
variance explained), a decoder was computed from the training control trials and used to 
decode the hand velocities in the validation control trials. The performance of each 
decoder was compared in terms of mean squared error (MSE) between observed and 
decoded velocities. The minimum number of PCA dimensions that guaranteed 
performance within 1% of the overall minimum MSE across all choices was selected 
(using this 1% margin guaranteed significant dimensionality reduction in some sessions 
without compromising decoding performance). Finally, the selected decoder was used to 
decode hand velocities in the remaining testing subset of control trials (1/5th), which were 
not used for training or cross-validation, and on the laser trials in which reaches occurred 
at the end of the perturbation. 
  
We found that the decoder performance was not uniform across the three directions 
(forward, lateral, upward), but was consistently worse in the lateral direction than in the 
other two directions. This may reflect the smaller extent to which the reaching 
trajectories sample lateral movements of the hand, or may reflect an insufficient 
representation in the neural population of motor cortical cells responsible for the lateral 
movement of the hand (note that lateral movements are more shoulder-dependent than 
forward and upward movements). We thus showed the decoding performance in each 
direction separately, and used the R² of the linear regression between observed and 
decoded hand velocities in each direction as the summary performance metric. 
  
In most of the datasets (all of the VGAT and Tlx3 experiments, and one of the Sim1 
experiments), the decoded hand velocities were closer to the observed ones in the 
control testing trials than in the laser trials (supplementary fig. 5). Since the neural 
trajectories in laser trials do not exactly follow those in control trials (but are somewhat 
shifted versions of them, fig. 2c), but the hand trajectories appear qualitatively identical 
in the two conditions, this suggests that the transformation of motor cortical commands 
into hand movements was partially modified by the pre-lift perturbation of motor cortex. 
Subcortical circuits may have played a critical role in compensating for the different 
levels of cortical output activity in laser trials relative to control. Nevertheless, in most 
sessions the decoder trained only on control trials still performed reasonably well on 
laser trials (at least in some of the directions), confirming that the cortical trajectories 
produced after pre-lift perturbation are qualitatively similar to the normal cortical 
trajectories (as also observed in the comparison of the PCA trajectories).   
  
Neural decoding: post-interruption variability analysis 
  
To investigate the relation between the variability in hand trajectories and that in neural 
trajectories following post-lift cortical perturbation, we decoded hand velocities from 
neural activity in the period from 30 ms to 200 ms after the end of such perturbation. The 
first 28 ms immediately following the cortical perturbation were excluded because the 
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neural data used for decoding would have overlapped with the period of cortical 
perturbation. 
  
Because the number of post-lift perturbation trials in each dataset was limited (as they 
usually occurred every 5th control trials), and post-interruption trajectories were 
qualitatively different from each other and from control trials (because the hand typically 
drifts to atypical locations during the cortex perturbation), we used a leave-one-out 
strategy to train a specific decoder for each post-interruption trial. For each of these 
trials, the decoder coefficients were computed from a training set comprised of all the 
other post-interruption trials and a large subset of control trials (2 out every 3 control 
trials, lift-to-grab). The remaining subset of control trials (1/3rd) was used to cross-validate 
the choice of the number of PCA components to use in the decoder, following the same 
procedure described for the pre-lift perturbation analysis. 
  
The post-interruption hand velocities in each trial were then decoded with the trial-
specific decoder (which was trained without using any of that trial’s data). As in the pre-
lift perturbation analysis, the decoder performance was evaluated in terms of the R² of 
the linear regression between observed and decoded hand velocities in each direction, 
and was consistently worse in the lateral direction than in the other two directions. 
  
One method to verify if the post-interruption neural trajectories in motor cortex reflect the 
variability in the hand trajectories is to test whether the similarity (or lack thereof) 
between the observed hand velocities in any two trials is predictive of the similarity (or 
lack thereof) in the hand velocities decoded from neural activity in the same trials. For 
each trial, we computed the 85-dimensional vectors corresponding to the observed and 
decoded velocities in the window 30-200ms after cortical perturbation (sampled every 
2ms), in each of the three dimensions. For each pair of trials, and in each direction, we 
computed a “dissimilarity score” between the observed hand velocities by taking the L1-
norm of the difference between the corresponding 85-dimensional vectors (“Manhattan 
distance”), and dividing by the number of samples. The resulting score is equivalent to 
the mean sample-wise distance between the velocity profiles in the two trials. In the 
same way, dissimilarity scores were computed between the decoded hand velocities in 
every pair of trials.  Finally, we computed the rank correlation (Spearman’s rho 
coefficient) between the dissimilarity scores in the observed hand velocities and the 
corresponding dissimilarities scores in the decoded hand velocities (fig.2f). We found a 
significant positive correlation (p<0.001, one-tailed test) in 6 of the 7 datasets for the 
directions better decoded (forward and upward) and in 4 of the 7 datasets for the lateral 
direction. 
  
All analyses were performed with custom-written software in Matlab, except where 
otherwise noted. 
  

Code and data availability 
Code for automatic annotation of behavior and behavioral waypoint estimation is 
available at https://github.com/kristinbranson/JAABA. Code for hand tracking is available 
at https://github.com/kristinbranson/APT. Code for spike sorting is available at 
https://github.com/JaneliaSciComp/JRCLUST. Data for the present study and code used 
to analyze data are available from the corresponding author on reasonable request. 
  
Supplementary video captions 
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Video 1: Head-fixed prehension behavior and hand tracking. The video shows raw 
images from two cameras capturing the movement sequence, along with the 
triangulated three-dimensional location of the hand. 
  
Video 2: Neural population activity and hand position during control and post-laser 
reaching, centered on cue. Neural state, computed using GPFA, is shown in the left 
panel, and hand position is shown in the right panel. Each point corresponds to a single 
trial, with yellow indicating control and blue indicating post-laser reaches. Lift and grab 
times are green and magenta, respectively. 
  
Video 3: Neural population activity and hand position during control and post-laser 
reaching, centered on grab. As in video 2, but trajectories are aligned to the grab time. 
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Figure captions 
  
Figure 1: Motor cortex as a dynamical system controlling the arm. a, The dynamical 
systems model for motor cortical control of reaching (rDSM). In this model, the firing 
rates of motor cortical neurons, r(t), change as a result of two distinct influences. First, 
the local recurrent architecture intrinsic to motor cortex imposes a change, h(r(t)), based 
on the current firing rates. Second, brain regions outside motor cortex provide external 
input, u(t). Thus, the firing rates evolve according to d/dt r(t) = h(r(t)) + u(t). These firing 
rates control the muscle activation, m(t) = G(r(t)), through circuits in the lower motor 
centers, including the spinal cord. In turn, the muscles change the positions and 
velocities of the joint centers, x(t), through a function describing the musculoskeletal 
mechanics: d/dt x(t) = F(m(t),x(t)). Delayed sensory feedback from the arm ascends into 
the brain and influences the external inputs u(t), closing the loop. b, Generation of firing 
rate patterns if motor cortex were driven by strong recurrent dynamics. Under this 
possibility, changes in firing rate are dominated by recurrent dynamics, h(r(t)), arising 
from strong connections between neurons within motor cortex, while external inputs, u(t), 
have only a weak influence. The black line represents the neural trajectory, r(t). The light 
arrows in the background represent the vector field h(.). The bold red arrow represents 
this vector field evaluated at each point along the neural trajectory, r(t). The bold purple 
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arrows represent the external input, u(t), evaluated at each time point along the neural 
trajectory, r(t). c, Generation of firing rate patterns if motor cortex were driven by strong 
external inputs. Under this possibility, changes in firing rate are dominated by strong 
external inputs, u(t), while the recurrent dynamics, h(r(t)), have only a weak influence. d, 
Experimental setup. Head-fixed mice reached for a pellet of food following an acoustic 
cue during recording and optogenetic perturbation of cortical activity. e, Raw video, 
electrophysiological recording, and mouse behavior on a single trial. Three-dimensional 
hand trajectories and the timing of each waypoint in the behavioral sequence were 
extracted from video using computer vision methods. f, Spike raster plots and peri-event 
time histograms for four example neurons, centered on lift. g, Average z-scored firing 
rates and mean firing rates for all motor cortical neurons (n = 19 mice, n = 39 sessions, n 
= 843 neurons). During prehension, most neurons exhibited increases (39%) or 
decreases (37%) in spike counts around lift (rank sum test with Benjamini-Hochberg 
correction, q < .05). 
  
Figure 2: Motor cortex must generate a time-varying pattern throughout the movement. 
a, Firing rates of motor cortical neurons during optogenetic activation of inhibitory 
interneurons (left; VGAT-ChR2-EYFP mice), intratelencephalic neurons (center; Tlx3-
Cre X Ai32 mice), and pyramidal tract neurons (right; Sim1-Cre X Ai32 mice). b, 
Distribution of lift times on control (yellow), laser + cue (blue), and laser-only (magenta) 
trials for VGAT-ChR2-EYFP mice (left), Tlx3-Cre X Ai32 mice (center), and Sim1-Cre X 
Ai32 mice (right). The histograms show data only for trials where a lift occurred. The 
insets to the right of the histograms show the probability that a lift occurred within the 
first 500 ms following the cue. c, Neural population activity from lift -100 ms to lift +350 
ms on control (yellow) and laser (blue) trials, obtained using trial-averaged principal 
component analysis. Left, VGAT-ChR2-EYFP (n = 5 mice, n = 7 sessions, n = 144 
neurons). Center, Tlx3-Cre X Ai32 (n = 3 mice, n = 7 sessions, n = 99 neurons). Right, 
Sim1-Cre X Ai32 (n = 3 mice, n = 5 sessions, n = 94 neurons). d, Upper: spatial distance 
from the hand to the target when the motor cortex is briefly inactivated in the middle of a 
reach in VGAT-ChR2-EYFP mice. The target is defined to be the average hand position 
at the time of grab on control trials. Lower: neural distance from the current state of 
cortex to the target state, defined to be the average value of the GPFA factors at grab 
time on control trials. Circles indicate grab times, and the blue regions indicate laser-on 
periods. e, Left: decoding of hand velocity from motor cortical spiking between 0 and 200 
ms following the end of mid-reach optogenetic silencing. Each panel shows the decoded 
velocity in a single direction (forward, right, or up) for the dataset in d. Data are 
displayed only for test trials that were not used to train the decoder (see methods). 
Right: R2 values for decoded vs observed hand velocity for each dataset in which a mid-
reach perturbation was applied (n = 4 mice, n = 7 sessions). f, Left: distance between 
observed and decoded velocity profiles for all pairs of trials in the dataset in d. Each 
point is one pair of trials. A positive correlation indicates that pairs of trials with similar 
observed velocity profiles also have similar decoded velocity profiles. Right: rank 
correlation between pairwise distance in observed and decoded velocity profiles for each 
dataset. 
  
Figure 3: Distinct neural trajectories reflect the influence of different inputs. a, Hand 
trajectory for post-cortical-inactivation reaches in VGAT-ChR2-EYFP mice. Blue 
corresponds to trials in which a reach occurred within 700 ms following the end of the 
laser; time limits are -100ms to +425 ms from lift. Red corresponds to trials in which no 
lift occurred in the same window; because there is no lift, time limits are +100 ms to 625 
ms from the end of the laser. b, Neural population activity aligned to the end of the laser 
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for trials with (blue) and without (red) a post-laser reach. Time limits are 250 ms before 
the end of the laser through 250 ms after the end of the laser. c, Spatial (left) and neural 
(right) distance to target, centered on the end of the laser, for trials with (blue) and 
without (red) post-laser reaches. d, Schematic illustrating the conclusion that post-laser 
differences in neural trajectories implies a difference in external inputs. During the laser 
(dotted blue circle), the state of cortex has been set to the same value in trials with a 
reach, r+r(t), and trials without a reach, r-r(t). By the rDSM, the recurrent contribution to the 
dynamics, is also constant during the laser in the two conditions: r+r(t) = r-r(t). Thus, 
immediately following the end of the laser, differences in firing rate between the two 
conditions, r+r(t) and r-r(t), must be due to differences in external input, u+r(t) and u-r(t). e, 
Estimated difference in external inputs between reach and no reach conditions. The 
rDSM allows us to calculate the difference in inputs between the conditions, u+r(t) - u-r(t) 
(see methods). The difference for the first three dimensions of population activity (the 
first three principal component scores) are plotted. 
  
Figure 4: Strong external inputs drive the motor cortical pattern during reaching. a, 
Experimental schematic. One fiber was implanted in thalamus, and a second was 
positioned over motor cortex. b, Distribution of lift times on control trials (yellow) and on 
trials in which thalamus was inactivated for two seconds starting at the cue (green); n = 3 
mice (VGAT-ChR2-EYFP), n = 12 sessions. Right inset shows the probability of a lift 
within the first 500 ms following the cue for cortex and thalamus inactivation trials. c, 
Hand position in the upper direction centered on lift on control trials (light yellow) and 
mid-reach thalamic inactivation trials (black; green indicates laser on) for a single 
dataset. Dots indicate the start of the laser. d, Lift times for control trials (yellow), cortical 
inactivation (blue), and sequential inactivation of cortex and thalamus (green); n = 3 
mice (VGAT-ChR2-EYFP), n = 4 sessions. e, Firing rate Z-scores for all recorded 
neurons under inactivation of cortex alone (left) and sequential inactivation of cortex and 
thalamus (right); n = 3 mice, n = 4 sessions, n = 127 neurons. f, Population activity 
following the end of cortical inactivation for trials with cortical inactivation only (blue) and 
inactivation of thalamus after cortex (green). Plotting limits start 500 ms before the end 
of cortical inactivation and finish 500 ms after the cortical inactivation (blue trace) and 
500 ms after the thalamic inactivation (green trace). Circles indicate the end of the 
cortical inactivation, and the square indicates the end of the thalamic inactivation. g, 
Schematic illustrating the effects of thalamic inactivation following cortical inactivation. 
During the cortical inactivation, firing rates on trials in which the thalamus will be 
inactivated, r-th(t), and trials on which it will not be inactivated, r+th(t), start in the same 
initial state (dotted black circle). By the rDSM, the recurrent contribution is the same in 
the two conditions: h(r+th(t)) = h(r-th(t)). Following the end of the cortical inactivation, the 
neural activity in the two conditions diverges due to a difference in external input: u+th(t) ≠ 
u-th(t). h, Estimated difference in external inputs between thalamus inactivated, u-th(t), and 
not inactivated, u+th(t), conditions. The rDSM allows us to estimate the difference in inputs 
between the conditions, u+th(t) - u-th(t) (see methods). The difference for the first three 
dimensions of population activity (the first three principal component scores) are plotted. 
  
Figure S1: Schematic of experimental design and results. 
  
Figure S2: Summary of behavioral effects of optogenetic perturbations. a, Probability of 
a lift in each time bin for control (yellow), laser-only (magenta), and laser + cue (blue) 
trials for VGAT-ChR2-EYFP mice. The “no lift” bin corresponds to trials on which no lift 
occurred at any time in the trial. Time 0 corresponds to the start of the trial. b, Lift 
probabilities for Tlx3-Cre X Ai32 mice. c, Lift probabilities for Sim1-Cre X Ai32 mice. d, 
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Distribution of lift times for trials in which a lift occurred within 500 ms of either the cue 
(for control trials, yellow), or following the end of the laser (for laser + cue trials, blue, 
and laser only trials, magenta) in VGAT-ChR2-EYFP mice. On average, the time from 
the end of the laser to a reach (on perturbation trials) was shorter than the time from the 
cue to a reach (on control trials). e, Distribution of lift times from cue or laser end in Tlx3-
Cre X Ai32 mice. f, Distribution of lift times from cue or laser end in Sim1-Cre X Ai32 
mice. 
  
Figure S3: Behavior and neural population activity during reaches on control trials and 
reaches following the end of motor cortical perturbations. a, Single-trial neural activity on 
control (yellow) and laser (blue) trials estimated using GPFA in an example dataset from 
a VGAT-ChR2-EYFP mouse. Each panel shows one of the first three GPFA factors. b, 
Single-trial hand trajectories for the same dataset. c, Peri-lift firing rate Z-scores for 
control reaches (left) and post-laser reaches (right) from all neurons recorded in VGAT-
ChR2-EYFP mice. d, Left: spatial distance from hand to target on control and laser trials, 
centered on grab, for the dataset in a and b. Right: neural distance from population state 
to target state, estimated using Gaussian Process Factor Analysis (GPFA). e, Average 
spatial (left) and neural (right) distance to target on control (yellow) and laser (blue) trials 
for Tlx3-Cre X Ai32 mice. f, Average spatial (left) and neural (right) distance to target on 
control (yellow) and laser (blue) trials for Sim1-Cre X Ai32 mice. g, Average neural 
distance to target for all VGAT-ChR2-EYFP datasets, obtained using GPFA with a 
number of dimensions ranging from 3-7; n = 5 mice, n = 7 sessions. h, Average neural 
distance to target for all VGAT-ChR2-EYFP datasets, obtained using firing rate distance 
over a range of smoothing bandwidths. 
  
Figure S4: Comparison of the direction of neural trajectories for post-laser reaches with 
the direction of control trajectories, and with the direction to the initial cortical state on 
control trials. a, Explanation of the analysis method. We represent the population 
trajectory on control trials, rc(t), and laser trials, rl(t), using the first six principal 
component scores, which account for 98%, 99%, and 97% of the variance on control 
trials for VGAT, Tlx3, and Sim1, respectively. For each time point along the peri-lift 
neural trajectory rl(t) for post-laser reaches, we obtain the direction of the neural 
trajectory by computing the derivative and dividing by the norm of the derivative (blue). 
We perform the same calculation for the control trajectory rc(t) (yellow), and also 
compute the direction from the neural state in the laser trajectory to the initial control 
state (red). We then compare the direction of the laser trajectory with the control 
direction and the direction to the initial control state by taking the inner product with 
each. b, Left: neural population trajectories (first two principal components) for control 
(yellow) and post-laser (blue) reaches in VGAT-ChR2-EYFP mice. The direction of the 
trajectories for control (yellow arrows) and laser (blue arrows) trajectories are shown, 
along with the direction from the laser trajectory to the control initial state (red arrows). 
Right: similarity (inner product) between the direction of the laser trajectory and the 
direction of the control trajectory (yellow curve), and similarity between the direction of 
the laser trajectory and the control initial state (red curve). c, As in b, but for Tlx3-Cre X 
Ai32 mice. d, As in b, but for Sim1-Cre X Ai32 mice. 
  
Figure S5: Decoding of hand velocity from motor cortical activity on control and post-
perturbation reaches. a, Left: scatterplots of decoded vs observed hand velocity in the 
forward, right, and upward directions on control reaches in VGAT-ChR2-EYFP mice in 
the example dataset from fig. E3a-b. Only testing trials not used for training the decoder 
were used. Right: R2 values for the regression of observed on decoded velocities for 
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control reaches in each VGAT-ChR2-EYFP dataset having at least two post-laser 
reaches (n = 4 mice; n = 6 sessions). b, Left: scatterplots of decoded vs observed hand 
velocity for post-laser reaches in the dataset from a. Right: R2 values for the regression 
of observed on decoded velocities for post-laser reaches in each VGAT-ChR2-EYFP 
dataset. c, decoding performance for control vs laser. d-f, Decoding results for control 
and post-laser reaches, as in a-c, but for experiments in Tlx3-Cre X Ai32 mice (n = 3 
mice; n = 7 sessions). g-i, Decoding results for control and post-laser reaches, as in a-c, 
but for experiments in Sim1-Cre X Ai32 mice (n = 2 mice; n = 3 sessions). 
  
Figure S6: Variability of firing rates during optogenetic perturbations. a, Standard 
deviation of firing rates across trials during laser stimulation in VGAT-ChR2-EYFP mice. 
The black curve is the standard deviation (over trials), averaged over all neurons. Error 
bars show standard error of the mean. Identified inhibitory neurons, which exhibited a 
firing rate increase during the laser, were excluded. Smoothing was applied with a 50 ms 
Gaussian kernel for each trial. b, Standard deviation of firing rates across trials during 
laser stimulation in Tlx3-Cre X Ai32 mice, as in a. Because it wasn’t possible to identify 
inhibitory neurons, all cells were included in this calculation. c, Standard deviation of 
firing rates across trials during laser stimulation in Sim1-Cre X Ai32 mice, as in a. 
Because it wasn’t possible to identify inhibitory neurons, all cells were included in this 
calculation. d, Standard deviation of firing rates across trials during mid-reach laser 
stimulation in VGAT-ChR2-EYFP mice, as in a. Identified inhibitory neurons were 
excluded. Because of the short duration of the stimulus (100 ms), the spike trains were 
smoothed with a 10 ms Gaussian kernel. 
  
Figure S7: Post-laser distance to grab for trials with and without a post-laser reach in 
VGAT-ChR2-EYFP mice. a, Laser-offset centered spatial (above) and neural (below) 
distance to target for all datasets; n = 4 mice, n = 6 sessions. One dataset was excluded 
because no post-laser lifts occurred. The neural state was computed using GPFA with 
five latent dimensions, and the target state was defined to be the average state at grab 
on control trials. b, Upper: difference between average spatial distance to grab for reach 
and no reach trials for each dataset (n = 6). Lower: difference between average neural 
distance to grab for reach and no reach trials for each dataset. 
  
Figure S8: Effect of mid-reach thalamic perturbation on hand trajectory in VGAT-ChR2-
EYFP mice. a, Difference in hand elevation between mid-reach perturbation trials and 
control trials for each dataset. The example dataset shown in fig. 4c is marked with the 
blue arrow. b, P-values from rank sum tests at each time point comparing the upward 
hand position on control and mid-reach thalamic inactivation trials; n = 4 mice, n = 6 
sessions. 
  
Figure S9: Sequential inactivation of cortex and thalamus. a, Fraction of trials with lifts in 
each epoch for control trials (yellow), cortical inactivation only (blue), and sequential 
inactivation of cortex and thalamus (green). b, Lift-locked neural population activity from 
lift -100ms to lift +350 ms on control (yellow), inactivation of cortex (blue), and sequential 
inactivation of cortex and thalamus trials (green), obtained using trial-averaged principal 
component analysis; n = 3 mice, n = 4 sessions, n = 127 neurons. c, Firing rates and 
spike rasters for an example cortical neuron on control trials (yellow), cortical inactivation 
(blue), and sequential inactivation of cortex and thalamus (green). 
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On interruption trials, we briefly fix r(t) to a constant of 0 in the middle of a 
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