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Abstract 36 

The increasing impairment of lotic ecosystems has promoted a growing effort into assessing their 37 

ecological status by means of biological indicators. While community-based approaches have 38 

proven valuable to assess ecosystem integrity, they mostly reflect long-term changes and might not 39 

be suitable for tracking and monitoring short-term events. Responses to rapid changes in 40 

environmental conditions have been rarely studied under natural conditions. Biomarkers offer the 41 

benefit of integrating biological responses at different time scales. Here we used a field experiment 42 

to test how the synthesis of heat shock protein 70 (HSP70) and Haemoglobin (Hb) in laboratory-43 

reared larvae of Chironomus riparius (Diptera, Chironomidae) were influenced by short-term 44 

changes to water temperature and oxygen concentration in a lowland stream. Our aim was to 45 

determine whether HSP70 mRNA expression and Hb content could be used as an in situ “early 46 

warning system” for freshwater habitats undergoing environmental change. HSP70 exhibited a clear 47 

response to changes in temperature measured over a one-day period, confirming its suitability as an 48 

indicator of environmental stress. Hb concentration was related to oxygen concentration, but not to 49 

temperature. Our findings support the hypothesis that depletion in oxygen induces Hb synthesis in 50 

C. riparius larvae. Because tolerance to low oxygen is not only related to total Hb, but also to a 51 

more efficient uptake (binding to Hb, e.g. Bohr effect) and release of oxygen to the cell (Root 52 

effect), we cannot discern from our data whether increased efficiency played a role. We suggest that 53 

C. riparius is a suitable model organism for monitoring sub-lethal stress in the field and that the 54 

approach could be applied to other species as more genomic data are available for non-model 55 

organisms. 56 

 57 

Introduction 58 

 59 

Streams and rivers are among the most threatened ecosystems, having been modified globally by 60 

catchment land-use changes, water abstraction, channelization, pollution and invasion of alien 61 

species (Vörösmarty et al., 2010; Dudgeon et al., 2006). Additionally, climate change is expected to 62 

alter hydrology and temperature regimes with severe effects on organisms and ecosystem functions 63 

(Ormerod and Durance 2012; Li et al., 2012; Floury et al., 2013). This increasing impairment of 64 

lotic ecosystems has promoted a growing effort into assessing their ecological status by means of 65 

biological indicators and sentinel species (Friberg, 2014). The classification of the ecological status 66 

of rivers is officially based on the assemblage structure of key taxonomic groups (e.g., Hering et al., 67 

2003; Traversetti et al., 2015). While assemblage-based approaches have been proven valuable in 68 

the assessment of ecosystem integrity (Bae et al., 2014), they mostly reflect long-term changes, 69 
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associated with the local extirpation of sensitive taxa and overall changes in community 70 

composition. This approach may not be suitable for identifying and monitoring the effects of short-71 

term events such as droughts and floods or other sub-lethal episodic events, whose frequency and 72 

magnitude is expected to increase in the near future (Ledger and Milner 2015). Biomarker assays 73 

(i.e. non-lethal responses of biological systems) are often used in eco-toxicological studies to assess 74 

the effects of pollutants, but their potential for tracking environmental change in the field has 75 

received little attention (Traversetti et al., 2017). Ideally, integrating indicators in a hierarchical 76 

fashion, from sub-organismal to organismal, population and community levels (Sures et al., 2015) 77 

should improve the assessment of ecosystem health over multiple spatio-temporal scales 78 

(Cajaraville et al., 2000; Lagadic et al., 2000; Colin et al., 2016). 79 

 80 

A promising approach is to use multiple indicators of stress in organisms (Frank et al., 2013). 81 

Multiple biomarkers may produce the benefit of integrating biological responses at different time 82 

scales and levels of organisation (Den Besten, 1998; Lagadic et al., 2000; Scalici et al., 2015). Two 83 

potential biomarkers for measuring sub-lethal effects in stream macroinvertebrates are heat shock 84 

proteins (HSP) and haemoglobin (Hb). HSP70 is a set of chaperon proteins involved in ensuring the 85 

correct folding and unfolding of proteins, and its expression is rapidly regulated by changes in 86 

physical (i.e. temperature) and chemical conditions (Lencioni et al., 2009; Lee et al., 2006), but it is 87 

not affected by handling stress (Sanders, 1993). The expression of HSP70 is therefore considered a 88 

short-term “early warning” indicator of environmental changes (Yoshimi et al., 2009; Folgar et al., 89 

2015). For example, Lencioni et al (2013) observed an increase in HSP70 expression after 1h of 90 

heat stress at 26 °C in a cold-adapted non-biting midge (Diptera, Chironomidae) larvae.  91 

 92 

Chironomidae larvae can be abundant in degraded freshwater habitats, and are thus considered 93 

indicators of poor water quality and early colonizers after large-scale disturbances (Serra et al. 94 

2017). Resistance and resilience of chironomids is often attributed to the presence of hemoglobin 95 

(Hb), which allows them to tolerate low oxygen concentrations (Moller Pillot, 2009). In 96 

Chironomus riparius, Choi et al. (2001) observed a 151% increase in total Hb after 24 hours of 97 

hypoxia. Chironomidae larvae have been reported to secrete up to 16 different Hb types (Choi and 98 

Ha, 2009; Green et al., 1998). Such diversity of Hbs with specific binding properties allows for a 99 

fine-tuned loading and unloading of O2 that regulates its delivery to specific tissues under variable 100 

environmental conditions (Choi and Ha, 2009; Ha and Choi, 2008; Weber and Vinogradov, 2001).  101 

 102 
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We used a field experiment to test how HSP70 expression and Hb production were influenced by 103 

short-term changes to temperature and oxygen concentration in a lowland stream. Laboratory-104 

reared larvae of Chironomus riparius (Diptera, Chironomidae), a widespread species considered a 105 

model organism in aquatic toxicology (Lee et al., 2006; Lencioni et al., 2009; Morales et al., 2011; 106 

Marinkovic et al., 2011), were placed in a stream and sampled over a period of 1 to 8 days, while 107 

experiencing rapid variation in temperature and oxygen concentration.  108 

 109 

Methods 110 

 111 

The study was carried out in the lowland stream Groote Molenbeek in Limburg, Netherlands. In 112 

June 2010, two experimental reaches (upstream, downstream) were designated along the stream, 113 

each ca. 50 m in length and separated by ca. 200 m. In July 2010 the upstream and downstream 114 

reaches were separated by an artificial dam and a by-pass was constructed (Fig. 1a, b). The aim was 115 

to simulate summer drought conditions in the downstream reach, e.g., reduced water flow, reduced 116 

oxygen concentration, and increased water temperature. Experiments were performed in the 117 

upstream reach in June, prior to dam construction, and in both upstream and downstream reaches in 118 

August, after dam construction. No experiment was conducted in the downstream reach in June 119 

because abiotic conditions were nearly identical to those in the upstream reach. In August, heavy 120 

rainfall caused large and rapid variations in oxygen and water temperature in both reaches. While 121 

this event disrupted the desired effect of the experimental drought, it provided the opportunity to 122 

quantify short-term responses to sub-lethal environmental change in all reaches. Therefore, we did 123 

not compare control and experimental reaches, but rather we measured the physiological responses 124 

of C. riparius to the environmental changes experienced in situ. The following environmental 125 

variables were measured each day at 08:00 throughout the sampling periods in June and August: 126 

Temperature (°C), dissolved oxygen (mg O2 l-1), conductivity (µS cm-1), and pH (measured with a 127 

Multi 340i/SET immersion probe WTW, Weilheim, Germany), water depth (m) and flow velocity 128 

(m sec-1) (measured using a 2030 flow-meter; General Oceanics, Miami, USA). 129 

 130 
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 131 
Figure 1. Study site. (a) overview of experimental reaches and dam position on the River Grote 132 

Molenbeek (51°23’30.79” N 6°2’31.89” E) (Sevenum, NL); (b) schematic view of dam, by-pass, 133 

upstream (U) and downstream (D) sites. 134 

 135 

 136 

Chironomus riparius individuals were obtained from a permanent laboratory population at the 137 

Department of Aquatic Ecotoxicology in Frankfurt am Main, Germany. The single origin 138 

presumably minimized the genetic diversity among individuals (Nowak et al., 2012). Eggs were 139 

shipped to the IGB in Berlin, and after hatching, larvae were reared in aquaria for 4 months prior to 140 

the experiment according to the OECD (2004) guidelines. Laboratory aquaria were filled with fine 141 

quartz sand as substrate. Aquaria were constantly aerated and kept in a climate chamber in 142 

controlled conditions (20 °C, light:dark 16h:8h). Larvae were fed with commercial TetraMin® fish 143 

food (Tetrawerke, Melle, Germany). Mesh cages (16 x 12 x 12 cm; mesh: 0.2 mm; Fig. 2a) were 144 

designed ad-hoc from aquarium isolation chambers (Hagen Marina, Montreal, Canada) and used to 145 

transfer C. riparius larvae from the laboratory to the field and to introduce larvae into the 146 
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experimental reaches. This procedure enabled rapid sample collection, thus minimising handling 147 

stress. 148 

 149 

At the start of experiments, 25 mesh cages, with 100 larvae each (third and fourth instar), were 150 

placed on the stream bottom (Fig. 2b) in each reach (upstream in June, upstream and downstream in 151 

August). Fourth-instar larvae were used for HSP70 expression analysis (collected after 24, 96 and 152 

192 hours of exposure) and Hb analyses (24, 48, 96 and 192 hours of exposure; sample sizes in 153 

Appendix 1). Larvae were removed from cages with forceps, placed in cryo vials (Eppendorf), 154 

immediately placed in liquid nitrogen and stored at -80°C until analysis.  155 

 156 

 157 
 158 

Figure 2. Experimental steup in the stream: (a) Chironomus riparius experimental cages (16 x 12 x 159 

12 cm), and (b) their positioning on the river bed in a 100 x 250 cm are in upstream and 160 

downstream sites (see Fig. 1). 161 

 162 

Total RNA was extracted from 7 individuals per time point and reach (n = 63; Appendix 1) using a 163 

Rneasy Mini kit (Qiagen, Hilden, Germany) with on-column DNase digestion (Trubiroha et al. 164 

2009). RNA concentration was measured using a Nanodrop ND-1000 (Thermo Fisher Scientific, 165 

Darmstadt, Germany). Reverse transcription was carried out with Affinity Script transcriptase 166 

(Agilent/Stratagene, Waldbronn, Germany). Primers for HSP70 and ß-actin (Appendix 2) were 167 

designed using data from Park et al. (2010) and Morales et al. (2011) and specificity was confirmed 168 

by direct sequencing. Quantitative PCR was carried out with a Mx3005 (Agilent/Stratagene) using 169 

hot start polymerase (Phire Taq II, Life Technologies) and SYBR Green in a 20 µL reaction volume 170 

(2 µL diluted cDNA, 375 nM of each primer, 1x Taq buffer, 2 mM MgCl2, 0.5 mM each dNTP, 0.5 171 

fold diluted SYBR-Green I solution, 1 U polymerase) under the following conditions: 98°C initial 172 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 16, 2018. ; https://doi.org/10.1101/266528doi: bioRxiv preprint 

https://doi.org/10.1101/266528


denaturation for 4 min, followed by 40 cycles of 98°C denaturation for 20 s, 62°C primer annealing 173 

for 15 s, and 72°C extension for 20 s. PCR efficiencies were determined in triplicate with a dilution 174 

series of pooled cDNA (ß actin 99.6%; HSP70 98.4%). All samples were determined in duplicate. 175 

Expression was determined by the comparative ∆∆CT method (Pfaffl, 2001) with ß actin used as a 176 

baseline (housekeeping) gene considering a calibrator sample (pooled cDNA) and correction for 177 

efficiency. Specificity of amplification was monitored by melting curve analysis. 178 

 179 

Total Hb was measured in nine individuals per time point and reach (n=108; Appendix 1) using the 180 

cyanomethemoglobin method with a diagnostic haemoglobin reagent (DiaSys, International, 181 

Holzheim, Germany) as described by Wuertz et al. (2013). All samples were measured twice with 182 

an Infinite 200 microplate reader (Tecan, Mainz-Kastel, Germany) at 540 nm and concentration was 183 

calculated using a standard dilution series (120 mg/L haemoglobin standard, Diaglobal GmbH, 184 

Berlin, Germany). Total Hb was normalized to the total protein concentration determined by the 185 

Bradford (1976) method (RotiQuant Kit, Germany) as µg Hb/ µg total proteins.  186 

 187 

Linear mixed-effect (LME) models were used to analyse variation in HSP70 expression and Hb 188 

concentration in relation to variation in environmental conditions.  189 

After testing for collinearity using a Spearman test (also from among all the measured 190 

environmental variables, see Appendix 3) the model for both HSP70 and Hb initially incorporated 191 

T, O2 and changes in temperature (∆T) and oxygen (∆O2) as fixed factors. The latter two variables 192 

were calculated as the absolute change (i.e., increase or decrease) in T (°C) or O2 (mg O2 L-1) from 193 

the previous sampling time (every 24h). Model factors were then backward-selected using 194 

likelihood ratio tests against reduced models (without the fixed factor) (Zuur et al. 2009). Finals 195 

models included fixed factors ∆T, ∆O2  and T for HSP70 model and O2 for Hb model. Collection 196 

time nested in the reach-season (upstream-June; upstream-August; downstream-August) was 197 

considered as a random factor to account for repeated sampling. The variance explained by each 198 

model was calculated as marginal (R2m) (Nakagawa and Schielzeth, 2013) using the MuMln 199 

package (Barton 2016) for R vn 3.3.1 (R Core Team, 2015). Residuals were tested for normality 200 

with a Wilk-Shapiro test and qq-plots, and scores were log-transformed to remove 201 

heteroscedasticity if necessary.  202 

 203 

  204 
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Results 205 

 206 

Initial environmental conditions in June (Fig. 3) were assumed to be identical between the upstream 207 

and downstream sites in August due to their close proximity and the lack of a dam. In August, mean 208 

water flow, channel depth, dissolved oxygen, and conductivity varied after placement of the dam 209 

and after heavy rain events (Appendix 4b, c, e, f). Flow, depth, and conductivity all decreased in 210 

August and varied between reaches (Appendix 4c, f), whereas oxygen increased substantially in the 211 

upstream reach and less in the downstream reach, compared to June (Fig. 3a, Appendix 4b). HSP70 212 

expression in the upstream reach in June was stable after 24 and 96 hours but increased at 192 hours 213 

in June. Expression peaked at 96 hours in both reaches in August, following a rapid change in T 214 

(Fig. 3b). The mixed effect model combining all data from June and August indicated significant 215 

positive relationships between HSP70 expression and change in temperature (ΔT) and oxygen 216 

(ΔO2) over the previous 24 hr (Table 1).  217 

 218 

Table 1. Results of linear mixed effect (LME) models for the relative heat shock protein 70 219 
(HSP70) expression (standardized to the calibrator) and hemoglobin (Hb) response to 220 
environmental changes, including marginal variance (R2m), estimate of the fixed effects (Estim), 221 
standard error (SE), degrees of freedom (dF) and t-statistic (t-value and factor significance). Fixed 222 
factors: change in Oxygen (∆O2, mg O2 l-1); absolute change in T (∆T, °C); Temperature (T, °C); 223 
oxygen (O2, mg O2 l-1). * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 224 

 225 
 226 
 227 
 228 
 229 
 230 
 231 
 232 
 233 
 234 
 235 
 236 
 237 
 238 

 239 

 Factors Estim SE dF t-value p 

HSP70 (fold-increase) Intercept -1.127 0.844 5 -1.33 0.239 

(R2m= 0.43) ∆O2 0.139 0.052 5 2.65 0.045* 

 ∆T 0.227 0.071 5 3.17 0.025* 

 T 0.111 0.046 5 2.42 0.060 

Hb (µg Hb/ µg total prot) Intercept 0.716 0.089 18 8.01 <0.001*** 

(R2m= 0.34) O2 -0.044 0.012 20 -3.73 0.001*** 
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 240 
Figure 3. Environmental variables and physiological responses of Chironomus riparius larvae: (a) 241 

changes in oxygen concentration (solid line) and temperature (broken line) as measured at 08:00 242 

each day during the experiments in June and August and at 1 hour before sample collection (hours 243 

indicated in bold on the y-axis); (b) mean (± SE) relative heat shock protein 70 (HSP70) expression 244 

standardized to the calibrator at 24, 96, and 192 hours; (c) mean (± SE) haemoglobin (Hb) 245 

concentration at 24, 48, 96 and 192 hours. 246 

 247 
  248 
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Hb concentrations in the upstream reach remained similar after 24, 48, and 96 hours and were 249 

lowest after 192 hours in June, after a mild increase in dissolved O2. (Fig. 3c). In August, Hb 250 

declined steadily over 24, 28, and 96 hours in both reaches. In the upstream reach, Hb continued to 251 

decline after 192 hours during relatively stable O2 levels, but increased markedly in the 252 

downstream reach following a peak and subsequent rapid decline in O2 after in 192 hours (Fig. 3c). 253 

The mixed effect model indicated that Hb content increased with decreasing oxygen concentration 254 

(O2) (Table 1).  255 

 256 

Discussion 257 

We applied an eco-toxicological stress-response approach to a field experiment in order to examine 258 

how changes in water temperature and dissolved oxygen concentration influenced two 259 

physiological biomarkers in a model organism. Our markers were chosen to reflect short-term 260 

(HSP70 mRNA expression) and medium-term (blood Hb content) responses to environmental 261 

changes. Contrary to conventional bio-assessment programmes, where the presence or abundance of 262 

different aquatic organisms are used as indicator of environmental change or degradation, our aim 263 

was to determine whether pysiological biomarkers in a model organism could be used in situ as an 264 

“early warning system” for freshwater habitats undergoing environmental change. Assemblage-265 

level responses may manifest only at a later stage of environmental degradation, thus hindering 266 

prompt mitigation actions. Many studies of stress response are conducted in the laboratory and 267 

often under conditions unlikely to represent those of natural habitats (see Sures et al. 2015). Our 268 

intent was to extend this approach to realistic field conditions. In addition, we used a model 269 

organism group (Chironomidae) that is almost ubiquitous in aquatic habitats and is among the first 270 

colonizers after disturbance events such as droughts or floods (Calle-Martinez and Casas, 2006;  271 

Langton and Casas, 1998;  Marziali et al., 2010;  Punti et al., 2007). HSP70 exhibited a clear 272 

response to changes in temperature (and partially in oxygen) measured over a one-day period prior 273 

to sampling. The expression of HSP70 is known to be related to acute cellular stresses (Morimoto 274 

and Santoro 1998), and Feder and Hofmann (1999) observed the presence of HSP-inducing 275 

microhabitats (e.g. shallow or stagnant water systems) where mild environmental variations (e.g. 276 

temperature) induced variations in HSP expression. HSP70s have also been reported reliable means 277 

of detecting such stress (Lencioni et al., 2009, Foster et al., 2015). This may be due to the fact that 278 

in dynamic systems such as small waterbodies, environmental parameters like temperature and 279 

oxygen vary slightly but continuously, causing an increase of the long-term memory formation as 280 

an adaptive response of the organisms (Foster et al., 2015). Memory formation increases synaptic 281 

efficacy and improves the adaptive responses to stress conditions including the basal mRNA 282 
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transcriptional system (Stork and Welzl, 1999, Monari et al., 2011) in which HSP70 are also 283 

included. This further supports the suitability of the HSP70 as multi-stressors indicator.  284 

 285 

In this study, haemoglobin concentration was related to oxygen concentration, but not to water 286 

temperature. Results from other studies indicate that the tolerance of C. riparius larvae to low levels 287 

of dissolved oxygen is associated with increased heamoglobin in their hemolymph (Weber, 1980; 288 

Choi et al., 2000), which allows sustaining aerobic and anaerobic metabolism (alcoholic 289 

fermentation) at the same time for short periods (Frank, 1983). Under hypoxic conditions, Hb 290 

synthesis is stimulated and used for aerobic metabolism (Choi et al., 2000; Lee et al., 2006; Rossaro 291 

et al., 2007). This process likely occurred in our experiment where the observed depletion in 292 

oxygen concentration induced synthesis of Hb in C. riparius larvae. Nonetheless, tolerance to low 293 

oxygen is not only related to total Hb, but also to a more efficient uptake (binding to Hb; Bohr 294 

effect) and release of oxygen to the cell (Root effect). However, we cannot discern from our data 295 

whether increased efficiency played a role. The synthesis of HSP70 and Hb are likely linked, 296 

because temperature and oxygen concentration are closely interconnected. Our results suggest that 297 

the responses of HSP70 and Hb to environmental change represent an integrated process in which 298 

HSP70 increased as a direct consequence of increased temperature. Subsequently, increased 299 

temperatures likely led to a decline in Oxygen concentration that promoted additional synthesis of 300 

Hb. 301 

 302 

In conclusion, we suggest that the sub-lethal stress response at multiple markers make C. riparius a 303 

suitable biological tool for the assessment of short-term, sub-lethal effects of environmental change 304 

in the field. The different temporal scales involved in the response of the two markers indicate that 305 

a variety of impacts could be assessed prior to local extinction. Because the frequency of extreme 306 

hydrological events is likely to increase in the future owing to global climate change, ‘early-307 

warning’ indicators could allow the rapid assessment of environmental degradation. As more 308 

genomic data are made available, our approach could be extended to other taxonomic groups with 309 

different environmental requirements and additional genetic markers.  310 

 311 
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Supplementary material 492 

 493 
Appendix 1. Sample sizes (number of individual C. riparius) for each analysis in the study given 494 
for each time point of collection in hours (h), with HSP70 = heat shock protein 70 mRNA 495 
expression; Hb = haemoglobin concentration.  496 
 497 

Reach Marker Number of samples (n) 
  24h 48h 96h 192h total 
June – upstream HSP70 7  7 7 21 
 Hb 9 9 9 9 36 
       
August – upstream HSP70 7  7 7 21 
 Hb 9 9 9 9 36 
       
August – downstream HSP70 7  7 7 21 
 Hb 9 9 9 9 36 

 498 
 499 
 500 
 501 
 502 
  503 
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Appendix 2. Newly designed forward (F) and reverse (R) primer sequences used for the RT- PCR 504 
for heat shock protein 70 (HSP70) and β actin gene expression in C. riparius. 505 
 506 
Primer Sequence 
HSP70 F 5’-CATGTGAACGAGCCAAGAGA-3’  
HSP70 R 5′-TCGAGTTGATCCACCAACAA-3′ 
β actin F 5’-GATGAAGATCCTCACCGAAC-3’  
β actin R 5’-CCTTACGGATATCAACGTCG-3’ 
 507 
  508 
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Appendix 3. Statistics from Spearman correlation test (scores under diagonal) and p-values (over 509 
diagonal) for correlated environmental variables: oxygen (O2, mg O2 l-1); temperature (T, °C); 510 
conductivity (Cond, µS cm-1); pH; water flow (Flow, m s-1); change in Oxygen (∆O2, mg O2 l-1); 511 
changes in T (∆T, °C). 512 
 513 
 514 
  O2 T Cond pH Flow ΔO ΔT 
O2    * *** *   
T        ** 
Cond -0.489    ** ***   
pH 0.664  -0.597   **   
Flow -0.447  0.750 -0.530     
ΔO         
ΔT  0.565       
 515 
 516 
 517 

518 
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 Appendix 4. Environmental variables (panels a to f) (median, first and third quartile, minimum and 519 
maximum) from data collected every 24 hours at 08:00 from 24h to 192 h of the experiments) in the 520 
two reaches in June and August. 521 
 522 

 523 
 524 
 525 
 526 
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