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Abstract 
Background ​Estrogen Receptor-alpha (ER) is the main driver of ~75% of all breast cancers.              

Upon stimulation, ER forms a complex on the chromatin at enhancers and promoters that leads               

to increased transcription of nearby genes. A critical feature of ER action is a cyclical binding                

pattern with a period of 90 minutes. However, analysis of ER binding dynamics has so far been                 

restricted to the promoters of individual target genes. It is unknown how cyclical ER binding               

occurs genome-wide and whether this phenomenon is influenced by ER cofactors.  
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Results ​Here, we present a novel approach to dissect the regulation of ER activation based on                

network analysis of time-course genome-wide DNA binding data. We measured ER binding by             

ChIP-Seq at three timepoints (0, 45, 90 minutes) and developed an approach, called VULCAN,              

to overlay this binding information on a gene coexpression network. We benchmarked our             

approach in a comparison study and confirmed that it rediscovered known components of the              

ER signalling axis. Using VULCAN, we found that the activation ER results in the              

reprogramming of the transcription factor GRHL2 and independently validated this result by            

ChIP-seq and quantitative proteomics (qPLEX-RIME). Further, E2-responsive GRHL2 binding         

was found to be concurrent with an ER-responsive increase in eRNA transcription, and we              

show GRHL2 negatively regulates transcriptional activity at these sites. 

Conclusions ​We present a general framework to predict key regulatory proteins from            

differential transcription factor binding data, which uncovered that activation of the ER leads to              

reprogramming of GRHL2.  
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Background 

Breast cancer is the most common form of cancer in women in North America and Europe. The                 

majority of breast cancers are associated with the deregulation of Estrogen Receptor-alpha            

(ER), which drives the growth and proliferation of the tumor. ER is the key prognostic marker in                 

the clinic and the target of the first lines of treatment in estrogen receptor positive (ER+) tumors.                 

ER-targeting pharmacological strategies include SERMs (selective estrogen receptor        

modulators) and SERDs (estrogen receptor degraders) e.g. Tamoxifen and Fulvestrant, or           

aromatase inhibitors that block the production of estrogens in the body ​[1]​.  

 

The role of ER has been extensively studied genome-wide 

On activation, ER binds to promoter and enhancer regions containing Estrogen-Response           

Elements (ERE) ​[2] to stimulate the transcription of hundreds of genes ​[3,4]​. Gene expression is               

driven by both the recruitment of the basal transcription machinery to these loci and through               

longer range interactions ​[5]​. ​Analysis of ER-target genes showed that many are proliferative in              

function and drive the growth of the tumor ​[6] 

 

ER associates with a wide range of cofactors 

On the treatment of ER+ cells with estra-2-diol (E2), ER recruits several cofactors to form a                

complex on the chromatin. FOXA1 is of particular interest as the protein shares nearly 50% of                

its genomic binding sites with ER and has been shown to operate as a pioneer factor before ER                  

activation ​[7]​. It is through FOXA1 and other cofactors ​[8,9]​, e.g. SRC-1, that ER is able to                 

recruit RNA Polymerase II at the gene promoter sites in order to initiate transcription ​[10]​.  
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The binding of ER to chromatin is highly dynamic 

Early studies have shown that after stimulation with E2, ER binding to EREs can occur within                

minutes ​[11]​. Maximum ER occupancy at promoters of target genes such as CTSD and TFF1 is                

achieved after 45’ in MCF7 cells. Roughly 90’ after estradiol treatment, ER is partially released               

from the promoters of the target gene ​(Figure 1A)​, only to reoccupy the site again at 135’ and                  

release them at 180’, in a 45’ phase cyclical manner ​[12]​. The 90’ occupancy phase has been                 

shown to be independent of new protein synthesis, and is therefore thought to operate at the                

post-translational level. This ​cyclic, proteasome-mediated turnover of unliganded and liganded          

ERα on responsive promoters is an integral feature of estrogen signaling ​[13,14]​.  

 

Network analysis to infer TF activity 

Given the three features discussed above, ER is a prime target for systems biology. Usage of                

gene regulatory networks to analyze biological systems has witnessed an exponential increase            

in the last decade, due to the ease of obtaining genome-wide expression data ​[15–17]​.              

Recently, the VIPER approach to interrogate these network models has been proposed to infer              

transcription factor activity using the expression of a collection of their putative targets, ​i.e. their               

regulon ​[18]​. In the VIPER algorithm, gene-level ​differential expression signatures are obtained            

for either individual samples (relative to the mean of the dataset) or between groups of samples,                

and regulons are tested for enrichment.  

In our study, we propose an extension of the VIPER algorithm to specifically analyze TF               

occupancy in ChIP-Seq experiments. Our algorithm, called “​V​irt​U​a ​L ChIP-Seq ​A​nalysis through           

N​etworks” (VULCAN), uses ChIP-Seq data obtained for a given TF to provide candidate             

coregulators of the response to a given stimulus (​Figure 2 ​). The analysis is based on identifying                

differentially bound genes and testing their enrichment in the regulon of potential co-regulatory             
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factors. By applying VULCAN to ChIP-seq time-course data of ER activation, our study provides              

new temporal insights into ER cofactors on a genome-wide scale. 

Results  

The aim of our study is to identify key coregulators of the ER binding process and led to the                   

development of VULCAN, that infers changes in cofactor activity from differential ChIP-seq            

analysis using network analysis. An implementation of VULCAN in R is available on             

Bioconductor.org [​https://bioconductor.org/packages/release/bioc/html/vulcan.html ​] and the    

scripts to replicate our analysis are available as a supplementary Rmarkdown file. ​Unless             

otherwise specified, all p-values were Bonferroni-corrected.  

Network Inference 

We generated co-expression networks using the most recent implementation of ARACNe ​[19]            

on the METABRIC dataset ​[20] and the independent TCGA data set ​[21]​. Briefly, ARACNe              

generates gene networks by estimating putative regulatory interactions between transcription          

factors and target genes using mutual information between gene expression profiles. As an             

example, ​Figure 2C shows an ARACNe-inferred targets of ESR1. The sets of targets of each               

TF, its regulons, were merged in a genome-wide transcriptional regulation network, as shown in              

a minimal diagram in ​Figure 2D​.  

 

Regulatory network analysis to detect ER cofactors 

In order to understand which co-factors could be responsible for the temporal behavior of ER,               

we modified the VIPER algorithm ​[18] to perform master regulator analysis with differential             
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binding signatures. Master regulator analysis ​[22] is an algorithm developed to identify            

transcription factors whose regulon is enriched within a list of differentially expressed genes.             

VULCAN extends the VIPER approach to use differential binding profiles rather than differential             

expression profiles. In this way, VULCAN can test the enrichment of TF regulons in ER               

occupancy signatures derived from ChIP-Seq experiments (​Figure 2E​). 

Benchmarking VULCAN 

Comparing VULCAN’s Mutual Information and Partial Correlation networks 

VULCAN uses mutual information networks like VIPER ​[18]​. To test the robustness of the our               

approach to different underlying networks, we compared mutual information networks with           

partial correlation networks using different correlation thresholds. ​We generated several partial           

correlation networks from the TCGA data using the same input as the ARACNe network used               

by VULCAN. We tested the overlap of every partial correlation network with the ARACNe              

network using the Jaccard Index (JI) criterion (​Suppl. ​Figure 33 ​). ​Finally, we show how the               

Jaccard Index between partial correlation networks and the ARACNe network is always            

significantly higher than expected by selecting random network edges (​Suppl. ​Figure 34 ​). This             

confirms previous observations ​that partial correlation and mutual information networks are           

highly similar ​[23] 

 

Comparing VULCAN with ​alternative methods for target enrichment analysis 

We compared VULCAN’s GSEA approach with three independent methods previously applied           

to benchmark VIPER ​[18]​. ​The first implemented a t-test based method, which takes the targets               

of a TF and integrates their p-value in a specific contrast. The method is similar to VIPER but                  

involves a Fisher p-value integration step. The integrated test lacks stringency and results in              
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nearly all regulons as significantly enriched (​Suppl. ​Figure 35 ​). Second, we implemented a             

fraction of targets method, defining for every TF the fraction of their targets that are also                

differentially bound. This alternative to VULCAN ignores the MI strength of interaction and the              

individual strengths of differential bindings, reducing the resolving power of the algorithm            

(​Suppl. ​Figure 36 ​). Finally, we compared to a Fisher’s Exact Method which assesses the              

overlap between networks and significant differential binding. This method is too stringent (as             

observed in the original VIPER paper) ​[18] and even without p-value correction there are no               

significant results, even at low stringency. In short,our analysis demonstrates the low sensitivity             

of this method (​Suppl. ​Figure 37 ​). In summary all three alternative methods we tested (t-test               

based; fraction of targets method; and Fisher’s Exact Method) all resulted in reduced             

performance on our dataset compared to VULCAN.  

 

Comparing ​VULCAN with Online Tools (GREAT, ISMARA & ChIP-Enrich) 

To further validate our method, we compared the output of our GSEA analysis with different               

versions of promoter-enrichment approaches implemented by GREAT ​[24]​, ISMARA ​[25] and           

ChIP-Enrich ​[26]​. The VULCAN analysis shows a significant overlap in terms of significant             

pathways with the GREAT method (​Suppl. ​Figure 38 ​). ChIP-enrich computes enrichment for a             

number of TFs which are amongst the most significant in VULCAN, but it fails at identifying                

ESR1 as the top Transcription Factor affected by our experiment (​Suppl. ​Figure 39 ​). ISMARA              

succeeds at identifying ESR1 using a motif-based analysis, but does not identify other             

candidate binding TFs, as expected, being the experiment targeted at the estrogen receptor             

(​Suppl. ​Figure 40 ​). In summary, VULCAN outperforms both ChIP-Enrich and ISMARA.           

In-terms of pathway analysis VULCAN reassuringly provides significantly overlaps with GREAT           

while our network analysis contributes additional value through inference of TF factor activity. 
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VULCAN analysis of ER activation 

Differential Binding Analysis 

We performed four replicated ChIP-Seq experiments for ER at three timepoints: 0, 45 and 90               

minutes after estradiol treatment ​(Figure 1). The binding profile of ER at each time point was                

then compared between timepoints using differential binding analysis.  

Differential Binding Analysis (​Figure 1B,C​) identified 18,900 statistically significant         

binding events at 45 minutes (p < 0.05). We observed the previously reported reduction of ER                

binding at 90 minutes ​[13] on a genome-wide level (17,896 significant binding events), but with               

a smaller amplitude than previous gene-specific assays ​[14]​.  

We performed motif enrichment analysis (HOMER software) on ER binding sites 

detected by differential binding analysis. This analysis confirmed a strong enrichment for a 

single element, ERE, bound at both 45 and 90 minutes, with a corrected p-value of 0.0029 

(​Figure 3F​). When clustered according to peak intensity, samples cluster tightly in two groups: 

treated and untreated (​Suppl. Figures 2, 3 and 4 ​), but treatment at 45 and 90 minutes is 

detectably different on a genome-wide scale, as highlighted by Principal Component Analysis 

(​Suppl. Figures 5 and 6 ​). 

A potential cause for the smaller amplitude we observed in ER cycling may relate to the                

fact that ChIP-Seq is not inherently quantitative, and hence the typical normalisation strategies             

applied to ChIP-Seq data are likely to suppress global changes ​[27,28]​. We therefore validated              

the ER binding behavior with ChIP-qPCR (​Figure 1A​) and observed the same reduction in              

amplitude at specific binding events as was predicted by ChIP-seq. Another potential reason for              

the difference in amplitude was we did not treat ​α​-Amanitin prior to treatment with E2 ​[14] as                 

this perturbation would further separation the experimental condition from clinical interpretation ​. 
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VULCAN groups genes by temporal dynamics of ER binding  

We leveraged the information contained in mutual information networks to establish TF            

networks enriched in the differential binding patterns induced by estradiol. From the temporal             

comparison ER binding we established four classes of binding pattern: early responders,            

repressed transcription factors, late responders and candidate cyclic genes (​Figure 3 ​)​.   

Using VULCAN, we defined TF network activity of occupied regulatory regions (​Figure            

3A​) according to the binding of the ER within their promoter and enhancer regions (10kb               

upstream of the Transcription Starting Site). We define as early responders TFs whose network              

is upregulated at both 45 and 90 minutes (​Figure 3B​): these genes include AR, SP1 and                

CITED1. TFs with opposite behavior (namely, TFs whose negative/repressed targets in the            

ARACNe model are occupied by ER), or “repressed TFs” include GLI4, MYCN and RAD21              

(​Figure 3C​). ​Some TFs appear to have their targets bound at 45 minutes, but then unoccupied                

at 90 minutes. This “updown” behavior is consistent with the cyclic properties of certain              

components of the ER DNA-binding complex observed previously, and therefore we dubbed            

them “candidate cyclic TFs” (​Figure 3D​). We also define a “late responders” category,             

expecting to find TFs active at 90 minutes but not at 45 minutes. While this category exists, it is                   

just below the significance threshold at 45 minutes, and notably it contains both ESR1 and the                

known ESR1 interactor GATA3 (​Figure 3E​). 

 

Validating VULCAN results on independent data 
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We repeated the analysis in Figure 3A-E on independent data from TCGA (​Suppl. Figures              

16–20 ​). We again found enrichment for ESR1, again as a later responder. GATA3 was detected               

as a early responder, likely as a result of the METABRIC result being only slightly below                

significance threshold at 45 minutes. Notably PGR was shifted from an early responder to a late                

responder.  

To ensure the robustness of results we performed a joint analysis of data obtained from               

both networks. At 45 minutes (​Figure 4A​) and 90 minutes (​Figure 4B​) we identified robust               

candidates: specifically, ESR1, GATA3 and RARA networks, amongst others, were consistently           

occupied by ER in both time points. On the other hand, some genes, including HSF1 and                

GRHL2, were significantly repressed in the joint analysis. 

As a negative control, we used a different context ARACNe network, derived from the              

TCGA AML dataset. This network shows globally weaker enrichment scores and a weak             

positive correlation with the results obtained through breast cancer regulatory models (​Suppl.            

Figure 22 ​). 

 

Pathway analysis of regulatory region binding 

We performed a Gene Set Enrichment Analysis ​[29] and an associated Rank Enrichment             

Analysis ​[18] using the differential binding at gene regulatory regions (with time 0 as reference).               

Individual differential binding signatures for GSEA were calculated using a negative binomial            

test implemented by DiffBind ​[30]​. The collective contribution of differentially bound sites            

highlights several pathways ER-related pathways ​[31–33] (​Suppl. Figure 23 ​) in both the GSEA             

and aREA analyses. The strongest pathway upregulated pathway in both time points (​Table S2              

and S5 ​) was derived via RNA-Seq in an MCF7 study using estradiol treatment ​[32] confirming               

the reproducibility of our data set. 
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Validating VULCAN results by quantitative proteomics 

We tested the performance of VULCAN against a complementary experimental approach called            

RIME ​[34] combined with TMT ​[35] (qPLEX-RIME), which aims at identifying interactors of ER              

within the ER-chromatin complex. We generated ER qPLEX-RIME data from MCF7 cells            

treated with estradiol at both 45 and 90 minutes and compared this with the VULCAN dataset,                

with the aim of identifying TFs upstream of the observed differential binding (​Suppl. Figure 31 ​).               

We found known ESR1 interactors with both methods, namely HDAC1, NCOA3, GATA3 and             

RARA with positive Network Enrichment Score (NES) ​[18]​ and GRHL2 with a negative NES. 

The GRHL2 Transcription Factor 

In our analysis of ER dynamics the GRHL2 transcription factor stood out. In both the               

METABRIC and TGCA networks GRHL2 was significantly repressed, yet in our proteomics            

analysis the protein was significantly increased. ​Therefore we set out to validate experimentally             

GRHL2 as an ESR1 cofactor, possibly with repression properties for the ER complex 

Our analysis shows t​hat the genes occupied by the ER complex do not form part of the                 

GRHL2 regulon, using both TCGA-derived and METABRIC-derived regulatory models. Our          

analysis highlights the small overlap between the ESR1 (Estrogen Receptor) and GRHL2            

networks (​Suppl. ​Figure 28 ​), hinting at complementary signals not dependent on global            

network overlaps. In fact, there is merely a weak, positive correlation between ESR1 and              

GRHL2 expression in the TCGA breast cancer dataset (​Suppl. ​Figure 29 ​) and also in the               

METABRIC breast cancer dataset (​Suppl. ​Figure 30 ​). Furthermore, GRHL2 has a visibly lower             

variance than ESR1: it does not change significantly in different PAM50 subtypes, although it is               

lower in normal compared to malignant tissue.  
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The low overlap between networks and the low correlation in expression profiles could             

be explained by the fact that the GRHL2 role may not be carried out by its transcription, and                  

rather being controlled by other mechanisms like phosphorylation, subcellular localization or           

on-chromatin interactions. 

 

GRHL2 activity before and after stimulation with E2 

Differential ChIP-seq analysis of GRHL2 binding between 0 and 45 minutes indicated that             

GRHL2 binding is altered on treatment with E2 ​(Figure 5A)​. VULCAN analysis of the GRHL2               

differential binding showed a consistent Network Enrichment Score for both the TCGA- and             

METABRIC-derived networks for ER, but not for FOXA1 or GRHL2 ​(Figure 5B)​. Individual             

analysis of peaks show that typically ER promoter sites, e.g. RARa, were not the target of this                 

redistribution of GRHL2, as these sites were occupied by GRHL2 before E2 stimulation. We              

propose that GRHL2’s occupancy at these site is via a direct binding at FOXA1 sites as                

previously described ​[36]​. Motif analysis of the sites within increased GRHL2 occupancy            

showed enrichment for the full ERE (p-value = 1 x 10 ​-86​) and the GRHL2 binding motif (p-value                 

= 1 x 10 ​-31​).  

qPLEX-RIME analysis of GRHL2 interactions showed high coverage of the bait protein            

(>59%) and, in both the estrogen-free and ​estrogenic conditions, high levels of            

transcription-related protein interactors including HDAC1 (p-value = ​6.4 x 10 ​-9​), TIF1A (p-value =             

6.4 x 10 ​-9​), PRMT (p-value = ​6.4 x 10 ​-9​) and GTF3C2 (p-value = ​4.6 x 10 ​-9​). P-values given for                   

estrogenic conditions, estrogen-free conditions were comparable. Comparing the GRHL2         

interactome between estrogen-free and estrogenic conditions only identified ER as a           

differentially bound protein that was also enriched over IgG control. Activation of ER, therefore,              

does not alter the majority of GRHL2 protein interactions. 
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The specific nature of the detected ER-GRHL2 interaction suggests that ER does not             

regulate or interact with GRHL2 through the recruitment of alternative cofactors. This implies             

instead that ER recruits GRHL2 to certain genomic loci for a specific function. We therefore               

undertook a comparison of GRHL2 binding with public data sets. ​(Fig​ure 5C). ​Our analysis              

showed that GRHL2 sites that responded to E2 were enriched for ER binding sites (in               

agreement with our qPLEX-RIME data) and FOXA1 (compatible with either an ER interaction or              

the previously reported interaction with MLL3 ​[36]​). To establish therefore if the reprogramming             

of GRHL2 was primarily related to a transcriptional function or the previously described             

interaction with MLL3, we overlapped our GRHL2 data with that of published H3K4me1/3 ​[36]              

and P300 ​[37] cistromes. While H3K4me occupancy was consistent between conditions, we            

found P300 binding to be enriched at the E2 responsive GRHL2 sites. A more detailed analysis                

of the GRHL2 overlap with P300 sites showed the greatest co-occupancy of GRHL2/P300 sites              

was when both TFs were stimulated by E2 ​(Figure 5D). ​Moreover​, ​overlap of GRHL2 peaks               

with ER ChIA-PET data [ENCSR000BZZ] showed that the GRHL2 responsive sites were            

enriched at enhancers over promoters ​(Figure 5E). 

These findings suggested that the GRHL2-ER interaction was involved in transcription at            

ER enhancer sites. To explore this concept further, we investigated the transcription of             

enhancer RNAs at these sites using publicly available GRO-seq data ​[38] [GSE43836] ​(Figure             

5F). ​At E2 responsive sites​, ​eRNA transcription was strongly increased by E2 stimulation; by              

contrast, eRNA transcription was largely independent of E2 stimulation when the entire GRHL2             

cistrome was considered. Analysis of a second data set, GSE45822, corroborates these results             

(Suppl. Figure S92)​.  

Analysis of eRNA expression at the GREB1, TFF1 and XBP1 enhancers after            

over-expression of GRHL2 showed a visible decrease in eRNA production ​(Figure 6)​. The             
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reduction in eRNA levels was significant at both the TFF1 and XBP1 enhancers (p < 0.05,                

pair-sample wilcoxon test). Likewise, eRNA production after GRHL2 knockdown showed a           

moderate increase in eRNA levels at the TFF1, XBP1 and GREB1 enhancers ​(Suppl. Figure              

106). ​Combining data from all three sites results established the effect as significant (p = 0.04,                

one-tailed paired-sample wilcoxon test). Collectively, these data demonstrate that GRHL2          

constraints specific ER enhancers. 

Discussion 

VirtUaL ChIP-Seq Analysis through Networks – VULCAN 

Our study aimed to address the question of how ER activation is regulated at a genome-wide                

level. To achieve this aim, we developed and applied a network algorithm (VULCAN) that uses               

ChIP-seq data to reliably predict key regulatory transcription factors that impact on a TF of               

interest. The VULCAN algorithm was tested over a three time-point ChIP-Seq dataset of cell              

lines treated with E2 to test short-term dynamics of ER binding. Our analysis allowed us to                

provide a functional categorization of genes regulated by ER, assigning them to four different              

time-dependent dynamical response groups. VULCAN provided a list of TFs most likely            

responsible for the time-dependent responses. Supporting the robustness of the approach,           

VULCAN identified ER targets as the strongest responders, together with other known ER             

complex cofactors.  

The VULCAN algorithm can be applied generally to ChIP-Seq for the identification of             

new key regulator interactions. Our method provides a novel approach to investigate chromatin             
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occupancy of cofactors that are too transient or for which no reliable antibody is available for                

direct ChIP-Seq analysis. 

Reprogramming of GRHL2 by ER 

In the 4T1 tumor model GRHL2 was found to be significantly down-regulated in cells that had                

undergone EMT ​[39]​. The same study showed that knockdown of GRHL2 in MCF10A – an               

ER-negative cell line– lead to loss of epithelial morphology. Overall, this suggested that the              

GRHL2 transcription factor plays an essential role in maintaining the epithelial phenotype of             

breast cells. Similar results were observed with the MDA-MB-231 model, where expression of             

GRHL2 resulted in reversal of EMT ​[40]​. This result has been recapitulated in hepatocytes,              

where GRHL2 was found to suppress EMT by inhibiting P300 ​[41]​. Combined these             

demonstrate a significant role for GRHL2 in the progression of breast cancer. 

Survival Data for ER+ breast cancer (KMplotter, use gene expression, p=0.001) and ER-             

(KMplotter, use gene expression, p=0.035) shows that high GRHL2 has a negative impact of              

survival time in both contexts. The ability to suppress EMT has also been noted in prostate                

cancer, another cancer driven by a steroid hormone receptor (AR), and the genes regulated by               

GRHL2 are linked to disease progression ​[42] 

Analysis of clinical samples for breast cancer tumours compared with normal cells show             

that ER binding location is enough to categorise the samples, and that binding sites in tumour                

samples were enriched with the GRHL2 motif ​[43]​.  

In breast cancer, GRHL2 has previously been shown to directly interact with FOXA1,             

which may contribute to tethering of the histone methyltransferase MLL3 and, consequently,            

epigenetic marks at GRHL2/FOXA1 binding sites ​[36]​. Our analysis, however, showed no            

particular enrichment for H3K4me1/3 marks at E2 responsive G​RHL2 sites compared to other             
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GRHL2 binding sites and our proteomic analysis of interactors showed a strong association with              

proteins related to transcription. Therefore, while GRHL2 ChIP-seq analysis shows that GRHL2            

is already bound to a proportion of FOXA1 sites before treatment of cells with E2, we still saw                  

an increase in GRHL2 binding at 45 minutes. We proposed that these ER responsive sites are                

related to a role of GRHL2 in a transcriptional process independent of its interaction with MLL3.                

This was supported by evidence of a significant overlap with binding of the coactivator P300               

and a pronounced increase in eRNA transcription on activation at E2 responsive GRHL2 sites. 

Further, over-expression of GRHL2 resulted in a significant decrease in eRNA           

production at TFF1 and XBP1 enhancer sites. ​These results are consistent with previous             

findings that GRHL2 inhibits P300 ​[41] and, while the ER complex results in the activation of                

eRNA transcription at these sites, that GRHL2 plays a role to in fine-tuning or modulating this                

process.  

Conclusions  

VULCAN is built on state-of-the-art network analysis tools previously applied to RNA-Seq data.             

By adapting network-based strategies to ChIP-Seq data, we have been able to reveal novel              

information regarding the regulation of breast cancer in a model system. 

The VULCAN method is valuable for the discovery of transcription factors which have a              

role in the regulation of protein complexes that would otherwise remain hidden. The challenge              

of highlighting cofactors from a ChIP-Seq experiment lays in the infeasibility of reliable             

proteomic characterization of DNA-bound complexes at specific regions. On the other hand,            

while RNA-Seq is arguably the most efficient technique to obtain genome-wide quantitative            

measurements, any transcriptomic approach cannot provide a full picture of cellular responses            
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for stimuli that are provided on a shorter timescale than mRNA synthesis speed, such as the                

estradiol administration described in our study. VULCAN, by combining RNA-Seq derived           

networks and ChIP-Seq cistrome data, aims at overcoming limitations of both. Most notably, our              

method can work in scenarios where candidate cofactors do not have a well characterized              

binding site or do not even bind DNA directly. 

By developing VULCAN, we have been able to rediscover known cofactors of the             

estradiol-responsive ER complex and predict and experimentally validate a novel          

protein-protein interaction. 

VULCAN enabled us to identify the reprogramming of GRHL2 by the ER on stimulation              

with E2. Further analysis showed the process to be unrelated to the previously reported              

interaction with FOXA1 and MLL3 ​[36]​. Our conclusion was that GRHL2 has a second,              

previously undescribed, role: negatively regulating levels of transcription at estrogen responsive           

enhancers ​(Figure 7)​. Given the central role of the ER in breast cancer development and               

GRHL2’s own ability to regulate EMT, the discovery that ER recruits GRHL2, leading to the               

constraint of eRNA transcription, is an important step in enhancing our understanding of breast              

cancer and tumorigenesis.  

Methods 

Sample preparation  

MCF7 cells were obtained from the CRUK Cambridge Institute collection, authenticated by STR             

genotyping and confirmed free of mycoplasma. All cells were maintained at 37 ​o​C, 5% CO​2​. For                

each individual ChIP pull-down, we cultured 8 x 10 ​7 MCF7 cells (ATCC) across four 15 cm                
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diameter plates in DMEM with 10% FBS, Glutamine and Penicillin/Streptomycin (Glibco). Five            

days before the experiment, the cells were washed with phosphate buffered saline (PBS) and              

the media was replaced with clear DMEM supplemented with charcoal treated serum. The             

media was refreshed every 24 hours, which halted the growth of the cells and ensured that                

majority ER within the cell was not active. On day 5, the cells were treated with estradiol (100                  

nM). At the appropriate time point, the cells were washed with ice cold PBS twice and then fixed                  

by incubating with 10mL per plate of 1% formaldehyde in unsupplemented clear media for 10               

minutes. The reaction was stopped by the addition of 1.5mL of 2.5 M glycine and the plates                 

were washed twice with ice cold PBS. Each plate was then scraped in 1 mL of PBS with                  

protease inhibitors (PI) into a 1.5 mL microcentrifuge tube. The cells were centrifuged at 8000               

rpm for 3 minutes at 4 ​o​C and the supernatant removed. The process was repeated for a                 

second wash in 1 mL PBS+PI and the PBS removed before storing at -80 ​o​C. 

ChIP-Seq 

Frozen samples were processed using established ChIP protocols ​[44] to obtain DNA            

fragments of ~300 bp in length. The libraries were prepared from the purified DNA using a                

Thruplex DNA-seq kit (Rubicon Genomics) and sequenced on the Illumina HiSeq Platform.            

Sequencing data is available from Gene Expression Omnibus, accession GSE109820. 

Differential binding analysis  

Sequencing data was aligned using BWA​[45] to the human genome (hg19). Reads from within              

the DAC ​Blacklisted Regions was removed before peak calling with MACS 2.1 ​[46] on default               
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parameters. The aligned reads and associated peak files were then analyzed using DiffBind             

[30]​ to identify significant changes in ER binding.  

Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) was performed as described by ​Subramanian et al​. ​[47]              

using the curated pathway collection (C2) from MSIGDB v 5.0 with 1000 set permutations for               

each pathway investigated, followed by Benjamini Hochberg P-value correction.  

Motif analysis 

Motif analysis of the binding regions was undertaken with Homer v4.4 ​[48] using default              

parameters. Motif logo rendering was performed using Weblogo v2.8.2 ​[49] 

VULCAN analysis 

We reconstructed a regulatory gene network using ARACNe-AP as described by Alvarez ​[23]​.             

RNA-Seq breast cancer data was downloaded from TCGA on January 2015 and            

VST-Normalized as described by Anders and Huber ​[50]​. The ARACNe transcriptional           

regulation network was imported into R using the ​viper BioConductor package and it was              

interrogated using the differential binding profiles from our ChIP-Seq experiment as signatures,            

45’ vs control and 90’ vs control. The peak-to-promoter assignment was performed using a              

10kb window with respect to the transcription starting site (TSS) of every gene on the hg19                

human genome. The algorithm ​msVIPER (multi-sample ​Virtual Inference of Protein activity by            

Enriched Regulon analysis​) was then applied, leveraging the full set of eight replicates per              

group, with 1000 signature permutations and default parameters.  
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qPLEX-RIME 

Samples were prepared as previously described for RIME​[34]​, protocol was modified to include 

TMT isobaric labels for quantification (manuscript under review). qPLEX-RIME data and 

analysis pipeline is available as part of the supplementary Rmarkdown.  

TF Binding Overlap 

Publically available data was downloaded as described in the source publication ​[36–38,51]​ and 

overlap was calculated with bedtools (v2.25.0). Presented data was normalised as a 

percentage of GRHL2 sites. 

 

eRNA quantification 

MCF7 cells were transfected with Smart Pool siRNA (Dharmacon, L-014515-02), siControl, 

GRHL2 overexpression vector (Origene, RC214498) or empty control vector using 

Lipofectamine 3000 (Thermo Fisher Scientific) according to the manufacturer's protocol in 6 well 

format. Expression was monitored by rtPCR using TaqMan assay with GAPHD as a control 

transcript. Knockdown efficiency was ~75% and the GRHL2 over-expression vector led a 

730-fold increase in expression over control plasmid. 1 ug of purified RNA was reverse 

transcribed with Superscript III reverse transcriptase (Thermo Fisher Scientific, 18080085) 

using random primers (Promega, C1181) according to manufacturer instructions. eRNAs were 
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quantified with qPCR using Power SYBR™ Green PCR Master Mix (Thermo Fisher Scientific, 

4367660) and denoted as relative eRNA levels after normalizing with UBC mRNA levels. 

  

Primer name Sequences Reference 

eGREB1 F ACTGCGGCATTTCTGTGAGA This study 

eGREB1 R ACTGCAGTTTGCCTGTCACT This study 

eXBP1 F TGTGAGCACTTGGCATCCAT Nagarajan et al 2014 

eXBP1 R ACAGGGCCTCATTCTCCTCT Nagarajan et al 2014 

eTFF1 F AGGGGATGTGTGTGAGAAGG Li et al 2013 

eTFF1 R GCTTCGAGACAGTGGGAGTC Li et al 2013 

UBC F ATTTGGGTCGCGGTTCTTG Peña et al 2009 

UBC R TGCCTTGACATTCTCGATGGT Peña et al 2009 

  

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Abbreviations 

AR Androgen Receptor 

ARACNe-AP AccuRate Algorithm for reConstruction of Network through Adaptive Partitioning 

CCLE Cancer Cell Line Encyclopedia 

ChIP Chromatin ImmunoPrecipitation 

ER Estrogen Receptor-Alpha 

ERE Estrogen-Response Elements 

GSEA Gene Set Enrichment Analysis 

GRHL2 Grainyhead Like Transcription Factor 2 

METABRIC MolEcular TAxonomy of BReast cancer International Consortium 

PBS Phosphate Buffered Saline  

PI Protease Inhibitors 

PR Progesterone Receptor 

TCGA The Cancer Genome Atlas 

TF Transcription Factor 

VIPER Virtual Inference of Protein activity by Enriched Regulon analysis  

VULCAN VirtUaL ChIP-Seq Analysis through Networks 
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Figure Legends 

Figure 1: Dynamic behaviour during early activation of ER 

  
ChIP-qPCR of the TFF1 gene (A) at 3 time points shows increased binding of ER at 45 minutes 
after MCF7 cells are stimulated by estra-2-diol.  The previously reported maximum is followed 
by a decrease in the TFF1 promoter occupancy at 90 minutes. P-values are generated by 
one-tailed t-test. The maximal point at 90 minutes was identified as an outlier ( > median + 2 x 
IQR); however removal did not alter the significance of results. (B) Differential binding analysis 
of ChIP-Seq data at three time points to monitor the activation of ERa. The ER a strong 
increase in binding at 45 minutes vs. 0 minutes (C) and the majority of sites still display binding 
at 90 minutes.  
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Figure 2: An overview of VULCAN 

 
A: ChIP-Seq analysis from multiple conditions is undertaken to generate cistrome data at             
multiple timepoints (or conditions). B: Binding events are then compared using differential            
binding analysis to establish log-fold change values for individual binding events between each             
timepoint. C: ARACNe-AP infers all pairwise TF-target coexpression. In the example, the            
TCGA breast dataset is shown to infer A putative target that is correlated with ESR1. D:                
Minimalistic representation of the ARACNe-AP network, highlighting negative and positive          
regulation of targets by transcription factors. E: All the targets of a specific TF are divided in                 
positive and negative, and tested on a differential binding signature through the msVIPER             
algorithm ​[18]​. 
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Figure 3: ER occupancy after estradiol treatment in terms of TF 
network activity 

 
A​: Global TF network behavior as predicted by VULCAN in our ChIP-Seq dataset, highlighting              
the ESR1 TF at time 0 and 45/90minutes after estradiol treatment. 
B​: ​Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC              
network, highlighting TFs significantly upregulated at 45 minutes and 90 minutes 
C​: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC              
network, highlighting TFs significantly downregulated at 45 minutes and 90 minutes 
D​: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC              
network, highlighting TFs significantly upregulated at 45 minutes but not at 90 minutes 
E​: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC              
network, highlighting TFs significantly upregulated at 90 minutes but not at 45 minutes 
F​: Most enriched motif in peaks upregulated at both 45 and 90 minutes after estradiol treatment,                
as predicted by HOMER. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

Figure 4: Global TF activity after estradiol treatment using 
different network models. 

 
XY Scatter showing the TF activity as calculated by VULCAN for our differential ChIP-Seq 
analysis of ER binding at 45 minutes (A) and at 90 minutes (B) after stimulation with 100 nM E2. 
Comparison of results calculated using the METABRIC (y-axis) and TCGA  (x-axis) networks 
shows consistent results know ER interactors including PGR, RARA, GATA3 and GRHL2. 
GRHL2 activity is notably enriched against.  The regulon of ER is also consistently enriched in 
both networks. 
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Figure 5: GRHL2 Differential ChIP-Seq between 0 and 45 
minutes. 
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(A) Activation of the ER with estro-2-diol results in a genome wide increase in GRHL2 binding.                
(B) ​VULCAN Analysis of the same data show a significant enrichment for ESR1 sites in both                
the context of the METABRIC and TGCA networks. The regulon for FOXA1 is also not               
enriched. Inspection of known FOXA1/GRHL2 sites (e.g. RARa promoter) shows GRHL2           
already bound.  
(C) ​Overlap of GRHL2 binding with public datasets shows that E2 responsive GRHL2 sites 
show considerable overlap with ER, FOXA1 and P300 sites, H3K4Me1 and H3K4Me3 show 
little enrichment.  
(D)​ Analysis of P300 binding showed a greater overlap of GRHL2 ER responsive sites in the 
presence of E2 than in control conditions  
(E)​ Overlap with ER ChIA-PET sites showed enrichment for GRHL2 sites at ER enhancers. 
(F) ​Analysis of Gro-SEQ data (GSE43836) at GRHL2 sites. Blue lines are control samples, Pink 
are samples after stimulation with E2. In general GRHL2 sites (left) show no change in the 
levels of transcription on addition of E2; however, E2 responsive GRHL2 sites (right) show a 
robust increase in transcription on the activation of the ER.  
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

Figure 6: Effect of over-expression of GRHL2 on eRNA at E2 
responsive binding sites. 

 
Overexpression of GRHL2 in MCF7 resulted in a reduction of eRNA transcribed from the 
GREB1, TFF1 and XBP1 enhancers. The effect was significant at TFF1 and XBP1 enhancers 
(p < 0.05, Wilcoxon paired-test).  
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Figure 7: Overview of the role of GRHL2 in ER activation

 
 
On activation of the ER by the ligand E2 the protein is released from a complex containing 
HSPs and translocates to the nucleus. The holo-ER dimer forms a core complex at Estrogen 
Response Elements (ERE) with FOXA1 (pioneer factor) and GATA3. ER further recruits P300 
and GRHL2. GRHL2 has an inhibitory effect on P300 (a transcriptional activator interacting with 
TFIID, TFIIB, and RNAPII) thereby reducing the level of eRNA transcription at enhancer sites. 
Over-expression of GRHL2 further suppresses transcription, while knockdown of GRHL2 
reverses the process. 
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