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Abstract 
VULCAN utilises network analysis of genome-wide DNA binding data to predict regulatory 

interactions of transcription factors. We benchmarked our approach against alternative methods 

and found improved performance in all cases. VULCAN analysis of estrogen receptor (ER) 

activation in breast cancer highlighted key components of the ER signalling axis and identified a 

novel interaction with GRHL2, validated by ChIP-seq and quantitative proteomics. 

Mechanistically, we show E2-responsive GRHL2 binding occurs concurrently with increases in 

eRNA transcription and GRHL2 negatively regulates transcription at these sites. These findings 

provide new insight into ER action in breast cancer and validate VULCAN as a powerful tool. 
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Introduction 

Network Analysis of ChIP-seq to infer Transcription Factor (TF) activity 

Usage of gene regulatory networks to analyse biological systems has witnessed an exponential 

increase in the last decade, due to the ease of obtaining genome-wide expression data [1–3]. 

Recently, the VIPER approach to interrogate these network models has been proposed to infer 

transcription factor activity using the expression of a collection of their putative targets, i.e. their 

regulon [4]. In the VIPER algorithm, gene-level differential expression signatures are obtained 

for either individual samples (relative to the mean of the dataset) or between groups of samples, 

and regulons are tested for enrichment.  

Several tools exist to integrate ChIP-seq binding events to increase statistical power and 

to support the interpretation of data.  These methods typically provide information in the context 

of biological pathways and established gene sets [5,6] or through motif analysis [7]. In contrast, 

we developed an extension of the VIPER algorithm, called “VirtUaL ChIP-seq Analysis through 

Networks” (VULCAN), to reveal and specifically analyse potential interactions of TFs in ChIP-

seq experiments. Previously, the strategies employed by VIPER were limited to the analysis of 

transcription data. By developing VULCAN to overlay co-expression networks established from 

patient tumour data onto ChIP-seq data, we are able to provide candidate coregulators of the 

response to a given stimulus (Figure 1). Unlike previous method, the results of our analysis are 

therefore focused on discovering tissue or disease specific interactions in the context of these 

networks. Further, as VULCAN builds on master regulator analysis, the output from the pipeline 

provides the end user with information in terms of the activity of potentially interacting TFs, 

rather than in terms of pathways. The combination of disease specific context and TF activity 

information presents a significant step forward in providing valuable information for the 

elucidation of on-chromatin interactions from ChIP-seq experiments over previous strategies.  
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The estrogen receptor as a model for systems biology 

Breast cancer is the most common form of cancer in women in North America and Europe. The 

majority of breast cancers are associated with deregulated signalling by the Estrogen Receptor-

alpha (ER), which drives tumour growth. ER is the key prognostic marker in the clinic and the 

target of the first lines of treatment in estrogen receptor positive (ER+) tumors. ER-targeting 

pharmacological strategies include SERMs (Selective Estrogen Receptor Modulators e.g. 

tamoxifen) and SERDs (estrogen receptor degraders, e.g. fulvestrant) and aromatase inhibitors 

that block the production of estrogens in the body [8] 

On activation, ER binds to promoter and enhancer regions containing Estrogen-

Response Elements (ERE) [9] to stimulate the transcription of hundreds of genes [10,11]. Gene 

expression is driven by both the recruitment of the basal transcription machinery to these loci 

and through longer range interactions [12]. Analysis of ER-target genes showed that many are 

proliferative in function and drive the growth of the tumour [13] 

On the treatment of ER+ cells with estra-2-diol (E2), ER recruits several cofactors to 

form a complex on the chromatin. FOXA1 is of particular interest as the protein shares nearly 

50% of its genomic binding sites with ER and has been shown to operate as a pioneer factor 

before ER activation [14]. It is through FOXA1 and other cofactors [15,16], e.g. SRC-1, that ER 

is able to recruit RNA Polymerase II at the gene promoter sites in order to initiate transcription 

[17].  

Early studies have shown that, after stimulation with E2, ER binding to EREs can occur 

within minutes [18]. Maximum ER occupancy at promoters of target genes such as CTSD and 

TFF1 is achieved after 45’ in MCF7 cells. Roughly 90’ after estradiol treatment, ER is partially 

released from the promoters of the target gene, only to reoccupy the site again at 135’ and 

release them at 180’, in a 45’ phase cyclical manner [19]. The 90’ occupancy phase has been 

shown to be independent of new protein synthesis, and is therefore thought to operate at the 
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post-translational level. This cyclic, proteasome-mediated turnover of unliganded and liganded 

ER-α on responsive promoters is an integral feature of estrogen signaling [20,21].  

Given the three features discussed above, ER is a prime target for systems biology. By 

applying VULCAN to ChIP-seq time-course data of ER activation, our study provides new 

temporal insights into ER cofactors on a genome-wide scale. 

Results  

The development of VULCAN to infer changes in cofactor activity from differential ChIP-seq 

analysis using network analysis led to novel insights into key coregulators of the ER binding 

process. An implementation of VULCAN in R is available on Bioconductor.org 

[https://bioconductor.org/packages/release/bioc/html/vulcan.html] and the scripts to replicate our 

analysis are available as a supplementary Rmarkdown file. Unless otherwise specified, all p-

values were Bonferroni-corrected.  

Regulatory network analysis to detect ER cofactors 

VULCAN was developed in order to understand which TF or co-factors could be responsible for 

the temporal behavior of ER. To develop VULCAN, we combined co-expression networks, 

established from breast cancer tumour biopsy transcriptional data, with a modified version of 

the VIPER algorithm [4] to enable master regulator analysis on differential binding signatures 

acquired from ChIP-seq analysis.  

We generated co-expression networks using the most recent implementation of 

ARACNe [22] on the METABRIC dataset [23] and the independent TCGA dataset [24]. Briefly, 

ARACNe generates gene networks by estimating putative regulatory interactions between 

transcription factors and target genes using mutual information between gene expression 
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profiles. As an example, Figure 1C shows an ARACNe-inferred targets of ESR1. The sets of 

targets of each TF (i.e. its regulon) were merged in a genome-wide transcriptional regulation 

network, as shown in a minimal diagram in Figure 1D.  

Master regulator analysis [25] is an algorithm developed to identify transcription factors 

whose regulon is enriched within a list of differentially expressed genes. VULCAN extends the 

VIPER approach to use differential binding profiles rather than differential expression profiles. In 

this way, VULCAN can test the enrichment of TF regulons in ER occupancy signatures derived 

from ChIP-seq experiments (Figure 1E). 

Comparison of VULCAN to existing methods 

Comparing VULCAN’s Mutual Information networks to Partial Correlation networks 

VULCAN uses mutual information networks like VIPER [4]. To test the robustness of our 

approach to different underlying networks, we compared mutual information networks with 

partial correlation networks using different correlation thresholds. We generated several partial 

correlation networks from the TCGA Breast Cancer data using the same input as the ARACNe 

network used by VULCAN. We tested the overlap of every partial correlation network with the 

ARACNe network using the Jaccard Index (JI) criterion (Suppl. Figure 33). Finally, we show 

how the Jaccard Index between partial correlation networks and the ARACNe network is always 

significantly higher than expected by selecting random network edges (Suppl. Figure 34). This 

confirms previous observations that partial correlation and mutual information networks are 

highly similar [26] 

 

Comparing VULCAN with alternative methods for target enrichment analysis 

We compared VULCAN’s Gene Set Enrichment Analysis (GSEA) approach [27] with three 

independent methods previously applied to benchmark VIPER [4]. The first implemented a t-test 
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based method, which takes the targets of a TF and integrates their p-value in a specific 

contrast. The method is similar to VIPER but involves a Fisher p-value integration step. The 

integrated test lacks stringency and results in nearly all regulons as significantly enriched 

(Suppl. Figure 35). Second, we implemented a fraction of targets method, defining for every TF 

the fraction of their targets that are also differentially bound. This alternative to VULCAN ignores 

the MI strength of interaction and the individual strengths of differential bindings, reducing the 

resolving power of the algorithm (Suppl. Figure 36). Finally, we compared to a Fisher’s Exact 

Method, which assesses the overlap between networks and significant differential binding. This 

method is too stringent (as observed in the original VIPER paper) [4] and even without p-value 

correction there are no significant results, even at low stringency, demonstrating the low 

sensitivity of the using a Fisher’s Exact Method method (Suppl. Figure 37). In summary, 

VULCAN outperformed all three alternative methods we tested (t-test based; fraction of targets 

method; and Fisher’s Exact Method) in our dataset.  

 

Comparing VULCAN with Online Tools (GREAT, ISMARA & ChIP-Enrich) 

To further validate our method, we compared the output of our GSEA analysis with different 

versions of promoter-enrichment approaches implemented by GREAT [5], ISMARA [7] and 

ChIP-Enrich [6]. The VULCAN analysis shows a significant overlap in terms of detected 

pathways with the GREAT method (Suppl. Figure 38). ChIP-Enrich identifies enrichment of a 

number of TFs also predicted by VULCAN, but it fails to identify ESR1 as the top transcription 

factor affected by our experiment (Suppl. Figure 39). ISMARA succeeds at identifying ESR1 

using a motif-based analysis, but does not identify other candidate binding TFs (Suppl. Figure 

40). In summary, VULCAN outperforms both ISMARA and ChIP-Enrich, and significantly 

overlaps with GREAT, but provides additional value through inference of TF factor activity. 
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VULCAN analysis of ER activation 

Differential Binding Analysis 

We performed four replicated ChIP-seq experiments for ER at three timepoints: 0, 45 and 90’ 

after estradiol treatment (Figure 2) in the MCF7 breast cancer cell line. The binding profile of 

ER at each time point was then compared between time points using differential binding 

analysis. Differential binding analysis (Figure 2B,C) identified 18,900 statistically significant 

binding events at 45’ (p < 0.05). We observed the previously reported reduction of ER binding 

at 90’ [20] on a genome-wide level (17,896 significant binding events), but with a smaller 

amplitude than previous gene-specific assays [21].  A potential cause for the smaller amplitude 

we observed in ER cycling may relate to the fact that ChIP-seq is not inherently quantitative, 

and hence the typical normalisation strategies applied to ChIP-seq data are likely to suppress 

global changes [28,29]. We therefore validated the ER binding behaviour with ChIP-qPCR 

(Figure 2A) and observed the same reduction in amplitude at specific binding events as was 

predicted by ChIP-seq. Another potential reason for the difference in amplitude was we did not 

treat α-Amanitin prior to treatment with E2 [21] as this perturbation would further separate the 

experimental condition from clinical interpretation. 

We performed motif enrichment analysis (HOMER software) on ER binding sites 

detected by differential binding analysis. This analysis confirmed a strong enrichment for a 

single element, ERE, bound at both 45 and 90’, with a corrected p-value of 0.0029 (Figure 3F). 

When clustered according to peak intensity, samples cluster tightly in two groups: treated and 

untreated (Suppl. Figures 2, 3 and 4), but treatment at 45 and 90' is detectably different on a 

genome-wide scale, as highlighted by Principal Component Analysis (Suppl. Figures 5 and 6). 

 

VULCAN groups genes by temporal dynamics of ER binding  
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We leveraged the information contained in mutual information networks to establish TF 

networks enriched in the differential binding patterns induced by estradiol. From our temporal 

analysis of ER binding, we established four classes of binding pattern: early responders, 

repressed transcription factors, late responders and candidate cyclic genes (Figure 3).   

Using VULCAN, we defined TF network activity of occupied regulatory regions (Figure 

3A) according to the binding of ER within their promoter and enhancer regions (limited to 10kb 

upstream of the Transcription Starting Site to ensure gene specificity). We define as early 

responders TFs whose network is upregulated at both 45 and 90’ (Figure 3B); these genes 

include AR, SP1 and CITED1. TFs with opposite behaviour (namely TFs whose 

negative/repressed targets in the ARACNe model are occupied by ER), or “repressed TFs”, 

include GLI4, MYCN and RAD21 (Figure 3C). Some TFs appear to have their targets bound at 

45’, but then unoccupied at 90’. This “updown” behaviour is consistent with the cyclic properties 

of certain components of the ER DNA-binding complex observed previously, and therefore we 

dubbed them “candidate cyclic TFs” (Figure 3D). We also define a “late responders” category, 

defined as  TFs active at 90 but not at 45’. While this category exists, and notably contains both 

ESR1 and the known ESR1 interactor GATA3, it is just below the significance threshold at 45’ 

(Figure 3E). 

 

Validating VULCAN results on independent data 

We repeated our TF network activity analysis of ER activation (Figure 3A-E) on an independent 

data from TCGA (Suppl. Figures 16–20). We again found enrichment for ESR1 as a later 

responder. GATA3 was detected as an early responder, likely as a result of the METABRIC 

result being only slightly below the significance threshold at 45’. Notably, PGR was shifted from 

an early responder to a late responder.  

To ensure the robustness of results, we performed a joint analysis of data obtained from 

both networks. At 45’ (Figure 4A) and 90’ (Figure 4B) we identified robust candidates, 
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specifically the ESR1, GATA3 and RARA networks were consistently activated by ER in both 

time points. On the other hand, some factors, including HSF1 and GRHL2, were significantly 

repressed in the joint analysis. 

As a negative control, we used a different context ARACNe network, derived from the 

TCGA AML dataset. This network shows globally weaker enrichment scores and a weak 

positive correlation with the results obtained through breast cancer regulatory models (Suppl. 

Figure 22). 

 

Pathway analysis of regulatory region binding 

We performed a Gene Set Enrichment Analysis [27] and an associated Rank Enrichment 

Analysis [4] using the differential binding at gene regulatory regions (with time 0 as reference). 

Individual differential binding signatures for GSEA were calculated using a negative binomial 

test implemented by DiffBind [30]. The collective contribution of differentially bound sites 

highlights several ER-related pathways [31–33] (Suppl. Figure 23) in both the GSEA and 

aREA analyses. The strongest upregulated pathway in both time points (Table S2 and S5) was 

derived via RNA-seq in an MCF7 study using estradiol treatment [32], confirming the 

reproducibility of our dataset. 

 

Validating VULCAN results by quantitative proteomics 

We tested the performance of VULCAN against a complementary experimental approach called 

RIME [34] combined with TMT [35] (qPLEX-RIME), which aims at identifying interactors of ER 

within the ER-chromatin complex. We generated ER qPLEX-RIME data from MCF7 cells 

treated with estradiol at both 45 and 90’ and compared this with the VULCAN dataset, with the 

aim of identifying TFs upstream of the observed differential binding (Suppl. Figure 31). We 

found known ESR1 interactors with both methods, namely HDAC1, NCOA3, GATA3 and RARA 

with positive Network Enrichment Score (NES)  [4], implying the TF’s regulon is over-
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represented within the differentially bound genes. Conversely, GRHL2 was discovered with a 

negative NES. A negative NES implies the regulon is either significantly depleted within the set 

of differentially bound genes or that TF is established by ARACNe as having a negative 

correlation to the genes regulated at these differentially bound sites. 

The GRHL2 Transcription Factor 

In our analysis of ER dynamics, the GRHL2 transcription factor stood out. In both the 

METABRIC and TGCA networks, GRHL2 was significantly repressed; yet in our proteomics 

analysis, the protein was significantly increased. GRHL2 is a transcription factor that is 

important for maintaining epithelial lineage specificity in multiple tissues [36,37]. It has 

previously been predicted to exist in ER-associated enhancer protein complexes [38], but its 

function in the ER signalling axis is unknown. Therefore, we set out to experimentally validate 

GRHL2 as an ESR1 cofactor, possibly with repression properties for the ER complex. 

Our analysis shows that the genes occupied by the ER complex do not form part of the 

GRHL2 regulon, using both TCGA-derived and METABRIC-derived regulatory models. Our 

analysis highlights the small overlap between the ESR1 (Estrogen Receptor) and GRHL2 

networks (Suppl. Figure 28), hinting at complementary signals not dependent on global 

network overlaps. In fact, there is only a weak, positive correlation between ESR1 and GRHL2 

expression in the TCGA breast cancer dataset (Suppl. Figure 29) and also in the METABRIC 

breast cancer dataset (Suppl. Figure 30). Furthermore, GRHL2 has a visibly lower variance 

than ESR1: it does not change significantly in different PAM50 subtypes, although it is lower in 

normal compared to malignant tissue.  

The low overlap between networks and the low correlation in expression profiles could 

be explained by the fact that GRHL2’s role may not be related to its function as a transcription 
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factor; rather, it may be controlled by other mechanisms like phosphorylation, subcellular 

localisation or on-chromatin interactions. 

 

GRHL2 activity before and after stimulation with E2 

Differential ChIP-seq analysis of GRHL2 binding between 0 and 45’ indicated that  GRHL2 

binding is altered on treatment with E2 (Figure 5A). VULCAN analysis of the GRHL2 differential 

binding showed a consistent Network Enrichment Score for both the TCGA- and METABRIC-

derived networks for ER, but not for FOXA1 or GRHL2 (Figure 5B). Individual analysis of peaks 

show that typically ER promoter sites, e.g. RARa, were not the target of this redistribution of 

GRHL2, as these sites were occupied by GRHL2 before E2 stimulation. Motif analysis of the 

sites within increased GRHL2 occupancy showed enrichment for the full ERE (p-value = 1 x 10-

86) and the GRHL2 binding motif (p-value = 1 x 10-31).  

qPLEX-RIME analysis of GRHL2 interactions showed high coverage of the bait protein 

(>59%) and, in both the estrogen-free and estrogenic conditions, high levels of transcription-

related protein interactors including HDAC1 (p-value = 6.4 x 10-9), TIF1A (p-value = 6.4 x 10-9), 

PRMT (p-value = 6.4 x 10-9) and GTF3C2 (p-value = 4.6 x 10-9). P-values given for estrogenic 

conditions and estrogen-free conditions were comparable. The only protein differentially bound 

to GRHL2 in estrogen-free versus estrogenic conditions was ER. 

The specific nature of the detected ER-GRHL2 interaction suggests that ER does not 

regulate or interact with GRHL2 through the recruitment of alternative cofactors. This implies 

instead that ER recruits GRHL2 to certain genomic loci for a specific function. We therefore 

undertook a comparison of GRHL2 binding with public datasets. (Figure 5C). Our analysis 

showed that GRHL2 sites that responded to E2 were enriched for ER binding sites (in 

agreement with our qPLEX-RIME data) and FOXA1 (compatible with either an ER interaction or 

the previously reported interaction with MLL3 [38]). To establish, therefore, if the 

reprogramming of GRHL2 was primarily related to a transcriptional function or the previously 
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described interaction with MLL3, we overlapped our GRHL2 data with that of published 

H3K4me1/3 [38] and P300 [39] cistromes. While H3K4me occupancy was consistent between 

conditions, we found P300 binding to be enriched at the E2 responsive GRHL2 sites. A more 

detailed analysis of the GRHL2 overlap with P300 sites showed the greatest co-occupancy of 

GRHL2/P300 sites was when both TFs were stimulated by E2 (Figure 5D). Moreover, overlap 

of GRHL2 peaks with ER ChIA-PET data [ENCSR000BZZ] showed that the GRHL2 responsive 

sites were enriched at enhancers over promoters (Figure 5E). 

These findings suggested that the GRHL2-ER interaction was involved in transcription at 

ER enhancer sites. To explore this concept further, we investigated the transcription of 

enhancer RNAs at these sites using  publicly available GRO-seq data [40] [GSE43836] (Figure 

5F). At E2 responsive sites, eRNA transcription was strongly increased by E2 stimulation; by 

contrast, eRNA transcription was largely independent of E2 stimulation when the entire GRHL2 

cistrome was considered. Analysis of a second GRO-seq dataset, GSE45822, corroborated 

these results (Suppl. Figure S92).  

 To further explore how GRHL2 regulates ER enhancers, we measured eRNA 

expression at the GREB1, TFF1 and XBP1 enhancers after over-expression of GRHL2. At 

TFF1 and XBP1, increased GRHL2 resulted in reduced eRNA transcription (Figure 6) (p < 

0.05, paired-sample, t-test). Conversely, eRNA production at the TFF1, XBP1 and GREB1 

enhancers was moderately increased after GRHL2 knockdown (Suppl. Figure 106). Combining 

data from all three sites established the effect as significant by paired-sample rank test (p = 

0.04, one-tailed paired-sample, wilcoxon test). Collectively, these data demonstrate that GRHL2 

constrains specific ER enhancers. 

 Analysis of mRNA expression levels of TFF1, XBP1 and GREB1 by RT-qPCR revealed 

that overexpression of GRHL2 also led to a significant reduction in TFF1 and XBP1 (p < 0.05, 

paired-sample, t-test), while knockdown of GRHL2 led to a significant increase in GREB1 

transcription (p < 0.05, paired-sample, t-test) (Suppl. Figure 107).  
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Discussion 

VirtUaL ChIP-seq Analysis through Networks – VULCAN 

The VULCAN method is valuable for the discovery of transcription factors which have a role in 

the regulation of protein complexes that would otherwise remain hidden. The challenge of 

highlighting cofactors from a ChIP-seq experiment lays in the infeasibility of reliable proteomic 

characterisation of DNA-bound complexes at specific regions. On the other hand, while RNA-

seq is arguably the most efficient technique to obtain genome-wide quantitative measurements, 

any transcriptomic approach cannot provide a full picture of cellular responses for stimuli that 

are provided on a shorter timescale than mRNA synthesis speed, such as the estradiol 

administration described in our study. VULCAN, by combining RNA-seq derived networks and 

ChIP-seq cistrome data, aims at overcoming limitations of both. Most notably, our method can 

work in scenarios where candidate cofactors do not have a well characterised binding site or do 

not even bind DNA directly.   

By developing VULCAN, we have been able to rediscover known cofactors of the 

estradiol-responsive ER complex and predict and experimentally validate a novel protein-

protein interaction. 

Reprogramming of GRHL2 by ER 

In the 4T1 tumour model, GRHL2 was found to be significantly downregulated in cells that had 

undergone EMT [36]. The same study showed that knockdown of GRHL2 in MCF10A – an ER-

negative cell line – lead to loss of epithelial morphology. Overall, this suggested that the GRHL2 

transcription factor plays an essential role in maintaining the epithelial phenotype of breast cells.  

Similar results were observed with the MDA-MB-231 model, where expression of GRHL2 
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resulted in reversal of EMT [37]. This result has been recapitulated in hepatocytes, where 

GRHL2 was found to suppress EMT by inhibiting P300 [41] 

   Survival data for ER+ breast cancer (KMplotter, use gene expression, p=0.001) and ER- 

(KMplotter, use gene expression, p=0.035) shows that high GRHL2 has a negative impact on 

survival time in both contexts. The ability to suppress EMT has also been noted in prostate 

cancer, another cancer driven by a steroid hormone receptor (AR), and the genes regulated by 

GRHL2 are linked to disease progression [42].  

Combined, these earlier data indicate a significant role for GRHL2 in the progression of 

breast cancer, but its role in the ER signalling axis has, until now, been unknown. Here, we 

show that GRHL2 constrains activity at a subset of ER enhancers. Overexpression of GRHL2 

resulted in a significant decrease in eRNA production at the TFF1 and XBP1 enhancers and, in 

agreement with previous studies that correlate eRNA transcription with gene expression [43–

45], we found the measured eRNA decrease was concurrent with a significant downregulation 

in the expression of the corresponding gene.  

 These results are consistent with previous findings that GRHL2 inhibits P300 [41] and, 

while the ER complex results in the activation of eRNA transcription at these sites, that GRHL2 

plays a role in fine-tuning or modulating this process.  

 In breast cancer, GRHL2 has previously been shown to directly interact with FOXA1, 

which may contribute to tethering of the histone methyltransferase MLL3 and, consequently, 

epigenetic marks at GRHL2/FOXA1 binding sites [38]. Our analysis, however, showed no 

particular enrichment for H3K4me1/3 marks at E2 responsive GRHL2 sites compared to other 

GRHL2 binding sites and our proteomic analysis of interactors showed a strong association with 

proteins related to transcription. Therefore, while GRHL2 ChIP-seq analysis shows that GRHL2 

is already bound to a proportion of FOXA1 sites before treatment of cells with E2, we still 

observed an increase in GRHL2 binding at 45’. We proposed that these ER responsive sites 

are related to a role of GRHL2 in a transcriptional process independent of its interaction with 
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MLL3. This was supported by evidence of a significant overlap with binding of the coactivator 

P300 and a pronounced increase in eRNA transcription on activation at E2 responsive GRHL2 

sites. 

   

Conclusion 

VULCAN is built on state-of-the-art network analysis tools previously applied to RNA-seq data. 

By adapting network-based strategies to ChIP-seq data, we have been able to reveal novel 

information regarding the regulation of breast cancer in a model system. 

The VULCAN algorithm can be applied generally to ChIP-seq for the identification of 

new key regulator interactions. Our method provides a novel approach to investigate chromatin 

occupancy of cofactors that are too transient or for which no reliable antibody is available for 

direct ChIP-seq analysis. 

 VULCAN enabled us to identify the reprogramming of GRHL2 by the ER on stimulation 

with E2. Further analysis showed the process to be unrelated to the previously reported 

interaction with FOXA1 and MLL3 [38]. Our conclusion, therefore, is that GRHL2 has a second, 

previously undescribed, role: negatively regulating levels of transcription at estrogen responsive 

enhancers (Figure 7). Given the central role of the ER in breast cancer development and 

GRHL2’s own ability to regulate EMT, the discovery that ER recruits GRHL2, leading to the 

constraint of eRNA transcription, is an important step in enhancing our understanding of breast 

cancer and tumourigenesis.  
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Methods 

Sample preparation  

MCF7 cells were obtained from the CRUK Cambridge Institute collection, authenticated by STR 

genotyping and confirmed free of mycoplasma. All cells were maintained at 37 oC, 5% CO2. For 

each individual ChIP pull-down, we cultured 8 x 107 MCF7 cells (ATCC) across four 15 cm 

diameter plates in DMEM with 10% FBS, Glutamine and Penicillin/Streptomycin (Glibco). Five 

days before the experiment, the cells were washed with phosphate buffered saline (PBS) and 

the media was replaced with clear DMEM supplemented with charcoal treated serum. The 

media was refreshed every 24 hours, which halted the growth of the cells and ensured that 

majority ER within the cell was not active. On day 5, the cells were treated with estradiol (100 

nM). At the appropriate time point, the cells were washed with ice cold PBS twice and then fixed 

by incubating with 10mL per plate of 1% formaldehyde in unsupplemented clear media for 10 

minutes. The reaction was stopped by the addition of 1.5mL of 2.5 M glycine and the plates 

were washed twice with ice cold PBS. Each plate was then scraped in 1 mL of PBS with 

protease inhibitors (PI) into a 1.5 mL microcentrifuge tube. The cells were centrifuged at 8000 

rpm for 3 minutes at 4 oC and the supernatant removed. The process was repeated for a 

second wash in 1 mL PBS+PI and the PBS removed before storing at -80 oC. 

ChIP-Seq 

Frozen samples were processed using established ChIP protocols [46] to obtain DNA 

fragments of ~300 bp in length. The libraries were prepared from the purified DNA using a 

Thruplex DNA-seq kit (Rubicon Genomics) and sequenced on the Illumina HiSeq Platform. 

Sequencing data is available from Gene Expression Omnibus, accession GSE109820. 
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Differential binding analysis  

Sequencing data was aligned using BWA[47] to the human genome (hg19). Reads from within 

the DAC Blacklisted Regions was removed before peak calling with MACS 2.1 [48] on default 

parameters. The aligned reads and associated peak files were then analyzed using DiffBind 

[30] to identify significant changes in ER binding.  

Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) was performed as described by  Subramanian et al. [49] 

using the curated pathway collection (C2) from MSIGDB v 5.0 with 1000 set permutations for 

each pathway investigated, followed by Benjamini Hochberg P-value correction.  

Motif analysis 

Motif analysis of the binding regions was undertaken with Homer v4.4 [50] using default 

parameters. Motif logo rendering was performed using Weblogo v2.8.2 [51] 

VULCAN analysis 

We reconstructed a regulatory gene network using ARACNe-AP as described by Alvarez [26]. 

RNA-Seq breast cancer data was downloaded from TCGA on January 2015 and VST-

Normalized as described by Anders and Huber [52]. The ARACNe transcriptional regulation 

network was imported into R using the viper BioConductor package and it was interrogated 

using the differential binding profiles from our ChIP-Seq experiment as signatures, 45’ vs 

control and 90’ vs control. The peak-to-promoter assignment was performed using a 10kb 

window with respect to the transcription starting site (TSS) of every gene on the hg19 human 

genome. The algorithm msVIPER (multi-sample Virtual Inference of Protein activity by Enriched 
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Regulon analysis) was then applied, leveraging the full set of eight replicates per group, with 

1000 signature permutations and default parameters.  

 

qPLEX-RIME 

Samples were prepared as previously described for RIME[34], protocol was modified to include 

TMT isobaric labels for quantification (manuscript under review). qPLEX-RIME data and 

analysis pipeline is available as part of the supplementary Rmarkdown.  

TF Binding Overlap 

Publically available data was downloaded as described in the source publication [38–40,53] and 

overlap was calculated with bedtools (v2.25.0). Presented data was normalised as a 

percentage of GRHL2 sites. 

 

Code availability 

Code for data analysis is provided as an Rmarkdown document and supporting data is avalible 

from https://github.com/andrewholding/VULCANSupplementary. For convenience, we have 

provide VULCAN as a BioConductor package 

https://bioconductor.org/packages/release/bioc/html/vulcan.html along with a supporting data 

package https://bioconductor.org/packages/release/data/experiment/html/vulcandata.html. 
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eRNA quantification 

MCF7 cells were transfected with Smart Pool siRNA (Dharmacon, L-014515-02), siControl, 

GRHL2 overexpression vector (Origene, RC214498) or empty control vector using 

Lipofectamine 3000 (Thermo Fisher Scientific) according to the manufacturer's protocol in 6 

well format. Expression was monitored by rtPCR using TaqMan assay with GAPHD as a control 

transcript. Knockdown efficiency was ~75% and the GRHL2 overexpression vector led a 730-

fold increase in expression over control plasmid. 1 ug of purified RNA was reverse transcribed 

with Superscript III reverse transcriptase (Thermo Fisher Scientific, 18080085) using random 

primers (Promega, C1181) according to manufacturer instructions. eRNAs were quantified with 

qPCR using Power SYBR™ Green PCR Master Mix (Thermo Fisher Scientific, 4367660) and 

denoted as relative eRNA levels after normalizing with UBC mRNA levels. 

  

Primer name Sequences Reference 

eGREB1 F ACTGCGGCATTTCTGTGAGA This study 

eGREB1 R ACTGCAGTTTGCCTGTCACT This study 

eXBP1 F TGTGAGCACTTGGCATCCAT Nagarajan et al 2014 

eXBP1 R ACAGGGCCTCATTCTCCTCT Nagarajan et al 2014 

eTFF1 F AGGGGATGTGTGTGAGAAGG Li et al 2013 

eTFF1 R GCTTCGAGACAGTGGGAGTC Li et al 2013 

UBC F ATTTGGGTCGCGGTTCTTG Peña et al 2009 
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UBC R TGCCTTGACATTCTCGATGGT Peña et al 2009 

  

 

Author Contributions 
ANH, FMG, LAS & FM conceived and designed the experiments, ANH undertook ER 

experimentation,  ANH & FMG undertook the analysis of ER data, ANH & FMG designed 

VULCAN, FMG implemented the VULCAN analysis, AEC & AD undertook GRHL2 

experimentation. ANH, AEC & LAS undertook analysis of GRHL2 data. ANH, FMG, LAS and 

FM wrote the manuscript. 

Acknowledgements 

We would like to acknowledge the support of the University of Cambridge, Cancer Research UK 

and Hutchison Whampoa Limited. 

Parts of this work were funded by CRUK core grant [grant numbers C14303/A17197, 

A19274] to FM; Breast Cancer Now Award [grant number 2012NovPR042] to FM. 

We would like to acknowledge the contribution from the CRUK Genomics, Proteomics 

and Bioinformatic core facilities in supporting this work.  

Materials & Correspondence 

All materials requests & correspondence should be addressed to Dr Andrew N. Holding. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Competing interests.  

The authors have no competing interests to declare.   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Abbreviations 

AR   Androgen Receptor 

ARACNe-AP  AccuRate Algorithm for reConstruction of Network through Adaptive Partitioning 

CCLE   Cancer Cell Line Encyclopedia 

ChIP   Chromatin ImmunoPrecipitation 

ER    Estrogen Receptor-Alpha 

ERE   Estrogen-Response Elements 

GSEA   Gene Set Enrichment Analysis 

GRHL2  Grainyhead Like Transcription Factor 2 

METABRIC  MolEcular TAxonomy of BReast cancer International Consortium 

PBS   Phosphate Buffered Saline  

PI   Protease Inhibitors 

PR   Progesterone Receptor 

TCGA   The Cancer Genome Atlas 

TF   Transcription Factor 

VIPER   Virtual Inference of Protein activity by Enriched Regulon analysis  

VULCAN  VirtUaL ChIP-Seq Analysis through Networks 

Declarations 

Parts of this work were funded by CRUK core grant C14303/A17197 and A19274 (to FM), and 

by Breast Cancer Now Award (2012NovPR042). None of the authors have any competing 

interests to declare. Data supporting this manuscript is available from the GEO accession 

GSE109820. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


24

Figure Legends 

Figure 1: An overview of VULCAN 

A: ChIP-Seq analysis from multiple conditions is undertaken to generate cistrome data at 
multiple timepoints (or conditions). B: Binding events are then compared using differential 
binding analysis to establish log-fold change values for individual binding events between each 
timepoint.  C: ARACNe-AP infers all pairwise TF-target coexpression. In the example, the 
TCGA breast dataset is shown to infer A putative target that is correlated with ESR1. D: 
Minimalistic representation of the ARACNe-AP network, highlighting negative and positive 
regulation of targets by transcription factors. E: All the targets of a specific TF are divided in 
positive and negative, and tested on a differential binding signature through the msVIPER 
algorithm 4 
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Figure 2: Dynamic behaviour during early activation of ER 

  
ChIP-qPCR of the TFF1 gene (A) at 3 time points shows increased binding of ER at 45 minutes 
after MCF7 cells are stimulated by estra-2-diol.  The previously reported maximum is followed 
by a decrease in the TFF1 promoter occupancy at 90 minutes. P-values are generated by  one-
tailed t-test. The maximal point at 90 minutes was identified as an outlier ( > median + 2 x IQR); 
however removal did not alter the significance of results. (B) Differential binding analysis of 
ChIP-Seq data at three time points to monitor the activation of ERa. The ER a strong increase 
in binding at 45 minutes vs. 0 minutes (C) and the majority of sites still display binding at 90 
minutes.  
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Figure 3: ER occupancy after estradiol treatment in terms of TF 
network activity 

 
A: Global TF network behavior as predicted by VULCAN in our ChIP-Seq dataset, highlighting 
the ESR1 TF at time 0 and 45/90minutes after estradiol treatment. 
B: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC 
network, highlighting TFs significantly upregulated at 45 minutes and 90 minutes 
C: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC 
network, highlighting TFs significantly downregulated at 45 minutes and 90 minutes 
D: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC 
network, highlighting TFs significantly upregulated at 45 minutes but not at 90 minutes 
E: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC 
network, highlighting TFs significantly upregulated at 90 minutes but not at 45 minutes 
F: Most enriched motif in peaks upregulated at both 45 and 90 minutes after estradiol treatment, 
as predicted by HOMER. 
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Figure 4: Global TF activity after estradiol treatment using 
different network models.  

XY Scatter showing the TF activity as calculated by VULCAN for our differential ChIP-Seq 
analysis of ER binding at 45 minutes (A) and at 90 minutes (B) after stimulation with 100 nM E2. 
Comparison of results calculated using the METABRIC (y-axis) and TCGA  (x-axis) networks 
shows consistent results know ER interactors including PGR, RARA, GATA3 and GRHL2. 
GRHL2 activity is notably enriched against.  The regulon of ER is also consistently enriched in 
both networks. 
 

 

  

7 

 

2.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


28

Figure 5: GRHL2 Differential ChIP-Seq between 0 and 45 
minutes. 

  
(A) Activation of the ER with estro-2-diol results in a genome wide increase in GRHL2 binding. 
(B) VULCAN Analysis of the same data show a significant enrichment for ESR1 sites in both 
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the context of the METABRIC and TGCA networks. The regulon for FOXA1 is also not 
enriched. Inspection of known FOXA1/GRHL2 sites (e.g. RARa promoter) shows GRHL2 
already bound.  
(C) Overlap of GRHL2 binding with public datasets shows that E2 responsive GRHL2 sites 
show considerable overlap with ER, FOXA1 and P300 sites, H3K4Me1 and H3K4Me3 show 
little enrichment.  
(D) Analysis of P300 binding showed a greater overlap of GRHL2 ER responsive sites in the 
presence of E2 than in control conditions  
(E) Overlap with ER ChIA-PET sites showed enrichment for GRHL2 sites at ER enhancers. 
(F) Analysis of Gro-SEQ data (GSE43836) at GRHL2 sites. Blue lines are control samples, Pink 
are samples after stimulation with E2. In general GRHL2 sites (left) show no change in the 
levels of transcription on addition of E2; however, E2 responsive GRHL2 sites (right) show a 
robust increase in transcription on the activation of the ER.  
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Figure 6: Effect of overexpression of GRHL2 on eRNA at E2 
responsive binding sites. 

 
Overexpression of GRHL2 in MCF7 resulted in a reduction of eRNA transcribed from the 
GREB1, TFF1 and XBP1 enhancers. The effect was significant at TFF1 and XBP1 enhancers 
(p < 0.05, Wilcoxon paired-test).   
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Figure 7: Overview of the role of GRHL2 in ER activation

 
 
On activation of the ER by the ligand E2 the protein is released from a complex containing 
HSPs and translocates to the nucleus. The holo-ER dimer forms a core complex at Estrogen 
Response Elements (ERE) with FOXA1 (pioneer factor) and GATA3. ER further recruits P300 
and GRHL2. GRHL2 has an inhibitory effect on P300 (a transcriptional activator interacting with 
TFIID, TFIIB, and RNAPII) thereby reducing the level of eRNA transcription at enhancer sites. 
Overexpression of GRHL2 further suppresses transcription, while knockdown of GRHL2 
reverses the process. 
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1 Introduction

To reduce the overall size of this project read count and network data is stored within Rdata files. These are
avalible from https://github.com/andrewholding/VULCANSupplementary. The raw data is avalible from the
gene expression omnibus if reprocessing is required. The following script will download all the required files
and rebuild the network file. The Rmd files are designed to recreate the processed data from the raw data if
the processed data is not found.

git clone https://github.com/andrewholding/VULCANSupplementary.git

#Rebuild network
cd ChIP-seq_ER/data/
cat brca-expmat.rda.part1 brca-expmat.rda.part2 > brca-expmat.rda

2 Estrogen Receptor-alpha qPCR Analysis

2.1 Delta-delta ct Calculation

#Set varibles to make time points easier to spot
time0 <- 1
time45 <- 2
time90 <- 3

#Input raw data
qpcr <- list()
qpcr[[time0]] <- read.table("qpcr-0.txt",

header = T,
sep = "\t",
as.is = T)

qpcr[[time45]] <-
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read.table("qpcr-45.txt",
header = T,
sep = "\t",
as.is = T)

qpcr[[time90]] <-
read.table("qpcr-90.txt",

header = T,
sep = "\t",
as.is = T)

for (time_point in time0:time90)
{

qpcr[[time_point]][qpcr[[time_point]] == "No Ct"] <- NA
}

#Prepare lists
ct_values <- list()
ct_values_means <- list()
d_ct_values_means <- list()
input_values <- list()
input_mean <- list()
d_input_mean <- list()
dd_ct_values_means <- list()

for (time_point in time0:time90)
{

#Create object
ct_values[[time_point]] <- matrix(NA, 0, 2)

#Add reps 1:8 to object
for (rep in 1:8) {

y_coord <- rep * 12 - 11
ct_values[[time_point]] <- rbind(ct_values[[time_point]],

cbind(
as.numeric(qpcr[[time_point]]$Ct..dR[y_coord:(y_coord + 4)]),
as.numeric(qpcr[[time_point]]$Ct..dR[(y_coord + 5):(y_coord +

9)])
))

}

#Average techical reps from same isogenic replicate
ct_values_means[[time_point]] <- matrix(NA, 0, 2)
for (rep in 1:8) {

y_coord <- rep * 5 - 4
ct_values_means[[time_point]] <-

rbind(ct_values_means[[time_point]], colMeans(ct_values[[time_point]][y_coord:(y_coord +
4), 1:2]))

}
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#Import Input from time_point mins

input_values[[time_point]] <- cbind(as.numeric(qpcr[[time_point]]$Ct..dR[12 *
(0:4) + 11]),

as.numeric(qpcr[[time_point]]$Ct..dR[12 *
(0:4) + 12]))

#Calucate Average of technical reps.
input_mean[[time_point]] <-

colMeans(input_values[[time_point]], na.rm = T)

if (time_point == 2)
{

#Plate layout is reversed wrt control and target primers. See lab book.
d_ct_values_means[[time_point]] <-

ct_values_means[[time_point]][, 2] - ct_values_means[[time_point]][, 1]
d_input_mean[[time_point]] <-

input_mean[[time_point]][2] - input_mean[[time_point]][1]

dd_ct_values_means[[time_point]] <-
d_ct_values_means[[time_point]] - d_input_mean[[time_point]]

} else {
d_ct_values_means[[time_point]] <-

ct_values_means[[time_point]][, 1] - ct_values_means[[time_point]][, 2]
d_input_mean[[time_point]] <-

input_mean[[time_point]][1] - input_mean[[time_point]][2]

dd_ct_values_means[[time_point]] <-
d_ct_values_means[[time_point]] - d_input_mean[[time_point]]

}
}

df_ct <- data.frame(cbind(
2 ^ dd_ct_values_means[[time0]],
2 ^ dd_ct_values_means[[time45]],
2 ^ dd_ct_values_means[[time90]]

))
colnames(df_ct) <- c("0 min", "45 mins", "90 mins")

2.2 Box plot of Raw Data

library("ggpubr")

## Warning: package 'ggpubr' was built under R version 3.4.2

## Loading required package: ggplot2

## Loading required package: magrittr
tp1<-cbind(df_ct["0 min"],rep("0 min",8))
tp2<-cbind(df_ct["45 mins"],rep("45 min",8))
tp3<-cbind(df_ct["90 mins"],rep("90 min",8))
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colnames(tp1)<-c("Enrichment","Time")
colnames(tp2)<-c("Enrichment","Time")
colnames(tp3)<-c("Enrichment","Time")

df<-rbind(tp1,tp2,tp3)

#Code to remove data points more than 2*IQR from median. P-value are one-sided Wilcoxon rank test. Looks better but makes little differnce
#tp3<-tp3[!(df$Enrichment[df$Time=="90 min"]>median(df$Enrichment[df$Time=="90 min"])+IQR(df$Enrichment[df$Time=="90 min"])*2),]
#tp2<-tp2[!(df$Enrichment[df$Time=="45 min"]>median(df$Enrichment[df$Time=="45 min"])+IQR(df$Enrichment[df$Time=="45 min"])*2),]

df<-rbind(tp1,tp2,tp3)

p <- ggboxplot(df, x = "Time", y = "Enrichment",
color = "Time", palette =c("#00AFBB", "#E7B800", "#FC4E07"),
add = "jitter", shape = "Time",
outlier.shape=NA,
main = "ER-alpha occupany of the TFF1 promoter",

ylab = "Enrichment over Input",
xlab = "Time point",
show.legend=FALSE) +theme(legend.position="none")

my_comparisons <- list(c("90 min", "0 min"), c("45 min", "0 min"), c("45 min", "90 min") )

p + stat_compare_means(comparisons = my_comparisons,
method="t.test",
label = "p-value",
show.legend=FALSE,
method.args=list(alternative="greater"))

3 Estrogen Receptor-alpha ChIP-Seq and VULCAN Analysis

3.1 Introduction

Vulcan (VirtUaL ChIP-Seq Analysis through Networks) is a pipeline that combines ChIP-Seq data and
regulatory networks to obtain transcription factors that are likely affected by a specific stimulus. In order to
do so, our package combines strategies from different BioConductor packages: DESeq for data normalization,
ChIPpeakAnno and DiffBind for annotation and definition of ChIP-Seq genomic peaks, csaw to define optimal
peak width and viper for applying a regulatory network over a differential binding signature. Usage of gene
regulatory networks to analyze biological systems has witnessed an exponential increase in the last decade,
due to the ease of obtaining genome-wide expression data (Margolin et al., 2005; Giorgi et al., 2013; Castro
et al., 2015). Recently, the VIPER approach to interrogate these network models has been proposed to infer
transcription factor activity using the expression of a collection of their putative targets, i.e. their regulon
(Alvarez et al., 2016). In the VIPER algorithm, gene-level differential expression signatures are obtained for
either individual samples (relative to the mean of the dataset) or between groups of samples, and regulons
are tested for enrichment. Ideally, TF regulons can be tested on promoter-level differential binding signatures
generated from ChIP-Seq experiments, in order to ascertain the global change in promoter occupancy for gene
sets. In our study, we propose an extension of the VIPER algorithm to specifically analyze TF occupancy in
ChIP-Seq experiments. Our VULCAN algorithm uses ChIP-Seq data obtained for a given TF to provide
candidate coregulators of the response to a given stimulus. The analysis is based on identifying differentially
bound genes and testing their enrichment in the regulon of potential co-regulatory factors.
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Figure 1: Box Plot showing ChIP enrichment over control loci for ER at 0, 45 and 90 minutes after stimuation
with 100nM E2
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3.2 Software setup

VULCAN is conveniently provided as an R package available from the Bioconductor repository.
#source("http://bioconductor.org/biocLite.R")
#biocLite("vulcan")
library(vulcan)

Other packages are required for the execution of the analysis and the visualization of the results. A results
folder will be also created to store intermediate steps of the analysis.
library(gplots) # for heatmap.2
library(org.Hs.eg.db)
library(gridExtra) # for the pathway part
library(GeneNet) # to generate partial correlation networks
if(!file.exists("results")){dir.create("results")}

Finally, we will define here some convenience functions, such as those to convert from gene symbols to entrez
ids, and viceversa.
list_eg2symbol<-as.list(org.Hs.egSYMBOL[mappedkeys(org.Hs.egSYMBOL)])
e2s<-function(ids){

ids <- as.character(ids)
outlist <- list_eg2symbol[ids]
names(outlist) <- ids
outlist[is.na(outlist)] <- paste("unknown.", ids[is.na(outlist)], sep = "")
outlist <- gsub("unknown.unknown.", "", outlist)
return(outlist)

}
list_symbol2eg <- as.character(org.Hs.egSYMBOL2EG[mappedkeys(org.Hs.egSYMBOL2EG)])
s2e<-function(ids){

ids <- as.character(ids)
outlist <- list_symbol2eg[ids]
names(outlist) <- ids
outlist[is.na(outlist)] <- paste("unknown.", ids[is.na(outlist)], sep = "")
outlist <- gsub("unknown.unknown.", "", outlist)
return(outlist)

}

3.3 Import ChIP-Seq data using Vulcan

ChIP-Seq data was generated using a cell line model of ER+ breast cancer, MCF7, at 0’, 45’ and 90’ after
stimulation with estradiol. The binding profile of ER at each timepoint was then compared between time
points using differential binding analysis. From the temporal comparison ER binding we established four
classes of binding pattern: early responders, repressed transcription factors, late responders and candidate
cyclic genes.

The first part of our analysis highlights how to import ChIP-Seq data using the VULCAN adn DiffBind
packages, provided alignment files (BAM format) and peak files (BED format) for each of the samples. In
our dataset, we have 4 replicates for each time point.

3.3.1 Initial import

VULCAN requires an input sheet file in CSV format describing the samples and the location of the individual
input files
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sheetfile<-"chipseq/holding/sheet.csv"

fname<-"results/001_input.rda"
if(!file.exists(fname)){

vobj<-vulcan.import(sheetfile)
save(vobj,file=fname)

} else {
load(fname)

}

3.3.2 Annotation

VULCAN identifies the location of each peak in each sample, and according to the selected method, assigns a
score to each gene promoter. There are a few methods available.

• sum: when multiple peaks are found, sum their contributions
• closest: when multiple peaks are found, keep only the closest to the TSS as the representative one
• strongest: when multiple peaks are found, keep the strongest as the representative one
• farthest: when multiple peaks are found, keep only the closest to the TSS as the representative one
• topvar : when multiple peaks are found, keep the most varying as the representative one
• lowvar : when multiple peaks are found, keep the least varying as the representative one

vobj<-vulcan.annotate(vobj,lborder=-10000,rborder=10000,method="sum")

3.3.3 Normalization

At this step, genes are quantified according to the number of reads that could be associated to their
promoters. The algorithms within VULCAN (viper and DESeq2 ) require however data to be normalized via
Variance-Stabilizing Transformation (Anders and Huber, 2010).
vobj<-vulcan.normalize(vobj)
save(vobj,file="results/001_vobj.rda")

3.3.4 Dataset Sample Clustering

Here, we show how the samples cluster together using peak raw counts, VST-normalized peak raw counts
and peak RPKMs. In the following heatmaps, there are 4288 rows, one per gene promoter, and 16 columns,
one per sample. The sample name indicates the time point in minutes (T0, T45 or T90) and the number of
replicate (_1, _2, _3, _4).
heatmap.2(vobj$rawcounts,scale="row",

col=colorpanel(1000,"navy","white","red3"),tracecol="black",labRow="")
mtext("Raw Counts")

heatmap.2(vobj$normalized,
col=colorpanel(1000,"navy","white","red3"),tracecol="black",labRow="")

mtext("VST-normalized")

heatmap.2(vobj$rpkms,scale="row",
col=colorpanel(1000,"navy","white","red3"),tracecol="black",labRow="")

mtext("RPKMs")

Principal Component Analysis further confirms the clustering of replicates in two distinct groups: untreated
(T0) and treated (T45/T90).
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Figure 2: Dataset clustering with Raw Counts
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Figure 3: Dataset clustering with VST-normalized Counts
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Figure 4: Dataset clustering with RPKMs
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topvar<-apply(vobj$normalized[,],1,var)
topvar<-sort(topvar,dec=TRUE)[1:500]
submat<-vobj$normalized[names(topvar),]
pca<-prcomp(t(submat))
vars<-100*(pca$sdev^2)/sum(pca$sdev^2)
vars<-signif(vars,3)

p1<-1
p2<-2
plot(pca$x[,p1],pca$x[,p2],

xlab=paste0("PC",p1," (Var.Explained: ",vars[p1],"%)"),
ylab=paste0("PC",p2," (Var.Explained: ",vars[p2],"%)"),
type="p",main="PC Analysis",pch=20,col="grey",
xlim=c(min(pca$x[,p1])*1.1,max(pca$x[,p1])*1.1)

)
mtext("VST-Normalized data",cex=0.8)
textplot2(pca$x[,p1],pca$x[,p2],new=FALSE,

words=gsub("_[0-9]","",rownames(pca$x),perl=TRUE)
)
grid()

A clearer distinction of T45 and T90 is highlighted by PC5:
p1<-1
p2<-5
plot(pca$x[,p1],pca$x[,p2],

xlab=paste0("PC",p1," (Var.Explained: ",vars[p1],"%)"),
ylab=paste0("PC",p2," (Var.Explained: ",vars[p2],"%)"),
type="p",main="PC Analysis",pch=20,col="grey",
xlim=c(min(pca$x[,p1])*1.1,max(pca$x[,p1])*1.1)

)
mtext("VST-Normalized data",cex=0.8)
textplot2(pca$x[,p1],pca$x[,p2],new=FALSE,

words=gsub("_[0-9]","",rownames(pca$x),perl=TRUE)
)
grid()

3.3.5 MA plots

Without changing the format of the input data, we can use the Bioconductor DiffBind package to visualize
the amplitude of changes in ER binding between time points. One way to do this is an MA plot, which shows
the differences between measurements taken in two groups (e.g. 45’ vs 00’), by transforming the promoter
peak intensity data onto M (log ratio) and A (mean average) scales.

We will process the data using the DiffBind package and then use the dba.plotMA function to visualize the
contrasts (which we can extract using the dba.contrast function).
sheetfile<-"chipseq/holding/sheet.csv"
fname<-"results/001_diffbind.rda"
if(!file.exists(fname)){

# Load a sample sheet
chipseqSamples<-read.csv(sheetfile)
dbaobj<-dba(sampleSheet=chipseqSamples)
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Figure 5: Principal Component Analysis of the dataset, highlighting components 1 and 2
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Figure 6: Principal Component Analysis of the dataset, highlighting components 1 and 5
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# Count reads 500bp either side of summits, a peak is considered a peak
# if it is found in 3 samples out of loaded samples.
dbaobj<-dba.count(dbaobj,minOverlap=3,summits=500)

# Define contrasts
dbaobj<-dba.contrast(dbaobj, categories=DBA_CONDITION)

# Calculate differential binding using the DESeq2 engine within DiffBind
dbaobj<-dba.analyze(dbaobj,method=DBA_DESEQ2)

# Save the DiffBind object
save(dbaobj,file=fname)

} else {
load(fname)

}

# Visualize each contrast
dba.contrast(dbaobj)

## 12 Samples, 19351 sites in matrix:
## ID Tissue Factor Condition Replicate Caller Intervals FRiP
## 1 T90_1 MCF7 ER t90 1 counts 19351 0.15
## 2 T90_2 MCF7 ER t90 2 counts 19351 0.12
## 3 T90_3 MCF7 ER t90 3 counts 19351 0.09
## 4 T90_4 MCF7 ER t90 4 counts 19351 0.09
## 5 T45_1 MCF7 ER t45 1 counts 19351 0.16
## 6 T45_2 MCF7 ER t45 2 counts 19351 0.11
## 7 T45_3 MCF7 ER t45 3 counts 19351 0.11
## 8 T45_4 MCF7 ER t45 4 counts 19351 0.13
## 9 T0_1 MCF7 ER t0 1 counts 19351 0.01
## 10 T0_2 MCF7 ER t0 2 counts 19351 0.01
## 11 T0_3 MCF7 ER t0 3 counts 19351 0.01
## 12 T0_4 MCF7 ER t0 4 counts 19351 0.02
##
## 3 Contrasts:
## Group1 Members1 Group2 Members2
## 1 t90 4 t45 4
## 2 t90 4 t0 4
## 3 t45 4 t0 4
dba.plotMA(dbaobj,contrast=1,method=DBA_DESEQ2)

dba.plotMA(dbaobj,contrast=2,method=DBA_DESEQ2)

dba.plotMA(dbaobj,contrast=3,method=DBA_DESEQ2)

3.4 Apply a coregulatory network over a ChIP-Seq profile

Once the data has been loaded, VULCAN applies a regulatory network over differential binding signatures to
define Transcription Factors whose networks are most affected by the treatment. In our analysis, we will be
using three different networks generated via ARACNe (Margolin et al., 2006): two are breast cancer-specific
and are derived from the TCGA and METABRIC data collection, respectively. A third network is used as a
negative control, highlighting regulatory mechanisms derived from the Amyloid Leukemia dataset (TCGA).
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Figure 7: MA plot for Contrast 90mins vs 45mins, highlighting each individual peak. Significant peaks are
highlighted in red
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Figure 8: MA plot for Contrast 90mins vs 00mins, highlighting each individual peak. Significant peaks are
highlighted in red
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Figure 9: MA plot for Contrast 45mins vs 00mins, highlighting each individual peak. Significant peaks are
highlighted in red
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### Loading the input networks and processed data First, we will load the output from the previous
paragraphs (chipseq data annotated and normalized) and the three networks.
# Load imported vulcan object
load("results/001_vobj.rda")

# Vulcan Analysis (multiple networks)
## Networks
load("networks/laml-tf-regulon.rda")
laml_regulon<-regul
rm(regul)

load("networks/brca-tf-regulon.rda")
tcga_regulon<-regul
rm(regul)

load("networks/metabric-regulon-tfs.rda")
metabric_regulon<-regulon
rm(regulon)

Accessing the vulcan object /texit{vobj} can give us informations on the sample groups thereby contained.
names(vobj$samples)

## [1] "t90" "t45" "t0"

3.4.1 Running the core Vulcan function

The final Vulcan pipeline step requires three input objects:

• The annotated and normalized chipseq data (/texit{vobj})
• A specific binding signature defined by a contrast between two sample groups
• A regulatory network

fname<-"results/002_vobj_networks.rda"
list_eg2symbol<-as.list(org.Hs.egSYMBOL[mappedkeys(org.Hs.egSYMBOL)])
if(!file.exists(fname)){

vobj_tcga_90<-vulcan(vobj,network=tcga_regulon,contrast=c("t90","t0"),annotation=list_eg2symbol)
vobj_tcga_45<-vulcan(vobj,network=tcga_regulon,contrast=c("t45","t0"),annotation=list_eg2symbol)
vobj_metabric_90<-vulcan(vobj,network=metabric_regulon,contrast=c("t90","t0"),annotation=list_eg2symbol)
vobj_metabric_45<-vulcan(vobj,network=metabric_regulon,contrast=c("t45","t0"),annotation=list_eg2symbol)
vobj_negative_90<-vulcan(vobj,network=laml_regulon,contrast=c("t90","t0"),annotation=list_eg2symbol)
vobj_negative_45<-vulcan(vobj,network=laml_regulon,contrast=c("t45","t0"),annotation=list_eg2symbol)
save(

vobj_tcga_90,
vobj_tcga_45,
vobj_metabric_90,
vobj_metabric_45,
vobj_negative_90,
vobj_negative_45,
file=fname

)
} else {

load(fname)
}
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3.4.2 Visualize the relative TF activity

Vulcan has now generated activity scores for each Transcription Factor, which specify the global ER binding
strength on the promoters of their targets.

3.4.2.1 METABRIC results

The following line plot shows the relative network activity for every TF at two time points. On the y-axis, the
Normalized Enrichment Score of Vulcan is provided. Dashed lines indicate a p=0.05 significance threshold
for up- and down-regulation.
threshold<-p2z(0.05)
metabric_90=vobj_metabric_90$mrs[,"NES"]
metabric_45=vobj_metabric_45$mrs[,"NES"]
tfs<-names(metabric_45)
metabricmat<-cbind(rep(0,length(metabric_45)),metabric_45[tfs],metabric_90[tfs])
colnames(metabricmat)<-c("T0","T45","T90")
## All TFs
matplot(t(metabricmat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="All TFs",xlim=c(1,3.3),ylim=c(min(metabricmat),max(metabricmat)))
axis(1,at=c(1:3),labels=colnames(metabricmat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(t(metabricmat["ESR1",])),type="l",col="red",lty=1,lwd=2,add=TRUE)
text(3,metabricmat["ESR1",3],label="ESR1",pos=4,cex=1,font=2,col="red3")
mtext("METABRIC network")

These TFs can be grouped in classes. For example, TFs whose activity is already significant after 45mins and
remains significant at 90 minutes after estradiol treatment can be dubbed early responders.
threshold<-p2z(0.05)
tfclass<-tfs[metabricmat[,"T45"]>=threshold&metabricmat[,"T90"]>=threshold]
matplot(t(metabricmat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="Early responders",xlim=c(1,3.3),ylim=c(0,max(metabricmat)))
axis(1,at=c(1:3),labels=colnames(metabricmat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(metabricmat[tfclass,]),type="l",col="red3",lty=1,lwd=2,add=TRUE)
# Repel a bit
plabels<-tfclass
oricoords<-sort(setNames(metabricmat[plabels,3],plabels))
newcoords<-setNames(seq(min(oricoords)*0.7,max(oricoords),length.out=length(oricoords)),names(oricoords))
text(3,newcoords,label=names(oricoords),pos=4,cex=0.8,font=2)
text(3,newcoords["ESR1"],label="ESR1",pos=4,cex=1,font=2,col="red3")
mtext("METABRIC network")

TFs whose repressed targets are bound will yield a negative activity score. These repressed TFs are
symmetrically opposite to early responder TFs.
threshold<-p2z(0.05)
tfclass<-tfs[metabricmat[,"T45"]<=-threshold&metabricmat[,"T90"]<=-threshold]
matplot(t(metabricmat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="Repressed TFs",xlim=c(1,3.3),ylim=c(min(metabricmat),0))
axis(1,at=c(1:3),labels=colnames(metabricmat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(metabricmat[tfclass,]),type="l",col="cornflowerblue",lty=1,lwd=2,add=TRUE)
# Repel a bit
plabels<-c(tfclass,"GRHL2")
oricoords<-sort(setNames(metabricmat[plabels,3],plabels))
newcoords<-setNames(seq(min(oricoords),max(oricoords)*0.5,length.out=length(oricoords)),names(oricoords))
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Figure 10: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC
network, highlighting the ESR1 TF as an example
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Figure 11: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC
network, highlighting TFs significantly upregulated at 45 minutes and 90 minutes
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text(3,newcoords,label=names(oricoords),pos=4,cex=0.8,font=2)
mtext("METABRIC network")

Some TFs appear to have their targets bound at 45 minutes, but then unoccupied at 90 minutes. This
“updown” behavior is consistent to what observed in previous literature about the cyclic properties of certain
components of the ER DNA-binding complex, and therefore we dubbed them candidate cyclic TFs.
threshold<-p2z(0.05)
tfclass<-tfs[metabricmat[,"T45"]>=threshold&metabricmat[,"T90"]<=threshold]
matplot(t(metabricmat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="Candidate Cyclic TFs",xlim=c(1,3.3),ylim=c(min(metabricmat),max(metabricmat)))
axis(1,at=c(1:3),labels=colnames(metabricmat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(metabricmat[tfclass,]),type="l",col="seagreen",lty=1,lwd=2,add=TRUE)
# Repel a bit
plabels<-tfclass
oricoords<-sort(setNames(metabricmat[plabels,3],plabels))
newcoords<-setNames(seq(min(oricoords),max(oricoords),length.out=length(oricoords)),names(oricoords))
text(3,newcoords,label=names(oricoords),pos=4,cex=0.8,font=2)
mtext("METABRIC network")

Finally, a category of TFs appear to be activated but at 90 minutes only. We call this category of TFs late
responders.
threshold<-p2z(0.05)
tfclass<-tfs[metabricmat[,"T45"]<=threshold&metabricmat[,"T45"]>0&metabricmat[,"T90"]>=threshold]
matplot(t(metabricmat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="Late responders",xlim=c(1,3.3),ylim=c(0,max(metabricmat)))
axis(1,at=c(1:3),labels=colnames(metabricmat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(metabricmat[tfclass,]),type="l",col="darkorange",lty=1,lwd=2,add=TRUE)
# Repel a bit
plabels<-tfclass
oricoords<-sort(setNames(metabricmat[plabels,3],plabels))
newcoords<-setNames(seq(min(oricoords)*0.7,min(oricoords)*1.4,length.out=length(oricoords)),names(oricoords))
text(3,newcoords,label=names(oricoords),pos=4,cex=0.8,font=2)
mtext("METABRIC network")

3.4.2.2 TCGA results

All the TFs and the four categories of TFs were inferred also using the TCGA network.
tcga_90=vobj_tcga_90$mrs[,"NES"]
tcga_45=vobj_tcga_45$mrs[,"NES"]
tfs<-names(tcga_45)
tcgamat<-cbind(rep(0,length(tcga_45)),tcga_45[tfs],tcga_90[tfs])
colnames(tcgamat)<-c("T0","T45","T90")
## All TFs
matplot(t(tcgamat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="All TFs",xlim=c(1,3.3),ylim=c(min(tcgamat),max(tcgamat)))
axis(1,at=c(1:3),labels=colnames(tcgamat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(t(tcgamat["ESR1",])),type="l",col="red",lty=1,lwd=2,add=TRUE)
text(3,tcgamat["ESR1",3],label="ESR1",pos=4,cex=0.6,font=2,col="red3")
mtext("TCGA network")

threshold<-p2z(0.05)
tfclass<-tfs[tcgamat[,"T45"]>=threshold&tcgamat[,"T90"]>=threshold]
matplot(t(tcgamat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="Early responders",xlim=c(1,3.3),ylim=c(0,max(tcgamat)))
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Figure 12: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC
network, highlighting TFs significantly downregulated at 45 minutes and 90 minutes
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Figure 13: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC
network, highlighting TFs significantly upregulated at 45 minutes but not at 90 minutes
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Figure 14: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the METABRIC
network, highlighting TFs significantly upregulated at 90 minutes but not at 45 minutes
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Figure 15: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the TCGA network,
highlighting the ESR1 TF as an example
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axis(1,at=c(1:3),labels=colnames(tcgamat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(tcgamat[tfclass,]),type="l",col="red3",lty=1,lwd=2,add=TRUE)
# Repel a bit
plabels<-tfclass
oricoords<-sort(setNames(tcgamat[plabels,3],plabels))
newcoords<-setNames(seq(min(oricoords),max(oricoords),length.out=length(oricoords)),names(oricoords))
text(3,newcoords,label=names(oricoords),pos=4,cex=0.6,font=2)
text(3,newcoords["ESR1"],label="ESR1",pos=4,cex=0.6,font=2,col="red3")
mtext("TCGA network")

threshold<-p2z(0.05)
tfclass<-tfs[tcgamat[,"T45"]<=-threshold&tcgamat[,"T90"]<=-threshold]
matplot(t(tcgamat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="Repressed TFs",xlim=c(1,3.3),ylim=c(min(tcgamat),0))
axis(1,at=c(1:3),labels=colnames(tcgamat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(tcgamat[tfclass,]),type="l",col="cornflowerblue",lty=1,lwd=2,add=TRUE)
# Repel a bit
plabels<-tfclass
oricoords<-sort(setNames(tcgamat[plabels,3],plabels))
newcoords<-setNames(seq(min(oricoords),max(oricoords),length.out=length(oricoords)),names(oricoords))
text(3,newcoords,label=names(oricoords),pos=4,cex=0.6,font=2)
mtext("TCGA network")

threshold<-p2z(0.05)
tfclass<-tfs[tcgamat[,"T45"]>=threshold&tcgamat[,"T90"]<=threshold]
matplot(t(tcgamat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="Candidate Cyclic TFs",xlim=c(1,3.3),ylim=c(0,max(tcgamat)))
axis(1,at=c(1:3),labels=colnames(tcgamat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(tcgamat[tfclass,]),type="l",col="seagreen",lty=1,lwd=2,add=TRUE)
# Repel a bit
plabels<-tfclass
oricoords<-sort(setNames(tcgamat[plabels,3],plabels))
newcoords<-setNames(seq(min(oricoords),max(oricoords),length.out=length(oricoords)),names(oricoords))
text(3,newcoords,label=names(oricoords),pos=4,cex=0.6,font=2)
mtext("TCGA network")

## Dn-Up TF class
threshold<-p2z(0.05)
tfclass<-tfs[tcgamat[,"T45"]<=threshold&tcgamat[,"T45"]>0&tcgamat[,"T90"]>=threshold]
matplot(t(tcgamat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main="Late responders",xlim=c(1,3.3),ylim=c(0,max(tcgamat)))
axis(1,at=c(1:3),labels=colnames(tcgamat))
abline(h=c(0,threshold,-threshold),lty=2)
matplot(t(tcgamat[tfclass,]),type="l",col="darkorange",lty=1,lwd=2,add=TRUE)
# Repel a bit
plabels<-tfclass
oricoords<-sort(setNames(tcgamat[plabels,3],plabels))
newcoords<-setNames(seq(min(oricoords),min(oricoords)*1.2,length.out=length(oricoords)),names(oricoords))
text(3,newcoords,label=names(oricoords),pos=4,cex=0.6,font=2)
mtext("TCGA network")

3.4.2.3 Comparing TCGA and METABRIC results

The following scatterplots compare the activity inferred by VULCAN using two alternative networks, derived
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Figure 16: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the TCGA network,
highlighting TFs significantly upregulated at 45 minutes and 90 minutes
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Figure 17: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the TCGA network,
highlighting TFs significantly downregulated at 45 minutes and 90 minutes
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Figure 18: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the TCGA network,
highlighting TFs significantly upregulated at 45 minutes but not at 90 minutes
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Figure 19: Global TF activity after Estradiol Treatment in MCF7 cells, inferred using the TCGA network,
highlighting TFs significantly upregulated at 90 minutes but not at 45 minutes

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


from the TCGA and METABRIC breast cancer datasets using ARACNe-AP (Giorgi et al., 2016) with default
parameters.
common<-intersect(rownames(tcgamat),rownames(metabricmat))
set.seed(1)
x<-tcgamat[common,"T45"]
y<-metabricmat[common,"T45"]
plot(x,y,xlab="TCGA, 45mins",ylab="METABRIC, 45mins",pch=20,col="grey",xlim=c(min(x)*1.2,max(x)*1.2))
grid()
#toshow<-c("ESR1","GATA3","RARA","HSF1")
toshow<-names(which(rank(rank(-abs(x))+rank(-abs(y)))<=20))
#toshow<-unique(c(toshow,names(sort(rank(-abs(x))[1:10])),names(sort(rank(-abs(y)))[1:10])))
textplot2(x[toshow],y[toshow],words=toshow,new=FALSE,cex=0.8)
lm1<-lm(y~x)
abline(lm1$coef)
pcc<-cor.test(x,y)
mtext(paste0("PCC=",signif(pcc$estimate,2)," (p=",signif(pcc$p.value,2),")"))

x<-tcgamat[common,"T90"]
y<-metabricmat[common,"T90"]
plot(x,y,xlab="TCGA, 90mins",ylab="METABRIC, 90mins",pch=20,col="grey",xlim=c(min(x)*1.2,max(x)*1.2))
grid()
#toshow<-c("ESR1","GATA3","RARA","HSF1")
toshow<-names(which(rank(rank(-abs(x))+rank(-abs(y)))<=20))
#toshow<-unique(c(toshow,names(sort(rank(-abs(x))[1:10])),names(sort(rank(-abs(y)))[1:10])))
textplot2(x[toshow],y[toshow],words=toshow,new=FALSE,cex=0.8)
lm1<-lm(y~x)
abline(lm1$coef)
pcc<-cor.test(x,y)
mtext(paste0("PCC=",signif(pcc$estimate,2)," (p=",signif(pcc$p.value,2),")"))
abline(lm1$coef)

3.4.2.4 Testing with a different context network as a negative control

Regulatory networks can be tissue-specific, and so we built a third network using the same parameters as the
two breast cancer data-based ones. The third network is built on leukemic samples from the TCGA AML
dataset. Our results show a weaker activity for all TFs, which is only weakly correlated to that inferred via
the TCGA breast cancer network.
negative_90=vobj_negative_90$mrs[,"NES"]
negative_45=vobj_negative_45$mrs[,"NES"]
tfs<-names(negative_45)
negativemat<-cbind(rep(0,length(negative_45)),negative_45[tfs],negative_90[tfs])
colnames(negativemat)<-c("T0","T45","T90")

common<-intersect(rownames(tcgamat),rownames(negativemat))

par(mfrow=c(1,2),oma=c(0,0,2,0))
# Scatterplot, negative vs tcga 45mins
x<-tcgamat[common,"T45"]
y<-negativemat[common,"T45"]
plot(x,y,xlab="TCGA, 45mins",ylab="negative, 45mins",pch=20,col="grey",xlim=c(min(x)*1.2,max(x)*1.2))
grid()
lm1<-lm(y~x)
abline(lm1$coef)
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Figure 20: Comparing TF activities inferred by VULCAN using two different breast cancer dataset-derived
networks on the ER 45 minutes signature. PCC indicates the Pearson Correlation Coefficient
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Figure 21: Comparing TF activities inferred by VULCAN using two different breast cancer dataset-derived
networks on the ER 90 minutes signature. PCC indicates the Pearson Correlation Coefficient
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pcc<-cor.test(x,y)
mtext(paste0("PCC=",signif(pcc$estimate,2)," (p=",signif(p.adjust(pcc$p.value,method="bonferroni",n=1000),2),")"))

abline(lm1$coef)

# Scatterplot, negative vs tcga 90mins
x<-tcgamat[common,"T90"]
y<-negativemat[common,"T90"]
plot(x,y,xlab="TCGA, 90mins",ylab="negative, 90mins",pch=20,col="grey",xlim=c(min(x)*1.2,max(x)*1.2))
grid()
lm1<-lm(y~x)
abline(lm1$coef)
pcc<-cor.test(x,y)
mtext(paste0("PCC=",signif(pcc$estimate,2)," (p=",signif(p.adjust(pcc$p.value,method="bonferroni",n=1000),2),")"))
abline(lm1$coef)

title("Comparison with Negative Network", outer=TRUE)

3.5 Pathway enrichment analysis

In the previous paragraphs we generated signatures of differential binding centered around the peaks extracted
by VULCAN using the vulcan.annotate function. We apply two methods that assess the enrichment of gene
pathways over continuous signatures: GSEA (Subramaniam et al., 2004) and aREA (Alvarez et al., 2016).
First, we will load the VULCAN object containing our dataset:
# Load imported vulcan object
load("results/001_vobj.rda")

Then, we need gene pathways. A manually annotated and very exhaustive list is available from the MsiGDB
database by the Broad Institute
# Load MsigDB
load("msigdb/MSigDB_v5.0_human.rda")
pathways<-msigDBentrez$c2.all.v5.0.entrez.gmt

First, we compare aREA and GSEA. Despite being similar in purpose, the two methods differ in their core
algorithm and implementations. Notably, aREA processes the entire analysis in one go, by virtue of matrix
multiplications. We expect aREA to be faster, while using more RAM than GSEA. Both GSEA and aREA
are implemented in the VULCAN package. Here we calculate GSEA on the 90’ vs 00’ signature:
fname<-"results/003_pathwayComparison_GSEA_90.rda"
if(!file.exists(fname)){

start<-Sys.time()
results_gsea_90<-vulcan.pathways(vobj,pathways,contrast=c("t90","t0"),method="GSEA",np=1000)
end<-Sys.time()
time_gsea<-end-start
save(results_gsea_90,time_gsea,file=fname)

} else {
load(fname)

}

Then, we calculate aREA on the same 90’ vs 00’ signature:

37

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 22: Comparison between activities inferred through a breast cancer TCGA dataset and the AML
dataset. PCC indicates the Pearson Correlation Coefficient
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fname<-"results/003_pathwayComparison_REA_90.rda"
if(!file.exists(fname)){

start<-Sys.time()
results_rea_90<-vulcan.pathways(vobj,pathways,contrast=c("t90","t0"),method="REA")[,1]
end<-Sys.time()
time_rea<-end-start
save(results_rea_90,time_rea,file=fname)

} else {
load(fname)

}

We then compare GSEA and aREA:
plot(results_rea_90,results_gsea_90,xlab="aREA enrichment score",ylab="GSEA enrichment score",pch=20,main="Pathway Enrichment Analysis at 90 vs 0",

ylim=c(-max(abs(results_gsea_90)),max(abs(results_gsea_90))),col="grey")
th<-p2z(0.1)
abline(h=c(th,-th),v=c(th,-th),lty=2)
lm1<-lm(results_gsea_90~results_rea_90)
abline(lm1$coef,lwd=2)
pcc<-cor(results_rea_90,results_gsea_90,method="p")
mtext(paste0("PCC=",signif(pcc,3),", run on ",length(pathways)," pathways"))
# Estrogen
keywords<-c("ESTROGEN","ESTRADIOL","ESR1")
keypaths<-c()
for(keyword in keywords){

keypaths<-c(keypaths,grep(keyword,names(pathways),value=TRUE))
}
keypaths<-unique(keypaths)
# Breast Cancer
keywords<-c("BREAST_CANCER")
keypaths2<-c()
for(keyword in keywords){

keypaths2<-c(keypaths2,grep(keyword,names(pathways),value=TRUE))
}
keypaths2<-unique(keypaths2)

points(results_rea_90[keypaths],results_gsea_90[keypaths],pch=16,col="red3")
points(results_rea_90[keypaths2],results_gsea_90[keypaths2],pch=16,col="navy")
legend("topleft",pch=16,col=c("red3","navy"),cex=1,legend=c("Estrogen-Related Pathways","Breast Cancer Pathways"))
legend("bottomright",

legend=c(
paste0("REA: ",signif(time_rea,2)," ",units(time_rea)),
paste0("GSEA: ",signif(time_gsea,2)," ",units(time_gsea))

),
title="Runtime"

)

aREA appears to be faster. Therefore, we will use it to calculate the 45’ signature as well:
fname<-"results/003_pathwayComparison_REA_45.rda"
if(!file.exists(fname)){

start<-Sys.time()
results_rea_45<-vulcan.pathways(vobj,pathways,contrast=c("t45","t0"),method="REA")[,1]
end<-Sys.time()
time_rea<-end-start
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Figure 23: Comparison of GSEA and aREA on a differential binding signature
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save(results_rea_45,time_rea,file=fname)
} else {

load(fname)
}

The results of aREA in both 90’vs00’ and 45’vs00’ signatures show the presence of known Estrogen-related
pahtways:
topdn<-sort(results_rea_90)[1:20]
topup<-sort(results_rea_90,dec=TRUE)[1:20]

topdn<-cbind(topdn,z2p(topdn))
topup<-cbind(topup,z2p(topup))
colnames(topdn)<-colnames(topup)<-c("NES, 90' vs 0'","pvalue")

rownames(topdn)<-tolower(rownames(topdn))
rownames(topup)<-tolower(rownames(topup))
rownames(topdn)<-gsub("_"," ",rownames(topdn))
rownames(topup)<-gsub("_"," ",rownames(topup))
topdn[,1]<-signif(topdn[,1],3)
topup[,1]<-signif(topup[,1],3)
topdn[,2]<-signif(topdn[,2],2)
topup[,2]<-signif(topup[,2],2)

firstup <- function(x) {
substr(x, 1, 1) <- toupper(substr(x, 1, 1))
x

}
rownames(topdn)<-firstup(rownames(topdn))
rownames(topup)<-firstup(rownames(topup))

# Plot your table with table Grob in the library(gridExtra)
grid.newpage()
grid.table(topup)

grid.newpage()
grid.table(topdn)

topdn<-sort(results_rea_45)[1:20]
topup<-sort(results_rea_45,dec=TRUE)[1:20]

topdn<-cbind(topdn,z2p(topdn))
topup<-cbind(topup,z2p(topup))
colnames(topdn)<-colnames(topup)<-c("NES, 45' vs 0'","pvalue")

rownames(topdn)<-tolower(rownames(topdn))
rownames(topup)<-tolower(rownames(topup))
rownames(topdn)<-gsub("_"," ",rownames(topdn))
rownames(topup)<-gsub("_"," ",rownames(topup))
topdn[,1]<-signif(topdn[,1],3)
topup[,1]<-signif(topup[,1],3)
topdn[,2]<-signif(topdn[,2],2)
topup[,2]<-signif(topup[,2],2)

firstup <- function(x) {
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Figure 24: Table S2. aREA results: upregulated MsigDBpathways at 90mins
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Figure 25: Table S3. aREA results: downregulated MsigDBpathways at 90mins
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substr(x, 1, 1) <- toupper(substr(x, 1, 1))
x

}
rownames(topdn)<-firstup(rownames(topdn))
rownames(topup)<-firstup(rownames(topup))

# Plot your table with table Grob in the library(gridExtra)
grid.newpage()
grid.table(topup)

grid.newpage()
grid.table(topdn)

3.6 The GRHL2 Transcription Factor

Our analysis shows that the genes repressed by the Transcription Factor GRHL2 are occupied by the ER
complex, using both TCGA-derived and METABRIC-derived regulatory models.

3.6.1 Network similarity between ESR1 and GRHL2

The following analysis highlights, with a Venn Diagram for both the METABRIC and TCGA ARACNe-derived
regulatory models, the overlap between the ESR1 (Estrogen Receptor) and GRHL2 networks
# Load networks
load("networks/brca-tf-regulon.rda")
tcga_regulon<-regul
rm(regul)

load("networks/metabric-regulon-tfs.rda")
metabric_regulon<-regulon
rm(regulon)

# Select TFs
tf1<-"ESR1"
tf2<-"GRHL2"

par(mfrow=c(1,2))

# Venn diagram in TCGA
reg1<-tcga_regulon[[list_symbol2eg[[tf1]]]]
reg2<-tcga_regulon[[list_symbol2eg[[tf2]]]]
targets1<-names(reg1$tfmode)
targets2<-names(reg2$tfmode)
vennlist<-list()
vennlist[[tf1]]<-targets1
vennlist[[tf2]]<-targets2
venn(vennlist)
title("Network overlap in TCGA")

# Venn diagram in METABRIC
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Figure 26: Table S5. aREA results: upregulated MsigDBpathways at 45mins
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Figure 27: Table S6. aREA results: downregulated MsigDBpathways at 45mins
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reg1<-metabric_regulon[[list_symbol2eg[[tf1]]]]
reg2<-metabric_regulon[[list_symbol2eg[[tf2]]]]
targets1<-names(reg1$tfmode)
targets2<-names(reg2$tfmode)
vennlist<-list()
vennlist[[tf1]]<-targets1
vennlist[[tf2]]<-targets2
venn(vennlist)
title("Network overlap in METABRIC")

par<-par.backup

3.6.2 Correlation between ESR1 and GRHL2 expression in breast cancer datasets

The following analysis assesses the inverse correlation between GRHL2 and ESR1 expressions in TCGA
and METABRIC, and highlights the phenomenon for specific tumor subtypes, according to the PAM50
nomenclature (Perou et al., 2000)
# TCGA Color annotation
load("data/brca-expmat.rda")
load("data/brca-subtypes.rda")
expmat<-expmat[,names(subtypes)]
colors<-setNames(rep("black",length(subtypes)),subtypes)
colors[subtypes=="Basal"]<-"#FF0000AA"
colors[subtypes=="LumA"]<-"#00FFFFAA"
colors[subtypes=="LumB"]<-"#0000FFAA"
colors[subtypes=="Her2"]<-"#FFFF00AA"
colors[subtypes=="Tumor, Normal-Like"]<-"#00FF00AA"
colors[subtypes=="Normal, Tumor-Like"]<-"#00FF00AA"
colors[subtypes=="Normal"]<-"#00FF00AA"
colors_tcga<-colors
tcga_expmat<-expmat

# METABRIC Color annotation
load("data/metabric-expmat.rda")
load("data/metabric-subtypes.rda")
expmat<-expmat[,names(subtypes)]
colors<-setNames(rep("black",length(subtypes)),subtypes)
colors[subtypes=="Basal"]<-"#FF0000AA"
colors[subtypes=="LumA"]<-"#00FFFFAA"
colors[subtypes=="LumB"]<-"#0000FFAA"
colors[subtypes=="Her2"]<-"#FFFF00AA"
colors[subtypes=="Tumor, Normal-Like"]<-"#00FF00AA"
colors[subtypes=="Normal, Tumor-Like"]<-"#00FF00AA"
colors[subtypes=="Normal"]<-"#00FF00AA"
colors_metabric<-colors
metabric_expmat<-expmat

x<-tcga_expmat[list_symbol2eg[[tf1]],]
y<-tcga_expmat[list_symbol2eg[[tf2]],]
plot(x,y,xlab=tf1,ylab=tf2,pch=20,main="Correlation between GRHL2 and ESR1 expression in TCGA",col=colors_tcga)
pcc<-cor(x,y)
mtext(paste0("PCC=",signif(pcc,3)))
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Figure 28: Overlap between ESR1 and GRH2 networks in TCGA (left) and METABRIC (right) networks
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grid()
legend("bottomright",col=c("red","cyan","blue","yellow","green"),legend=c("Basal","LumA","LumB","Her2","Normal-Like"),pch=16)

x<-metabric_expmat[list_symbol2eg[[tf1]],]
y<-metabric_expmat[list_symbol2eg[[tf2]],]
plot(x,y,xlab=tf1,ylab=tf2,pch=20,main="Correlation between GRHL2 and ESR1 expression in METABRIC",col=colors_metabric)
pcc<-cor(x,y)
mtext(paste0("PCC=",signif(pcc,3)))
grid()
legend("bottomright",col=c("red","cyan","blue","yellow","green"),legend=c("Basal","LumA","LumB","Her2","Normal-Like"),pch=16)
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Figure 29: Correlation between GRHL2 and ESR1 expression in the TCGA breast cancer dataset
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3.6.3 Enrichment of GRHL2 network for gene pathways

In order to analyze the GRHL2 network, we perform a simple hypergeometric test to overlap its targets with
all pathways contained in hte manually curated Reactome collection of MsigDB pathways (C2 v5.0).
tf<-"GRHL2"
regulon<-tcga_regulon

# Pathways
wass<-load("msigdb/MSigDB_v5.0_human.rda") # "msigDBentrez" "msigDBsymbol"
ngenes<-length(unique(unlist(msigDBentrez$c2.all.v5.0.entrez.gmt)))

### Hypergeometric test implementation
# Hypergeometric enrichment function
enrich<-function(list1,list2,pathway){

l1<-length(list1)
l2<-length(list2)
overlap<-length(intersect(list1,list2))
q<-overlap-1
m<-l1
n<-ngenes-l1
k<-l2
p<-phyper(q,m,n,k,lower.tail=FALSE,log.p=FALSE)
return(p)

}

# Fisher P integration function
fisherp<-function (ps) {

Xsq <- -2 * sum(log(ps))
p.val <- pchisq(Xsq, df = 2 * length(ps), lower.tail = FALSE)
return(p.val)

}

# Regulon vs. pathway
networkUP<-names(regulon[[s2e(tf)]]$tfmode)[regulon[[s2e(tf)]]$tfmode>=0]
networkDN<-names(regulon[[s2e(tf)]]$tfmode)[regulon[[s2e(tf)]]$tfmode<0]

### Enrichment Loop C2
fname<-paste0("results/004_results_hypergeom_C2_",tf,".rda")
#pathways<-msigDBentrez$c2.cp.biocarta.v5.0.entrez.gmt
pathways<-msigDBentrez$c2.all.v5.0.entrez.gmt
if(!file.exists(fname)){

results<-list()
ntests<-0
tfs<-names(regulon)
pb<-txtProgressBar(0,length(tfs),style=3)
pbi<-1
for(tf in tfs){

plimit<-0.05
setTxtProgressBar(pb,pbi)
sublistUP<-setNames(rep(NA,length(pathways)),names(pathways))
sublistDN<-setNames(rep(NA,length(pathways)),names(pathways))
i<-1
for(pathway in pathways){
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networkUP<-names(regulon[[tf]]$tfmode)[regulon[[tf]]$tfmode>=0]
networkDN<-names(regulon[[tf]]$tfmode)[regulon[[tf]]$tfmode<0]
pUP<-enrich(networkUP,pathway,ngenes)
pDN<-enrich(networkDN,pathway,ngenes)
ntests<-ntests+1
sublistUP[i]<-pUP
sublistDN[i]<-pDN
i<-i+1

}
sublistUP<-sublistUP[sublistUP<=plimit]
sublistDN<-sublistDN[sublistDN<=plimit]
results[[tf]]<-list(up=sublistUP,dn=sublistDN)
pbi<-pbi+1

}
save(results,ntests,file=fname)

} else {
load(fname)

}

### Now, plotting
# Set parameters
topn<-20
subsetting<-"REACTOME_"

## Start plot
# Prepare input results
res<-results[[s2e(tf)]]

# Correct pvalues and integrate
resUP<-p.adjust(res$up,method="none",n=ntests) # convert to bonferroni when deploying
resDN<-p.adjust(res$dn,method="none",n=ntests)
union<-union(names(resUP),names(resDN))
tmptable<-cbind(resUP[union],resDN[union])
tmptable[is.na(tmptable)]<-1
rownames(tmptable)<-union
integrated<-apply(tmptable,1,fisherp)

# Optional subsetting
toshow<-names(sort(integrated))
toshow<-toshow[grep(subsetting,toshow)]
toshow<-toshow[1:topn]

# Prepare input
resUP<--log10(res$up[toshow])
resDN<--log10(res$dn[toshow])
names(resUP)<-toshow
names(resDN)<-toshow
resUP[is.na(resUP)]<-0
resDN[is.na(resDN)]<-0

# Canvas
upperlim<-ceiling(max(c(resUP,resDN)))
par(mar=c(0,0,0,0))
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plot(0,col="white",xlim=c(-10,12),ylim=c(-2,topn+3),xaxt="n",yaxt="n",type="n",frame.plot=FALSE,
xlab="",ylab="",xaxs="i",yaxs="i")

# text(c(0:10),c(0:10),labels=c(0:10),pos=1,offset=0)
# text(c(1,2,2,1),c(1,2,1,2),labels=c("1_1","2_2","2_1","1_2"),pos=1,offset=0)

# Title
regsize<-length(regulon[[s2e(tf)]]$tfmode)
text(5,topn+2.8,paste0("Pathway enrichment of ",tf," regulon"),pos=1,offset=0,font=2)
text(5,topn+2,paste0("regulon size: ",regsize),pos=1,offset=0,font=3,cex=0.8)

# Axis horizontal
abline(h=0)
segments(0:10,0,0:10,-0.3)
text(5,-1,"Hypergeometric -log10(pvalue)",pos=1,offset=0)
text(1:10,-0.5,cex=0.7,

labels=round(signif(seq(0,upperlim,length.out=11)),2)[2:11]
)

# Axis vertical
abline(v=0)
#segments(0,topn:0,-0.3,topn:0)

# Significance line
abline(v=(-log10(0.05)/upperlim)*10,lty=2)

# Bars
for(i in topn:1){

upval<-(resUP[i]/upperlim)*10
dnval<-(resDN[i]/upperlim)*10
rect(0,i+0.25,upval,i,col="salmon")
rect(0,i,dnval,i-0.25,col="cornflowerblue")

}

# Pathway labels
pathlabels<-gsub(subsetting,"",toshow)
pathlabels<-tolower(pathlabels)
pathlabels<-gsub("_"," ",pathlabels)
for(i in topn:1){

text(0,i,pathlabels[i],pos=2,offset=0.1,cex=0.8)
}

# Percentage of pathway overlap
r<-names(regulon[[s2e(tf)]]$tfmode)
percs<-c()
for(i in topn:1){

p<-pathways[[toshow[i]]]
intrsct<-intersect(p,r)
perc<-100*length(intrsct)/length(p)
percs<-c(percs,perc)

}
names(percs)<-rev(toshow)
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spercs<-(percs/max(percs))*4
lines(spercs,topn:1,lty=1,lwd=2)

# Ruler of pathway overlap
segments(0,topn+1,4,topn+1)
text(2,topn+1.5,pos=1,offset=0,font=3,cex=0.7,labels="% pathway")
segments(0:4,topn+1,0:4,topn+0.8)
text(1:4,topn+0.65,cex=0.5,

labels=round(seq(0,max(percs),length.out=5),1)[2:5]
)

par<-par.backup

3.7 Comparing VULCAN results with other tools and approaches

Our VULCAN results were obtained using independent gene regulatory models and multiple replicates to
generate ER-response signatures.

3.7.1 VULCAN and qPLEX-RIME

We set to testing the performance of VULCAN against a complementary experimental approach called
qPLEX-RIME (Holding et al., submitted), which aims at identifyin interactors of ER within the ER-chromatin
complex at estrogen-responding promoters. We have QRIME results for MCF7 cells treated with estradiol at
both 45 and 90 minutes, the same experimental setup for the VULCAN input dataset.
# Load imported vulcan object
load("results/001_vobj.rda")

#### Vulcan Analysis (multiple networks)
## TCGA network, ARACNe with proteomics centroids
load("aracne/regulon-tcga-centroids.rda")
tcga_regulon<-regulon
rm(regulon)

## METABRIC network, ARACNe with proteomics centroids
load("aracne/regulon-metabric-centroids.rda")
metabric_regulon<-regulon
rm(regulon)

## Specify contrast and network
fname<-"results/005_vobj_networks.rda"
list_eg2symbol<-as.list(org.Hs.egSYMBOL[mappedkeys(org.Hs.egSYMBOL)])
if(!file.exists(fname)){

vobj_tcga_90<-vulcan(vobj,network=tcga_regulon,contrast=c("t90","t0"),annotation=list_eg2symbol)
vobj_tcga_45<-vulcan(vobj,network=tcga_regulon,contrast=c("t45","t0"),annotation=list_eg2symbol)
vobj_metabric_90<-vulcan(vobj,network=metabric_regulon,contrast=c("t90","t0"),annotation=list_eg2symbol)
vobj_metabric_45<-vulcan(vobj,network=metabric_regulon,contrast=c("t45","t0"),annotation=list_eg2symbol)
save(

vobj_tcga_90,
vobj_tcga_45,
vobj_metabric_90,
vobj_metabric_45,
file=fname
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Figure 30: Pathways most significantly overlapping the GRHL2 network
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)
} else {

load(fname)
}

# Merge proteomics and TF aracne results
vobj2_tcga_90<-vobj_tcga_90
vobj2_tcga_45<-vobj_tcga_45
vobj2_metabric_90<-vobj_metabric_90
vobj2_metabric_45<-vobj_metabric_45

fname<-"results/002_vobj_networks.rda"
load(fname)
vobj_tcga_90$mrs<-rbind(vobj_tcga_90$mrs,vobj2_tcga_90$mrs[setdiff(rownames(vobj2_tcga_90),rownames(vobj_tcga_90)),])
vobj_tcga_45$mrs<-rbind(vobj_tcga_45$mrs,vobj2_tcga_45$mrs[setdiff(rownames(vobj2_tcga_45),rownames(vobj_tcga_45)),])
vobj_metabric_90$mrs<-rbind(vobj_metabric_90$mrs,vobj2_metabric_90$mrs[setdiff(rownames(vobj2_metabric_90),rownames(vobj_metabric_90)),])
vobj_metabric_45$mrs<-rbind(vobj_metabric_45$mrs,vobj2_metabric_45$mrs[setdiff(rownames(vobj2_metabric_45),rownames(vobj_metabric_45)),])

# Metabric Results
metabric_90=vobj_metabric_90$mrs[,"pvalue"]
metabric_45=vobj_metabric_45$mrs[,"pvalue"]
tfs<-names(metabric_45)
metabricmat<-cbind(metabric_45[tfs],metabric_90[tfs])
colnames(metabricmat)<-c("T45","T90")

# TCGA Results
tcga_90=vobj_tcga_90$mrs[,"pvalue"]
tcga_45=vobj_tcga_45$mrs[,"pvalue"]
tfs<-names(tcga_45)
tcgamat<-cbind(tcga_45[tfs],tcga_90[tfs])
colnames(tcgamat)<-c("T45","T90")

## QRIME results
raw45<-read.delim("qrime/Results/ER_45min_vs_ER_0minExcludeMissingValues_QuantileNormalization.txt",as.is = TRUE)
qrime45<-setNames(raw45$P.Value,raw45$Gene)
qrime45<-qrime45[!is.na(qrime45)]

raw90<-read.delim("qrime/Results/ER_90min_vs_ER_0minExcludeMissingValues_QuantileNormalization.txt",as.is = TRUE)
qrime90<-setNames(raw90$P.Value,raw90$Gene)
qrime90<-qrime90[!is.na(qrime90)]

Here, we will compare ER-binding pvalues obtained with QRIME, with the VULCAN results aimed at
identifying TFs upstream of the observed differential promoter binding.
### Comparisons, pvalues
par(mfrow=c(2,2))
# TCGA 45
main<-"TCGA network, 45 mins"
common<-intersect(rownames(tcgamat),names(qrime45))
x<-qrime45[common]
x<--log10(x)
y<-tcgamat[common,"T45"]
y<--log10(y)
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plot(x,y,pch=20,xlab="-log10(p) QRIME",ylab="-log10(p) VULCAN",col="grey",main=main,
xlim=c(min(x)-max(x)*0.3,max(x)*1.1),
ylim=c(min(y)-max(y)*0.2,max(y)*1.1)

)
topx<-names(sort(x,dec=TRUE))[1:10]
topy<-names(sort(y,dec=TRUE))[1:10]
top<-union(topx,topy)
textplot2(x[top],y[top],words=top,new=FALSE)
grid()

# TCGA 90
main<-"TCGA network, 90 mins"
common<-intersect(rownames(tcgamat),names(qrime90))
x<-qrime90[common]
x<--log10(x)
y<-tcgamat[common,"T90"]
y<--log10(y)
plot(x,y,pch=20,xlab="-log10(p) QRIME",ylab="-log10(p) VULCAN",col="grey",main=main,

xlim=c(min(x)-max(x)*0.3,max(x)*1.1),
ylim=c(min(y)-max(y)*0.2,max(y)*1.1)

)
topx<-names(sort(x,dec=TRUE))[1:10]
topy<-names(sort(y,dec=TRUE))[1:10]
top<-union(topx,topy)
textplot2(x[top],y[top],words=top,new=FALSE)
grid()

# METABRIC 45
main<-"METABRIC network, 45 mins"
common<-intersect(rownames(metabricmat),names(qrime45))
x<-qrime45[common]
x<--log10(x)
y<-metabricmat[common,"T45"]
y<--log10(y)
plot(x,y,pch=20,xlab="-log10(p) QRIME",ylab="-log10(p) VULCAN",col="grey",main=main,

xlim=c(min(x)-max(x)*0.3,max(x)*1.1),
ylim=c(min(y)-max(y)*0.2,max(y)*1.1)

)
topx<-names(sort(x,dec=TRUE))[1:10]
topy<-names(sort(y,dec=TRUE))[1:10]
top<-union(topx,topy)
textplot2(x[top],y[top],words=top,new=FALSE)
grid()

# METABRIC 90
main<-"METABRIC network, 90 mins"
common<-intersect(rownames(metabricmat),names(qrime90))
x<-qrime90[common]
x<--log10(x)
y<-metabricmat[common,"T90"]
y<--log10(y)
plot(x,y,pch=20,xlab="-log10(p) QRIME",ylab="-log10(p) VULCAN",col="grey",main=main,
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xlim=c(min(x)-max(x)*0.3,max(x)*1.1),
ylim=c(min(y)-max(y)*0.2,max(y)*1.1)

)
topx<-names(sort(x,dec=TRUE))[1:10]
topy<-names(sort(y,dec=TRUE))[1:10]
top<-union(topx,topy)
textplot2(x[top],y[top],words=top,new=FALSE)
grid()

# TCGA Results
tcganes_90=vobj_tcga_90$mrs[,"NES"]
tcganes_45=vobj_tcga_45$mrs[,"NES"]
tfs<-names(tcganes_45)
tcganesmat<-cbind(tcganes_45[tfs],tcganes_90[tfs])
colnames(tcganesmat)<-c("T45","T90")

# METABRIC Results
metabricnes_90=vobj_metabric_90$mrs[,"NES"]
metabricnes_45=vobj_metabric_45$mrs[,"NES"]
tfs<-names(metabricnes_45)
metabricnesmat<-cbind(metabricnes_45[tfs],metabricnes_90[tfs])
colnames(metabricnesmat)<-c("T45","T90")

par(mfrow=c(2,2))
# TCGA 45
main<-"TCGA network, 45 mins"
common<-intersect(rownames(tcganesmat),names(qrime45))
x<-qrime45[common]
x<--log10(x)
y<-tcganesmat[common,"T45"]
plot(x,y,pch=20,xlab="-log10(p) QRIME",ylab="NES VULCAN",col="grey",main=main,

xlim=c(min(x)-max(x)*0.3,max(x)*1.1),
ylim=c(min(y)-max(y)*0.2,max(y)*1.1)

)
topx<-names(sort(x,dec=TRUE))[1:10]
topy<-names(sort(y,dec=TRUE))[1:10]
top<-union(topx,topy)
textplot2(x[top],y[top],words=top,new=FALSE)
abline(h=c(-p2z(0.05),p2z(0.05)),lty=3)
grid()

# TCGA 90
main<-"TCGA network, 90 mins"
common<-intersect(rownames(tcganesmat),names(qrime90))
x<-qrime90[common]
x<--log10(x)
y<-tcganesmat[common,"T90"]
plot(x,y,pch=20,xlab="-log10(p) QRIME",ylab="NES VULCAN",col="grey",main=main,

xlim=c(min(x)-max(x)*0.3,max(x)*1.1),
ylim=c(min(y)-max(y)*0.2,max(y)*1.1)

)
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Figure 31: Comparison of significance between the QRIME method (x-axis) and the VULCAN method
(y-axis) at two time points using two regulatory networks for VULCAN
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topx<-names(sort(x,dec=TRUE))[1:10]
topy<-names(sort(y,dec=TRUE))[1:10]
top<-union(topx,topy)
textplot2(x[top],y[top],words=top,new=FALSE)
abline(h=c(-p2z(0.05),p2z(0.05)),lty=3)
grid()

# METABRIC 45
main<-"METABRIC network, 45 mins"
common<-intersect(rownames(metabricnesmat),names(qrime45))
x<-qrime45[common]
x<--log10(x)
y<-metabricnesmat[common,"T45"]
plot(x,y,pch=20,xlab="-log10(p) QRIME",ylab="NES VULCAN",col="grey",main=main,

xlim=c(min(x)-max(x)*0.3,max(x)*1.1),
ylim=c(min(y)-max(y)*0.2,max(y)*1.1)

)
topx<-names(sort(x,dec=TRUE))[1:10]
topy<-names(sort(y,dec=TRUE))[1:10]
top<-union(topx,topy)
textplot2(x[top],y[top],words=top,new=FALSE)
abline(h=c(-p2z(0.05),p2z(0.05)),lty=3)
grid()

# METABRIC 90
main<-"METABRIC network, 90 mins"
common<-intersect(rownames(metabricnesmat),names(qrime90))
x<-qrime90[common]
x<--log10(x)
y<-metabricnesmat[common,"T90"]
plot(x,y,pch=20,xlab="-log10(p) QRIME",ylab="NES VULCAN",col="grey",main=main,

xlim=c(min(x)-max(x)*0.3,max(x)*1.1),
ylim=c(min(y)-max(y)*0.2,max(y)*1.1)

)
topx<-names(sort(x,dec=TRUE))[1:10]
topy<-names(sort(y,dec=TRUE))[1:10]
top<-union(topx,topy)
textplot2(x[top],y[top],words=top,new=FALSE)
abline(h=c(-p2z(0.05),p2z(0.05)),lty=3)
grid()

3.7.2 Comparing Mutual Information and Partial Correlation networks

As shown before in literature, partial correlation and mutual information networks are highly similar. While
requiring a mutual information network due to the VIPER engine used by the VULCAN pipeline, we set
out here to compare Mutual Information networks with partial correlation ones, using different correlation
thresholds.
filename<-"results/006_comparison1_aracne.rda"
if(!file.exists(filename)){

# Load aracne network
load("aracne/regulon-tcga-centroids.rda")
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Figure 32: Comparison of Normalized Enrichment Score between the QRIME method (x-axis) and the
VULCAN method (y-axis) at two time points using two regulatory networks for VULCAN
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# Load expression matrix
expmat<-as.matrix(read.delim("aracne/tcga-expmat.dat",as.is=TRUE,row.names=1))

### Better pipeline
tfs<-names(regulon)
genes<-rownames(expmat)

# Remove zero-SD genes
sds<-apply(expmat,1,sd)
expmat<-expmat[sds>=0.5,]
dim(expmat)

# Build Covariance Matrix
pcormat<-cov(t(expmat))
# Build pcormat
pcormat<-cor2pcor(pcormat)
rownames(pcormat)<-colnames(pcormat)<-rownames(expmat)

# Keep only TFs
diag(pcormat)<-0
tfs<-intersect(tfs,rownames(pcormat))
pcormat<-pcormat[tfs,]

# Transform my network into a vector of edges
myedges<-c()
for(centroid in names(regulon)){

targets<-names(regulon[[centroid]]$tfmode)
newedges<-paste0(centroid,"___",targets)
myedges<-c(myedges,newedges)

}
length(myedges) # 268394

### Loop over rs
jis<-c()
nedges<-c()
rs<-seq(0.05,0.4,by=0.025)
for(r in rs){

# Transform networks into vectors of edges
matches<-which(abs(pcormat)>=r,arr.ind=TRUE)
pcoredges<-paste0(rownames(pcormat)[matches[,1]],"___",colnames(pcormat)[matches[,2]])
nedges<-c(nedges,nrow(matches))
# Calculate Jaccard
ji<-length(intersect(myedges,pcoredges))/length(union(myedges,pcoredges))
jis<-c(jis,ji)

}
names(jis)<-names(nedges)<-rs
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# Generate random network vectors
random<-list()
for(ii in 1:length(rs)){

n<-nedges[ii]
message("Doing ",rs[ii])
pb<-txtProgressBar(0,1000,style=3)
randomjis<-c()
for(i in 1:1000){

x<-sample(1:nrow(pcormat),n,replace=TRUE)
y<-sample(1:ncol(pcormat),n,replace=TRUE)
matches<-cbind(x,y)
pcoredges<-paste0(rownames(pcormat)[matches[,1]],"___",colnames(pcormat)[matches[,2]])
ji<-length(intersect(myedges,pcoredges))/length(union(myedges,pcoredges))
randomjis<-c(randomjis,ji)
setTxtProgressBar(pb,i)

}
random[[ii]]<-randomjis

}
names(random)<-as.character(rs)

save(jis,rs,nedges,random,file=filename)

} else {
load(filename)

}

We generate several partial correlation networks using the same input as the ARACNe network used by
VULCAN (the TCGA breast cancer dataset). We tested the overlap of every partial correlation network with
the ARACNe network using the Jaccard Index (JI) criterion.
par(mfrow=c(1,1))
bp<-barplot(jis,xlab="pcor r",ylab="JI",ylim=c(0,max(jis)*1.1))
text(bp[,1],jis,labels=kmgformat(nedges),pos=3,cex=0.7)
mtext("Number of overlapping edges between Pcor and Aracne",cex=0.8)

Finally, we show how the Jaccard Index between partial correlation networks and the ARACNe network is
always significantly higher than expected by selecting random network edges.
par(mfrow=c(5,3))
for(i in 1:length(random)){

dd<-density(random[[i]])
plot(dd,xlim=c(min(random[[i]]),jis[i]*1.1),main=paste0("r=",rs[i]),xlab="Jaccard Index",lwd=2)
arrows(jis[i],max(dd$y),jis[i],0,lwd=2)

}

3.7.3 Comparing alternative methods for target enrichment analysis

We developed three independent methods to compare VULCAN with. The first is common, the second is
simple but crude, and the third is also common but too stringent.
### Classic vulcan result
# vobj_tcga_90<-vulcan(vobj,network=tcga_regulon,contrast=c("t90","t0"),annotation=list_eg2symbol)
wass<-load("results/002_vobj_networks.rda")
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Figure 33: Sheer number of overlapping edges at different Pcor thresholds
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Figure 34: Comparing the Jaccard Index between the ARACNe network and Partial correlation networks
(indicated as arrows) and random networks (indicated as distributions)
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### Prepare the workspace
# Load imported vulcan object
load("results/001_vobj.rda")

# Network
load("networks/brca-tf-regulon.rda")
tcga_regulon<-regul
rm(regul)

# Entrez to symbol
library(org.Hs.eg.db)
list_eg2symbol<-as.list(org.Hs.egSYMBOL[mappedkeys(org.Hs.egSYMBOL)])

1. A T-test based method, that takes the targets of a TF and integrates their pvalue in a specific contrast.
Good but hard to keep control over the p-value (the classic integration step using the Fisher’s Integration
method vastly underestimates them). Also, GRHL2 doesn’t shine with this method. Unless differently
specified, the p-values are always Bonferroni-corrected

#######################################################
### TTEST INTEGRATION
#######################################################
if(TRUE){

### TTest functions
msvipertt<-function(signature,network,minsize=10){

# First, convert tscores into pvalues
psignature<-2*pt(signature[,1], nrow(signature)-2, lower=FALSE)

# For each regulon, take the targets and integrate their pvalue
tfpvalues<-c()
for(tf in names(network)){

targets<-names(network[[tf]]$tfmode)
ptargets<-psignature[intersect(targets,names(psignature))]
if(length(ptargets)>=minsize){

pt<-fisherp(ptargets)
tfpvalues<-c(tfpvalues,pt)
names(tfpvalues)[length(tfpvalues)]<-tf

}
}

return(tfpvalues)
}
vulcantt<-function(vobj, network, contrast, annotation = NULL, minsize = 10) {

tfs <- names(network)
samples <- vobj$samples
normalized <- vobj$normalized

# Prepare output objects
msvipers <- matrix(NA, ncol = 3, nrow = length(tfs))
rownames(msvipers) <- tfs
# Define contrast
a <- samples[[contrast[1]]]
b <- samples[[contrast[2]]]
# Vulcan msviper implementation
signature <- rowTtest(normalized[, a], normalized[, b])$statistic
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tfpvalues <- msvipertt(signature, network, minsize = minsize)
if(!is.null(annotation)){

names(tfpvalues)<-annotation[names(tfpvalues)]
}
return(tfpvalues)

}

### Repeat the same analysis but with TT
ttp_90<-p.adjust(vulcantt(vobj,network=tcga_regulon,contrast=c("t90","t0"),annotation=list_eg2symbol),method="bonferroni")
ttp_45<-p.adjust(vulcantt(vobj,network=tcga_regulon,contrast=c("t45","t0"),annotation=list_eg2symbol),method="bonferroni")

### Compare vulcan and TT
vulcanp_90<-vobj_tcga_90$msviper$es$p.value
vulcanp_45<-vobj_tcga_45$msviper$es$p.value

toshow<-c("ESR1","GATA3","GRHL2")

par(mfrow=c(1,2))

common<-intersect(names(ttp_45),names(vulcanp_45))
x<--log10(vulcanp_45[common]+1e-320)
y<--log10(ttp_45[common]+1e-320)
plot(x,y,pch=20,main="Method Comparison, 45' vs 00'",xlab="VULCAN pvalue",ylab="Ttest integration pvalue",col="darkgrey")
grid()
pcc<-cor.test(x,y)
mtext(paste0("PCC=",signif(pcc$estimate,3)," (p=",signif(pcc$p.value,3),")"))
textplot2(x[toshow],y[toshow],words=toshow,new=FALSE)

common<-intersect(names(ttp_90),names(vulcanp_90))
x<--log10(vulcanp_90[common]+1e-320)
y<--log10(ttp_90[common]+1e-320)
plot(x,y,pch=20,main="Method Comparison, 90' vs 00'",xlab="VULCAN pvalue",ylab="Ttest integration pvalue",col="darkgrey")
grid()
pcc<-cor.test(x,y)
mtext(paste0("PCC=",signif(pcc$estimate,3)," (p=",signif(pcc$p.value,3),")"))
textplot2(x[toshow],y[toshow],words=toshow,new=FALSE)

par(mfrow=c(1,1))

}

2. A fraction of targets method, defining for every TF the fraction of their targets that are also differentially
bound. A crude alternative to VULCAN, which is ignoring the MI strength of interaction and the
individual strengths of differential bindings.

#######################################################
### FRACTION TEST
#######################################################
if(TRUE){

### TTest functions
msviperfrac<-function(signature,network,minsize=10){

# First, convert tscores into pvalues
psignature<-2*pt(signature[,1], nrow(signature)-2, lower=FALSE)
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Figure 35: Comparison between VULCAN/VIPER and T-test integration
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# For each regulon, take the targets and integrate their pvalue
tfpvalues<-c()
for(tf in names(network)){

targets<-names(network[[tf]]$tfmode)
ptargets<-psignature[intersect(targets,names(psignature))]
ptargets<-ptargets

frac<-length(ptargets)/length(targets)
tfpvalues<-c(tfpvalues,frac)
names(tfpvalues)[length(tfpvalues)]<-tf

}
return(tfpvalues)

}
vulcanfrac<-function(vobj, network, contrast, annotation = NULL, minsize = 10) {

tfs <- names(network)
samples <- vobj$samples
normalized <- vobj$normalized

# Prepare output objects
msvipers <- matrix(NA, ncol = 3, nrow = length(tfs))
rownames(msvipers) <- tfs
# Define contrast
a <- samples[[contrast[1]]]
b <- samples[[contrast[2]]]
# Vulcan msviper implementation
signature <- rowTtest(normalized[, a], normalized[, b])$statistic
tfpvalues <- msviperfrac(signature, network, minsize = minsize)
if(!is.null(annotation)){

names(tfpvalues)<-annotation[names(tfpvalues)]
}
return(tfpvalues)

}

### Repeat the same analysis but with TT
ttp_90<-vulcanfrac(vobj,network=tcga_regulon,contrast=c("t90","t0"),annotation=list_eg2symbol)
ttp_45<-vulcanfrac(vobj,network=tcga_regulon,contrast=c("t45","t0"),annotation=list_eg2symbol)

### Compare vulcan and TT
vulcanp_90<-vobj_tcga_90$msviper$es$p.value
vulcanp_45<-vobj_tcga_45$msviper$es$p.value

toshow<-c("ESR1","GATA3","GRHL2")

par(mfrow=c(1,2))

common<-intersect(names(ttp_45),names(vulcanp_45))
x<--log10(vulcanp_45[common])
y<-ttp_45[common]
plot(x,y,pch=20,main="Method Comparison, 45' vs 00'",xlab="VULCAN pvalue",ylab="Fraction of Differentially Bound Targets",col="darkgrey")
grid()
pcc<-cor.test(x,y)
mtext(paste0("PCC=",signif(pcc$estimate,3)," (p=",signif(pcc$p.value,3),")"))
textplot2(x[toshow],y[toshow],words=toshow,new=FALSE)
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common<-intersect(names(ttp_90),names(vulcanp_90))
x<--log10(vulcanp_90[common])
y<-ttp_90[common]
plot(x,y,pch=20,main="Method Comparison, 90' vs 00'",xlab="VULCAN pvalue",ylab="Fraction of Differentially Bound Targets",col="darkgrey")
grid()
pcc<-cor.test(x,y)
mtext(paste0("PCC=",signif(pcc$estimate,3)," (p=",signif(pcc$p.value,3),")"))
textplot2(x[toshow],y[toshow],words=toshow,new=FALSE)

par(mfrow=c(1,1))

}

3. A Fisher’s Exact Method (different from the Fisher’s Integration!) which assesses the overlap between
networks and significant differential binding. Here the problem is that the test is too stringent (as
observed in the original VIPER paper) and even without p-value correction we get nothing significant
(I tried different threshold of differential binding significance). The plot is uninspiring highlights the
non-significance of the results of this method:

#######################################################
### FISHER'S EXACT TEST
#######################################################
if(TRUE){

### TTest functions
msviperfet<-function(signature,network,minsize=10){

# First, convert tscores into pvalues
psignature<-2*pt(signature[,1], nrow(signature)-2, lower=FALSE)

# For each regulon, take the targets and calculate how many are significant
tfpvalues<-c()
for(tf in names(network)){

targets<-names(network[[tf]]$tfmode)
ptargets<-psignature[intersect(targets,names(psignature))]
if(length(ptargets)>=minsize){

# Prepare the contingency table
ul<-names(ptargets)[ptargets<=0.05]
ur<-setdiff(targets,ul)
dl<-setdiff(names(psignature)[psignature<=0.05],ul)
ctable<-rbind(

c(length(ul),length(ur)),
c(length(dl),0)

)
#ctable[2,2]<-5000-sum(ctable)
fet<-fisher.test(ctable,alternative="greater")
pt<-fet$p.value
tfpvalues<-c(tfpvalues,pt)
names(tfpvalues)[length(tfpvalues)]<-tf

}
}

return(tfpvalues)
}
vulcanfet<-function(vobj, network, contrast, annotation = NULL, minsize = 10) {

tfs <- names(network)
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Figure 36: Comparison between VULCAN/VIPER and a fraction of targets found method
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samples <- vobj$samples
normalized <- vobj$normalized

# Prepare output objects
msvipers <- matrix(NA, ncol = 3, nrow = length(tfs))
rownames(msvipers) <- tfs
# Define contrast
a <- samples[[contrast[1]]]
b <- samples[[contrast[2]]]
# Vulcan msviper implementation
signature <- rowTtest(normalized[, a], normalized[, b])$statistic
tfpvalues <- msviperfet(signature, network, minsize = minsize)
if(!is.null(annotation)){

names(tfpvalues)<-annotation[names(tfpvalues)]
}
return(tfpvalues)

}

### Repeat the same analysis but with FET
ttp_90<-vulcanfet(vobj,network=tcga_regulon,contrast=c("t90","t0"),annotation=list_eg2symbol)
ttp_45<-vulcanfet(vobj,network=tcga_regulon,contrast=c("t45","t0"),annotation=list_eg2symbol)

### Compare vulcan and TT
vulcanp_90<-vobj_tcga_90$msviper$es$p.value
vulcanp_45<-vobj_tcga_45$msviper$es$p.value

toshow<-c("ESR1","GATA3","GRHL2")

par(mfrow=c(1,2))

common<-intersect(names(ttp_45),names(vulcanp_45))
x<--log10(vulcanp_45[common]+1e-320)
y<--log10(ttp_45[common]+1e-320)
plot(x,y,pch=20,main="Method Comparison, 45' vs 00'",xlab="VULCAN pvalue",ylab="Classic Fisher's Exact Test",col="darkgrey")
grid()
textplot2(x[toshow],y[toshow],words=toshow,new=FALSE)

common<-intersect(names(ttp_90),names(vulcanp_90))
x<--log10(vulcanp_90[common]+1e-320)
y<--log10(ttp_90[common]+1e-320)
plot(x,y,pch=20,main="Method Comparison, 90' vs 00'",xlab="VULCAN pvalue",ylab="Classic Fisher's Exact Test",col="darkgrey")
grid()
textplot2(x[toshow],y[toshow],words=toshow,new=FALSE)

par(mfrow=c(1,1))
}

3.7.4 Comparing VULCAN with online tools

We will generate BED files for the peaks, as reported by DiffBind, we will then test the pathway enrichment
for each of these peaks using the Great software v3.0.0 (http://bejerano.stanford.edu/great/public/html/), the
ChIP-Enrich pipeline (http://chip-enrich.med.umich.edu/) and the ISMARA tool (http://ismara.unibas.ch).
Parameters for GREAT: defaults (Basal plus extension, 5.0kb upstream, 1.0 kb downstream) Parameters for
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Figure 37: Comparison between VULCAN/VIPER and Fisher’s Exact Test method
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ChIP-Enrich: defaults (Nearest TSS, pathways size<=2000, Biocarta, KEGG, Reactome, TFs). Parameters
for ISMARA: defaults (ChIP-Seq mode, hg19)

The VULCAN analysis shows a significant overlap in terms of significant pathways with the GREAT method.
ChIP-enrich computes enrichment for a number of TFs which are amongst the most significant in VULCAN,
but it surprisingly fails at identifing ESR1 as the top Transcription Factor affected by our experiment.
ISMARA succeeds at identifying ESR1 using a motif-based analysis, but doesn’t identify other candidate
binding TFs, as expected, being the experiment targeted at the estrogen receptor.
### Number of tested pathways (for statistical comparison later)
load("msigdb/MSigDB_v5.0_human.rda")
raw<-msigDBentrez$c2.all.v5.0.entrez.gmt
universe<-names(raw)[grep("BIOCARTA_|REACTOME_|KEGG_|PID_|ST_",names(raw))]

### DiffBind object (containing peak location and intensity)
wass<-load("results/001_diffbind.rda")

### Generate input BEDs for chip enrich and GREAT (ismara takes BAMs as input)
fname<-paste0("results/008_comparison_contrast90vs00_UP_p1.bed")
if(!file.exists(fname)){

contrasts<-c("contrast45vs00","contrast90vs00","contrast90vs45")
for (contrast in contrasts) {

c<-switch(contrast,contrast45vs00=3,contrast90vs00=2,contrast90vs45=1)
for(pgreat in c(1,0.05)){

bed<-as.data.frame(dba.report(dbaobj,contrast=c,method=DBA_DESEQ2,bNormalized=TRUE, bCounts=TRUE, th=pgreat))
if(nrow(bed)>0) { # Nothing individually significant if no rows were produced

bedup<-bed[bed$Fold>0,1:3]
beddn<-bed[bed$Fold<0,1:3]
if(nrow(bedup)>0){

write.table(bedup,
file=paste0("results/008_comparison_",contrast,"_UP_p",pgreat,".bed"),
row.names=FALSE,col.names=FALSE,sep="\t",quote=FALSE

)
}
if(nrow(beddn)>0){

write.table(beddn,
file=paste0("results/008_comparison_",contrast,"_DN_p",pgreat,".bed"),
row.names=FALSE,col.names=FALSE,sep="\t",quote=FALSE

)
}

}
}

}
}

### Pathway Comparison: VULCAN vs. GREAT
load_obj <- function(f){

env <- new.env()
nm <- load(f, env)[1]
env[[nm]]

}
contrasts<-c("45","90")
par(mfrow=c(2,1))
for(c in contrasts){

# Our REA pathways
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nes.tpathways<-load_obj(paste0("results/003_pathwayComparison_REA_",c,".rda")) # results_rea_45

# GREAT pathways
rawgreat<-read.delim(paste0("results/great/great_",c,"_p1_UP.tsv"),as.is=TRUE,skip=3)
table(rawgreat[,1])
rawgreat<-rawgreat[rawgreat[,1]=="MSigDB Pathway",]
great<-setNames(rawgreat$BinomBonfP,rawgreat[,2])
great<-great[great<0.1]

### Comparison GREAT/VULCAN
vsig<-nes.tpathways[z2p(nes.tpathways)<0.1]
venn(list(VULCAN=names(vsig),GREAT=names(great)))
title(paste0("Comparison VULCAN/GREAT for pathways at ",c," minutes"))
ctable<-rbind(c(0,0),c(0,0))
ctable[1,1]<-length(intersect(names(vsig),names(great)))
ctable[1,2]<-length(setdiff(names(vsig),names(great)))
ctable[2,1]<-length(setdiff(names(great),names(vsig)))
ctable[2,2]<-length(universe)-ctable[1,1]-ctable[1,2]-ctable[2,1]
fp<-signif(fisher.test(ctable)$p.value,4)
mtext(paste0("FET p-value: ",fp))
text(100,3,ctable[2,2])

common<-intersect(names(nes.tpathways),names(great))
}

par(mfrow=c(1,1))

### TF and Pathway Comparison: VULCAN vs. ChIP enrich
load("results/002_vobj_networks.rda")
contrasts<-c("45","90")
par(mfrow=c(2,1))
for(c in contrasts){

# Our VULCAN TF enrichment
if(c=="45"){

vulcannes<-vobj_tcga_45$msviper$es$nes
}
if(c=="90"){

vulcannes<-vobj_tcga_90$msviper$es$nes
}
# ChIPEnrich pathways + TFs
rawchipenrich<-read.delim(paste0("results/chipenrichr/",c,"_p1_UP_results.tab"),as.is=TRUE)
chipenrich_tfs<-rawchipenrich[rawchipenrich[,1]=="Transcription Factors",]
chipenrich_pathways<-rawchipenrich[rawchipenrich[,1]!="Transcription Factors",]
t1<-gsub(" ","_",paste0(toupper(chipenrich_pathways[,1]),"_",toupper(chipenrich_pathways[,3])))
t2<-chipenrich_pathways[,"FDR"]
chipenrich_pathways<-setNames(t2,t1)

# TF comparison
cetfs<-setNames(chipenrich_tfs[,"FDR"],gsub("_.+","",chipenrich_tfs[,"Description"]))
vutfs<-vulcannes[!is.na(vulcannes)]
vutfs<-vutfs[vutfs>0]
common<-intersect(names(vutfs),names(cetfs))

plot(vutfs,-log10(z2p(vutfs)),xlab="VULCAN NES",ylab="VULCAN -log10(p)",pch=20,col="grey",
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Figure 38: Comparison of results from the VULCAN and GREAT methods
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main=paste0("Comparison VULCAN/ChIP-enrich at ",c)
)
mtext("Labels indicate significant TFs by ChIP-enrich binding site analysis",cex=0.8)
set.seed(1)
textplot2(vutfs[common],-log10(z2p(vutfs))[common],common,new=FALSE)

}

par(mfrow=c(1,1))

### Comparison: VULCAN vs. ISMARA
ismara<-t(read.delim("results/ismara/ismara_report/activity_table",as.is=TRUE))
vulcan45<-vobj_tcga_45$msviper$es$nes
vulcan90<-vobj_tcga_90$msviper$es$nes

# Compare VULCAN (x axis) at 45 and 90 minutes with ISMARA (yaxis) average + sd

# Prepare ismara values
i45<-ismara[,grep("45",colnames(ismara))]
i90<-ismara[,grep("90",colnames(ismara))]
i45_mean<-apply(i45,1,mean)
i45_sd<-apply(i45,1,sd)
i90_mean<-apply(i90,1,mean)
i90_sd<-apply(i90,1,sd)

common<-intersect(names(vulcan45),rownames(ismara))
length(common) # 148

## [1] 148
# Plots
par(mfrow=c(2,1))

# 45 minutes
x<-vulcan45[common]
y<-i45_mean[common]
uiw<-i45_sd[common]
top<-intersect(names(sort(x,dec=TRUE))[1:20],names(sort(y,dec=TRUE))[1:20])
plotCI(x,y,uiw=uiw,xlab="VULCAN NES",ylab="ISMARA Activity",main="Comparison VULCAN/ISMARA",pch=20,col="grey",xlim=c(min(x),max(x)*1.1))
mtext("45 minutes",cex=0.8)
textplot2(x[top],y[top],words=top,new=FALSE,font=2)
# 90 minutes
x<-vulcan90[common]
y<-i90_mean[common]
uiw<-i90_sd[common]
top<-intersect(names(sort(x,dec=TRUE))[1:25],names(sort(y,dec=TRUE))[1:25])
plotCI(x,y,uiw=uiw,xlab="VULCAN NES",ylab="ISMARA Activity",main="Comparison VULCAN/ISMARA",pch=20,col="grey",xlim=c(min(x),max(x)*1.1))
mtext("90 minutes",cex=0.8)
textplot2(x[top],y[top],words=top,new=FALSE,font=2)

4 Estrogen Receptor-alpha qPLEX-RIME Analysis
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Figure 39: Comparison of results from the VULCAN and ChIP-enrich methods
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Figure 40: Comparison of results from the VULCAN and ISMARA methods
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4.1 Introduction

This report is from an analysis of the RIME-TMT proteomics data for an experiment carried out by Andrew
Holding to quantify specific interactors of estrogen receptor (ER) and forkhead box protein A1 (FOXA1) in
MCF-7 cells.

The RIME (Rapid Immunoprecipitation of Endogenous Proteins) technique was used to pull down ER
and FOXA1 and their interacting proteins, which were subsequently assessed and quantitated using mass
spectrometry with tandem mass tags (TMT). TMT runs were carried out for 3 biological replicates, estrogen-
starved MCF-7 cells from the same cell line at different times/passages, before and after addition of estrogen
with samples taken at 3 different time points – 0, 45 and 90 minutes after estrogen addition. A pull down of
Immunoglobulin G (IgG) was also run as a control.

The digests from two of the biological replicates (PR622 and PR650) were analyzed with 3 separate runs of
the mass spectrometer to increase coverage; data from the repeated runs were combined prior to the analysis
carried out here. The other sample (PR590) was run once only.

Table 1 shows the isobaric tags used for each sample within each of the runs.

Group PR590 PR622 PR650
ER 0min 127N 127N 128N
ER 45min 128C 127C 128C
ER 90min 129N 128N 129N
FOXA1 0min 129C 129C 129C
FOXA1 45min 130N 130N 130N
FOXA1 90min 130C 130C 130C
IgG 126 126 131

Table 1: Isobaric tags used for each sample (group) and run.

4.2 Peptide intensity data

Raw spectra were processed using Proteome Discover 2.1 to produce peptide-level intensity data with a single
set of intensity values per distinct peptide. Only peptides with unique high-confidence protein matches were
included.

Multiple peptide-spectrum matches (PSMs) for the same peptide were combined using Proteome Discoverer
by summing the PSM-level intensities. Peptide sequences with different modifications are treated as distinct
peptides and the data provided contain intensities values for each modification identified for a peptide
sequence. Several distinct peptide sequences (with modifications) may have been identified for any given
protein.

Table 2 shows the numbers of distinct peptides and proteins obtained in each TMT run. Also given are the
numbers of peptides and proteins after filtering peptides with missing intensity values in one or more TMT
channels.

PR590 PR622 PR650 All
Peptides 5822 6952 3183 9321
Peptides with no missing values 5702 6872 3118 9179
Proteins 1125 1227 656 1553
Proteins with no missing values 1112 1218 645 1541

Table 2: Numbers of peptides and proteins observed in each run.
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Figure 1 shows the distribution of intensities for each sample within each run.

4.2.1 Missing intensity values

Missing intensity values can result even though ions are present at detectable concentrations due to the
stochastic nature of the mass spectrometry acquisition method. It is reasonable to expect that these missing
values are randomly distributed in the data. Alternatively, missing values may occur when there is a low
abundance of ions, below the limit of detection of the instrument. These biologically relevant missing values
are not randomly distributed, affecting only those proteins that are expressed at low levels in the samples
analysed. The R/Bioconductor package MSnBase provides imputation methods for both types of missing
value.

In this analysis, missing values have been handled in 3 different ways. The first approach is to exclude all
peptide-level mesasurements where there is a missing value for one or more of the samples within a run.
In addition, two imputation methods have been performed: one in which the missing values are set to the
smallest non-missing value in the data for that run and the other in which k-nearest neighbour (KNN)
averaging is applied.

Figure 2 shows the distribution of intensities for each sample within each run following imputation using the
smallest non-missing values. A small hump just below zero on the log2 scale is clearly visible for each run.

4.3 Normalization of intensity data

The intensity distribution for PR622 suggests that the labeled samples have been pooled with differing
protein concentrations and that some normalization is required to properly assess differences between groups.
Normalization techniques that are commonly applied to microarray expression data and mRNA sequencing
data assume that only a few genes, e.g. a few hundred out of tens of thousands, are expressed at very
different levels between samples. This assumption may not hold for a RIME experiment where a specific
set of interacting proteins is targeted. For example, if the majority of interacting proteins were to bind less
strongly at one time point relative to another, quantile normalization or scale normalization approaches
would have the effect of removing the general trend. In this case, following normalization, those proteins that
bind less strongly may appear to be largely unchanged, while proteins with very similar levels of binding
at the different time points would have artificially increased binding levels. Therefore some care is required
when interpreting the results of a differential binding analysis for RIME TMT experiments.

In this analysis, quantile normalization and scale normalization were applied for each run separately.

The IgG control was used to assess non-specific binding. The binding of a protein was considered to be
non-specific if the binding level of that protein in the condition of interest, e.g. ER at 45 minutes, was not
significantly above the level observed for the IgG control. Proteins detected with the IgG control are expressed
at lower levels in the PR590 and PR650 runs. Normalization of the IgG control along with the other samples
would make it more difficult to distinguish between specific and non-specific binding since the intensities of
the IgG control would be scaled to a similar level of those of the other samples.

Among a number of normalization approaches tested here, normalizations were carried out that both
include and exclude the IgG control. Figure 3 shows the normalized intensity distributions following scale
normalization of all peptide intensities including those with missing values. Figure 4 shows the normalized
intensity distributions following scale normalization for all samples except the IgG controls.

A further normalization approach was attempted that scales the data from all samples within a run based
on a subset of peptides that are considered most likely to be at similar concentrations between the samples.
The assumption is that the peptides with the highest intensity values in the IgG control are the result of
non-specific binding and that that binding is consistent across all samples. Similar to the scale normalization
applied in the first approach, the median intensity within each sample is computed to determine a scaling
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Figure 41: Density plots of intensities from each run.
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Figure 42: Density plots of intensities from each run following imputation of missing values using the smallest
non-missing value in the data for each run. 83
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Figure 43: Density plots of normalized intensities from each TMT run where scale normalization was applied
to peptide intensities that include misssing values. 84
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Figure 44: Density plots of normalized intensities from each TMT run where scale normalization was applied
to peptide intensities for all samples except the IgG controls.85
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factor for each sample within a run but the median computed only uses the 10 peptides with the highest IgG
measurements. As before, normalization is carried out within each run separately.

Figure 5 shows the resulting normalized intensity distributions. Strikingly, the IgG intensity distribution is
shifted to lower values in run PR622, making it more consistent with the other 2 runs.

4.4 Protein-level quantification

Protein-level quantification was carried out for each run separately by summing normalized intensity values
for all peptides matching to a particular protein. This is similar in principle to the gene-level quantification
that is carried out during microarray analysis or the read-counting approach in RNA-Seq. Essentially, all
signal attributable to a particular protein is assigned to that protein. Intensity values vary in magnitude
depending on the elution profile for the peptide and when the peptide is sampled. Relative intensities for
a peptide between the tags or samples within a run should be consistent but the signal may include some
contribution from a contaminating, co-eluting peptide, the extent of which may differ for different PSMs.
In summing intensities from multiple measurements for the same peptide, those peptides that have higher
levels of intensity values will have a greater weight in determining the overall intensity; higher intensity
measurements are likely to more accurately reflect differences between samples so this may be advantageous.

When no imputation of missing values was carried out, peptides with missing values in one or more samples
were excluded from the summation. Missing values that arise for technical reasons instead of being at
undetectable levels in a sample would otherwise reduce the overall intensity in that sample relative to other
samples.

The statistical analysis of differential binding between groups that follows requires at least 3 observations
per group. Table 3 gives the number of protein identified in just a single run, two runs or all three runs. A
total of proteins were identified across all runs of which 527 were observed in all three runs, allowing for a
statistical analysis. log2 fold changes are still computed for proteins identified only in one or two of the runs,
but no measure of the statistical significance is given in the differential binding analysis.

Runs/replicates 1 2 3 total
Including missing values 625 401 527 1553
Excluding missing values 625 398 518 1541

Table 3: Numbers of proteins identified in differing numbers of runs and total number of proteins identified
in all runs.

4.5 Principal Component Analysis

Protein-level intensities were scaled to sum to 1.0 for each protein within a run, allowing for comparison
across runs in a principal component analysis (PCA).

Figure 6 shows a PCA plot for the first two principal components using all proteins that were sampled in all
three runs. The plot shows a clear separation of the ER, FOXA1 and IgG control pull-downs. The 0, 45 and
90 minute timepoints within each of the ER and FOXA1 groups are not completely separated in the first two
principal components. Figure 7 shows the PCA plot for just the ER samples.

4.6 Differential Binding

A statistical analysis of differentially-expressed peptides was carried out using limma, a R/Bioconductor
package commonly used in the analysis of microarray and RNA-seq data, but applicable to data from any
quantitative expression technology.
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Figure 45: Density plots of normalized intensities from each TMT run where scale normalization is applied
based on 10 peptides with the highest IgG intensities in each run.87
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Figure 46: Principal Componenent Analysis for proteins sampled in all 3 runs. The PCA was based on
protein-level data resulting from summation of quantile normalized peptide intensities in which missing
values were imputed using KNN-based nearest neighbour averaging. The first two principal components are
displayed.
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Figure 47: Principal Componenent Analysis for ER-interactng proteins sampled in all 3 runs. The first two
principal components are displayed.
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Limma uses linear models to assess differential expression in the context of multifactor experimental designs.
It is able to analyze comparisons between many RNA targets simultaneously (or in this case many proteins)
and has features that make these analyses stable even for experiments with small numbers of samples; this is
achieved by borrowing information across genes (proteins).

In this analysis, limma was used to estimate log2 fold changes and standard errors by fitting a linear model
for each protein where the model includes variables for the group (the ER and FOXA1 pull-downs at 0, 45
and 90 minute time points and the IgG control at 45 minutes) and the run. This is essentially a two-way
ANOVA, a generalization of a paired analysis, in which comparisons between pull-downs at different time
points are made within each run.

Limma employs an empirical Bayes method to moderate the standard errors of the estimated log2 fold
changes; this results in more stable inference and improved power, especially for experiments with small
numbers of replicates.

Multiple testing correction of p-values was applied using the Benjamini-Hochberg method to control the false
discovery rate (FDR). The adjusted p-value (also known as a q-value) can be understood as follows. If all
proteins with q-value below a threshold of 0.05 are selected as differentially expressed, then the expected
proportion of false discoveries in the selected group is controlled to be less than the threshold value, in this
case 5%.

The B-statistic (lods or B) is the log odds that the protein is differentially expressed. For example, if B =
1.5, the odds of differential expression is e1.5 = 4.48, i.e, about four and a half to one. The probability that
the protein is differentially expressed is 4.48/(1 + 4.48) = 0.82. A B-statistic of zero corresponds to a 50-50
chance that the gene is differentially expressed. The B-statistic has been automatically adjusted for multiple
testing by assuming that 1% of the proteins are expected to be differentially expressed.

The IgG control was used to assess non-specific binding. The binding of a protein is considered to be
non-specific if the log2 fold change relative to the IgG control is less than 1. In the differential binding
analysis, protein intensity values are fitted to a linear model and the fitted values for each condition being
compared are also compared to the IgG control. For each comparison of two groups, the maximum log2 fold
change from each of the two groups above the IgG control is used to determine if the binding is specific.
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Figure 48: MA plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min comparison
(excluding peptides with missing intensities, no normalization). Top ranking differentially-expressed proteins
with false discovery rate below 0.05 are highlighted in pink. Open circles indicate that the protein is
non-specific from the IgG control comparison.

4.6.1 ER 45min vs ER 0min, excluding peptides with missing intensities, no normalization

91

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 49: Volcano plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (excluding peptides with missing intensities, no normalization). Top ranking differentially-
expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open circles indicate that the
protein is non-specific from the IgG control comparison.
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Figure 50: Histogram of p-values for the ER 45min vs ER 0min comparison (excluding peptides with missing
intensities, no normalization)
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Figure 51: QQ plot of the adjusted p-values for the ER 45min vs ER 0min comparison (excluding peptides
with missing intensities, no normalization)
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Figure 52: MA plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min comparison
(excluding peptides with missing intensities, quantile normalization). Top ranking differentially-expressed
proteins with false discovery rate below 0.05 are highlighted in pink. Open circles indicate that the protein is
non-specific from the IgG control comparison.

4.6.2 ER 45min vs ER 0min, excluding peptides with missing intensities, quantile normal-
ization
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Figure 53: Volcano plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (excluding peptides with missing intensities, quantile normalization). Top ranking differentially-
expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open circles indicate that the
protein is non-specific from the IgG control comparison.
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Figure 54: Histogram of p-values for the ER 45min vs ER 0min comparison (excluding peptides with missing
intensities, quantile normalization)
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Figure 55: QQ plot of the adjusted p-values for the ER 45min vs ER 0min comparison (excluding peptides
with missing intensities, quantile normalization)
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Figure 56: MA plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (excluding peptides with missing intensities, quantile normalization excluding IgG control). Top
ranking differentially-expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open
circles indicate that the protein is non-specific from the IgG control comparison.

4.6.3 ER 45min vs ER 0min, excluding peptides with missing intensities, quantile normal-
ization excluding IgG control

99

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 57: Volcano plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (excluding peptides with missing intensities, quantile normalization excluding IgG control). Top
ranking differentially-expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open
circles indicate that the protein is non-specific from the IgG control comparison.
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Figure 58: Histogram of p-values for the ER 45min vs ER 0min comparison (excluding peptides with missing
intensities, quantile normalization excluding IgG control)
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Figure 59: QQ plot of the adjusted p-values for the ER 45min vs ER 0min comparison (excluding peptides
with missing intensities, quantile normalization excluding IgG control)
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Figure 60: MA plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (excluding peptides with missing intensities, scale normalization). Top ranking differentially-
expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open circles indicate that the
protein is non-specific from the IgG control comparison.

4.6.4 ER 45min vs ER 0min, excluding peptides with missing intensities, scale normalization
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Figure 61: Volcano plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (excluding peptides with missing intensities, scale normalization). Top ranking differentially-
expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open circles indicate that the
protein is non-specific from the IgG control comparison.
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Figure 62: Histogram of p-values for the ER 45min vs ER 0min comparison (excluding peptides with missing
intensities, scale normalization)
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Figure 63: QQ plot of the adjusted p-values for the ER 45min vs ER 0min comparison (excluding peptides
with missing intensities, scale normalization)
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Figure 64: MA plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (excluding peptides with missing intensities, scale normalization using top 10 IgG peptides). Top
ranking differentially-expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open
circles indicate that the protein is non-specific from the IgG control comparison.

4.6.5 ER 45min vs ER 0min, excluding peptides with missing intensities, scale normalization
using top 10 IgG peptides
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Figure 65: Volcano plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (excluding peptides with missing intensities, scale normalization using top 10 IgG peptides). Top
ranking differentially-expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open
circles indicate that the protein is non-specific from the IgG control comparison.
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Figure 66: Histogram of p-values for the ER 45min vs ER 0min comparison (excluding peptides with missing
intensities, scale normalization using top 10 IgG peptides)
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Figure 67: QQ plot of the adjusted p-values for the ER 45min vs ER 0min comparison (excluding peptides
with missing intensities, scale normalization using top 10 IgG peptides)
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Figure 68: MA plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (KNN nearest neighbour averaging imputation of missing values, quantile normalization). Top
ranking differentially-expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open
circles indicate that the protein is non-specific from the IgG control comparison.

4.6.6 ER 45min vs ER 0min, KNN nearest neighbour averaging imputation of missing values,
quantile normalization
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Figure 69: Volcano plot of the average intensity against log 2 fold change for the ER 45min vs ER 0min
comparison (KNN nearest neighbour averaging imputation of missing values, quantile normalization). Top
ranking differentially-expressed proteins with false discovery rate below 0.05 are highlighted in pink. Open
circles indicate that the protein is non-specific from the IgG control comparison.
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Figure 70: Histogram of p-values for the ER 45min vs ER 0min comparison (KNN nearest neighbour averaging
imputation of missing values, quantile normalization)
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Figure 71: QQ plot of the adjusted p-values for the ER 45min vs ER 0min comparison (KNN nearest
neighbour averaging imputation of missing values, quantile normalization)
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4.7 Comparison of differential binding analysis approaches

In this section, comparisons of the differential binding results obtained using differing methods for handling
missing values and varying normalization techniques are presented. The B-statistic (log odds) is used to rank
the proteins from most significantly differentially expressed to least significant. Scatter plots of both the
B-statistic generated for the two methods being compared and the rank are presented. The protein with the
highest B-statistic, i.e. the most significantly differentially expressed protein, is given a rank of 1.

Differing imputation methods have relatively little effect on the results for most proteins. This is largely
because only a small proportion of the proteins have peptide-level measurements containing missing values.
There are a few proteins that are only represented in the differential binding results when imputation is carried
out, for which all peptide-level measurements contain missing values. These proteins are not represented in
the comparions with the analysis in which measurements with missing values are removed.

Different normalization approaches have a more substantial impact on the differential binding analysis.
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Figure 72: Plot of B-statistic (log odds) for differential expression of proteins for the ER 45min vs ER 0min
contrast, comparing results following exclusion of missing values and KNN imputation.

4.7.1 Removal of missing values vs KNN imputation (quantile normalization in both)
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Figure 73: Plot of the rank of differentially-expressed proteins for the ER 45min vs ER 0min contrast,
comparing results following exclusion of missing values and KNN imputation.
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Figure 74: Plot of B-statistic (log odds) for differential expression of proteins for the ER 45min vs ER 0min
contrast, comparing results following exclusion of missing values and lowest value imputation.

4.7.2 Removal of missing values vs lowest value imputation (quantile normalization in both)
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Figure 75: Plot of the rank of differentially-expressed proteins for the ER 45min vs ER 0min contrast,
comparing results following exclusion of missing values and lowest value imputation.
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Figure 76: Plot of B-statistic (log odds) for differential expression of proteins for the ER 45min vs ER 0min
contrast, comparing results following quantile and scale normalization.

4.7.3 Quantile vs Scale normalization (missing values excluded in both)
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Figure 77: Plot of the rank of differentially-expressed proteins for the ER 45min vs ER 0min contrast,
comparing results following quantile and scale normalization.

121

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 78: Plot of B-statistic (log odds) for differential expression of proteins for the ER 45min vs ER 0min
contrast, comparing results following scale normalization based on all peptides and those with the highest
IgG intensities.

4.7.4 Scale normalization based on all peptides vs peptides with highest IgG intensities (miss-
ing values excluded in both)

122

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 79: Plot of the rank of differentially-expressed proteins for the ER 45min vs ER 0min contrast,
comparing results following scale normalization based on all peptides and those with the highest IgG
intensities.
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Figure 80: MA plot showing the distribution of non-specific binding. Non-specific binding was identified
as proteins that showed less than a log2 enrichment over the IgG channel at either 0 or 45 minutes. The
majority of non-specific binding (blue) is found to show less change between time points whereas the specific
interactions (red) shows a broader distribution.

4.8 Comparisoin of variance between specfic and non-specific binding

##
## F test to compare two variances
##
## data: tmp$logFC[tmp$group == 1] and tmp$logFC[tmp$group == 0]
## F = 0.18045, num df = 1373, denom df = 166, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is less than 1
## 95 percent confidence interval:
## 0.0000000 0.2167525
## sample estimates:
## ratio of variances
## 0.1804544
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Figure 81: Density plot right showing the distribution of non-specific binding. Non-specific binding was
identified as proteins that showed less than a log2 enrichment over the IgG channel at either 0 or 45 minutes.
The majority of non-specific binding (blue) is found to show less change between time points whereas the
specific interactions (red) shows a broader distribution.
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Figure 82: Box plot showing the variance of non-specific vs non-specific binding. Non-specific binding was
identified as proteins that showed less than a log2 enrichment over the IgG channel at either 0 or 45 minutes.
The the variance of the log fold changes for the non-specific binding interactions was significantly less than
that of the specific interactions (F-test, one-sided, p-value < 2.2e*-16).
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4.9 Differential binding results tables

The following tables contain the top ranking differentially expressed proteins for each comparison. Included
are all proteins that reach a statistical signficance of 0.05 in terms of the adjusted p-value and those with an
absolute log2 fold change of 1 or above.

The IgG column gives the larger of the log2 fold changes for the two groups against the IgG control and an
asterisk indicates specific binding where this log2 fold change is above a threshold of 1. N is the number of
replicates in which the protein was observed.

In all cases, peptide intensities were quantile normalized and measurements with missing values were removed
prior to summarization at the protein level.

127

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.9.1 ER 45min vs ER 0min

Protein Gene N log2FC Avg Expr p-value B IgG

Q15596 NCOA2 1 2.96 6.15 2.12 *
Q13451 FKBP5 2 -2.51 8.39 2.55 *
Q9Y6Q9 NCOA3 3 2.28 11.74 1e-09 18.67 1.90 *
Q96K62 ZBT45 1 2.14 5.89 2.58 *
Q96LC7 SIG10 1 -2.08 5.35 1.79 *
Q6IQ16 SPOPL 1 1.96 5.93 1.59 *
P11474 ERR1 3 1.94 8.16 0.015 -0.99 -0.14
P48552 NRIP1 3 1.91 10.40 1.2e-05 7.81 1.56 *
O15164 TIF1A 3 1.85 11.51 2.1e-07 12.83 2.15 *
Q9Y2G9 SBNO2 1 1.83 5.00 0.09
P07900 HS90A 3 -1.82 12.63 2.2e-06 9.77 2.23 *
O75448 MED24 1 1.76 6.23 1.66 *
Q02790 FKBP4 3 -1.73 11.76 2.8e-07 12.14 1.89 *
O14744 ANM5 1 -1.63 2.45 -0.44
Q9P2D0 IBTK 1 -1.59 3.22 1.84 *
P10276 RARA 3 1.56 5.87 0.0034 0.75 2.75 *
Q15648 MED1 1 1.53 5.74 1.97 *
Q5D862 FILA2 1 -1.52 7.77 -0.29
P32242 OTX1 2 1.50 5.03 1.88 *
Q2M1P5 KIF7 1 1.46 7.49 0.71
P24468 COT2 3 1.44 10.18 7.6e-05 5.43 2.07 *
P34932 HSP74 1 -1.41 5.24 0.54
O14770 MEIS2 1 1.40 6.35 1.08 *
P61960 UFM1 1 -1.39 6.88 1.92 *
Q8N2W9 PIAS4 2 1.39 7.02 1.68 *
Q86UV5 UBP48 1 -1.37 7.27 1.36 *
Q92793 CBP 3 1.35 9.31 0.0015 1.76 1.48 *
P23771 GATA3 3 1.34 10.99 4.5e-05 6.33 1.61 *
Q9P2D7 DYH1 1 -1.32 7.02 2.63 *
O60884 DNJA2 3 -1.30 6.67 0.023 -1.51 1.76 *
Q9UBW7 ZMYM2 1 1.25 6.75 1.46 *
Q01546 K22O 2 -1.25 7.38 -1.21
O60809 PRA10 1 -1.22 7.88 -0.24
O15117 FYB 1 1.19 3.38 -1.88
P53990 IST1 1 -1.18 5.43 -4.76
P31689 DNJA1 3 -1.18 9.61 0.00019 4.08 1.20 *
O00712 NFIB 1 1.17 6.67 -0.34
Q8N283 ANR35 1 -1.17 8.71 -0.15
Q9UL15 BAG5 1 -1.16 6.18 1.11 *
Q6PHW0 IYD1 1 1.16 6.85 1.52 *
Q9ULJ6 ZMIZ1 3 1.16 9.72 7.6e-05 5.38 1.61 *
P15408 FOSL2 1 1.15 3.66 1.69 *
Q9UNE7 CHIP 2 -1.14 7.73 1.05 *
Q9UPN9 TRI33 3 1.14 12.27 0.00019 4.24 1.73 *
P11142 HSP7C 3 -1.14 12.97 5e-05 6.05 1.00 *
Q9NWS6 F118A 1 -1.13 3.79 1.60 *
Q9HB71 CYBP 3 -1.12 8.62 0.0011 2.26 1.02 *
Q8TCU4 ALMS1 1 1.12 4.63 1.44 *
O14686 KMT2D 1 1.11 7.38 0.39
Continued on next page
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Protein Gene N log2FC Avg Expr p-value B IgG
Q7Z794 K2C1B 1 -1.11 7.34 -0.84
Q6KC79 NIPBL 1 1.11 4.84 2.63 *
Q68E01 INT3 2 -1.10 3.90 -0.67
Q8NFD5 ARI1B 1 1.08 7.74 0.56
Q9Y6X2 PIAS3 2 1.07 6.75 0.71
Q92624 APBP2 1 -1.07 6.01 0.05
O15355 PPM1G 3 -1.07 10.07 0.0072 -0.20 1.09 *
Q8NH53 O52N1 1 1.06 4.11 1.28 *
Q13492 PICAL 1 1.06 3.60 0.12
Q4L235 ACSF4 1 -1.05 4.38 -0.13
O00170 AIP 2 -1.04 6.89 1.13 *
P14625 ENPL 2 1.04 4.85 -0.35
O60244 MED14 1 1.04 6.62 1.56 *
Q15185 TEBP 1 -1.03 8.55 1.29 *
Q6P2C8 MED27 1 1.03 6.21 -0.01
Q5VTD9 GFI1B 1 1.02 5.70 0.42
O14929 HAT1 2 -1.01 5.12 0.70
P08238 HS90B 3 -0.99 12.34 0.005 0.22 2.04 *
P55854 SUMO3 3 0.98 8.41 0.003 0.96 1.13 *
Q09472 EP300 3 0.96 8.88 0.00019 4.12 0.80
P0DMV9 HS71B 3 -0.84 12.63 0.0013 1.99 0.65
Q6ISB3 GRHL2 3 0.83 11.12 0.00015 4.56 1.04 *
Q92754 AP2C 3 0.81 8.14 0.0046 0.38 1.15 *
Q92785 REQU 3 0.78 9.11 0.003 0.93 1.16 *
P52701 MSH6 3 -0.76 6.05 0.048 -2.50 0.97
P63165 SUMO1 3 0.74 9.15 0.0048 0.31 0.72
P12956 XRCC6 3 -0.74 12.73 0.01 -0.60 0.90
P31948 STIP1 3 -0.66 11.50 0.003 0.94 0.59
P78527 PRKDC 3 -0.63 11.22 0.011 -0.71 0.36
Q9HAV4 XPO5 3 -0.63 8.66 0.048 -2.50 0.72
O14497 ARI1A 3 0.61 8.60 0.04 -2.26 0.29
Q9Y383 LC7L2 3 -0.55 10.30 0.023 -1.53 0.51
Q13263 TIF1B 3 -0.55 13.51 0.033 -2.00 1.17 *
P09874 PARP1 3 -0.53 11.81 0.023 -1.59 0.63
Q92925 SMRD2 3 0.51 9.91 0.037 -2.12 0.23
P25685 DNJB1 3 -0.45 9.66 0.039 -2.22 0.60
Q99873 ANM1 3 -0.42 11.29 0.024 -1.66 0.65

Table 4: Top ranking differentially expressed proteins from the ER
45min vs ER 0min comparison, sorted by log2 fold change.
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4.9.2 ER 90min vs ER 0min

Protein Gene N log2FC Avg Expr p-value B IgG

Q15596 NCOA2 1 2.82 6.15 1.98 *
Q13451 FKBP5 2 -2.39 8.39 2.55 *
Q96LC7 SIG10 1 -2.25 5.35 1.79 *
Q9Y6Q9 NCOA3 3 2.22 11.74 1.5e-09 18.26 1.84 *
Q96K62 ZBT45 1 2.19 5.89 2.63 *
Q6IQ16 SPOPL 1 2.16 5.93 1.79 *
Q9Y2G9 SBNO2 1 2.15 5.00 0.41
P48552 NRIP1 3 2.03 10.40 5e-06 8.73 1.68 *
Q6UX73 CP089 1 2.00 8.00 1.27 *
O75448 MED24 1 1.88 6.23 1.77 *
P20393 NR1D1 1 1.86 8.26 1.17 *
Q68CL5 TPGS2 2 -1.85 3.12 -6.76
O15164 TIF1A 3 1.84 11.51 2.4e-07 12.70 2.14 *
P07900 HS90A 3 -1.82 12.63 2.3e-06 9.75 2.23 *
P11474 ERR1 3 1.81 8.16 0.024 -1.59 -0.28
O14770 MEIS2 1 1.76 6.35 1.44 *
Q2M1P5 KIF7 1 1.74 7.49 0.99
Q02790 FKBP4 3 -1.72 11.76 3.2e-07 11.99 1.89 *
Q15648 MED1 1 1.66 5.74 2.09 *
P10276 RARA 3 1.58 5.87 0.0033 0.87 2.77 *
O60229 KALRN 1 1.57 6.32 0.86
P15408 FOSL2 1 1.57 3.66 2.11 *
Q9UBW7 ZMYM2 1 1.55 6.75 1.76 *
P81605 DCD 1 1.47 4.63 -1.79
P24468 COT2 3 1.45 10.18 7.4e-05 5.53 2.08 *
Q86UV5 UBP48 1 -1.44 7.27 1.36 *
P32242 OTX1 2 1.43 5.03 1.81 *
Q92624 APBP2 1 -1.42 6.01 0.05
Q6KC79 NIPBL 1 1.42 4.84 2.94 *
Q92793 CBP 3 1.41 9.31 0.0011 2.27 1.54 *
P23771 GATA3 3 1.38 10.99 2.8e-05 6.79 1.65 *
Q9P2D7 DYH1 1 -1.37 7.02 2.63 *
O15117 FYB 1 1.36 3.38 -1.71
P34932 HSP74 1 -1.29 5.24 0.54
O60884 DNJA2 3 -1.28 6.67 0.024 -1.61 1.76 *
O00712 NFIB 1 1.28 6.67 -0.24
O76094 SRP72 1 1.25 3.41 0.35
Q9NWS6 F118A 1 -1.25 3.79 1.60 *
O60934 NBN 1 -1.24 4.24 0.84
Q13492 PICAL 1 1.24 3.60 0.30
Q8WX92 NELFB 2 -1.23 6.70 1.26 *
Q8N2W9 PIAS4 2 1.21 7.02 1.50 *
Q8N283 ANR35 1 -1.20 8.71 -0.15
Q6KB66 K2C80 2 1.19 11.02 0.73
Q9UNE7 CHIP 2 -1.17 7.73 1.05 *
O60809 PRA10 1 -1.17 7.88 -0.24
P31689 DNJA1 3 -1.16 9.61 0.00026 3.87 1.20 *
Q9Y6X2 PIAS3 2 1.15 6.75 0.79
Q4L235 ACSF4 1 -1.14 4.38 -0.13
Continued on next page
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Protein Gene N log2FC Avg Expr p-value B IgG
Q15126 PMVK 1 -1.14 5.45 0.49
Q9Y4C1 KDM3A 1 -1.11 5.93 0.91
Q13158 FADD 1 -1.11 2.11 -0.90
Q9ULL5 PRR12 1 1.11 3.33 -0.10
P11142 HSP7C 3 -1.11 12.97 7.3e-05 5.69 1.00 *
Q9HB71 CYBP 3 -1.10 8.62 0.0013 2.04 1.02 *
Q6P2C8 MED27 1 1.10 6.21 0.06
Q9UL15 BAG5 1 -1.09 6.18 1.11 *
Q6PHW0 IYD1 1 1.09 6.85 1.45 *
P07205 PGK2 1 -1.08 6.73 1.03 *
Q96QK1 VPS35 1 1.08 4.72 0.59
O15355 PPM1G 3 -1.07 10.07 0.0065 -0.12 1.09 *
Q9UPN9 TRI33 3 1.05 12.27 0.00045 3.22 1.64 *
P61960 UFM1 1 -1.05 6.88 1.92 *
Q9ULJ6 ZMIZ1 3 1.04 9.72 0.00025 3.98 1.49 *
O43866 CD5L 2 -1.04 6.17 -2.51
O14686 KMT2D 1 1.04 7.38 0.32
Q5D862 FILA2 1 -1.03 7.77 -0.29
Q09472 EP300 3 1.03 8.88 0.00011 5.00 0.86
Q8NFD5 ARI1B 1 1.02 7.74 0.50
P08238 HS90B 3 -1.00 12.34 0.0047 0.32 2.04 *
P55854 SUMO3 3 0.96 8.41 0.0034 0.71 1.11 *
P52701 MSH6 3 -0.93 6.05 0.012 -0.78 0.97
Q6ISB3 GRHL2 3 0.85 11.12 0.00012 4.82 1.05 *
Q92754 AP2C 3 0.84 8.14 0.0033 0.88 1.19 *
P63165 SUMO1 3 0.79 9.15 0.0033 0.98 0.77
Q92785 REQU 3 0.77 9.11 0.0034 0.81 1.15 *
P0DMV9 HS71B 3 -0.75 12.63 0.0034 0.76 0.65
P61956 SUMO2 3 0.73 9.50 0.033 -2.05 1.10 *
P12956 XRCC6 3 -0.72 12.73 0.012 -0.75 0.90
O14497 ARI1A 3 0.72 8.60 0.012 -0.81 0.41
P78527 PRKDC 3 -0.68 11.22 0.0061 -0.03 0.36
Q9HAV4 XPO5 3 -0.65 8.66 0.037 -2.19 0.72
P31948 STIP1 3 -0.62 11.50 0.0047 0.29 0.59
Q04724 TLE1 3 0.61 9.40 0.041 -2.32 1.12 *
Q92925 SMRD2 3 0.58 9.91 0.014 -1.00 0.31
P55060 XPO2 3 -0.56 10.10 0.044 -2.43 0.86
Q9Y383 LC7L2 3 -0.51 10.30 0.037 -2.18 0.51
P09874 PARP1 3 -0.50 11.81 0.033 -2.01 0.63
Q99873 ANM1 3 -0.40 11.29 0.033 -1.99 0.65

Table 5: Top ranking differentially expressed proteins from the ER
90min vs ER 0min comparison, sorted by log2 fold change.
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4.9.3 ER 90min vs ER 45min

Protein Gene N log2FC Avg Expr p-value B IgG

Q13158 FADD 1 -1.34 2.11 -0.67
Q68CL5 TPGS2 2 -1.21 3.12 -7.40
Q6UX73 CP089 1 1.20 8.00 1.27 *
P33176 KINH 1 1.09 4.64 0.78
O14744 ANM5 1 1.06 2.45 -1.01
Q8WXG9 GPR98 1 1.02 6.85 2.30 *

Table 6: Top ranking differentially expressed proteins from the ER
90min vs ER 45min comparison, sorted by log2 fold change.
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4.9.4 FOXA1 45min vs FOXA1 0min

Protein Gene N log2FC Avg Expr p-value B IgG

Q8NH53 O52N1 1 4.29 4.11 4.90 *
Q96QK1 VPS35 1 3.72 4.72 4.08 *
A6NNA2 SRRM3 1 3.69 7.45 4.27 *
P57773 CXA9 1 3.12 8.22 2.52 *
A5PLK6 RGSL 1 -3.03 6.46 0.16
P42356 PI4KA 1 -2.64 4.49 -1.42
Q9NVG8 TBC13 1 -2.39 6.80 0.41
O94844 RHBT1 1 -2.35 5.71 0.20
P57678 GEMI4 1 -2.32 7.40 -0.16
Q86UP2 KTN1 1 2.23 6.69 2.02 *
P08729 K2C7 1 -2.19 3.89 0.04
Q9NW13 RBM28 1 2.06 6.68 2.13 *
O94992 HEXI1 2 -1.70 4.22 0.53
Q86WI1 PKHL1 1 -1.69 4.09 -0.70
Q9H2Y7 ZN106 1 1.66 7.50 -1.73
Q01813 PFKAP 1 -1.62 3.27 -0.69
Q8IV04 TB10C 1 -1.61 6.35 0.15
Q9H3P2 NELFA 1 -1.54 3.92 0.55
Q9NWS6 F118A 1 -1.49 3.79 0.73
Q9Y3E5 PTH2 1 1.49 3.11 0.89
Q8TDN6 BRX1 1 1.46 7.29 1.55 *
Q8NF37 PCAT1 1 -1.41 7.34 -0.42
Q9H0A0 NAT10 1 1.38 2.30 1.61 *
Q96KQ4 ASPP1 1 -1.38 3.41 -0.79
P33176 KINH 1 -1.36 4.64 -0.26
P20393 NR1D1 1 -1.32 8.26 0.77
O60610 DIAP1 1 -1.32 4.23 0.08
Q9BQG0 MBB1A 1 1.30 8.49 1.14 *
Q9HA92 RSAD1 1 -1.30 7.23 0.48
Q9UHB6 LIMA1 1 1.30 3.12 -0.08
Q9BXD5 NPL 1 -1.29 4.27 0.16
Q5VTD9 GFI1B 1 -1.29 5.70 0.24
Q13492 PICAL 1 1.26 3.60 1.43 *
Q15413 RYR3 1 -1.26 6.19 -5.07
Q96HY6 DDRGK 1 -1.23 3.95 -0.17
O00487 PSDE 1 1.23 2.15 0.67
O15269 SPTC1 1 -1.18 3.96 0.19
Q9HDC9 APMAP 1 -1.14 7.62 -0.44
O75179 ANR17 1 1.14 3.36 0.61
Q8ND56 LS14A 1 1.14 3.28 0.07
O60229 KALRN 1 -1.13 6.32 0.23
O95433 AHSA1 1 1.13 3.19 1.67 *
Q5T0W9 FA83B 1 1.13 6.88 0.78
P00450 CERU 1 1.12 6.76 0.04
Q96CT7 CC124 1 -1.12 6.21 -0.32
Q14677 EPN4 1 -1.09 6.32 -1.86
Q08J23 NSUN2 2 -1.09 4.80 0.50
Q14966 ZN638 1 1.08 7.79 1.09 *
Q9H9B1 EHMT1 1 1.07 3.76 1.84 *
Continued on next page
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Protein Gene N log2FC Avg Expr p-value B IgG
A5YKK6 CNOT1 1 -1.06 5.89 -0.60
Q9HCH5 SYTL2 1 -1.04 6.63 0.77
P61966 AP1S1 1 1.01 3.79 0.46
Q06787 FMR1 1 -1.01 7.26 -0.15
O15117 FYB 1 1.01 3.38 0.64
P29083 T2EA 1 1.01 5.86 -3.44
Q8IVT2 MISP 1 1.01 5.52 0.40

Table 7: Top ranking differentially expressed proteins from the
FOXA1 45min vs FOXA1 0min comparison, sorted by log2 fold
change.
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4.9.5 FOXA1 90min vs FOXA1 0min

Protein Gene N log2FC Avg Expr p-value B IgG

A5PLK6 RGSL 1 -1.53 6.46 0.16
Q5T0F9 C2D1B 1 -1.28 3.34 0.00
P04433 KV309 1 -1.24 8.54 0.36
P55036 PSMD4 1 -1.22 4.17 0.15
O95433 AHSA1 1 -1.13 3.19 0.54
O00487 PSDE 1 -1.08 2.15 -0.56

Table 8: Top ranking differentially expressed proteins from the
FOXA1 90min vs FOXA1 0min comparison, sorted by log2 fold
change.
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4.9.6 FOXA1 90min vs FOXA1 45min

Protein Gene N log2FC Avg Expr p-value B IgG

Q8NH53 O52N1 1 -4.27 4.11 4.90 *
Q96QK1 VPS35 1 -4.20 4.72 4.08 *
P42356 PI4KA 1 3.49 4.49 -0.57
P57773 CXA9 1 -2.97 8.22 2.52 *
A6NNA2 SRRM3 1 -2.88 7.45 4.27 *
Q86UP2 KTN1 1 -2.69 6.69 2.02 *
Q9NVG8 TBC13 1 2.67 6.80 0.69
O94844 RHBT1 1 2.51 5.71 0.36
O00487 PSDE 1 -2.31 2.15 0.67
O95433 AHSA1 1 -2.26 3.19 1.67 *
Q15413 RYR3 1 2.13 6.19 -4.20
P08729 K2C7 1 2.04 3.89 -0.11
Q9H0A0 NAT10 1 -1.98 2.30 1.61 *
O75179 ANR17 1 -1.91 3.36 0.61
Q9HDC9 APMAP 1 1.89 7.62 0.31
P57678 GEMI4 1 1.88 7.40 -0.60
Q8ND56 LS14A 1 -1.81 3.28 0.07
Q9H3P2 NELFA 1 1.74 3.92 0.76
O94992 HEXI1 2 1.69 4.22 0.51
Q8IV04 TB10C 1 1.67 6.35 0.20
P33176 KINH 1 1.65 4.64 0.03
P61966 AP1S1 1 -1.62 3.79 0.46
Q9NWS6 F118A 1 1.51 3.79 0.75
A5PLK6 RGSL 1 1.50 6.46 -1.37
Q13492 PICAL 1 -1.46 3.60 1.43 *
Q8TE85 GRHL3 1 1.43 4.85 -0.03
Q9HCH5 SYTL2 1 1.43 6.63 1.16 *
Q9H2Y7 ZN106 1 -1.40 7.50 -1.73
Q9Y6E0 STK24 1 -1.39 3.66 0.52
Q14677 EPN4 1 1.37 6.32 -1.58
P23677 IP3KA 1 1.35 7.05 -0.42
Q9NW13 RBM28 1 -1.33 6.68 2.13 *
Q9Y3E5 PTH2 1 -1.32 3.11 0.89
Q5T0F9 C2D1B 1 -1.32 3.34 0.04
Q9HA92 RSAD1 1 1.31 7.23 0.49
P04004 VTNC 1 1.29 6.39 -0.30
O60229 KALRN 1 1.29 6.32 0.38
Q8NF37 PCAT1 1 1.28 7.34 -0.55
Q86WI1 PKHL1 1 1.26 4.09 -1.13
Q5T1M5 FKB15 1 -1.25 6.17 -0.05
Q8IUE6 H2A2B 2 1.23 7.40 0.00
Q9H0S4 DDX47 1 1.18 7.09 -0.14
Q96KQ4 ASPP1 1 1.16 3.41 -1.01
Q8IVT2 MISP 1 -1.15 5.52 0.40
Q9H9B1 EHMT1 1 -1.13 3.76 1.84 *
Q13158 FADD 1 -1.10 2.11 0.37
P07384 CAN1 1 -1.09 5.85 0.49
P32242 OTX1 2 -1.09 5.03 2.36 *
P02656 APOC3 3 1.08 6.97 1 -4.11 -0.76
Continued on next page
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Protein Gene N log2FC Avg Expr p-value B IgG
P35580 MYH10 1 1.07 7.89 -0.23
O00442 RTCA 1 -1.06 2.48 1.26 *
P39019 RS19 2 -1.06 8.37 -0.10
P14770 GPIX 2 1.06 6.28 -0.01
Q9UHB6 LIMA1 1 -1.03 3.12 -0.08
O14745 NHRF1 1 -1.02 5.90 0.31

Table 9: Top ranking differentially expressed proteins from the
FOXA1 90min vs FOXA1 45min comparison, sorted by log2 fold
change.

5 GRHL2 ChIP-Seq Analysis

5.1 Pre-processing

5.1.1 Download files

#!/bin/sh
java -jar ../java/clarity-tools.jar -l SLX-14333

5.1.2 Removal of reads in blacklisted sites

#downloaded from http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/hg38.blacklist.bed.gz

bl=../blacklists/hg38.blacklist.bed

mkdir ./blacklist_filtered
cd SLX-14333
for f in *.bam
do

echo $f
bedtools intersect -v -abam $f -b $bl > ../blacklist_filtered/$f

done

### Re-index

cd ../blacklist_filtered
for f in *.bam
do
samtools index $f
done

5.1.3 Peak Calling

### MACS peak caller

### Run macs on the blacklisted data
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mkdir ./peaks
cd peaks
control=../GRHL2_filtered/SLX-14333.D701_D503.bam
for bam in ../GRHL2_filtered/*.bam
do
root=`basename $bam .bam`
macs2 callpeak -t $bam -c $control -f BAM -n $root -g hs &
done

5.2 Differntial binding analysis

5.2.1 MA plot

suppressMessages(library(DiffBind))

if(!file.exists("rdata/003_diffbind.rda")) {
GRHL2 <- dba(sampleSheet="samplesheet/samplesheet.csv")
GRHL2 <- dba.count(GRHL2, summits=250)
GRHL2 <- dba.contrast(GRHL2)
GRHL2 <- dba.analyze(GRHL2)
save(GRHL2,file="rdata/003_diffbind.rda")

} else {
load("rdata/003_diffbind.rda")

}

dba.plotMA(GRHL2, bFlip=1)

5.2.2 PCA

dba.plotPCA(GRHL2,components = 2:3)

5.2.3 Table of differntiall bound sites

library(knitr)
kable(head(as.data.frame(dba.report(GRHL2))))

seqnames start end width strand Conc Conc_none Conc_ER Fold p.value FDR
12123 14 93959394 93959894 501 * 7.63 6.04 8.37 -2.33 0 0e+00
9047 12 75706270 75706770 501 * 6.74 4.93 7.52 -2.60 0 0e+00
24493 21 31529399 31529899 501 * 6.50 4.86 7.25 -2.39 0 0e+00
129 1 7447769 7448269 501 * 4.98 2.44 5.85 -3.41 0 0e+00
40054 9 75101020 75101520 501 * 6.94 4.80 7.76 -2.96 0 0e+00
28564 3 176953741 176954241 501 * 5.53 3.80 6.30 -2.50 0 1e-07
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Figure 83: MA plot showing changes in GRHL2 binding before and after treatment with 100nM E2.
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Figure 84: PCA Plot showing clustering of samples by condition

140

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


5.2.4 Number of sites with increased or decreased binding

r<-dba.report(GRHL2,th=1)
length(r[r$Fold>0])

## [1] 4973
length(r[r$Fold<0])

## [1] 37496

5.3 Quality Control

5.3.1 Reproducability of peaks

dba.plotVenn(GRHL2,GRHL2$masks$ER, label1="Rep1", label2="Rep2", main="GRHL2 +E2")

dba.plotVenn(GRHL2,GRHL2$masks$none, label1="Rep1", label2="Rep2", main="GRHL2 -E2")

called_none<-rowSums(GRHL2$called[,c(1:3)])
called_ER<-rowSums(GRHL2$called[,c(4:6)])
print(paste("Peaks called in -E2 samples:", length(called_none[called_none>0])))

## [1] "Peaks called in -E2 samples: 38763"
print(paste("Peaks called in +E2 samples:", length(called_ER[called_ER>0])))

## [1] "Peaks called in +E2 samples: 42565"
called_both<-called_none*called_none
print(paste("Peaks called in both settings:", length(called_both[called_both>0])))

## [1] "Peaks called in both settings: 38763"

5.4 VULCAN Analysis

suppressMessages(library(vulcan))

dist_calc<-function(method,dfanno,genematrix,genesmore,allsamples){
# This function structure was strongly suggested
# by the Bioconductor reviewer
supportedMethods<-c(

"closest",
"strongest",
"sum",
"topvar",
"farthest",
"lowvar"

)
if(!method%in%supportedMethods){

stop("unsupported method ", method)
}

for (gene in genesmore) {
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Figure 85: Peak overlap +E2
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Figure 86: Peak overlap -E2
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subanno <- dfanno[dfanno$feature == gene, ]

if (method == "closest") {
closest <- which.min(subanno$distanceToStart)
genematrix[gene, allsamples] <- as.numeric(subanno[closest,

allsamples])
}

if (method == "farthest") {
farthest <- which.max(subanno$distanceToStart)
genematrix[gene, allsamples] <- as.numeric(subanno[farthest,

allsamples])
}

if (method == "sum") {
sums <- apply(subanno[, allsamples], 2, sum)
genematrix[gene, allsamples] <- as.numeric(sums)

}

if (method == "strongest") {
sums <- apply(subanno[, allsamples], 1, sum)
top <- which.max(sums)
genematrix[gene, allsamples] <- as.numeric(subanno[top,

allsamples])
}

if (method == "topvar") {
vars <- apply(subanno[, allsamples], 1, var)
top <- which.max(vars)
genematrix[gene, allsamples] <- as.numeric(subanno[top,

allsamples])
}

if (method == "lowvar") {
vars <- apply(subanno[, allsamples], 1, var)
top <- which.min(vars)
genematrix[gene, allsamples] <- as.numeric(subanno[top,

allsamples])
}

}
return(genematrix)

}

vulcan.import.dba<- function (dbaobj, samples,intervals = NULL)
{

dbcounts <- dbaobj
listcounts <- dbcounts$peaks
names(listcounts) <- dbcounts$samples[, 1]
first <- listcounts[[1]]
rawmat <- matrix(NA, nrow = nrow(first), ncol = length(listcounts) +

3)
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colnames(rawmat) <- c("Chr", "Start", "End", names(listcounts))
rownames(rawmat) <- 1:nrow(rawmat)
rawmat <- as.data.frame(rawmat)
rawmat[, 1] <- as.character(first[, 1])
rawmat[, 2] <- as.integer(first[, 2])
rawmat[, 3] <- as.integer(first[, 3])
for (i in 1:length(listcounts)) {

rawmat[, names(listcounts)[i]] <- as.numeric(listcounts[[i]]$RPKM)
}
peakrpkms <- rawmat
rm(rawmat)
first <- listcounts[[1]]
rawmat <- matrix(NA, nrow = nrow(first), ncol = length(listcounts) +

3)
colnames(rawmat) <- c("Chr", "Start", "End", names(listcounts))
rownames(rawmat) <- 1:nrow(rawmat)
rawmat <- as.data.frame(rawmat)
rawmat[, 1] <- as.character(first[, 1])
rawmat[, 2] <- as.integer(first[, 2])
rawmat[, 3] <- as.integer(first[, 3])
for (i in 1:length(listcounts)) {

rawmat[, names(listcounts)[i]] <- as.integer(listcounts[[i]]$Reads)
}
peakcounts <- rawmat
rm(rawmat)
vobj <- list(peakcounts = peakcounts, samples = samples,

peakrpkms = peakrpkms)
return(vobj)

}

prependSampleNames <- function(vobj,prependString){
colnames(vobj$peakcounts)[0:-3]<-paste0(prependString,colnames(vobj$peakcounts)[0:-3])
vobj$samples[[2]]<-paste0(prependString,vobj$samples[[2]])
vobj$samples[[1]]<-paste0(prependString,vobj$samples[[1]])
colnames(vobj$peakrpkms)[0:-3]<-paste0(prependString,colnames(vobj$peakrpkms)[0:-3])
return(vobj)

}

loadVulcanNetworks<-function(){
regulons<-list()
load("networks/laml-tf-regulon.rda")
regulons$laml<-regul
rm(regul)
load("networks/brca-tf-regulon.rda")
regulons$tcga<-regul
rm(regul)
load("networks/metabric-regulon-tfs.rda")
regulons$metabric<-regulon
rm(regulon)
return(regulons)

}
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#Slow so just load the file below
#vobj<-vulcan.import("samplesheet/samplesheet.csv")
#load(file="003_vobj.Rda")
samples <- list()
samples[['ER']]<-c('1a','2a','3a')
samples[['none']]<-c('1b','2b','3b')

vobj <-vulcan.import.dba(GRHL2,samples)

#vobj<-vulcan.annotate(vobj,lborder=-10000,rborder=10000,method='sum')

vobj <-prependSampleNames(vobj,"X")

lborder=-10000
rborder=10000
method='sum'
#DEBUG
#source("https://bioconductor.org/biocLite.R")
#biocLite("TxDb.Hsapiens.UCSC.hg38.knownGene")
suppressMessages(library("TxDb.Hsapiens.UCSC.hg38.knownGene"))

annotation <- toGRanges(TxDb.Hsapiens.UCSC.hg38.knownGene,
feature = "gene")

gr <- GRanges(vobj$peakcounts)
seqlevels(annotation)<- sub('chr','',seqlevels(annotation))
anno <- annotatePeakInBatch(gr, AnnotationData = annotation,

output = "overlapping", FeatureLocForDistance = "TSS",
bindingRegion = c(lborder, rborder))

## Annotate peaks by annoPeaks, see ?annoPeaks for details.

## maxgap will be ignored.
dfanno <- anno
names(dfanno) <- seq_len(length(dfanno))
dfanno <- as.data.frame(dfanno)
allsamples <- unique(unlist(vobj$samples))
genes <- unique(dfanno$feature)
peakspergene <- table(dfanno$feature)
rawcounts <- matrix(NA, nrow = length(genes), ncol = length(allsamples))
colnames(rawcounts) <- allsamples
rownames(rawcounts) <- genes
genesone <- names(peakspergene)[peakspergene == 1]
for (gene in genesone) {

rawcounts[gene, allsamples] <- as.numeric(dfanno[dfanno$feature ==
gene, allsamples])

}

genesmore <- names(peakspergene)[peakspergene > 1]
rawcounts <- dist_calc(method, dfanno, rawcounts, genesmore,

allsamples)

gr <- GRanges(vobj$peakrpkms)
anno <- annotatePeakInBatch(gr, AnnotationData = annotation,

output = "overlapping", FeatureLocForDistance = "TSS",
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bindingRegion = c(lborder, rborder))

## Annotate peaks by annoPeaks, see ?annoPeaks for details.
## maxgap will be ignored.
dfanno <- anno
names(dfanno) <- seq_len(length(dfanno))
dfanno <- as.data.frame(dfanno)
allsamples <- unique(unlist(vobj$samples))
genes <- unique(dfanno$feature)
peakspergene <- table(dfanno$feature)
rpkms <- matrix(NA, nrow = length(genes), ncol = length(allsamples))
rownames(rpkms) <- genes
genesone <- names(peakspergene)[peakspergene == 1]
colnames(rpkms)<-allsamples
for (gene in genesone) {

rpkms[gene, allsamples] <- as.numeric(dfanno[dfanno$feature ==
gene, allsamples])

}
genesmore <- names(peakspergene)[peakspergene > 1]

rpkms <- dist_calc(method, dfanno, rpkms, genesmore, allsamples)
rawcounts <- matrix(as.numeric(rawcounts), nrow = nrow(rawcounts),

dimnames = dimnames(rawcounts))
rpkms <- matrix(as.numeric(rpkms), nrow = nrow(rpkms), dimnames = dimnames(rpkms))
vobj$rawcounts <- rawcounts
colnames(rpkms)<-allsamples
vobj$rpkms <- rpkms

#DEBUG ENDS

vobj<-vulcan.normalize(vobj)

load(file="networks/metabric-regulon-tfs.rda")

regulons <- loadVulcanNetworks()
suppressMessages(library("org.Hs.eg.db"))
list_eg2symbol<-as.list(org.Hs.egSYMBOL[mappedkeys(org.Hs.egSYMBOL)])

vobj_results<-list()

#test<-vulcan(vobj, network=regulon, contrast=c("none","ER") )

networks<-c("tcga","metabric") #,"laml")

for (network in networks) {
vobj_results[[network]]<-vulcan(vobj,

network=regulons[[network]],
contrast=c("none","ER"),
annotation=list_eg2symbol)

}

## Mon Mar 12 21:12:48 2018
## Computing the null model distribution by 1000 permutations.
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## --------------------------------------------------------------
## Mon Mar 12 21:13:00 2018
## Computing regulon enrichment with aREA algorithm
##
## Estimating the normalized enrichment scores
## Mon Mar 12 21:13:35 2018
## Computing the null model distribution by 1000 permutations.
## --------------------------------------------------------------
## Mon Mar 12 21:13:47 2018
## Computing regulon enrichment with aREA algorithm
##
## Estimating the normalized enrichment scores
vobj_objects<-list(vobj_results)
names(vobj_objects)<-c("GRHL2")
networks<-c("tcga","metabric")

5.4.1 Transcription factor activity

plotVulcan <-function(vobj,threshold,network_title,title,plotTF,xlim,ylim) {
threshold<-sign(threshold)*p2z(abs(threshold))
network=vobj$mrs[,"NES"]
tfs<-names(network)
networkmat<-cbind(rep(0,length(network)),network[tfs])
colnames(networkmat)<-c("0h","45min")
matplot(t(networkmat),type="l",col="grey",ylab="VULCAN NES",xaxt="n",lty=1,main=title,xlim=xlim,ylim=ylim)
axis(1,at=c(1:2),labels=colnames(networkmat))
abline(h=c(0,threshold,-threshold),lty=2)
text(2,networkmat[plotTF,2],label=names(networkmat[,2][plotTF]),pos=4,cex=0.6,font=2,col="red3")
mtext(network_title)

}

par(mfrow=c(2,3))
for(network in networks){

for (vobj_name in names(vobj_objects))
{

vobj<-vobj_objects[[vobj_name]]
vobj<-vobj[[network]]
#TFs<-getTFs(vobj)
TFs=c("ESR1","PGR","FOXA1","GRHL2") #Overide TFS
plotVulcan(vobj,0.05, paste0(network," Network"),vobj_name,TFs,xlim=c(1,2.3), ylim=c(min(vobj$mrs[,"NES"]),max(vobj$mrs[,"NES"])))

#TFs<-getTFs(vobj,0.05)
plotVulcan(vobj,0.05, paste0(network," Network"),vobj_name,TFs,xlim=c(1,2.3), ylim=c(0,max(vobj$mrs[,"NES"])))

#TFs<-getTFs(vobj,-0.05)
plotVulcan(vobj,-0.05, paste0(network," Network"),vobj_name,TFs,xlim=c(1,2.3), ylim=c(min(vobj$mrs[,"NES"]),0))

}
}
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5.4.2 METABRIC TGCA comparison

interect<-intersect(rownames(vobj_results$metabric$mrs),
rownames(vobj_results$tcga$mrs))

plot(-log10(vobj_results$metabric$mrs[interect,"pvalue"]),
-log10(vobj_results$tcga$mrs[interect,"pvalue"]),
pch=20, xlab="Metabric Network Enrichment Score", ylab="TCGA Network Enrichment Score",main="VULCAN analysis of GRHL2 ChIP-Seq",
col="gray"
)

filtered<-(log10(vobj_results$metabric$mrs[interect,"pvalue"])^2+log10(vobj_results$tcga$mrs[interect,"pvalue"])^2)>3
filtered[c("GATA3","PGR","FOXA1","ESR1","GRHL2")]<-rep(FALSE,5)
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points(-log10(vobj_results$metabric$mrs[interect,"pvalue"][filtered]),
-log10(vobj_results$tcga$mrs[interect,"pvalue"][filtered]),
labels=interect[filtered],cex=1)

text(-log10(vobj_results$metabric$mrs[interect,"pvalue"][filtered]),
-log10(vobj_results$tcga$mrs[interect,"pvalue"][filtered])-0.1,
labels=interect[filtered],cex=1)

points(-log10(vobj_results$metabric$mrs[interect,"pvalue"][c("GATA3","PGR","FOXA1","ESR1","GRHL2")]),
-log10(vobj_results$tcga$mrs[interect,"pvalue"][c("GATA3","PGR","FOXA1","ESR1","GRHL2")]),pch=20,col="red",cex=1.5)

text(-log10(vobj_results$metabric$mrs[interect,"pvalue"][c("FOXA1","ESR1","GRHL2")]),
-log10(vobj_results$tcga$mrs[interect,"pvalue"][c("FOXA1","ESR1","GRHL2")])+0.2,col="red",
labels=c("FOXA1","ESR1","GRHL2"),cex=1.25,font=2)

text(-log10(vobj_results$metabric$mrs[interect,"pvalue"][c("GATA3","PGR")])+0.2,
-log10(vobj_results$tcga$mrs[interect,"pvalue"][c("GATA3","PGR")]),col="red",
labels=c("GATA3","PGR"),cex=1.25,font=2)

5.5 Motif Analysis

5.5.1 Export bed files

#Note homer needs this as Hg format so you need to change from "1" to "chr1" etc.
df<-as.data.frame(dba.report(GRHL2))
df$seqnames<-paste0("chr",df$seqnames)

kable(head(df))

seqnames start end width strand Conc Conc_none Conc_ER Fold p.value FDR
12123 chr14 93959394 93959894 501 * 7.63 6.04 8.37 -2.33 0 0e+00
9047 chr12 75706270 75706770 501 * 6.74 4.93 7.52 -2.60 0 0e+00
24493 chr21 31529399 31529899 501 * 6.50 4.86 7.25 -2.39 0 0e+00
129 chr1 7447769 7448269 501 * 4.98 2.44 5.85 -3.41 0 0e+00
40054 chr9 75101020 75101520 501 * 6.94 4.80 7.76 -2.96 0 0e+00
28564 chr3 176953741 176954241 501 * 5.53 3.80 6.30 -2.50 0 1e-07

#write.bed(df,"bed/up.bed")

df_all<-as.data.frame(dba.report(GRHL2, th=1))
df_all$seqnames<-paste0("chr",df_all$seqnames)

kable(head(df_all))

seqnames start end width strand Conc Conc_none Conc_ER Fold p.value FDR
12123 chr14 93959394 93959894 501 * 7.63 6.04 8.37 -2.33 0 0e+00
9047 chr12 75706270 75706770 501 * 6.74 4.93 7.52 -2.60 0 0e+00
24493 chr21 31529399 31529899 501 * 6.50 4.86 7.25 -2.39 0 0e+00
129 chr1 7447769 7448269 501 * 4.98 2.44 5.85 -3.41 0 0e+00
40054 chr9 75101020 75101520 501 * 6.94 4.80 7.76 -2.96 0 0e+00
28564 chr3 176953741 176954241 501 * 5.53 3.80 6.30 -2.50 0 1e-07
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Figure 87: Comparision of results of VULCAN analysis for METABRIC and TGCA
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#write.bed(df_all,"bed/all.bed")

5.5.2 Homer

#Homer

mkdir motifAnalysis
cd motifAnalysis
findMotifsGenome.pl ../bed/up.bed hg38 grhl2UpSites
findMotifsGenome.pl ../bed/all.bed hg38 grhl2AllSites

5.5.3 Generate promoter locations

Generate Bed file of Promoters
require(TxDb.Hsapiens.UCSC.hg38.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
p<-promoters(genes(txdb), upstream = 1500, downstream = 500)

write.bed<-function(df, filename){
write.table(as.data.frame(df)[,1:3],

filename, quote=FALSE, sep="\t",
row.names=FALSE, col.names=FALSE)

}

write.bed(p,"bed/promoter.bed")

5.6 Ovlerap of GRHL2 binding sites with published data

5.6.1 Extract ChIA-PET Data

#ChIA-pet all 3 https://www.encodeproject.org/experiments/ENCSR000BZZ/
cd bed
multiIntersectBed -i *bed6_sorted.bed | awk '{if ($4 > 1) {print} }' > hglft_ChIA_combined.bed

5.6.2 Find overlapping sites

#p300 from Zwart, EMBO, 2011
#ER from Hurtado 2011
#gro-seq GSE43835
#Rest from Caroll MLL3 paper

cd bed
mkdir overlaps

#generate gro-seq interect
#file1=hglft_E2.40m.rep1.bed
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#file2=hglft_E2.40m.rep2.bed
#output=gro-seq.bed
#bedtools intersect -sorted -a $file1 -b $file2 > overlaps/$output

file1=hglft_foxa1.bed
file2=up.bed
output=foxa1-up.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_ER_Hurtado_2011.bed
output=er-up.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

#file1=gro-seq.bed
#output=gro-up.bed
#bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_ChIA_combined.bed
output=ChIAPet_up.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_h3k4me1.bed
output=h3k4me1-up.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_h3k4me3.bed
output=h3k4me3-up.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_p300_ctrl.bed
output=p300_ctrl_up.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_p300_e2.bed
output=p300_e2_up.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

#all peaks

file1=hglft_foxa1.bed
file2=all.bed
output=foxa1-all.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_ER_Hurtado_2011.bed
output=er-all.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

#file1=gro-seq.bed
#output=gro-all.bed
#bedtools intersect -a $file1 -b $file2 > overlaps/$output
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file1=hglft_ChIA_combined.bed
output=ChIAPet_all.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_h3k4me1.bed
output=h3k4me1-all.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_h3k4me3.bed
output=h3k4me3-all.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_p300_ctrl.bed
output=p300_ctrl_all.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=hglft_p300_e2.bed
output=p300_e2_all.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

##Overlap with promoters

file1=overlaps/ChIAPet_up.bed
file2=promoter.bed
output=ChIAPet_up_prom.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

file1=overlaps/ChIAPet_all.bed
file2=promoter.bed
output=ChIAPet_all_prom.bed
bedtools intersect -a $file1 -b $file2 > overlaps/$output

5.6.3 Count number of overlaping sites

cd bed/overlaps
wc -l *.bed > overlaps.txt

5.6.4 Table of number of overlaping sites for each factor

overlaps<-read.table("bed/overlaps/overlaps.txt")
kable(overlaps)

V1 V2
1764 ChIAPet_all.bed
109 ChIAPet_all_prom.bed
214 ChIAPet_up.bed
8 ChIAPet_up_prom.bed

5539 er-all.bed
318 er-up.bed

13422 foxa1-all.bed
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V1 V2
255 foxa1-up.bed

33831 h3k4me1-all.bed
343 h3k4me1-up.bed

10234 h3k4me3-all.bed
55 h3k4me3-up.bed

7072 p300_ctrl_all.bed
155 p300_ctrl_up.bed

13588 p300_e2_all.bed
337 p300_e2_up.bed

87244 total

5.6.5 GRHL2 binding overlap with known factors

overlapsDF<-cbind(overlaps[1:16,],c('all','all','up','up','all','up','all','up','all','up','all','up','all','up','all','up'))
overlapsDF<-cbind(overlapsDF,c('all','promoter','all','promoter',rep("all",12)))
overlapsDF<-cbind(overlapsDF,c(rep("None",14),"E2","E2"))
colnames(overlapsDF)<-c("Number","Factor","GRHL2","Feature","Treatment")
overlapsDF$Factor<-c(rep("ChIAPet",4),rep("ER",2),rep("FOXA1",2),rep("H3K4Me1",2),rep("H3K4Me3",2),rep("P300",4))
overlapsDF$Number<-as.numeric(overlapsDF$Number)
ChIAPet<-overlapsDF[overlapsDF$Factor=='ChIAPet' & overlapsDF$Feature=='all',]
ChIAPet$Number<-overlapsDF[overlapsDF$Factor=='ChIAPet' & overlapsDF$Feature=='all',]$Number - overlapsDF[overlapsDF$Factor=='ChIAPet' & overlapsDF$Feature=='promoter',]$Number
ChIAPet$Feature<-c('enchancer','enchancer')
overlapsDF<-rbind(overlapsDF,ChIAPet)
overlapsDF<-data.frame(overlapsDF)
overlapsDF[overlapsDF$GRHL2=='up',]$Number<-(overlapsDF[overlapsDF$GRHL2=='up',]$Number/355)*100 #355 is the total number of up sites established by DiffBind
overlapsDF[overlapsDF$GRHL2=='all',]$Number<-(overlapsDF[overlapsDF$GRHL2=='all',]$Number/42721)*100 #Total number of GRHL2 sites

library(lattice)

barchart(Number ~ Factor ,data=overlapsDF[overlapsDF$Factor != 'ChIAPet',],
par.settings = simpleTheme(col=c("lightblue","pink")),
group=GRHL2,auto.key=list(space="top", columns=2, text=c('All GRHL2 Sites','GRHL2 Sites Responsive to E2')),
main="GRHL2 Binding Overlap with Known Factors", ylab="Percentage of GRHL2 sites that overlap",
xlab="Factor")

5.6.6 GRHL2 binding overlap with P300 binding sites

barchart(Number ~ Treatment ,data=overlapsDF[overlapsDF$Factor=='P300',],
group=GRHL2,
auto.key=list(space="top",columns=2, text=c('All GRHL2 Sites','GRHL2 Responsive to E2')),
par.settings = simpleTheme(col=c("lightblue","pink")),
main="GRHL2 overlap with P300 binding sites",
xlab="P300 ChIP-Seq Condition",
ylab="Percentage of GRHL2 sites that overlap")
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Figure 88: GRHL2 binding overlap with known factors
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Figure 89: GRHL2 binding overlap with P300 binding sites

157

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


5.6.7 GRHL2 overlap with ChIA-PET sites

barchart(Number ~ Feature ,data=overlapsDF[overlapsDF$Factor=='ChIAPet',],
group=GRHL2,
auto.key=list(space="top",columns=2, text=c('All GRHL2 Sites','GRHL2 Sites Responsive to E2')),
par.settings = simpleTheme(col=c("lightblue","pink")),
main="GRHL2 overlap with ChIA-PET sites",
xlab="Genomic Feature ChIP-Seq Condition",
ylab="Percentage of GRHL2 sites that overlap")

5.6.8 GRHL2 overlap with Gro-SEQ data

allPeaks<-read.csv("txt/All_GRHL2_peaks_GSE43836.csv")
upPeaks<-read.csv("txt/Up_GRHL2_peaks_GSE43836.csv")

par(mfrow=c(1,2))

plot(allPeaks[1:2],ylim=c(0,6),type="n", lwd=2, ylab="Read Depth", main="All GRHL2 Sites")
lines(allPeaks[c(1,2)], lwd=2, col="lightblue")
lines(allPeaks[c(1,3)], lwd=2, col="lightblue")
lines(allPeaks[c(1,4)], lwd=2, col="pink")
lines(allPeaks[c(1,5)], lwd=2, col="pink")

plot(upPeaks[c(1,5)],ylim=c(0,6),type="n", ylab="Read Depth", main="E2 responsive GRHL2 Sites")
lines(upPeaks[c(1,2)], lwd=2,col="lightblue")
lines(upPeaks[c(1,3)], lwd=2, col="lightblue")
lines(upPeaks[c(1,4)], lwd=2, col="pink")
lines(upPeaks[c(1,5)], lwd=2,col="pink")

5.6.9 GRHL2 overlap with Gro-SEQ data is reproducible between studies

GSE43836<-read.csv("txt/averaged_GSE43836.csv")

colnames(GSE43836)[1]<-"Distance from Center/bp"

par(mfrow=c(2,2))

plot(GSE43836[1:2],ylim=c(0,6),type="n", lwd=2, ylab="Read Depth", main="All GRHL2 Sites [GSE43836]")
lines(GSE43836[c(1,2)], lwd=2, col="lightblue")
lines(GSE43836[c(1,3)], lwd=2, col="pink")
lines(GSE43836[c(1,4)], lwd=2, col="deeppink")
legend("topright", legend=c("0 min", "45 min", "90 min"),

col=c("lightblue","pink","deeppink"),pch=20, cex=0.5, horiz = TRUE)

plot(GSE43836[1:2],ylim=c(0,6),type="n", lwd=2, ylab="Read Depth", main="Resonsive GRHL2 Sites [GSE43836]")
lines(GSE43836[c(1,5)], lwd=2, col="lightblue")
lines(GSE43836[c(1,6)], lwd=2, col="pink")
lines(GSE43836[c(1,7)], lwd=2, col="deeppink")
legend("topright", legend=c("0 min", "45 min", "90 min"),
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Figure 90: GRHL2 overlap with ChIA-PET sites
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Figure 91: Gro-Seq data at GRHL2 sites. Blue is control samples, pink is E2 treated samples. Data from
GSE43836.
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col=c("lightblue","pink","deeppink"),pch=20, cex=0.5,horiz = TRUE)

GSE45822<-read.csv("txt/averaged_GSE45822.csv")

colnames(GSE45822)[1]<-"Distance from Center/bp"

plot(GSE45822[1:2],ylim=c(0,6),type="n", lwd=2, ylab="Read Depth", main="All GRHL2 Sites [GSE45822]")
lines(GSE45822[c(1,3)], lwd=2, col="lightblue")
lines(GSE45822[c(1,2)], lwd=2, col="deeppink")
legend("topright", legend=c("Veh", "E2"),

col=c("lightblue","deeppink"),pch=20, cex=0.5,horiz = TRUE)

plot(GSE45822[1:2],ylim=c(0,6),type="n", lwd=2, ylab="Read Depth", main="All GRHL2 Sites [GSE45822]")
lines(GSE45822[c(1,5)], lwd=2, col="lightblue")
lines(GSE45822[c(1,4)], lwd=2, col="deeppink")
legend("topright", legend=c("Veh", "E2"),

col=c("lightblue","deeppink"),pch=20, cex=0.5,horiz = TRUE)

6 GRHL2 qPLEX-RIME Analysis

6.1 Introduction

This report provides a summary of the results of your proteomics experiment.

Your experiment has 11 samples. 9032 peptides from 1514 unique proteins were captured in the experiment.
Each protein is represented by 1 to 255 peptides, but median number of peptides per protein was 2.

6.2 Raw data QC

6.2.1 Coverage plot

Figure 1 shows the coverage of the bait protein, GRHL2, in terms of peptides detected.

6.2.2 Intensity Plot

Figure 2 shows the distribution of raw peptide intensities for each sample.

6.2.3 Peptide intensities for GHRL2

Figure 3 shows the raw intensities for each peptide detected for the bait protein GRHL2 in each sample.

6.2.4 Correlation Plot

Figure 4 shows a correlation matrix to visualize the level of linear association of samples within and between
groups based on the raw peptide intensities.
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Figure 92: Analysis of GRHL2 sites of Gro-Seq data from GSE43836 and GSE45822 both showed that E2
responsive GRHL2 resonsive sites are transcriptionally responsive to E2.

Figure 93: **Figure 1. Plot of peptide coverage for GRHL2 (UniprotID: Q6ISB3) **
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Figure 94: **Figure 2. Raw intensities plot. **
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Figure 95: **Figure 3. Peptide intensities for GRHL2. **
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Figure 96: **Figure 4. Correlation plot based on raw intensities. **
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Figure 97: **Figure 5. Hierachical clustering based on raw intensities. **

6.2.5 Hierichical clustering dendrogram

Figure 5 shows a dendrogram displaying the hierarchical relationship among samples. The vertical axis shows
the dissimilarity (measured by means of the Euclidean distance) between samples: similar
samples appear on the same branches. Colors correspond to sample groups.

6.2.6 PCA Plot

Figure 6 shows a visual representation of the scaled loading of the first two dimensions of a principle component
analysis of the raw peptide intensities.

List of 1 $ aspect.ratio: num 1 - attr(, “class”)= chr [1:2] “theme” “gg” - attr(, “complete”)= logi FALSE -
attr(*, “validate”)= logi TRUE

6.2.7 QC Conclusion

The sample Ctrl rep 1 appears to be an outlier. The differential anlaysis was carried out twice, first with this
sample included and then again with the sample excluded.

166

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 98: **Figure 6. Principle Component Analysis based on raw intensities. **
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Figure 99: **Figure 7. Effects of normalisation on peptide intensities. **

6.3 Full data set analysis

The following section shows the results for analysis of all 8 samples.

6.3.1 Effect of within group normalisation

Normalisation was carried out using median scaling. The experimental samples and the IgG control samples
were normalised separately. Figure 7 show the effects of normalisation on the intensity plots and the principle
component analysis.

6.3.2 Differential analysis results

Figure 8 shows differential abundancy results. No proteins were statistically differentially abundant. Figure 7
shows an MA plot and a volcano plot of the differental analysis results.
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Figure 100: **Figure 9. MA plot and volcano plot of differential protein abundancy. **
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Figure 101: **Figure 10. Effects of normalisation on peptide intensities. **

6.4 Remove sample Ctrl 1

The following section shows the same analysis, but with the Ctrl rep 1 sample removed

6.4.1 Effect of within group normalisation

Normalisation was carried out using median scaling. The experimental samples and the IgG control samples
were normalised separately. Figure 10 show the effects of normalisation on the intensity plots and the principle
component analysis.

6.4.2 ER - Ctrl

Figure 11 shows differential abundancy results for the contrasts ER_v_Ctrl. Figure 10 shows an MA plot
and a volcano plot of the differental analysis results
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Figure 102: **Figure 12. MA plot and volcano plot of differential protein abundancy. **
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Figure 103: **Figure 15. MA plot and volcano plot of differential protein abundancy. **

6.4.3 Ctrl - IgG

Figure 13 shows differential abundancy results for the contrasts Ctrl_v_IgG. Figure 14 shows an MA plot
and a volcano plot of the differental analysis results.

6.4.4 ER - IgG

Figure 16 shows differential abundancy results for the contrasts ER_v_IgG. Figure 17 shows an MA plot
and a volcano plot of the differental analysis results.

7 Effect of GRHL2 expression on eRNA and mRNA

7.1 Effect of GRHL2 overexpression on eRNA transcription

library("ggpubr")
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Figure 104: **Figure 18. MA plot and volcano plot of differential protein abundancy. **
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eRNA<-read.csv("txt/eRNA_values.csv")

oe<-eRNA[eRNA$Experiment=="overexpression",]

oe_comparisons <- list( c("Control","GRHL2") )
oe_p <- ggboxplot(oe, x = "Treatment", y = "eRNA",

add = "jitter", color="Treatment",
facet.by="Gene", ylab="Relative eRNA levels")

oe_p <- oe_p + stat_compare_means(comparisons = oe_comparisons,
method = "wilcox.test" ,
paired=TRUE)

oe_p

7.2 Effect of GRHL2 knockdown on eRNA transcription

si<-eRNA[eRNA$Experiment=="knockdown",]

si_comparisons <- list( c("siCtrl","siGRHL2") )
p <- ggboxplot(si, x = "Treatment", y = "eRNA",

add = "jitter", color="Treatment",
facet.by="Gene", ylab="Relative eRNA levels")

p + stat_compare_means(comparisons = si_comparisons,
method = "wilcox.test" ,
paired = TRUE)

7.2.1 siRNA combined test

wilcox.test(si$eRNA[si$Treatment=='siCtrl'],
si$eRNA[si$Treatment=='siGRHL2'],
paired=TRUE, alternative="less")

##
## Wilcoxon signed rank test
##
## data: si$eRNA[si$Treatment == "siCtrl"] and si$eRNA[si$Treatment == "siGRHL2"]
## V = 45, p-value = 0.04071
## alternative hypothesis: true location shift is less than 0

7.3 Effect of GRHL2 overexpression on mRNA transcription

qpcr<-read.csv("txt/QPCR GREB1 XBP1 TFF1.csv", header=TRUE)
df<-data.frame(qpcr)

p <- ggboxplot(df, x = "Sample", y = "Expression", ylab="Relative Expression",
xlab="Condition",
color = "Sample", palette =c("#00AFBB", "#E7B800", "#FC4E07"),
add = "jitter", shape = "Sample", facet.by="Target",
outlier=FALSE)
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Figure 105: Effect of Overexpression of GRHL2 on eRNA at E2 responsive binding sites.
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Figure 106: Effect of knockdown of GRHL2 on eRNA at E2 responsive binding sites.

176

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/266908doi: bioRxiv preprint 

https://doi.org/10.1101/266908
http://creativecommons.org/licenses/by-nc-nd/4.0/


my_comparisons <- list( c("Ctrl", "siGRHL2"), c("Ctrl","GRHL2-DDK"))
p +

stat_compare_means(comparisons = my_comparisons,method="t.test", paired=TRUE) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))

8 Technical Session Info

The following code describes the R environment used to generate this document and will help making it fully
reproducible should there be future updates in any of the packages.
sessionInfo()

## R version 3.4.1 (2017-06-30)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: OS X El Capitan 10.11.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8
##
## attached base packages:
## [1] grid stats4 parallel stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] rmarkdown_1.6
## [2] DT_0.2
## [3] readxl_1.0.0
## [4] qPLEXanalyzer_1.0.0
## [5] statmod_1.4.30
## [6] plyr_1.8.4
## [7] UniProt.ws_2.16.0
## [8] RCurl_1.95-4.8
## [9] bitops_1.0-6
## [10] RSQLite_2.0
## [11] TxDb.Hsapiens.UCSC.hg38.knownGene_3.4.0
## [12] knitr_1.17
## [13] bindrcpp_0.2
## [14] preprocessCore_1.38.1
## [15] limma_3.32.10
## [16] xtable_1.8-2
## [17] kfigr_1.2
## [18] MSnbase_2.2.0
## [19] ProtGenerics_1.8.0
## [20] mzR_2.10.0
## [21] Rcpp_0.12.13
## [22] tibble_1.3.4
## [23] dplyr_0.7.4
## [24] tidyr_0.7.2
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Figure 107: Effect of GRHL2 expression on E2 responsive genes.
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## [25] GeneNet_1.2.13
## [26] fdrtool_1.2.15
## [27] longitudinal_1.1.12
## [28] corpcor_1.6.9
## [29] gridExtra_2.3
## [30] org.Hs.eg.db_3.4.1
## [31] vulcan_0.99.36
## [32] caTools_1.17.1
## [33] csaw_1.10.0
## [34] BiocParallel_1.10.1
## [35] wordcloud_2.5
## [36] RColorBrewer_1.1-2
## [37] zoo_1.8-0
## [38] DESeq_1.28.0
## [39] lattice_0.20-35
## [40] locfit_1.5-9.1
## [41] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [42] GenomicFeatures_1.28.5
## [43] AnnotationDbi_1.38.2
## [44] gplots_3.0.1
## [45] ChIPpeakAnno_3.10.2
## [46] VennDiagram_1.6.17
## [47] futile.logger_1.4.3
## [48] Biostrings_2.44.2
## [49] XVector_0.16.0
## [50] viper_1.10.0
## [51] DiffBind_2.5.6
## [52] SummarizedExperiment_1.6.5
## [53] DelayedArray_0.2.7
## [54] matrixStats_0.52.2
## [55] Biobase_2.36.2
## [56] GenomicRanges_1.28.6
## [57] GenomeInfoDb_1.12.3
## [58] IRanges_2.10.5
## [59] S4Vectors_0.14.7
## [60] BiocGenerics_0.22.1
## [61] ggpubr_0.1.6
## [62] magrittr_1.5
## [63] ggplot2_2.2.1
##
## loaded via a namespace (and not attached):
## [1] sendmailR_1.2-1 highcharter_0.5.0
## [3] rtracklayer_1.36.6 AnnotationForge_1.18.2
## [5] vioplot_0.2 acepack_1.4.1
## [7] bit64_0.9-7 data.table_1.10.4-2
## [9] rpart_4.1-11 hwriter_1.3.2
## [11] AnnotationFilter_1.0.0 doParallel_1.0.11
## [13] lambda.r_1.2 rlist_0.4.6.1
## [15] bit_1.1-12 lubridate_1.7.1
## [17] httpuv_1.3.5 assertthat_0.2.0
## [19] amap_0.8-14 evaluate_0.10.1
## [21] BiocInstaller_1.26.1 Rhtslib_1.8.0
## [23] quantmod_0.4-12 igraph_1.1.2
## [25] DBI_0.7 geneplotter_1.54.0
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## [27] htmlwidgets_0.9 purrr_0.2.4
## [29] corrplot_0.84 backports_1.1.1
## [31] BatchJobs_1.6 geepack_1.2-1
## [33] annotate_1.54.0 biomaRt_2.32.1
## [35] imputeLCMD_2.0 TTR_0.23-2
## [37] ensembldb_2.0.4 Cairo_1.5-9
## [39] fail_1.3 BSgenome_1.44.2
## [41] checkmate_1.8.4 GenomicAlignments_1.12.2
## [43] xts_0.10-1 mnormt_1.5-5
## [45] sparcl_1.0.3 cluster_2.0.6
## [47] segmented_0.5-2.2 lazyeval_0.2.0
## [49] genefilter_1.58.1 edgeR_3.18.1
## [51] pkgconfig_2.0.1 slam_0.1-40
## [53] labeling_0.3 nlme_3.1-131
## [55] nnet_7.3-12 bindr_0.1
## [57] rlang_0.1.2 sandwich_2.4-0
## [59] seqinr_3.4-5 affyio_1.46.0
## [61] GOstats_2.42.0 AnnotationHub_2.8.3
## [63] cellranger_1.1.0 rprojroot_1.2
## [65] graph_1.54.0 Matrix_1.2-11
## [67] base64enc_0.1-3 pheatmap_1.0.8
## [69] png_0.1-7 rjson_0.2.15
## [71] KernSmooth_2.23-15 geeM_0.10.0
## [73] blob_1.1.0 qvalue_2.8.0
## [75] stringr_1.2.0 regioneR_1.8.1
## [77] ShortRead_1.34.2 brew_1.0-6
## [79] tmvtnorm_1.4-10 ggsignif_0.4.0
## [81] scales_0.5.0 memoise_1.1.0
## [83] GSEABase_1.38.2 cp4p_0.3.5
## [85] gdata_2.18.0 zlibbioc_1.22.0
## [87] compiler_3.4.1 pcaMethods_1.68.0
## [89] DESeq2_1.16.1 Rsamtools_1.28.0
## [91] ade4_1.7-8 affy_1.54.0
## [93] systemPipeR_1.10.2 DAPARdata_1.4.0
## [95] Category_2.42.1 htmlTable_1.9
## [97] Formula_1.2-2 MASS_7.3-47
## [99] tidyselect_0.2.3 vsn_3.44.0
## [101] stringi_1.1.5 highr_0.6
## [103] yaml_2.1.14 norm_1.0-9.5
## [105] latticeExtra_0.6-28 MALDIquant_1.17
## [107] ggrepel_0.7.0 tools_3.4.1
## [109] DAPAR_1.8.7 imp4p_0.5
## [111] foreach_1.4.4 foreign_0.8-69
## [113] idr_1.2 mzID_1.14.0
## [115] digest_0.6.12 Iso_0.0-17
## [117] shiny_1.0.5 broom_0.4.3
## [119] MESS_0.5.0 httr_1.3.1
## [121] psych_1.7.8 colorspace_1.3-2
## [123] XML_3.98-1.9 truncnorm_1.0-7
## [125] splines_3.4.1 RBGL_1.52.0
## [127] multtest_2.32.0 gmm_1.6-1
## [129] jsonlite_1.5 futile.options_1.0.0
## [131] BBmisc_1.11 R6_2.2.2
## [133] Hmisc_4.0-3 htmltools_0.3.6
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## [135] mime_0.5 glue_1.1.1
## [137] class_7.3-14 interactiveDisplayBase_1.14.0
## [139] codetools_0.2-15 mvtnorm_1.0-6
## [141] mixtools_1.1.0 curl_3.0
## [143] gtools_3.5.0 openxlsx_4.0.17
## [145] GO.db_3.4.1 survival_2.41-3
## [147] munsell_0.4.3 e1071_1.6-8
## [149] GenomeInfoDbData_0.99.0 iterators_1.0.9
## [151] impute_1.50.1 reshape2_1.4.2
## [153] gtable_0.2.0
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