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Abstract 

This genome-wide study is focused on the impact of structural variants identified in 

individuals from 26 human populations onto three-dimensional structures of their 

genomes. We assess the tendency of structural variants to accumulate in spatially 

interacting genomic segments and design a high-resolution computational algorithm 

to model the 3D conformational changes resulted by structural variations. We show 

that differential gene transcription is closely linked to variation in chromatin 

interaction networks mediated by RNA polymerase II. We also demonstrate that 

CTCF-mediated interactions are well conserved across population, but enriched with 

disease-associated SNPs. Altogether, this study assesses the critical impact of 

structural variants on the higher order organization of chromatin folding and provides 

unique insight into the mechanisms regulating gene transcription at the population 

scale, among which the local arrangement of chromatin loops seems to be the 

leading one. It is the first insight into the variability of the human 3D genome at the 

population scale. 
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Around 20 million base pairs of a normal human genome (0.6%) are under structural 

variations, including deletions, duplications, insertions and inversions. This makes 

structural variants (SVs) the most prominent source of genetic variation among 

human individual genomes.  

The potential malicious effect of SVs has been recognized but almost solely 

associated with altering gene copy number and gene structure – a number of studies 

relate copy number variants (CNVs) affecting gene regions to cancer (Malhotra and 

Sebat 2012), intellectual disabilities (Stankiewicz and Lupski 2010) and 

predispositions to various health problems (Zollino, et al. 2012), (Talkowski, et al. 

2011). The vast majority of genetic variation occurs, however, in non-coding regions. 

Over 95% of single-nucleotide polymorphisms (SNPs) identified by genome-wide 

association studies (GWAS) are located outside coding sequences (Maurano, et al. 

2012). Similarly, larger variants are significantly depleted in gene regions (Sudmant, 

et al. 2015). 

Part of the SVs emerging in non-coding regions alter genomic loci recognized 

by proteins which organize the human genome in the cell nuclear space. Recent 

studies provided some insights into the impact SVs can have on spatial organization 

of the human genome. Examples of SVs altering borders of TADs in EPHA4 locus 

and causing pathogenic phenotypes by enabling spatial contacts between formerly 

isolated genomic functional elements were reported (Lupiáñez, et al. 2015). Positions 

of TAD boundaries were proven useful for inferring cancer-related gene 

overexpression resulting from variation in cis-regulatory elements (Weischenfeldt, et 

al. 2017). Accumulation of SVs proximal to TAD boundary occupied by CTCF was 

postulated to cause enhancer hijacking and PRDM6 overexpression in 

medulloblastoma samples (Northcott, et al. 2017). Hi-C maps were successfully used 
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for detection of large-scale rearrangements, which were reported as frequent in 

cancer cells (Dixon, Xu, et al. 2018). Disruptions of chromosome neighborhoods 

were demonstrated – using CRISPR/Cas9 experiments – to activate proto-

oncogenes (Hnisz, et al. 2016). An attempt was also made to model 3D chromatin 

structure including information on SVs and predicting enrichment/depletion of higher-

order chromatin contacts caused by these variations (Bianco, et al. 2018). Efficacy of 

the modelling method in predicting SV-induced ectopic contacts at the level of TADs 

was shown for EPHA4 locus.  

However, to our knowledge, there was no genome-wide systematic study on 

the impact of SVs on genome spatial organization analyzing the level of individual 

chromatin loops. One of the most recent reviews on the topic (Spielmann, Lupiáñez 

and Mundlos 2018) highlights the impact of SVs on genome spatial structure and the 

pathogenic potential of SVs altering the higher-order chromatin organization. 

Nonetheless, no attempt was made by the authors to assess what part of SVs 

emerging in normal human genomes cause functionally relevant chromatin spatial 

rearrangements and no genome-wide data is presented on how SVs influence the 

chromatin 3D architecture.  

The recent advancements in chromosome conformation capture techniques, 

namely High-throughput Conformation Capture (Hi-C) (Lieberman-Aiden, et al. 

2009), (Rao, et al. 2014) and Chromatin Interaction Analysis by Paired-End Tag 

Sequencing (ChIA-PET) (Fullwood and Ruan 2009), (Tang, et al. 2015) resulted in 

release of high-resolution chromatin interaction datasets. ChIA-PET, in particular, is 

able to capture individual chromatin contacts mediated by specific protein factors. In 

turn, the great effort of the 1000 Genomes consortium led to creation of the largest 
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catalogue of human genomic sequence variations (Sudmant, et al. 2015) identified in 

over 2,500 human samples from 26 populations. 

Taking advantage of the high quality ChIA-PET and population-scale SVs 

data, we discuss a mechanistic model of the impact of SVs on the chromatin looping 

structure, provide the first genome-wide analysis of this impact for the human 

genome and model SV-induced changes in 3D genomic structures observed in 

human population. 

In our analyses of the impact of SVs on the 3D chromatin organization of the 

human genome, we pay a specific attention to chromatin interactions associated with 

enhancer regions and gene promoters. These interactions are likely to play a 

distinguished role in the regulation of gene transcription in a mechanistic fashion, 

bringing the genes and the regulatory elements close together in the nuclear space 

of the cell. We observe an interesting interplay between such genomic interactions 

and SVs. 

 

Results 

3D genome 

In this study we use ChIA-PET data as a representation of the higher-order spatial 

organization of the human genome. ChIA-PET generates high-resolution (~100 bp) 

genome-wide chromatin contact maps. It identifies two types of chromatin 

interactions mediated by specific protein factors. The first type are highly reliable 

enriched interactions which appear in the data as closely mapped on the genome 

clustered inter-ligation paired-end-tag products (PET clusters). The second type are 

singletons, which reflect higher-order topological proximity (Tang, et al. 2015).  
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CTCF was shown to be the key protein factor shaping architecture of 

mammalian genomes (Ong and Corces 2014), (Rao, et al. 2014). We use ChIA-PET 

targeting on CTCF for GM12878 cell line, which is presently the most comprehensive 

ChIA-PET dataset for human. We inspected the anchoring sites of PET clusters from 

this dataset for the co-occupancy by CTCF and cohesin (RAD21 and SMC3 

subunits), to select the set of high quality chromatin interactions mediated by CTCF 

in GM12878 cell (see Methods). We identified 42,177 such pairwise interactions. The 

median length of genomic segments joined by these interactions is 1,425 bp and 

99% of them are shorter than 10 kb (Fig. 1f). Nucleotide sequences of these 

segments usually contain multiple CTCF motifs. Chromatin loops formed by the 

CTCF interactions have lengths in the order of 100 kb (Fig. 1f).  

The interactions mediated by CTCF are not uniformly distributed over the 

genome but rather form highly interacting, predominantly hundreds of kilobases long 

chromatin blocks (chromatin contact domains, CCDs or topologically associating 

domains, TADs) separated by segments of weak and rare contacts (gaps). Based on 

the CTCF ChIA-PET data, genome of GM12878 cell was segmented into 2,267 

CCDs (Tang, et al. 2015). The domains lengths vary from around 10 kb to few 

megabases with a median length of 750 kb. Only 1% of CCDs is longer than 2 Mb 

(Fig 1f). 

Even though CTCF ChIA-PET captures only interactions mediated by the 

CTCF protein, it detects genomic structures and general structural features exhibited 

by the non-specific Hi-C data. On a global scale, whole-chromosome Hi-C and ChIA-

PET contact maps are highly correlated (Spearman’s correlation coefficient in range 

0.7 – 0.9) (Tang, et al. 2015). Locally, ChIA-PET and Hi-C heatmaps identify very 

similar landscape of genomic structures, both at the scale of topological domains 
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(Fig. 1a) and chromatin loops (Fig. 1b). Borders of topological domains emerging 

from the CTCF ChIA-PET data are highly enriched in CTCF (Fig. 1a), similarly as it 

was shown for TADs identified in Hi-C (Rao, et al. 2014). We adopted coordinates of 

the outermost CTCF motifs identified in a CCD as indicators of its borders (see 

Methods). Length distributions of chromatin loops and topological domains called 

from ChIA-PET data are concordant with the respective statistics for Hi-C (Fig. 1f) 

(Tang, et al. 2015). All this indicates that CTCF ChIA-PET dataset generated for 

GM12878 cell is a high quality representation of the human 3D genome. 

We investigated the directionality of CTCF motifs in anchors of the CTCF 

chromatin loops. 35,180 out of the 42,177 PET clusters had motifs of the unique 

orientation in both anchors. Among the 35,180 interactions we found 16,239 

interactions with motifs in the anchors having convergent orientation (convergent 

loops), 12,195 interactions in tandem right orientation (tandem right loops), 4,090 

tandem left loops and 2,656 divergent loops (see Methods). 

We demonstrated that using CTCF ChIA-PET data a 3D model of an averaged 

genome structure which recovers architectural features of the genome can be built 

(Szałaj, et al. 2016). Chromatin models constructed with our computational tool (3D-

GNOME) can be used to illustrate the most probable arrangement of genomic 

structural elements in 3D space: from chromosomes, through topological domains 

(Fig. 1c), to individual chromatin loops (Fig. 1d). The last two levels of the genome 

organization are in the main scope of this study, as topological domains are believed 

to be the structural units regulating gene transcription by spatially isolating groups of 

enhancers and genes (Lupiáñez, et al. 2015), (Rao, et al. 2014), (Tang, et al. 2015), 

(de Laat and Denis 2013). Spatial arrangement of these functional elements can also 

be visualized using our modeling method (Fig. 1d).  
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3D-GNOME is an optimization algorithm which returns models that fulfill 

spatial constraints coming from genomic interaction data. Typically, a number of 

solutions exists for a given set of constraints, and thus we present and analyze 

ensembles of 3D structures for every genomic segment modeled (Fig. 1c and 1d). 

3D-GNOME uses PET clusters to position the binding sites relative to each other 

first, and then employs singletons, orientations of the CTCF motifs and biophysical 

constraints to model the shape of individual chromatin loops (Fig. 1e). The modeling 

algorithm includes all this information to make the models as accurate as possible at 

the finest chromatin scale. See Methods for description of the full modeling 

procedure at all levels of genome organization. 

We complement the CTCF ChIA-PET dataset with the ChIA-PET targeting on 

RNA polymerase II (RNAPII) data generated for GM12878 cell in the same study 

(Tang, et al. 2015). It was postulated that multiple chromatin loops mediated by 

CTCF proteins form static macromolecular structures called interaction centers inside 

chromatin contact domains. Their anchors are enriched with active epigenomic 

markers. The interactions mediated by RNAPII are believed to draw cell-type specific 

genes toward interaction centers, thus having more functional and dynamic character 

than interactions mediated by CTCF (Tang, et al. 2015). Together, the ChIA-PET 

data of these two protein factors account for structural and functional aspects of the 

higher order organization and multiscale folding of chromatin 10 nm fiber in the 

human cell nucleus (Ou, et al. 2017). 

 

Genome topological variation 
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We demonstrated, by phasing CTCF PET clusters (see Methods), that allele-specific 

single-nucleotide variation in genome sequence can result in haplotype-specific 

chromatin topology (Tang, et al. 2015). 

 Differences in scores between CTCF binding motifs located on homologous 

chromosomes resulting from allele-specific SNPs (Fig. 2b and Supplementary Figure 

1b) are reflected in relative values of CTCF signal. This can be observed for different 

lymphoblastoid cells. In case of GM12878, for which both datasets are available, 

differences in CTCF binding agree with presence/absence of chromatin contacts 

(Fig. 2a and Supplementary Figure 1a). The examples suggest that presence of 

particular chromatin loops in lymphoblastoid cells can be predicted based on their 

genotypes and genomic interactions identified in GM12878. 

 Having shown how substitutions of single nucleotides can affect chromatin 

topology, here we concentrate on predicting how SVs impact genome looping 

organization. SVs are the major source of sequence variation among human 

genomes and given their larger size have a higher potential than SNPs to induce 

changes in chromatin folding. They were also shown to contribute more than SNPs to 

variation in gene expression among human samples (Chiang, et al. 2017). 

We use ChIA-PET interactions collected from the GM12878 cell line as the 

reference network of chromatin spatial contacts in human lymphoblastoid cells. 

Domain organization of chromatin is conserved across cell types and species 

(Dixon, Selvaraj, et al. 2012), (Dekker, et al. 2002), (Rao, et al. 2014). This indicates 

that chromatin contacts are also largely invariant across individuals. To assess the 

level of conservation of CTCF-dependent genome architecture across individuals we 

analyzed the abundance and arrangement of CTCF ChIP-seq peaks from 13 

lymphoblastoid samples in genomic segments which were identified as CTCF 
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interaction anchors in GM12878 cell line. The data originate from one study 

(Kasowski, et al. 2013) and include 5 samples of European ancestry (GM10847, 

GM12878, GM12890, GM12891, GM12892), 7 samples of African ancestry 

(GM18486, GM18505, GM19099, GM19193, GM19238, GM19239, GM19240) and 2 

samples of East Asian ancestry (GM18526, GM18951). GM12878, GM12891, 

GM12892 and GM19238, GM19239, GM19240 are related. The datasets were 

rigorously filtered for comparisons (see Methods).  

Our analysis shows that genomes from lymphoblastoid cells exhibit highly 

similar patterns of active CTCF binding sites. Over 99% of interacting anchors 

occupied by CTCF peaks in GM12878 cell is supported by CTCF peaks in each of 

the 13 other samples (Fig. 2d). Moreover, the overall distribution of CTCFs is shared 

among individuals – for about 90% of all CTCF peaks identified in anchors of PET 

clusters in GM12878 cell, a CTCF peak in each of the compared cells can be found 

within a distance of 400 bp (Fig. 2e). CTCF interacting anchors and borders of CCDs 

identified in GM12878 cell are highly enriched with CTCF ChIP-seq peaks found in 

the other 13 lymphoblastoid cells (Supplementary Figure 2).  

Since every chromatin segment carrying a CTCF has a potential to create an 

interaction with another segment having a CTCF attached to it, we claim that highly 

similar patterns of CTCF distribution along lymphoblastoid genomes indicate that 

they exhibit highly similar patterns of chromatin interactions mediated by CTCF. 

Similar analyses were performed for RNAPII interacting anchors using RNAPII 

ChIP-seq peaks (Supplementary Figure 3). Significantly bigger but moderate 

differences among samples were observed for this data. 

Having tested the overall resemblance of 3D genomes in lymphoblastoid cells, 

we match SVs detected in human population by the 1000 Genomes Project 
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(Sudmant, et al. 2015) with the reference network of chromatin interactions to obtain 

individualized chromatin interaction patterns and assess topological variability among 

human genomes. 

There are 68,818 unique structural variants deposited in the 1000 Genomes 

Catalogue of Human Genetic Variation (CHGV), including deletions, duplications, 

multiallelic CNVs, inversions and insertions (Fig. 2f). 44% of them are shorter than 1 

kb and only 22% is longer than 10 kb (Fig. 2g).  

Most of the SVs reside inside CCDs, not intersecting borders of domains nor 

CTCF interacting anchors (Fig. 2f). However, the rate of duplications overlapping 

genomic structural elements is distinctively high. 

While the SVs that miss the interacting binding sites in most cases have 

limited impact on the final structure (resulting only in shortening, or extending of the 

corresponding chromatin loops), the SVs that overlap the interacting sites may 

partially modify the interaction pattern and in turn cause serious changes of the 3D 

structure (Fig. 2h). Specifically, deletion removes an interacting anchor therefore 

deleting all chromatin loops mediated by this genomic site; duplication introduces 

new interaction site, which has the same underlying sequence specificity to form 

chromatin loops as the original duplicated site; inversion which encircles a CTCF 

binding motif will revert its directionality therefore affecting the chromatin looping of 

the neighboring region; and finally, insertion containing CTCF motif enables new 

interaction sites capable of forming chromatin loops with other CTCF binding sites. 

We extended our modeling approach, 3D-GNOME, to include information on 

SVs in recovery of 3D chromatin structures (see Methods). Our algorithm models 

individual chromatin loops, meaning that the remodeling effect of a genetic variant 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2018. ; https://doi.org/10.1101/266981doi: bioRxiv preprint 

https://doi.org/10.1101/266981


 12	

disrupting a single pair of interacting genomic segments will be represented in the 

model (Fig. 2h). 

 

Topological impact of structural variations 

CTCF ChIP-seq data confirms that there are SVs which result in altered activity of 

reference interaction anchors. As an example, deletion chr14:35605439-35615196 of 

an interaction anchor leads to a significant depletion of CTCF signal in heterozygous 

samples and even to a complete vanishing of the signal in a homozygous sample 

(Fig. 3a). The CTCF signal drop reflects the lower or no potential of CTCF to bind to 

this segment. Therefore, in a cell line exhibiting the deletion, all of the chromatin 

contacts formed by this locus would not be present in one or both of the homologous 

chromosomes, depending on the genotype (Fig. 3b). The deletion is located in an 

intron of gene KIAA0391, but does not excise any coding sequence. Nevertheless, 

the genotypes show statistically significant differences in transcription rates of 

several genes (Fig. 3d). Deletion chr14:35605439-35615196 removes chromatin 

contact bringing NFKBIA and one of the enhancers together in 3D space, leading to 

a different arrangement of enhancers around the gene (Fig. 3c). Even though the 

landscape of functional elements around NFKBIA gene is complex to the extend, that 

refrains from drawing definite conclusions, the deletion significantly reduces access 

of the gene promoter to enhancers (Fig. 3e), which explains the depletion of NFKBIA 

expression observed for samples carrying it. The deletion causes complex spatial 

rearrangements also around other genes, which contribute probably to the 

differences in their transcription rates between samples of different genotypes. 

On the other hand, duplications of CTCF-mediated interacting genomic 

segments result in distinctively high relative values of CTCF signal in those segments 
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in affected samples (Supplementary Figure 4a and 4b). The signal enrichment 

caused by those duplications supports a hypothesis that they create additional 

CTCF-binding loci with the potential to form additional long-range genomic contacts 

in the affected genomes.  

Inversions in CTCF binding sites also modulate CTCF signal (Supplementary 

Figure 5a), which indicates they introduce changes in chromatin looping. 

Genotypes set by such SVs exhibit significant differences in expression of 

particular genes (Fig. 3d, Supplementary Figures 4c and 5b). 

Apart from SVs disrupting long-range chromatin interactions that join genomic 

segments located within one topological domain, there are examples of SVs 

modifying domain boundaries. Deletion chr1:109366972-109372000 is one of them 

(Supplementary Figure 6a). Samples genotyped by this deletion demonstrate 

statistically significant differences in transcription rates of PRPF38B gene 

(Supplementary Figure 6b). 

An aggregate analysis (see Methods) shows that CTCF ChIP-seq signals from 

samples having deletions (duplications) which intersect CTCF interacting anchors are 

depleted (enriched) in those anchors compared to signals from samples with the 

reference genotype (Supplementary Figure 7). 

To statistically assess the impact of SVs on the spatial organization of the 

genome, we analyzed their positions in relation to genomic structural elements like 

anchors of PET clusters, borders of topological domains, or gaps between the 

domains. 

We observe that anchors of CTCF PET clusters are depleted of SVs (Fig. 3f) 

and that the rate of depletion is consistent among loops of different directionality 

(Supplementary Figure 8). Interestingly, CTCF interacting anchors that are not 
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supported by cohesin peaks are slightly enriched with rare inversions, which is not 

the case for anchors occupied by cohesin (Supplementary Figure 9). This may 

suggest that genomic sites forming CTCF-mediated interactions, which are not 

stabilized by cohesin, are specifically prone to motif reorientation. 

We further identified anchors of CTCF PET clusters intersected with 

enhancers and active and inactive gene promoters (see Methods). These anchors 

have a distinguished potential to play an important role in gene regulation. It appears 

as a general rule (applicable to functional regions located both inside and outside 

CTCF anchors) that genomic variations target enhancers and inactive promoters 

more frequently than active promoters (Fig. 3f). More interestingly, we observe that 

enhancers and promoters located in anchors of CTCF PET clusters are significantly 

more conserved than the respective functional regions residing outside the CTCF 

anchors (Fig. 3f). This indicates the importance of the genomic architecture mediated 

by CTCF in proper genome regulation. We additionally examined the conservation of 

CTCF anchoring sites, which are in contact with enhancers and gene promoters via 

RNAPII ChIA-PET interactions and they also seem to be more conserved than the 

respective genomic functional elements (Fig. 3f). 

Surprisingly, borders of CCDs do not seem to be distinctively well conserved. 

CTCF binding motifs we identified in CTCF ChIP-seq peaks outside CCD borders are 

significantly more depleted of SVs than the CTCF motifs indicating borders of CCDs 

(Fig. 3f). Moreover, CCD borders are targets of many duplications (Fig. 2f and 3f). 

There is also a slight enrichment of rare inversions in CCD borders, but because the 

set of inversions is small the result is not statistically significant. However, we 

hypothesize that inverting the CTCF motifs at the borders of topological domains can 

be an important mechanism of genome reorganization and regulation. 6 out of 786 
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inversions from the CHGV switch the directionality of CCD borders (Fig. 2f). Inversion 

chr20:39359355-39379392 is one of them (Supplementary Figure 10a). Interestingly, 

it was found only in genomes of Africans and Puerto Ricans and correlates with 

transcription rates of a pair of neighboring genes (Supplementary Figure 10b). 

Stronger conservation of CTCF anchors intersected with and connected to the 

known enhancers and promoters as compared to the conservation of enhancers and 

promoters located outside CTCF anchors suggests that mutations of these anchors 

may lead to serious deregulations of gene expression and can be related to disease. 

To test this hypothesis, we intersected CTCF anchors with SNPs previously 

associated with disease in GWAS. Having in mind the type of cell we examine, we  

created separate sets of GWAS SNPs associated with hematological parameters and 

autoimmune diseases. Our analysis indeed shows a significant enrichment of these 

SNP classes in CTCF anchors intersected with enhancers and active promoters (Fig. 

3g). Particularly, the enrichment is high in CTCF anchors being in RNAPII-mediated 

contact with enhancers and promoters. Both former and latter type of anchors are 

enriched with all GWAS SNPs. Importantly, enhancers and active promoters, which 

are not intersected with CTCF anchors, are notably less enriched with GWAS SNPs 

than CTCF anchors associated with these functional elements (Fig. 3g). Generally, 

CTCF anchors and CCD boundaries are enriched with GWAS SNPs (Fig. 3g). Our 

observations are consistent with the studies on capture Hi-C (Mifsud, et al. 2015), 

(Martin, et al. 2015), and are additionally highlighting the role of CTCF in shaping the 

network of functionally important genomic contacts. 

We investigated particular examples of SNPs associated with autoimmune 

diseases (rheumatoid arthritis and vitiligo, rs4409785 T/C) and hematological 

parameters (red blood cell distribution width, rs57565032 G/T) (Supplementary 
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Figures 11a and 12a). Both alter strongest CTCF binding motifs in the corresponding 

interaction anchors. However, their effect on CTCF binding is opposite: rs4409785 

increases strength of CTCF motif it modifies (Supplementary Figure 11b), 

rs57565032 decreases (Supplementary Figure 12b). It is reflected in CTCF signals 

corresponding to different genotypes (Supplementary Figures 11a and 12a). No other 

SNPs affect CTCF motifs in those interaction anchors in presented genomes. 

Samples genotyped by these SNPs demonstrate significant differences in 

transcription rates of particular genes (Supplementary Figures 11c and 12c). One of 

them, MAML2, has been associated with cancer traits. 

The already presented SNP rs12936231 (Fig. 2a) has been reported as a 

high-risk allele for asthma and autoimmune diseases and suggested to cause 

chromatin remodeling and alter transcription of certain genes, including ZPBP2, 

GSDMB and ORMDL3 (Verlaan, et al. 2009). We also found correlation of genotypes 

set by rs12936231 with transcription rates of ZPBP2, GSDMB and ORMDL3 (Fig. 

2c). Gene IKZF3, which also exhibits a correlation with rs12936231, has been related 

to B-cell chronic lymphocytic leukemia. 

 Examples of SNPs in interacting anchors, but not associated with disease so 

far, can also be found. SNP rs60205880 alters CTCF-mediated chromatin looping 

and transcription of certain genes (Supplementary Figure 1). One of them, CCDC19, 

has been associated with bilirubin levels; another, IGSF8, is a member of an 

immunoglobulin superfamily. This demonstrates the potential of investigating SVs 

that affect genomic structural elements for identification of health-affecting genetic 

variation and mechanisms by which SVs are related to disease. 

The important question is how large the structural variation among healthy 

individuals is. Individuals from the 1000 Genome Project have from 2,571 to 6,301 
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SVs, which affect from 1,024 to 1,419 CCDs and 52 – 330 CTCF anchors 

(Supplementary Figure 13). Almost all CCDs (98%) have an overlap with at least one 

SV from the CHGV. However, serious changes in local genome architecture are 

introduced by disruptions of interaction anchors rather than modifications of genomic 

regions between them. We identified 4,845 unique patterns of SVs altering 

interaction anchors in CCDs (we treat 2 patterns as identical if anchor-intersecting 

SVs they contain are the same; patterns are limited to single CCDs). Together with 

the 2,267 reference CCDs it gives the number of CTCF-mediated topologies of 

genomic domains occurring in the 1000 Genomes Project population. We note that 

types of SVs are well separated in those patterns (Supplementary Figure 14). 87% of 

the patterns are comprised of only one SV type. There are 1,500 patterns consisting 

of 2 or more SVs and in 878 (59%) of them all SVs are of the same type. 

 

Population-specific topological alterations affected by structural variations 

We additionally analyzed intersections of SVs with genomic structural elements in the 

context of five continental groups: Africa (AFR), the Americas (AMR), East Asia 

(EAS), Europe (EUR) and South Asia (SAS). These populations are defined by the 

1000 Genomes Project (The 1000 Genomes Project Consortium 2015) 

(Supplementary Table 1). 

 In all the populations, deletions of interacting anchors are more frequent than 

duplications (Supplementary Figure 16a). This is not true for CCD borders 

(Supplementary Figure 16b), which agrees with the previous analyses showing that 

CCD borders are enriched with duplications (we note that there are significantly more 

deletions than duplications in the set of detected SVs (Fig. 2f)). Alterations of 

topological domain boundaries can be a general mechanism of genome structure 
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evolution. The above results suggest that such generic mechanism – similarly to the 

evolutionary process of introducing gene alterations by duplications – could use 

redundancy as a security measure. It could leave one chromatin loop with the original 

transcriptional function under evolutionary pressure, whereas second could be 

acquiring novel local spatial landscape for genes and regulatory elements. 

Our analysis shows that individual genomes from populations of African 

ancestry have the largest number of deletions in CTCF interaction sites 

(Supplementary Figure 16a). This is partly due to an outstanding number of all 

deletions identified in those genomes (Supplementary Figure 15). However, we still 

observe that African genomes, together with European genomes, have CTCF-anchor 

sites less depleted of SVs unique to populations than genomes of other ancestries 

(Supplementary Figure 16c). 

Interestingly, SVs found only in European genomes are significantly less 

depleted in CTCF interaction anchors intersected with enhancers or gene promoters 

than SVs unique to the rest of 5 distinguished continental groups (Supplementary 

Figure 17). We observe the same effect for borders of CCDs (Supplementary Figure 

16c), but not for enhancers and promoters residing outside CTCF anchors 

(Supplementary Figure 18). This may suggest that part of the SVs identified in non-

European populations overlap interaction sites specific for these populations and not 

observed in the reference 3D genome. 

South Asian genomes, on the other hand, have distinctively large number of 

duplicated CTCF-anchor (Supplementary Figure 16a) and CCD-border 

(Supplementary Figure 16b) sites. Whereas the distinctive number of altered 

structural elements in genomes of African ancestry could be expected based on the 

large genomic sequence variability in this population reported earlier (The 1000 
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Genomes Project Consortium 2015), high structural variability in populations of South 

Asia is surprising. The ethnic groups which raise the statistics for South Asian 

continental group, especially those related to CNVs, are: Indian Telugu in the UK 

(ITU), Punjabi in Lahore, Pakistan (PJL) and Sri Lankan Tamil in the UK (STU) 

(Supplementary Figures 16f and 16g). As a comparison, corresponding statistics for 

African and European continental groups seem to be more stable across ethnic 

groups (Supplementary Figure 19). To investigate this further, we analyzed 

homozygous SVs. We hypothesized that the elevated number of structural changes 

observed in South Asian genomes could be caused by the high number of 

homozygous SVs that some of the populations in this continental group exhibit due to 

high consanguinity rates (Bittles, et al. 1991).  

There are 13,767 homozygous SVs in the CHGV (we treat a CNV as 

homozygous, when there is a non-reference copy number on both homologous 

chromosomes). According to the data, genomes from East Asia, not South Asia, 

carry the largest number of the homologous SVs (Supplementary Figure 16h). 

However, the differences in homozygous sequence variation are not reflected in the 

number of homozygously altered CTCF anchors. The latter seems not to be 

changing across populations (Supplementary Figure 16i). 

The fruitful study of natural human knockouts performed on a cohort of 10,503 

Pakistanis by the Human Knockout Project (Saleheen, et al. 2017), made us 

investigate the homozygous SVs from the CHGV identified uniquely in a single 

population. We took the 1,317 knocked out genes found in individuals from South 

Asia (in majority belonging to Urdu and Punjabi ethnic groups, over 70%) (Saleheen, 

et al. 2017) and considered 656 CCDs they were located in. It turns out that 

homozygous SVs identified uniquely in Punjabi population intersect CTCF and 
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RNAPII anchors in the largest number of CCDs (10 and 11 respectively) containing 

the gene knockouts (Supplementary Figure 16k), even though a moderate number of 

population-specific homozygous SVs was found for this group (Supplementary Figure 

16j). This suggests that gene knockouts may be accompanied (preceded, followed or 

assisted) by homozygous structural rearrangements.  

 For each of the continental groups we prepared a list of patterns (similar to 

these described in the previous section) of anchor-intersecting SVs, which alter 

CCDs in the individuals belonging to this group. Even though most of the patterns are 

population-specific, we found 305 (6%) patterns common for all 5 continental groups 

(Supplementary Figure 16e). CCDs in which we found the common SV-patterns are 

characterized by particularly high number of gene promoters, including promoters of 

housekeeping genes (Supplementary Figure 16d). There are statistically more gene 

promoters in those CCDs than in other CCDs with modified anchors and in domains 

covering segments without changes in CTCF-anchor sites. It is worth noticing that 

more promoters are located in CCDs containing CTCF anchors under variation than 

in those without them, which may suggest that architecture of transcriptionally active 

genomic regions is more prone to mutation. CCDs with CTCF anchors under rare 

variation contain statistically more promoters of active genes than CCDs with CTCF 

anchors affected only by frequent SVs (Supplementary Figure 16d). Moreover, rare 

SVs happen to affect CTCF anchors in domains containing outstanding number of 

promoters (Supplementary Figure 16d). CCDs with rare variants in CTCF interacting 

anchors can have up to 96 promoters of active genes (compared to 38 in CCDs with 

frequent SVs in anchors). 

 

Regulation of gene transcription altered by topological variations in population 
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By combining information on chromatin interactions and population-scale genetic 

variation with transcriptome data from 462 lymphoblastoid cell lines gathered by 

gEUVADIS consortium (Lappalainen, et al. 2013), we were able to draw first to our 

knowledge population-scale evidence-supported conclusions on the functional 

relation between SVs and genome architecture and provide a deeper insight into the 

functional role of genetic variation in the human genome. The results of our analysis 

indicate that SVs influence gene transcription primarily by rearranging local looping 

structure of the genome. 

 For 445 out of the 462 samples provided by gEUVADIS consortium there are 

also genotypes available in the 1000 Genomes Project database. We thus used 

PEER normalized (Lappalainen, et al. 2013) gene expression levels of these 445 

individuals for association with their genotypes to identify expression quantitative trait 

loci (eQTLs). We use the term eQTL for any variation of genomic sequence which is 

identified as having effect on the gene transcription level. The eQTL analysis was 

performed only with SVs, excluding SNPs. 

 We performed Principal Component Analysis (PCA) on the expression data, 

which pinpointed 14,853 genes having the biggest variation in expression rates 

among individuals from all 23,722 genes present in the gEUVADIS dataset. We then 

related expression levels of each of the 14,853 genes to genotypes (see Methods). 

 In the studies on eQTLs published so far (Sudmant, et al. 2015), (Lappalainen, 

et al. 2013), (Schlattl, et al. 2011), (Stranger, et al. 2007), (Pickrell, et al. 2010), 

(Veyrieras, et al. 2008) a genomic region of arbitrary size around a gene in question 

was conventionally set, and only genetic variants located within this linear region 

were tested for being eQTLs for this gene. We argue that a more natural approach is 

to look for eQTLs within the whole topological domain the gene is located in. 
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Therefore, for each of the selected genes, we evaluated associations of its 

expression levels with all the genotyped SVs residing in the same CCD. For every 

gene-SV pair, least-square linear regression was performed and the significance of 

the slope was then tested in the permutation test. The resulting P-values were 

adjusted for multiple testing to control the False-Discovery Rate (FDR). We set a 

threshold of acceptance for FDR ≤ 10% (see Methods). 

 We identified 234 unique SV-eQTLs modifying expression levels of 192 genes. 

The majority of the eQTLs found (55%) are deletions (Fig. 4a).  

Earlier studies on eQTLs were limited in exploring the causal relation between 

genetic variation and gene expression to analyzing gene-variant and exon-variant 

intersections (Schlattl, et al. 2011), (Pickrell, et al. 2010), or the influence of genetic 

variation on transcription factor binding sites (TFBSs), transcription start sites (TSSs) 

or transcription end sites (TESs) (Lappalainen, et al. 2013), (Veyrieras, et al. 2008), 

(Gaffney, et al. 2012). In particular, one of the latest to our knowledge big study on 

the impact of structural variation on human gene expression, reported that over 88% 

of predicted causal SVs did not alter gene structure or dosage (Chiang, et al. 2017). 

The study showed enrichment of causal noncoding SVs in regions occupied by 

transcription factors or surrounding genes at distances up to 10 kb, but no deepened 

analysis of these regions was performed. Our analysis gives a broader idea of this 

relation and sheds light on the mechanisms through which SVs take part in genome 

regulation. 

In agreement with (Veyrieras, et al. 2008), (Gaffney, et al. 2012), (Chiang, et 

al. 2017) we observe enrichment of eQTLs in TFBSs but we see significantly higher 

enrichment of these in genomic regions responsible for chromatin spatial 

organization. We divided the identified eQTLs into two sets: those located on the 
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DNA chain closer than 17,800 bp to the genes they modify (proximal) and those 

located further apart (distal) (see Methods). The splitting value of 17,800 bp was 

chosen based on the distribution of RNAPII PET clusters lengths. It is a value for 

which the density of lengths of RNAPII clusters is equal to the half of the maximum 

density (Fig. 4b). The division is not exclusive – some of the eQTLs correlated with 

more than one gene are distal for one of them and proximal for other (Fig. 4c). 

Active promoters and TFBSs are enriched with proximal eQTLs demonstrating 

their importance as gene-adjacent regulatory sites. Enhancers apart for being 

enriched with proximal eQTLs are enriched with the distal ones and represent 

regulatory elements interacting with genes by the nuclear space. However, the 

genomic elements most enriched with both proximal and distal eQTLs are anchors of 

RNAPII PET clusters (Fig. 4d). The abundance of eQTLs in the anchoring regions of 

the strong chromatin interactions mediated by RNAPII reaffirms the crucial role of this 

element of genome architecture in gene regulation. 

As an example of eQTLs altering chromatin looping mediated by RNAPII, we 

investigate 5 deletions located in a HLA region (Fig. 4j). All of these deletions affect 

RNAPII interacting anchors (Fig. 4k) and are correlated with one or more of 5 HLA 

genes neighboring them (Fig. 4l). Three of the deletions are in a very strong linkage 

disequilibrium (LD) with each other (tested on the Central European population, Fig. 

4h). 

The concept of CTCF foci given in (Tang, et al. 2015) suggests that CTCF 

interactions organize genome into structural interaction centers, within which RNAPII 

acts as a coordinator drawing genes into contact with center’s focal point where 

transcription happens. We hypothesize that proximal eQTLs modify TFBSs, TSSs 

and TESs of genes as well as gene sequences but mostly they alter genes’ spatial 
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contacts with regulatory elements and possibly with transcription foci, which has an 

immediate and straightforward influence on genes’ expression levels. Distal eQTLs 

have in turn higher potential to, apart from altering long-range RNAPII interactions, 

disrupt CTCF interactions that are longer than RNAPII-mediated chromatin loops 

(Fig. 4b) and shape the spatial structures of the whole topological domains. 

Deletion chr1:248849861-248850138 is an example of eQTL disrupting 

chromatin looping mediated by CTCF. It removes the strongest CTCF binding motif 

in an interacting anchor containing an enhancer (Supplementary Figure 20a) and is 

eQTL for 5 genes residing on a chromatin loop formed by the anchor (Supplementary 

Figure 20b). Three of them (OR2T3, OR2T10 and OR2T34) are members of the 

olfactory receptor gene family.  

Another example of identified eQTL which alters CTCF-mediated chromatin 

structure, is duplication chr17:44341412-44366497 (Supplementary Figure 21a). It 

duplicates border of a CCD and its emergence correlates with transcription of a pair 

of genes (Supplementary Figure 21b). 

Even though we observed examples, we did not find anchors of CTCF PET 

clusters to be enriched with distal eQTLs (Fig. 4d). The fact we note, however, is that 

16 of the identified eQTLs (23% of the anchor-intersecting eQTLs) intersect both 

RNAPII and CTCF anchors (Fig. 4a) and 35 (56%) of the eQTLs intersecting RNAPII 

anchors were detected in CCDs in which eQTLs targeting CTCF anchors were also 

found. This suggests that a change in gene expression observed among individuals 

can often be a result of a coordinated modification of RNAPII and CTCF anchors, but 

more investigation is needed to confirm this claim. Interestingly, CCDs in which 

eQTLs alter RNAPII anchors tend to embrace more active genes and housekeeping 

genes than CCDs with eQTLs not overlapping any interacting segments (Fig. 4f). On 
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the other hand, CCDs with eQTLs in CTCF anchors contain many inactive genes 

(Fig. 4f). 

Furthermore, we suspect that the enrichment analysis does not indicate that 

alterations of CTCF anchors significantly contribute to variation of gene expression in 

population because the disruption of CTCF chromatin contacts would often provoke 

drastic changes in local spatial organization of a genome not observed in healthy 

people. As we showed earlier, SNPs associated with disease favorably emerge in 

CTCF anchors (Fig. 3g). 

For comparison with Capture Hi-C (CHi-C) data, we mapped identified eQTLs 

on genomic interactions reported in Mifsud et al. (Mifsud, et al. 2015). Anchors of 

promoter-promoter and promoter-other CHi-C interactions were analyzed for 

enrichment with the eQTLs (Supplementary Figure 22). The analysis shows that CHi-

C anchors containing promoters are enriched with proximal eQTLs and depleted of 

the distal ones. Similar effect can be observed for ChIA-PET RNAPII anchors 

intersected with promoters (Supplementary Figure 22). However, unlike CHi-C 

anchors containing enhancers, ChIA-PET anchors intersected with enhancers are 

significantly enriched with distal eQTLs. The results for ChIA-PET data highlight the 

role of distal enhancers in gene regulation and may suggest that the interactions 

identified in RNAPII ChIA-PET are more transcriptionally active than the ones 

reported from CHi-C. 

To state more firmly the relationship between proximal and distal eQTLs and 

chromatin activity, we collected (see Methods) sequencing (ChIP-seq) data for three 

histone modifications (H3K27ac, H3K4me3, H3K4me1) and information on chromatin 

accessibility (DNase-seq) and analyzed it in interaction anchors intersected with the 

eQTLs. H3K4me3 is primarily associated with promoters, H3K4me1 with active 
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enhancers and H3K27ac with active promoters and enhancers (Ernst, Kheradpour, et 

al. 2011). As expected, interaction anchors altered by proximal eQTLs are enriched 

with promoter signal, whereas those affected by distal eQTLs with enhancer signal 

(Fig. 4i). This confirms that proximal eQTLs disrupt promoter-enhancer 

communication at the site of the promoter and distal eQTLs at the site of the 

enhancer. The results are statistically significant, even though interaction anchors are 

enriched with chromatin marks in general (Fig. 4i) (Tang, et al. 2015). Furthermore, 

eQTLs emerge in densely connected genomic regions (Fig. 4g and 4i). This is also 

reflected by the fact that a single eQTL often intersects more than one RNAPII 

interaction anchor (Fig. 4k).   

We repeated the eQTL analysis described above for housekeeping genes only 

(selected based on Eisenberg et al. (Eisenberg and Levanon 2013)) to see if we find 

eQTLs for them and where the potential eQTLs are localized (see Methods). We 

found 36 unique eQTLs for 33 different housekeeping genes. None of the eQTLs is 

located within CTCF anchor, but we observe significant enrichment of them in 

RNAPII anchors (Fig. 4e). Therefore, there are differences in expression rates of 

housekeeping genes among samples and they are mainly correlated with 

alternations of long-range chromatin contacts mediated by RNAPII.  

On the other hand, we separately analyzed immune-related genes as genes 

specific for the lymphoblastoid cell lines (see Methods). 14 eQTLs were identified for 

these genes, out of which 4 intersect CTCF anchors. Three of these are anchors 

which contain enhancers and 1 contains a promoter region.  

Two of the immune-related eQTLs (deletion chr22:39357694-39388574 and 

CNV chr22:39359355-39379392) cover the same CTCF anchor (Supplementary 

Figure 23a). Both are eQTLs for genes APOBEC3A, APOBEC3B and CTA-150C2.16 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2018. ; https://doi.org/10.1101/266981doi: bioRxiv preprint 

https://doi.org/10.1101/266981


 27	

(Supplementary Figure 23b), but the deletion completely excises APOBEC3B gene. 

In the presented samples (Supplementary Figure 23a) both of the SVs were 

identified, meaning that locus chr22:39357694-39388574 is (haplotype-specifically) 

excised in those genomes, which is reflected in CTCF signal for these samples.  

Another example of an eQTL altering a CTCF anchor and regulating an 

immune-related gene is deletion chr17:73107713-73108273 (Supplementary Figure 

24a). It is located over 750 kb apart from the correlated gene TRIM47 

(Supplementary Figure 24b). 

Whether cell-type-specific genes are distinguished targets for SVs altering 

core chromatin architecture (as CTCF is believed to form the backbone network of 

genomic interactions) is an interesting question. However, more extensive testing 

has to be done to explore this hypothesis.  

 

Modeling topological domains of individual genomes 

We modeled structures of CCDs for all 2,504 individuals sequenced in the 1000 

Genome Project at the resolution of individual chromatin loops, creating a catalogue 

of genomic topological variation of human population.  

We focus on topological domains as they are believed to be the structural 

units regulating gene transcription by spatially isolating groups of enhancers and 

genes (Dixon, Selvaraj, et al. 2012), (Lupiáñez, et al. 2015), (Rao, et al. 2014), 

(Tang, et al. 2015), (de Laat and Denis 2013). In our opinion, these 3D models 

constitute a supportive insight into SV effects; their inspection can improve our 

understanding of functional impact and disease association of SVs.  

Deletion of a CTCF binding site insulating the promoter of TAL1 gene from 

regulatory elements adjacent to the CMPK1 promoter was shown by CRISPR/Cas9 
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experiments to cause activation of TAL1, an oncogenic driver of T-cell acute 

lymphoblastic leukemia (Hnisz, et al. 2016) (Fig. 5a). 3D structures of the TAL1 locus 

generated with our algorithm illustrate fusion of the TAL1 promoter with the enhancer 

regions inside the insulated neighborhood formed as a consequence of the deletion 

(Fig. 5b). Euclidean distances calculated from the models quantify the accessibility of 

transcription-enhancing elements for the TAL1 promoter. The Euclidean distance 

between the promoter and a strong enhancer in the CMPK1 promoter and the mean 

distance between the promoter and enhancers located in the same CCD decrease 

significantly after the deletion (Fig. 5c). The models show how the promoter and the 

enhancer are brought even closer together within the insulated neighborhood by 

RNA-mediated chromatin interactions (Fig. 5d). This demonstrates that the models 

properly capture the features of the chromatin organization and that their inspection 

can give insights into functional consequences of SVs.  

As presented earlier, the inspection of a deletion in NFKBIA locus also led to 

functional interpretation of structural changes (Fig. 3c and 3e). More examples of 

expression-associated SVs disrupting long-range chromatin interactions can be 

found in the CHGV (Supplementary Figure 25) and inspected using the 3D-GNOME 

2.0 – a web service providing the chromatin modeling method together with a 

visualization tool (http://3dgnome.cent.uw.edu.pl/). 

 

Discussion 

We performed a genome-wide analysis of the impact of SVs on three-dimensional 

structure of the human genome. We showed that CTCF interaction anchors are 

depleted of SVs identified in genomes of healthy people. Moreover, anchors 

overlapped with enhancers or promoters occur to be conserved better than 
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enhancers and promoters unrelated to CTCF interaction anchors. On the other hand, 

these genomic structural sites turned out to be enriched with SNPs previously 

associated with disease, and with autoimmune diseases in particular. This 

demonstrates the importance of these sites for proper genome functioning. 

Unexpectedly, CTCF binding sites involved in insulation of topological domains, 

occur not to be particularly conserved, and are even slightly enriched with 

duplications. Duplications of CTCF anchors at domain boundaries could be a 

protective and evolutionary mechanism. On the other hand, the fact that they are 

often targeted by other SVs suggests that they can also be important elements used 

in genome regulation. 

 Even though interacting genomic segments seem to be evolutionarily 

protected from mutation, we still observe interesting examples of SVs disrupting long-

range chromatin contacts and correlated with transcription rates of genes located 

within the same topological domain. Even a single point mutation can be sufficient to 

make an interaction anchor active or inactive and alter chromatin looping and gene 

expression as a consequence. This shows the explanatory potential of this type of 3D 

genome studies. 

Examples of expression-related SVs in CTCF interaction anchors are not 

abundant. Genome-wide analysis demonstrates that eQTLs are rarely located in 

CTCF anchors or CCD borders. Instead they favorably alter RNAPII interaction 

anchors, which strongly suggests that structural variation influences transcription of 

genes mainly by directly altering long-range transcription-related chromatin contacts. 

We observe cases in which both CTCF and RNAPII anchors are modified in a CCD 

to regulate gene transcription, but the overall analysis indicates that the chromatin 

structure built by CTCF is strongly conserved across individuals and variation in gene 
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transcription occurs by modifications of RNAPII interactions formed within this 

structure. This hypothesis is consistent with the model presented by Tang et al. 

(Tang, et al. 2015). However, we suspect that the fact that we did not identify many 

examples of eQTLs located in CTCF anchors may also mean that the linear model 

used to detect eQTLs is too simple to account for complex nonlinear changes in gene 

transcription caused by modification of CTCF-mediated chromatin looping. This 

requires further investigation. 

Together with analyzing the impact of SVs on genomic structural elements we 

devised a method for modeling changes that SVs introduce in 3D chromatin 

structure. We also prepared a first catalogue of 3D structures of CCDs for all 2,504 

individuals sequenced in the 1000 Genome Project at the resolution of individual 

chromatin loops, which represent the topological variability of the human genome. 

We believe that further work on computational prediction of the chromatin 3D 

structures based on different factors changing among individuals is required, as the 

emerging evidence shows that chromatin structure is a crucial element to understand 

the genome regulation. 

 

Methods 

Genomic interactions 

Genomic interactions analyzed in this study are 80,157 CTCF PET clusters and 

100,263 RNAPII PET clusters identified by Tang et al. (Tang, et al. 2015) for the 

GM12878 cell line. We refer the reader to this work for details on data processing 

pipeline used to find these interactions. Briefly, pair-end reads (PETs) sequenced in 

long-read ChIA-PET experiment were mapped to the human reference genome 

(hg19). Inter-ligation PETs were selected by the criterion of genomic span between 
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the two ends of a PET exceeding 8 kb. Inter-ligation PETs overlapping at both ends 

were clustered together creating unique contacts (PET clusters) between 2 specific 

interaction loci, of strength equal to the size of the cluster. PET clusters of strength 

smaller than 4 were discarded. 

 

ChIP-seq consensus peaks 

We analyzed the directionality of CTCF interactions similarly to Tang et al. (Tang, et 

al. 2015). CTCF, RAD21 and SMC3 uniform ChIP-seq peaks available for the 

GM12878 cell line were downloaded from the ENCODE database (The ENCODE 

Project Consortium 2012). We extracted the 4-way consensus regions from all 4 sets 

of CTCF peaks to get highly credible CTCF-binding peaks. The same consensus was 

performed on RAD21 and SMC3 ChIP-seq segments to identify cohesin-binding 

peaks. Finally, 24,118 consensus regions from the CTCF and cohesin consensus 

peaks were obtained. 

 

CTCF motif identification 

We searched the CTCF-cohesin consensus peaks for CTCF-binding motifs. 

Nucleotide sequence of each of the CTCF-cohesin peaks was extracted from the 

hg19 assembly deposited at http://genome.ucsc.edu using BEDTools getfasta utility 

(Quinlan and Hall 2010) and provided as an input to STORM (Schones, Smith and 

Zhang 2007). Given the position weight matrix of a particular transcription factor-

binding motif, STORM predicts the occurrences of the factor-binding motifs in 

provided DNA sequences. We performed the search with CTCF position weight 

matrix MA0139.1 downloaded from the JASPAR database (Khan, et al. 2018) and 

found CTCF-binding motifs in 22,677 out of the 24,118 CTCF-cohesin consensus 
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peaks. Only motifs having score higher than 0 were considered as valid and for each 

peak a motif with the highest score was selected. 

 

Assigning orientation to CTCF loops 

The CTCF motifs were overlapped with CTCF PET clusters. 42,177 out of the 80,157 

CTCF PET clusters had both anchors overlapped by CTCF-cohesin consensus 

peaks and only 2,806 (4%) of them had no intersections with the consensus peaks at 

neither of sides. For 38,196 out of the 42,177 clusters (91%) at least one CTCF motif 

was found at both anchors. 31,422 of these had exactly one motif at either side. PET 

clusters with anchors having more than one CTCF motif and of contradictory 

orientations were filtered out. From the 35,180 CTCF PET clusters with motifs of 

unique orientation in both anchors, 16,239 (46%) had motifs of convergent 

orientation at the two anchors, 12,195 (35%) had motifs of tandem right orientation, 

4,090 (12%) PET clusters were of tandem left orientation and 2,656 (7%) were of 

divergent orientation. 

 

Chromatin contact domains 

In this study, we used 2,267 CTCF-mediated chromatin contact domains (CCDs) 

identified by Tang et al. (Tang, et al. 2015). We refer the reader to this work for the 

details of CCD calling. Briefly, CCDs were identified by searching each chromosome 

for genomic segments continuously covered with CTCF PET clusters supported by 

CTCF-cohesin consensus peaks. Each identified CCD starts where the most 

upstream CTCF anchor from all the anchors of the CTCF PET clusters comprising 

the CCD starts, and ends where the most downstream CTCF anchor ends. To define 

borders of the CCDs more accurately, CTCF motifs found in the CTCF-cohesin 
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consensus peaks and positioned within outermost anchors were identified. From 

these, outermost CTCF motifs were selected as CCD borders. Genomic regions 

complementary to CCDs (less hg19 reference genome assembly gaps) were defined 

as CCD gaps. 

 

Enhancers and promoters 

Definitions of enhancers used throughout this study were extracted from ChromHMM 

(Ernst and Kellis, ChromHMM: automating chromatin state discovery and 

characterization 2012) hg19 annotations for the GM12878 cell line downloaded from 

the ENCODE database (The ENCODE Project Consortium 2012). Both weak and 

strong enhancer annotations were adopted. Promoters were defined as ±2 kb 

regions surrounding gene transcription start sites (TSSs). The TSS coordinates were 

adopted from the GENCODE release 27 (mapped to hg19) (Harrow, et al. 2012). 

Only promoters for protein-coding genes were considered. Promoters were defined 

as active if overlapped with anchors of RNAPII PET clusters or with RNAPII 

consensus ChIP-seq peaks and defined as inactive otherwise. RNAPII consensus 

peaks were obtained by performing consensus on 3 sets of RNAPII uniform ChIP-

seq peaks available for the GM12878 cell line in the ENCODE database. 

 

Enrichment analyses of SVs in genomic elements 

In this study, we tested various genomic elements for enrichment or depletion with 

structural variants (SVs). These tests were conducted according to a common 

scenario. Genomic elements of a given type represented by their positions in the 

hg19 reference genome were intersected with the positions of SVs. The ones having 

at least 1 bp overlap with at least 1 SV were counted. The genomic elements were 
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then intersected with simulated SVs from 1,000 sets generated by randomly shuffling 

positions of the original SVs, and the null distribution of counts of genomic elements 

overlapped with SVs was calculated. Each shuffled set contained the same number 

of elements in total and the same number of elements in subsets (deletions, 

duplications, etc.) as the real SV set. Elements of these sets were equally distributed 

on chromosomes and equally distributed in length to the real SVs. The operations of 

shuffling and intersecting genomic segments were performed with BEDTools 

(Quinlan and Hall 2010). The enrichment or depletion of genomic elements 

overlapped with the real SVs compared to the same elements overlapped with 

randomly positioned simulated SVs was expressed as log2 fold change of the 

number of the former versus the mean of the distribution of the number of the latter. 

Values of the measure were represented by the height of bars in the plots. Error bars 

in the plots show the standard deviations of log2 fold changes. To estimate the 

statistical significance of the test results, p-values were calculated and marked above 

the bars by stars (3 stars – p-value < 0.001, 2 stars – p-value < 0.01, 1 star – p-value 

< 0.1). 

 

Subsets of SVs in enrichment analyses 

For individual tests the set of SVs was divided into various subsets. In particular, SVs 

with variant allele frequency (VAF) lower than 0.001 were considered separately in 

certain tests. In others, SVs were grouped according to the ancestry of individuals 

they were identified in and sets of SVs emerging uniquely in one subpopulation were 

also created. The special set of SVs correlated with gene expression (eQTLs) was 

subdivided into 2 sets: a set of eQTLs located closer on the DNA chain than 17,800 

bp apart from genes they modified, and a set of eQTLs located further apart from 
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their genes. The distances were calculated between TSSs (as defined in GENCODE 

version 12) and centers of eQTL segments. 

 

Subsets of GWAS SNPs 

The set of GWAS SNPs used in this study was derived from the NHGRI-EBI GWAS 

Catalog, version from January 31, 2018 (MacArthur, et al. 2017). SNPs of traits 

associated with autoimmune diseases and hematological parameters were extracted 

as separate sets and mapped to dbSNP Build 150 for hg19 human genome 

assembly. SNPs mapping outside the main chromosome contigs, not having dbSNP 

ID or without coordinates on the hg19 and records containing multiple SNPs were 

excluded. This resulted in 2,330 and 3,919 unique SNPs associated with 

autoimmune diseases and hematological parameters respectively. For permutation 

tests with SNPs identified in healthy samples in the 1000 Genomes Project, we 

extracted a random sample of 1 million elements from the whole set of SNPs to limit 

the computation time and storage space. 

 

Genomic elements in enrichment analyses 

Analyzed in permutation tests genomic elements associated with genes (annotated 

protein-coding sequence regions (CDSs), untranslated regions (UTRs) in protein-

coding regions, exons and introns) were adopted from the GENCODE release 27 

(mapped to hg19). Permutation tests with eQTLs were an exception – in this case, 

gene elements from version 12 of GENCODE were used to maintain the consistency 

with the expression data which was analyzed with the earlier version of GENCODE. 

The positions of transcription factor binding sites (TFBSs) were adopted from a file 

with uniform TFBS peaks downloaded from ENCODE (http://genome.ucsc.edu/cgi-
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bin/hgTrackUi?db=hg19&g=wgEncodeRegTfbsClusteredV3). In permutation tests, 

CTCF anchors supported and not supported by cohesin peaks were also analyzed. 

Anchors supported by cohesin peaks are anchors of CTCF PET clusters, which 

showed at least 1 bp overlap with cohesin-binding consensus peaks (identified as 

described above). 

 

GM12878 haplotype-specific ChIA-PET interactions 

Phased ChIA-PET interactions for GM12878 cell were taken from the work of Tang et 

al. (Tang, et al. 2015) and we refer the reader to this article for details of the ChIA-

PET data phasing analysis. Briefly, a ChIA-PET read was assigned to the maternal 

or paternal haplotype if a nucleotide in its sequence aligned with a GM12878 

heterozygous SNP matched the respective allele. All the reads from the two ends of 

all inter-ligation PETs were distributed between the haplotypes in this manner, 

yielding PETs of 6 possible types: M-M, P-P, M-N, P-N, M-P and N-N, where M 

stands for maternal, P for paternal and N for not determined haplotype of an anchor. 

Following the outcomes of the analyses performed by Tang et al. we treat both M-M 

and M-N PETs as maternal interactions and both P-P and P-N PETs as paternal 

interactions. There are 917 maternal and 1233 paternal interactions. The phased 

SNPs used for the analysis were downloaded from ftp://gsapubftp-

anonymous@ftp.broadinstitute.org/bundle/2.8/hg19/. 

 

Analysis of CTCF interaction anchors altered by SNPs 

To test impact of SNPs on the probability of CTCF binding to a CTCF anchor, we 

searched the nucleotide sequence of the anchor for CTCF motifs and compared the 

number and scores of these motifs with the CTCF motifs identified in the nucleotide 
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sequence of this anchor after introduction of alternative alleles. Only motifs with 

score higher than 0 were taken into consideration. Identification of CTCF motifs was 

performed as described in the section CTCF motif identification above.  

We used ggseqlogo R package (Wagih 2017) to generate sequence logos 

from the frequency matrix MA0139.1 downloaded from the JASPAR database. 

 

mRNA quantifications 

PEER normalized expression levels of 23,722 genes provided by gEUVADIS 

consortium were used in our analyses. We refer the reader to Lappalainen et al. 

(Lappalainen, et al. 2013) for details on the process of transcriptome quantifications. 

In short, RNA-seq read counts over genes annotated in GENCODE (version 12) 

were calculated. This was done by summing all transcript RPKMs per gene. Read 

counts were corrected for variation in sequencing depth by normalizing to the median 

number of well-mapped reads among the samples and for technical noise. The latter 

was removed using PEER (Stegle, et al. 2012). We logarithmized the corrected 

quantifications and standardized the distributions of transcription rates (for each gene 

individually). 

 

Genotypes 

Definitions of genomic sequence variations were taken from Sudmant et al. 

(Sudmant, et al. 2015). This SV set is a refined version of the callset released with 

the 1000 Genomes Project marker paper (The 1000 Genomes Project Consortium 

2015). Only SVs (deletions, duplications, copy number variants, inversions and 

insertions) were considered, SNPs were not included in the analysis. The genotype 

of an individual was represented as a sum of SV copies present on homologous 
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chromosomes of the individual. Deletions were indicated by negative numbers. For 

example, if an individual had a deletion on both copies of a chromosome, the 

genotype was -2. If it had 2 more copies of a genomic region (in relation to the 

reference genome) on one chromosome from the pair and 1 additional copy of this 

region on the second chromosome from the pair, the genotype was 3. Genotypes 

unchanged compared to the reference sequence (hg19 in this case) had codes 0. 

Genotypes of abundance lower than 1% in the studied population were neglected. 

 

Linear models 

gEUVADIS consortium provides RNA-seq data for 462 samples, but only a subset of 

these (445 samples) was genotyped in the 1000 Genomes Project. Thus, our 

analyses were performed on a population of 445 individuals for which both 

transcription and genotype data was available. Only genotypes of abundance higher 

than 1% were considered. Sex chromosomes were excluded from the analyses. We 

took the logarithms of the PEER-normalized expression levels for calculations to 

correct it for far outliers and standardized the data. We started the analysis by 

performing Principal Component Analysis (PCA) in the 23,722-dimensional space of 

gene expression rates. Based on the Scree Plot (Supplementary Figure 26) we 

decided to keep first 100 principal components. Only genes having contributions to 

these components not smaller than 0.01 were considered in the further analyses. By 

running this procedure, we got 14,853 genes of largest contribution to the variance in 

gene transcription between samples. Every SV lying in the same CCD as one of 

these genes was tested for being eQTL for this gene. Least-squares linear 

regression between expression rates and genotypes was performed for each gene-

SV pair. The slopes of the linear models were tested for statistical significance. First, 
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for each linear model two-sided p-value was calculated in test with null hypothesis 

that slope is 0 (Wald Test with t-distribution of the test statistics). Second, for each 

gene we permutated the expression rates relative to genotypes 1,000 times, 

recalculating at each iteration the linear regression for each gene-SV pair and 

recording the minimal p-value among all pairs. Adjusted p-values were calculated for 

each gene by dividing ranks of the observed p-values in the list of p-values obtained 

in permutations, by the number of permutations. Finally, to correct for multiple testing 

across genes, we applied the Benjamini-Hochberg procedure to the adjusted p-

values, estimating q-values. At FDR 0.1 we found 203 genes with eQTLs. The same 

procedure was employed to identify eQTLs for housekeeping genes, except that PCA 

step was omitted. By mapping the names of housekeeping genes reported in 

Eisenberg et al. (Eisenberg and Levanon 2013) on GENCODE (version 12), we 

obtained a list of 3,784 genes. We found eQTLs for 27 of them. A complete list of all 

discovered eQTLs is provided in Supplementary Table 2. 

 

Immune-related genes 

Names and coordinates on the hg19 assembly of immunity genes were downloaded 

from InnateDB (Breuer, et al. 2013). The gene names were mapped on GENCODE 

(version 12) for the purpose of the eQTL analysis. The final gene set contained 1051 

elements. 

 

ChIP-seq signal tracks 

Raw sequencing data from CTCF ChIP-seq experiments published by Kasowski et 

al. (Kasowski, et al. 2013) was processed to obtain CTCF signal tracks for 10 

lymphoblastoid cell lines (GM12878, GM10847, GM12890, GM18486, GM18505, 
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GM18526, GM18951, GM19099, GM19238, GM19239). The sequencing reads were 

aligned to the hg19 assembly using Bowtie2 aligning tool (Langmead and Salzberg 

2012). The alignments were then passed to the bamCoverage utility from the 

deepTools2.0 toolkit (Ramírez, et al. 2016) to obtain RPM values genome-wide (the 

following command was evoked: bamCoverage -b input.bam -o output.bw -of bigwig -

-binSize 10 --numberOfProcessors max/2 --normalizeUsing CPM --

ignoreForNormalization chrX --extendReads --samFlagInclude 64). Sequencing 

reads for every sample and for every experimental replicate were processed 

separately. Signals prepared for different biological replicates but for the same 

sample, were merged to an averaged signal using the mean operator from the 

WiggleTools1.2 package (Zerbino, Johnson, et al. 2014). Each CTCF signal track 

included in the figures presents RPM values for a particular genomic region divided 

by the maximal value of the signal in this region. 

 Presented RNAPII signals were downloaded from the UCSC database 

(https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeSydhTfbs). The 

signal values were also max-normalized for the comparison purposes. 

 

Phased ChIP-seq signal tracks 

Haplotype-specific CTCF ChIP-seq signals for 10 lymphoblastoid cell lines 

(GM12878, GM10847, GM12890, GM18486, GM18505, GM18526, GM18951, 

GM19099, GM19238, GM19239) were obtained from the raw sequencing data 

published by Kasowski et al. (Kasowski, et al. 2013). The reads sequenced for a 

particular cell line were aligned with Bowtie2 aligning tool to the individualized 

nucleotide sequences of maternal and paternal chromosomes of this cell line. Only 

perfectly aligned reads were considered as valid. The sequences of maternal and 
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paternal chromosomes were prepared with the vcf2diploid tool from the AlleleSeq 

pipeline (Rozowsky, et al. 2011) using SNP phasing information from the phase 3 of 

the 1000 Genomes Project. Separate ChIP-seq signals for maternal and paternal 

chromosomes of the individual samples were calculated from the alignments 

prepared for the respective chromosomes analogously to the non-phased signals.   

 

Modeling three-dimensional chromatin structures with 3D-GNOME 

The ChIA-PET datasets typically consist of two types of interactions: high-frequency 

PET clusters (in the order of tens of thousands) representing strong, specific 

chromatin interactions and singletons, numerous (in the order of tens of millions), but 

representing mostly non-specific and spurious contacts. 

To make the best use of the information carried by these two distinct types of 

contacts we employed a multiscale approach: first we used the singletons to guide 

the low-resolution, megabase-scaled modeling, and then we used PET clusters to 

refine the obtained structures, achieving resolutions up to a few kilobases. We note 

that this approach is consistent with the widely accepted model of genome 

organization, in which main roles are played by topological domains and chromatin 

loops. Here, at the stage of the low-resolution modeling we attempt to position the 

topological domains relative to each other, and in the high-resolution we model the 

position and shape of individual chromatin loops. 

 

Low-resolution (chromosome) level modeling 

The structure of a chromosome is represented using a 'beads on a string' model. 

First, the chromosome is split into a number of approximately megabase-sized 

regions. Ideally, each region would correspond to a single topological domain. In 
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practice, the split is made based on the patterns of PET clusters interactions (as a 

consequence, different regions typically will have different lengths. See (Szałaj, et al. 

2016) for details of the procedure). Next, singleton heatmaps are created (much like 

the widely used Hi-C heatmaps, but with unequal bins). We treat an interaction 

frequency 𝑓"# between a pair of regions i and j as a proxy of 3D distance 𝑑"# between 

corresponding beads, assuming an inverse relationship 𝑑"# ∼ 𝑐𝑓"#'(, with 𝛼 being a 

scaling exponent, and use Monte Carlo simulated annealing to position the beads to 

minimize the energy function 𝐸 = (𝑑"# − 𝑟"#)0",# , where 𝑟"# is the actual distance 

between beads corresponding to regions i and j. 

 

High-resolution modeling 

In the second step we model the shape and position of chromatin loops inside a 

single domain. We begin by splitting the interaction network given by PET clusters 

contained within a domain into a number of disjoint connected components that we 

call blocks. This allows us to model blocks independently. The modeling of each 

block is carried out in 2 steps. First, in the anchor step, we position the anchors of the 

loops identified by ChIA-PET relative to each other. The preferred distance between 

a pair of anchors i and j connected by a loop depends on the frequency of PET 

cluster solely and is given by 𝑑"# = 𝛿 + 𝛼𝑒'5(678'9), where 𝛿, 𝛼, 𝜈 and 𝛾 are all 

parameters (if the anchors are not connected, then 𝑑"# is not specified). The energy 

function is identical in the form to the one used at the chromosome level, and we 

again use Monte Carlo simulations to find the optimal arrangements of the anchors. 

Then, in the subloop step, we keep the anchors positions fixed, and we try to model 

loops so that their shape, as well as relative position to other loops best fit both the 

data and the physical constraints. Each loop is represented by k subanchor beads 
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inserted between neighboring anchors. We define stretching and bending energy 

terms as 𝐸< = 𝑟"# − 𝑁",">?
@ 0

"  and 𝐸A =
?
0

1 − 𝜐"'?," ⋅ 𝜐",">?
0

" , where 𝑁#,#>? is a 

genomic distance between anchors j and j+1, 𝜐#,#>? is a unit vector pointing from 

anchor j to j+1, and 𝛽 is a constant parameter. To model the influence of short-range 

singleton interactions we calculate the expected distances between all subanchor 

beads given only the physical constraints, and then modify these distances based on 

the high-resolution singleton heatmaps for blocks. These updated distances are used 

in the third energy term 𝐸F = (𝑑"# − 𝑟"#)0",# , with 𝑑"# and 𝑟"# defined as previously, 

but now for subanchor beads. The total energy function is simply 𝐸< + 𝐸A + 𝐸F, and 

again, the Monte Carlo simulation are used for the optimization. 

 

Modeling impact of SVs onto the three-dimensional chromatin structure 

The algorithm modifies the reference genomic interactions and topological domains 

introducing information on SVs. The resulting genomic interaction data is then 

passed to the 3D-GNOME modeling engine to obtain predicted 3D structures 

adjusted for SVs. 

Anchors intersected by deletions are removed from the interaction pattern of a 

topological domain being modeled. As a result, all the interactions stemming from 

these anchors are eliminated yielding a structure with fewer loops, and with the loops 

directly neighboring the deletion being shorter or longer depending on the interaction 

pattern and the deletion size. The anchors intersected by duplications are duplicated 

along with all the contacts they have with other genomic segments. This rule reflects 

the potential of the newly introduced anchor to interact with the rest of the chromatin 

chain analogously to the duplicated site. Introducing duplications also results in 

elongation of loops overlapping the duplicated site. Inversions of genomic segments 
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containing anchor sites result in changing positions of the anchors and its 

directionality relative to other anchors. The algorithm attempts to arrange orientations 

of interacting CTCF motifs concordantly, which reflects the preference of CTCFs to 

have symmetric conformation in dimers (Tang, et al. 2015). The insertions detected 

in the 1000 Genomes Project are almost solely insertions of transposable elements, 

which do not introduce new CTCF binding sites to the genome. Nevertheless, our 

algorithm enables introducing new CTCF binding sites to domain structures. Along 

with such insertions, new contacts are introduced between the inserted anchors and 

their neighbors. 

The algorithm accounts also for SVs that miss the CTCF binding sites, but 

introduction of these results only in shortening or extending the corresponding 

chromatin loops. 

 

Comparison of CTCF interaction segments among different individuals 

In order to assess fraction of CTCF interaction segments conserved among different 

lymphoblastoid cell lines, we calculated a number of CTCF anchors identified in 

GM12878, which were intersected with CTCF ChIP-seq peaks called in the 

remaining lymphoblastoid cell lines.  

Since the available sets of CTCF ChIP-seq peaks for multiple lymphoblastoid 

cell lines (Kasowski, et al. 2013) differed highly in size (Supplementary Figure 27), 

we performed an additional filtering on them. Only those CTCF ChIP-seq peaks 

which intersected with consensus CTCF binding sites were selected for each of the 

lymphoblastoid cell lines. The consensus CTCF binding sites were collected from the 

Ensembl 92 database (Zerbino, Achuthan, et al. 2018). They were identified by: first, 

performing a genome segmentation based on a variety of genome-wide assays from 
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multiple cell types (including histone modification ChIP-seqs, TF ChIP-seqs, DNase-

seq) and selecting segmentation state corresponding to CTCF peaks; and second, 

annotating the position of CTCF binding sites within the peaks using JASPAR 

position weight matrix MA0139.1. For more details, see Ensembl website.  

The consensus CTCF binding sites were downloaded via BioMart interface 

(https://www.ensembl.org/biomart) in genomic coordinates of hg38 assembly and 

converted to hg19 coordinates using UCSC liftOver tool. 

Comparable datasets were obtained by the filtering (Supplementary Figure 

28). 

 

Aggregate analysis of ChIP-seq signals in altered interaction anchors 

In order to analyze the overall behavior of ChIP-seq signal in interacting genomic 

segments affected by deletions or duplications, we performed an aggregate analysis. 

The same procedure was applied regardless of SV type (deletion or duplication) and 

ChIP-seq target protein (CTCF or RNAPII). We describe it using an example of 

CTCF interacting segments affected by deletions. 

 First, CTCF anchors intersected by deletions exhibited by at least one of the 

10 lymphoblastoid cell lines with available CTCF ChIP-seq data (Kasowski, et al. 

2013) were identified. For each such anchor 200 bins were defined – 100 bins of 

equal size covering an anchor and 50 equal-size bins covering genomic regions 500 

bp upstream and downstream from the anchor. Averaged raw CTCF ChIP-seq signal 

was calculated in every bin for every sample. For each sample a mean of the signal 

over the whole genome was found and subtracted from the extracted binned signal 

values. The maximal mean from all the samples was then added to the values to 

make them positive. Obtained values were then averaged over the samples 
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exhibiting and not exhibiting the deletion. The log2 of the ratio of the signal values 

obtained for the first group to the ones obtained for the second group was calculated. 

The log2 fold changes calculated for all the anchors affected by deletions were then 

averaged and plotted in Supplementary Figure 7a. 

 

Histone marks and DNase-seq data 

H3K27ac, H3K4me3, H3K4me1 and DNase-seq data for GM12878 was downloaded 

from the ENCODE database in a form of bigWig files containing signal fold change 

over control. The data on histone marks was generated by the laboratory of Bradley 

Bernstein. The DNase-seq was performed by Gregory Crawford’s group. 
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Figure Legends 

Fig. 1 3D genome. Data aggregation and comparison. a, Comparison of Hi-C 
(lower-left) and ChIA-PET (upper-right) heatmaps of a 8.5 Mb genomic region in 10 
kb resolution. Annotation for chromatin loops (green) and domains (blue) from ChIA-
PET is presented on the heatmaps. The same ChIA-PET data is shown in a browser 
view together with ChIP-seq tracks for CTCF and cohesin subunits. The height of an 
arc indicates the strength of an interaction, which is measured by the number of 
clustered individual inter-ligation paired-end-tag products. Annotations of genes 
(GENCODE) and enhancers (ChromHMM) are presented. Arrows at genes mark 
direction of their transcription. b, Similar to (a), but a 0.8 Mb genomic region is 
presented in a heatmap in 1 kb resolution and in a browser view. c, 3D models of the 
genomic region marked in (a). For clarity, every topological domain in the region has 
a different color in the model. On the left, a single 3D model (centroid). On the right, 
an ensemble of 10 models with centroid model colored. Centroid is a structure most 
similar to all the others in an ensemble in terms of RMSD measure. d, 3D models of 
the genomic region shown in (b). Every loop has a different color. On the left, an 
ensemble of 10 structures. On the right, a single model (centroid) with functional 
genomic elements marked. e, Scheme presenting the chromatin modeling method at 
the level of loops. The method uses PET clusters, singletons and orientations of 
CTCF binding motifs to accurately model genome looping structures. f, Cumulative 
density plot showing the genomic span distribution of genomic structural elements 
identified in ChIA-PET and HI-C. 
 
Fig. 2 Impact of SVs on chromatin looping. a, Browser view of a 0.5 Mb genomic 
segment with asthma-associated SNP rs12936231 identified in a part of the human 
population. SNP rs12936231 alters sequence of a CTCF motif forming interactions. 
Haplotype-specific CTCF signals from 10 lymphoblastoid cells are presented along 
with haplotype-specific CTCF ChIA-PET interactions from GM12878. For each track, 
ChIP-seq signal values (originally in RPMs) were divided by the maximal value of the 
signal in the visualized region. Sum of the signal values over the genomic region 
occupied by the SNP-affected interaction anchor together with the genotype is 
marked in each signal track. b, Comparison of sequences and scores of CTCF 
binding motifs carrying the reference (C) and the alternative (G) alleles of 
rs12936231. c, Differences in gene transcription rates between genotypes set for 
rs12936231. Genes exhibiting differences in transcription which pass Mann-Whitney 
test with p-value < 0.05 were reported. d, CTCF anchors from GM12878 not 
intersected with CTCF ChIP-seq peaks identified in different lymphoblastoid cells. 
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The anchors were filtered by consensus CTCF binding sites (see Methods). e, 
Cumulative density plot of distances between CTCF ChIP-seq peaks located in 
GM12878 interaction anchors and closest CTCF ChIP-seq peaks from different 
lymphoblastoid cells. f, Number of SVs, divided by type, intersecting (in case of 
interaction anchors), covering (in case of CCD boundaries) or contained in (in case of 
CCDs and CCD gaps) different genomic structural elements. g, Density plot showing 
genomic span distribution of SVs by type. h, Predicted impact of particular SV types 
on looping structure of the genome. Simplified chromatin looping patterns and 3D 
models are presented for the reference and its SV-altered versions. 
 
Fig. 3 Impact of SVs on genome organization at the population scale. a, 
Browser view of a 1 Mb genomic segment with a deletion identified in a part of the 
human population. The deletion removes a CTCF anchor with enhancer (E) located 
in an intron of KIAA0391. CTCF ChIP-seq signals from 10 lymphoblastoid cells of 
different genotypes are presented for comparison. For each track, ChIP-seq signal 
values (originally in RPMs) were divided by the maximal value of the signal in the 
visualized region. The highest signal peak in the genomic region covered by the 
deletion is marked in each signal track. b, Close-up on the chromatin interactions 
affected by the deletion. c, 3D models of the domain shown in (a) with and without 
the deletion. Loops shown in (b) are colored, as presented on schematic drawings. 
The spot of the variation is zoomed in separate pictures. Every picture has its 
replicate, in which genes and enhancers are marked. Selected genes are signed 
(arrows are pointing towards the TSSs). d, Differences in gene transcription rates 
between genotypes set for the deletion. Genes exhibiting differences in transcription 
which pass Mann-Whitney test with p-value < 0.05 were reported. e, Euclidean 
distance between the NFKBIA promoter and enhancer E and mean distance between 
the promoter and enhancers located in the same CCD. In green, distribution of 
distances calculated in 3D models of the reference structure (REF), in magenta – in 
models with the deletion introduced (DEL). For each case 100 models were 
generated. The differences between REF and DEL groups are significant (p-values < 
0.001). f, Enrichment/depletion of genomic structural elements with SVs of different 
types and of different VAF (VAF < 0.001 and VAF ≥ 0.001). In case of CCD borders, 
only these fully imbedded in SV intervals are counted as affected, whereas for other 
structural elements ≥1 bp overlaps are counted. g, Enrichment/depletion of genomic 
structural elements with the 1000 Genomes Project SNPs, all GWAS SNPs, GWAS 
SNPs associated with hematological parameters (HP), and with autoimmune 
diseases (AI). 
 
Fig. 4 Role of chromatin rearrangements in regulation of gene transcription. a, 
Table summarizing identified eQTLs and their intersections with interaction anchors. 
b, Density plot showing genomic span distribution of PET clusters. d is the value 
(17,800 bp) by which eQTLs were split into proximal and distal. c, Venn diagram 
showing number of proximal (Prox) and distal eQTLs. d, Enrichment/depletion of 
genomic elements with eQTLs. e, Enrichment/depletion of genomic elements with 
eQTLs of housekeeping genes. f, Abundance of gene promoters in CCDs, in which 
eQTLs were identified. g, Distributions of chromatin loop density in CCDs in which 
eQTLs were identified and in other CCDs. The density is measured for a particular 
CCD as an average number of CTCF-/RNAPII-mediated chromatin loops covering a 
1 Mb fragment of this CCD. Differences between the groups are significant (p-values 
< 0.001). h, Linkage disequilibrium (measured as r2 value in the CEU population) 
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between deletions shown in (j) and (k). Colors are assigned to the deletions as in (j), 
(k) and (l). i, Signal strength of histone marks and DNase hypersensitivity sites in 
interaction anchors intersected with proximal eQTLs, distal eQTLs and not 
intersected by eQTLs. For each mark two plots are presented. A signal track around 
anchor center (±2 kb) showing values for each genomic position averaged over all 
anchors from a given group. A boxplot showing mean signal values in the same 
regions. Original signal values represent fold change over control. CTCF and RNAPII 
anchors were analyzed jointly. j, Browser view of a 0.4 Mb genomic segment with 5 
deletions identified in a part of the human population, which disrupt RNAPII anchors 
and are eQTLs for 6 neighboring genes (signed with the red font). Each deletion has 
its color. RNAPII ChIP-seq signals from 6 lymphoblastoid cells of different genotypes 
are presented for comparison. For each track, normalized ChIP-seq signal values 
were divided by the maximal value of the signal in the visualized region. Sum of the 
signal values over the genomic regions occupied by the deletions is marked in each 
signal track. H3K27ac, H3K4me3, H3K4me1 and DNase-seq signal tracks from 
GM12878 are shown. k, Close-up on the RNAPII-mediated interactions affected by 4 
of the 5 deletions. Only loops affected by the deletions are shown for clarity. l, Genes 
which transcription is correlated with one or more of the deletions shown in (j) and (k) 
(p-value < 0.001). Boxes with transcription rates associated with a particular deletion 
are marked with the color assigned to the deletion, as in (j) and (k). 
 
Fig. 5 TAL1 locus. a, Browser view of a topological domain containing TAL1 gene 
and a deletion causing its activation. The deletion removes CTCF insulating the TAL1 
promoter from enhancer (E). CTCF and RNAPII ChIA-PET interactions are shown 
along with ChIP-seq tracks for CTCF, cohesin subunits (RAD21 and SMC3) and 
H3K27ac which marks the enhancer E. b, Models presenting 3D structure of the 
TAL1 locus before and after introduction of the deletion removing CTCF. Chromatin 
loops forming the region have different colors, as presented on schematic drawings. 
Every picture has its replicate, in which TAL1 gene and enhancer E are marked. c, 
Euclidean distance between the TAL1 promoter and enhancer E and mean 
Euclidean distance between the promoter and enhancers located in the same CCD. 
In green, distribution of distances calculated in 3D models of the reference structure 
(REF), in magenta – in models with the deletion introduced (DEL). For each case 100 
models were generated. The differences between REF and DEL groups are 
statistically significant (p-values much less than 0.001). d, 3D model of the TAL1 
locus including RNAPII-mediated chromatin interactions. 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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