1	Generation of tumorigenic porcine pancreatic ductal epithelial cells:
2	toward a large animal model of pancreatic cancer
3	
4 5	Neeley Remmers ^{1,2} , Jesse L. Cox ³ , James A. Grunkemeyer ⁴ , Shruthi Aravind ^{1,2} , Christopher K. Arkfeld ^{1,2} , Michael A. Hollingsworth ⁴ , Mark A. Carlson ^{1,2,5*}
6	
7	¹ Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
8	² Surgery Department, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
9 10	³ Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
11	⁴ Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE, USA
12 13	⁵ Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
14	
15	
16	
17	
18	*Corresponding author
19	Email: macarlso@unmc.edu (MAC)
20 21	

22 Abstract

23

24	Background. A large animal model of pancreatic cancer would permit development of
25	diagnostic and interventional technologies not possible in murine models, and also would
26	provide a more biologically-relevant platform for penultimate testing of novel therapies, prior to
27	human testing. Here, we describe our initial studies in the development of an autochthonous,
28	genetically-defined, large animal model of pancreatic cancer, using immunocompetent pigs.
29	
30	Methods. Primary pancreatic epithelial cells were isolated from pancreatic duct of domestic
31	pigs; epithelial origin was confirmed with immunohistochemistry. Three transformed cell lines
32	subsequently were generated from these primary cells using expression of oncogenic KRAS and
33	dominant negative p53, with/without knockdown of p16 and SMAD4. We tested these cell lines
34	using in vitro and in vivo assays of transformation and tumorigenesis.
35	
36	Results. The transformed cell lines outperformed the primary cells in terms proliferation,
37	population doubling time, soft agar growth, 2D migration, and Matrigel invasion, with the
38	greatest differences observed when all four genes (KRAS, p53, p16, and SMAD4) were targeted.
39	All three transformed cell lines grew tumors when injected subcutaneously in nude mice,
40	demonstrating undifferentiated morphology, mild desmoplasia, and staining for both epithelial
41	and mesenchymal markers. Injection into the pancreas of nude mice resulted in distant
42	metastases, particularly when all four genes were targeted.

44	Conclusions. Tumorigenic porcine pancreatic cell lines were generated. Inclusion of four genetic
45	"hits" (KRAS, p53, p16, and SMAD4) appeared to produce the best results in our <i>in vitro</i> and <i>in</i>
46	vivo assays. The next step will be to perform autologous or syngeneic implantation of these cell
47	lines into the pancreas of immunocompetent pigs. We believe that the resultant large animal
48	model of pancreatic cancer could supplement existing murine models, thus improving preclinical
49	research on diagnostic, interventional, and therapeutic technologies.
50	

52 Introduction

53	In the United States in 2016, approximately 53,000 people (48% female) were diagnosed
54	with pancreatic cancer (~3.1% of all new cancer diagnoses), and there were ~42,000 deaths (49%
55	female) from pancreatic cancer (~7.0% of all cancer deaths) [1,2]. The lifetime risk for
56	pancreatic cancer is approximately 1 in 65 $[1,2]$. The incidence of pancreatic cancer has been
57	gradually increasing since the mid-1990's, and generally is higher in the African-American
58	population $[1,2]$. Pancreatic cancer is now is the fourth most common cause of cancer-related
59	death in both men and women (after lung, prostate, and colorectal cancer, or lung, breast, and
60	colorectal cancer, respectively) [1,2]. Despite apparent advances in treatment modalities and
61	strategies [3], mortality from pancreatic cancer has not decreased $[1,2]$. As of 2012, the U.S.
62	overall 5-year survival rate from pancreatic cancer was 7.7%; 5-year survival rates in localized,
63	regional (nodal spread), or metastatic disease were 29.3, 11.1, and 2.6%, respectively [1,2]. So
64	there remains a need for improved early diagnosis and therapy for pancreatic cancer.
65	Rodent models of pancreatic cancer may not accurately reflect human biology because of
66	differences in physiology, anatomy, immune response, and genetic sequence between the two
67	species [4-7]. Remarkably, only 5-8% of anti-cancer drugs that emerged from preclinical studies
68	and entered clinical studies have been ultimately approved for clinical use [8,9]. The cause of
69	this low approval rate is multifactorial, but likely includes the less-than-optimal predictive ability
70	of some murine models (e.g., tumor xenografting into immunosuppressed mice) to determine the
71	efficacy of various therapeutics in humans [4-6,10-14]. Moreover, there are a number of genes
72	for which the genotype-phenotype relationship is discordant between mice and human, including
73	$CFTR^{-/-}$ and $APC^{+/-}$ [15,16]. Incidentally, both the porcine $CFTR^{-/-}$ and $APC^{+/-}$ mutants reiterate

the human phenotype (pulmonary/GI disease and rectal polyposis, respectively) [*15-17*], in
contradistinction to the murine mutants.

76	In fairness, the recent trend to employ genetically-engineered mouse models (GEMM),
77	patient-derived xenografts (PDX), humanized mice, and in vivo site-directed CRISPR/Cas9
78	gene-edited mice in the testing of anti-cancer therapeutics may yield murine models with better
79	predictive ability than obtained with previously [6,18-22]. Though promising, these more
80	advanced murine models come with increased cost and complexity [20], and experience with
81	them still is early. Importantly, all murine models have limited utility in the development of
82	diagnostic or interventional technology that requires an animal subject whose size approximates
83	a human. So at present, there remains a need for improved animal models of pancreatic cancer
84	that (1) are more predictive of human response to anti-cancer therapy [20,22], and (2) are of
85	adequate size for development of specific technologies. Herein we describe some initial steps
86	taken in the development of a genetically-defined, autochthonous model of pancreatic cancer in
87	immunocompetent pigs.

89 Materials and Methods

90

91	Standards, rigor, reproducibility, and transparency
92	The animal studies of this report were designed, performed, and reported in accordance
93	with both the ARRIVE recommendations (Animal Research: Reporting of In Vivo Experiments
94	[23]) and the National Institutes of Health Principles and Guidelines for Reporting Preclinical
95	Research [24,25]; for details, refer to Tables S1 and S2, respectively.
96	
97	Materials and animal subjects

All reagents were purchased through Thermo Fisher Scientific (www.thermofisher.com) 98 unless otherwise noted. Short DNA sequences for vector construction, mutagenesis, and 99 amplification purposes are shown in Table S3. Antibody information is given in Table S4. Wild 100 101 type domestic swine (male and female; age 3 months at time of purchase; 30-32 kg) were 102 purchased from the Animal Research and Development Center of the University of Nebraska Lincoln (ardc.unl.edu). Athymic homozygous nude mice (Crl:NU(NCr)-Foxn1^{nu}; female; 8-9 103 104 weeks old) were purchased from Charles River Laboratories, Inc. (www.criver.com). Primers 105 utilized in this report (Table S3) were synthesized by Integrated DNA Technologies, Inc. 106 (www.idtdna.com). DNA sequencing was performed by the UNMC Genomics Core Facility 107 (www.unmc.edu/vcr/cores/vcr-cores/genomics). Oncopigs [26] were purchased from the 108 National Swine Resource and Research Center (NSRRC; www.nsrrc.missouri.edu). 109

110 Animal welfare

111	The animals utilized to generate data for this report were maintained and treated in
112	accordance with the Guide for the Care and Use of Laboratory Animals (8th ed.) from the
113	National Research Council and the National Institutes of Health [27], and also in accordance
114	with the Animal Welfare Act of the United States (U.S. Code 7, Sections $2131 - 2159$). The
115	animal protocols pertaining to this manuscript were approved by the Institutional Animal Care
116	and Use Committee (IACUC) of the VA Nebraska-Western Iowa Health Care System (ID
117	numbers 00927, 00937, 00998, and 01017) or by the IACUC of the University of Nebraska
118	Medical Center (ID number 16-133-11-FC). All procedures were performed in animal facilities
119	approved by the Association for Assessment and Accreditation of Laboratory Animal Care
120	International (AAALAC; www.aaalac.org) and by the Office of Laboratory Animal Welfare of
121	the Public Health Service (grants.nih.gov/grants/olaw/olaw.htm). All surgical procedures were
122	performed under isoflurane anesthesia, and all efforts were made to minimize suffering.
123	Euthanasia was performed in accordance with the AVMA Guidelines for the Euthanasia of
124	Animals [28].
125	
126	Porcine operative procedures
127	Further details on transgenic porcine subjects and related welfare, safety, husbandry,
128	operative procedures, and perioperative management are given in the Supporting Information.
129	
130	Isolation of porcine pancreatic ductal epithelial cells
131	A detailed protocol for isolation of porcine pancreatic ductal epithelial cells is provided
132	in the Supporting Information (Protocol S1). In brief, the intact pancreas from male porcine
133	research subjects (age 5 mo) was harvested within 5 min after euthanasia, which was

134	accomplished by transection of the intrathoracic inferior vena cava and exsanguination while
135	under deep isoflurane anesthesia. These pigs had been on a protocol to study biomaterials within
136	skin wounds of the dorsum. The subject had not received any recent medication other the
137	anesthetics given for euthanasia; buprenorphine and cefovecin sodium had been given 4 weeks
138	prior to euthanasia. Immediately after explantation of the pancreas, the main pancreatic duct was
139	dissected sterilely with micro instruments from the organ body under 3.5x loupe magnification.
140	The duct then was mechanically digested by passage through a 70 µm sieve (Corning [™] Sterile
141	Cell Strainers, Thermo Fisher Scientific, cat. no. 07-201-431).
142	The collected fragments were enzymatically digested with 1 mg/mL of Collagenase D at
143	37° C for 1 h with gentle shaking. The cells were pelleted (600 g x 5 min), the supernatant was
144	discarded, the cell pellet was resuspended in whole media, which was defined as: DMEM (high
145	glucose with L-glutamine; Thermo Fisher Scientific, cat. no. 12100-046) supplemented with
146	10% (final concentration) fetal bovine serum (FBS; Thermo Fisher Scientific, cat. no. 26140079)
147	and 1% Antibiotic-Antimycotic Solution (Corning Inc., cat. no. 30-004-CI; cellgro.com). Cell
148	concentration in the resuspension was determined with a hemocytometer, and cells then were
149	diluted and pipetted into a 96-well plate (1-10 cell/well, 100-200 μ L/well). After 5-7 days of
150	culture under standard conditions (whole media, 37°C, 5% CO ₂), wells that contained cells with
151	epithelial-like morphology were trypsinized and re-plated into a new 96-well plate, in order to
152	dilute out any fibroblasts. Cells were passaged in this fashion at least four times, until no cells
153	with fibroblast morphology were present. The resulting cells were passaged up to a T25 flask,
154	and maintained with standard conditions.
155	

156 Generation of p53 and KRAS mutants and construction of

157 **expression vector**

158	In order to generate the porcine p53 ^{R167H} mutant, wild-type p53 cDNA first was amplified
159	from cervical lymph node tissue, which was obtained <5 min after euthanasia of a 4-month-old
160	male domestic swine that had been on an unrelated research protocol. In brief, fresh nodal tissue
161	was flash-frozen in liquid N_2 and then pulverized with a mortar and pestle, with continual
162	addition of liquid N_2 during pulverization. The frozen powder then was placed into the first
163	buffer solution of the QIAGEN RNEasy Mini Kit (cat. no. 74104; www.qiagen.com), and total
164	RNA was isolated per the manufacturer's instructions.
165	After isolation, the total RNA underwent reverse transcription to cDNA with a Verso
166	cDNA Synthesis Kit (Thermo Fisher Scientific, cat. no. AB1453A), per the manufacturer's
167	instructions. The wild type p53 sequence was amplified out of the cDNA using the PCR primers
168	shown in Table S3, which flanked the p53 cDNA with SalI and BamHI restriction sites.
169	Successful amplification of the wild-type p53 cDNA was confirmed by inserting the amplified
170	candidate sequence into the TOPO [®] vector (TOPO [®] TA Cloning [®] Kit; Invitrogen TM /Life
171	Technologies [™] , Thermo Fisher Scientific, cat. no. K202020) per the manufacturer's
172	instructions, followed by sequencing.
173	Site-directed mutation of wild-type p53 into p53 ^{R167H} was performed using Agilent
174	Technologies' QuickChange II Site-Directed Mutagenesis Kit (cat. no. 200523;
175	www.genomics.agilent.com) with the mutagenic primers shown in Table S3, per the
176	manufacturer's instructions. Presence of the p53 ^{R167H} mutation was verified by sequencing as
177	described above. The multiple cloning site of a pIRES2-AcGFP1 Vector (Takara Bio USA, Inc.,

178	cat. no. 632435; www.clontech.com; manufacturer's vector information included as Fig. S1) was
179	cut with <i>Sal</i> I and <i>Bam</i> HI, and the p53 ^{R167H} sequence then was ligated into this plasmid.
180	The source of the porcine KRAS ^{G12D} mutant was the plasmid used to generate the
181	p53/KRAS Oncopig [26,29]. The KRAS ^{G12D} cDNA was amplified out of this plasmid with
182	primers (see Table S3) that flanked the sequence with XhoI and PstI restriction sites. The
183	amplified product was inserted into the TOPO vector and verified by sequencing, as described
184	above. The above pIRES2-AcGFP1 Vector (already containing the p53 ^{R167H} sequence) then was
185	cut with <i>Xho</i> I and <i>Pst</i> I, and the KRAS ^{G12D} sequence was ligated into this plasmid, producing a
186	pIRES2-AcGFP1 Vector which contained both mutant cDNAs within its multiple cloning site
187	(KRAS ^{G12D} upstream).
188	The newly-constructed plasmid, hereafter designated as GKP ($G = AcGFP1$; $K =$
189	KRAS ^{G12D} ; $P = p53^{R167H}$), was transformed into One Shot TM Stbl3 TM Chemically Competent <i>E</i> .
190	coli (Invitrogen TM /Thermo Fisher Scientific, cat. no. C737303), per the manufacturer's
191	instructions, and plasmid DNA subsequently was isolated using a QIAGEN Plasmid Maxi Kit
192	(cat. no. 12162), per the manufacturer's instructions. This plasmid then was transfected into
193	Takara's Lenti-X [™] 293T cells (Clontech, cat. no. 632180), using Takara's Xfect [™] Transfection
194	Reagent (Clontech, cat. no. 631317), per the manufacturer's instructions, to generate infectious
195	lentiviral particles that would direct expression of AcGFP1, KRAS ^{G12D} , and p53 ^{R167H} mutants in
196	transduced cells.
197	
198	Generation of shRNA-expressing vectors
199	Short hairpin RNA (shRNA) constructs targeting the porcine SMAD4 and p16 genes

200 were created using InvivoGen's siRNA Wizard[™] software (www.invivogen.com/sirnawizard).

201	Three targeting sequences for each gene along with scrambled controls initially were generated
202	and tested. The shRNA construct that demonstrated the best target knock-down in preliminary
203	experimentation (as verified by PCR, data not shown) was utilized for subsequent experiments
204	(see Table S3 for sequences ultimately selected for the shRNA constructs). Primers were cloned
205	into the psiRNA-h7SKhygro G1 and psiRNA-h7SKneo G1 vectors (InvivoGen, cat. no. ksirna3-
206	h21 and ksirna3-n21, respectively; www.invivogen.com) and plasmids then were isolated, all per
207	the manufacturer's protocol.

208

209 **Cell transformations**

210 Primary porcine pancreatic epithelial cells in T75 flasks were grown to 80% confluency 211 under standard conditions. The media then was exchanged with 2-3 mL of supernatant from non-212 lysed Lenti-XTM 293T cells (containing GKP viral particles) with 2 µg/mL polybrene (cat. no. 213 TR1003, Thermo Fisher Scientific). After 24-48 h at 37°C, treated epithelial cells were re-seeded 214 into 6-well plates under standard conditions and grown to 80% confluency. An exchange with whole media containing 2 µg/mL G418 aminoglycoside antibiotic then was performed; the G418 215 216 dose was chosen based on preliminary dose-response studies against non-treated epithelial cells. 217 After 24 h, a whole media exchange was done, and the presence of transduced cells was 218 determined with inverted GFP fluorescent microscopy of living cells. Subsequent transfections 219 for RNAi were done with the above plasmids employing shRNA sequences against SMAD4 220 and/or p16, and using the LyoVecTM reagent (InvivoGen, cat. no. lyec-12), all per the manufacturer's protocol. Transfected cells then were selected for expression of the shRNA 221 222 vector using the appropriate aminoglycoside antibiotic (G418 or hygromycin B).

224 **PCR**

225	Cell and tissue RNA was isolated using the QIAGEN RNEasy Mini Kit. Purified RNA
226	then was used to generate cDNA using the Verso cDNA Synthesis Kit. The Platinum® Blue
227	PCR Supermix (Invitrogen TM /Life Technologies, cat. no. 12580) subsequently was used for all
228	PCR reactions. Amplified products were separated with agarose gel electrophoresis, and then
229	visualized using a UV-light box. qPCR was performed using the PowerUp [™] SYBR® Green
230	Master Mix (Applied Biosystems TM / Thermo Fisher Scientific, cat. no. A25741) per
231	manufacturer's protocol, and run on an Applied Biosystems TM 7500 Fast Dx Real-Time PCR
232	Instrument. Fold changes in gene expression were calculated using the comparative $C_{\rm T}$ method
233	[30]. All primers used are listed in Table S3.
234	
235	Immunoblotting
236	Western blot analysis was performed to confirm overexpression of the mutant p53 protein
237	(see Table S4 for a list of antibodies used), as previously described [31]. An antibody specific for
238	the mutant KRAS protein was not commercially available. Antibody expression was visualized
239	using the Li-Cor Odyssey Electrophoresis Imaging System (www.licor.com).
240	
241	Soft agar assay
242	A standard soft agar assay [32] was used to determine anchorage independent growth. A
243	base layer of 1% agarose was plated into 6-well plates. A total of 2,500 cells/well were mixed
244	with 0.7% agarose and plated on top of the base layer. The plates were incubated under standard
245	conditions for 21 days. The cells then were stained with crystal violet, and counted using an

inverted microscope. Cells were plated in triplicate, and total counts from all three wells wereaveraged.

248

249 **Migration assay**

250	A standard scratch assay (monolayer wounding) [33] was performed to determine cellular
251	migration rate. Cells were plated in triplicate into 6-well plates. A horizontal scratch using a 10
252	μ L pipet tip was made in each well. After washing away scratched-off cells, baseline images
253	along the scratch were obtained, the plates were incubated under standard conditions, and
254	subsequent images were captured at 3, 6, 9, 12, and 15 h after the initial scratch. ImageJ software
255	(imagej.nih.gov/ij) was used to measure the distance between the two migrating cellular fronts
256	(scratch edges) at 3-5 locations along the scratch. Average distance at each time point was
257	plotted to generate the migratory rate (μ m/h).

258

Invasion assay

BioCoatTM MatrigelTM Invasion Chambers (CorningTM, Thermo Fisher Scientific, cat. no. 08-774) were plated with 50,000 cells (upper chamber) in triplicate, and incubated under standard conditions for 24 h. The media from the upper chamber then was removed, and any cells remaining in the upper chamber were removed using a cotton swab. Cells that had migrated to the bottom of the membrane were stained using a Kwik-DiffTM kit (ShandonTM, Thermo Fisher Scientific, cat. no. 9990701). Membranes were mounted onto glass slides, and cells per highpower field were counted using ImageJ software.

267

268 **Population doubling assay**

269	Cells were plated in 6-well plates (20,000 cell/well), and cultured under standard
270	conditions. Triplicate plates then were trypsinized on days 1, 2, 3, 4, 6, and 8, and cells were
271	counted with a hemocytometer. Cell number vs. day was plotted to determine the day range in
272	which linear growth was achieved. The data from this linear growth phase were used to
273	determine population doubling time (DT) using the formula: $DT = (\Delta t) \times \ln(2) \div \ln(N_f/N_i)$
274	where Δt = time interval between initial and final cell count, N _f = cell count at final time, and N _i
275	= cell count at initial time.

276

277 **Proliferation assay**

278 Relative cell proliferation rates were assayed using an MTT (3-(4,5-dimethylthiazol-2vl)-2,5-diphenyltetrazolium bromide) assay kit (Vybrant[™] MTT Cell Proliferation Assay Kit, 279 280 Invitrogen[™], Thermo Fisher Scientific, cat. no. V13154). Cells were plated in triplicate in a 96-281 well plate (5,000 cell/well), and cultured under standard conditions for 48 h. MTT reagent then 282 was added to the cells per the manufacturer's instructions, followed by addition of the solvent 283 solution 3.5 h later. Absorbance was measured with a plate reader 3.5 h after solvent addition. Mean absorbance was normalized to absorbance from wild type pancreatic ductal epithelial cells 284 to calculate fold-difference in proliferation. 285

286

Immunofluorescence and immunohistochemistry

Antibodies used in immunofluorescent and immunohistochemical experiments are listed in Table S4. Agilent Dako EnVision kits (www.agilent.com) were used for all IHC analyses per the manufacturer's instructions.

292 Subcutaneous tumorigenic cell injection

293 Subcutaneous implantation of tumorigenic cells was performed as previously described 294 [34], with some modifications. Transformed porcine pancreatic ductal epithelial cells (the three 295 lineages described in Table 1) were trypsinized, counted, and resuspended in DMEM at a 296 concentration of 1×10^7 viable cells/mL. Nude mice (N = 30; 100% female; maintained in microisolator cages with soft bedding and fed regular chow) were randomized into three 297 298 treatment groups (representing each transformed cell line in Table 1; N = 10 mice per group, 299 100% female) using an online randomization tool. Mice then were injected with 5×10^6 cells 300 (500 µL) into the right hind flank under brief isoflurane inhalational anesthesia, administered 301 with a Matrx VMS® small animal anesthesia machine, within a small animal operating room. 302 Tumors were allowed to grow for 6 weeks or until they reached 2 cm in diameter, as measured 303 with a caliper, and then subjects were euthanized using an AVMA-approved [28] method of CO₂ 304 asphyxiation. At necropsy all gross tumor was measured and collected, portions underwent 305 formalin fixation and paraffin embedding, and sections subsequently underwent H&E or 306 immunohistochemical staining as described above. An independent, a blinded pathologist 307 analyzed the stained sections to determine whether tumors were epithelial in origin, and if they 308 displayed malignant features.

309

Orthotopic tumorigenic cell injection

311 Orthotopic implantation of tumorigenic cells was performed as previously described [*34*] 312 to analyze metastases and desmoplasia. In brief, transformed porcine pancreatic ductal epithelial 313 cells (the three lineages described in Table 1) were trypsinized and counted, and 1×10^4 viable 314 cells were suspended into 20 µL DMEM. Nude mice (N = 36; 100% female) housed as described

315	above were randomized into three treatment groups (representing each transformed cell line in
316	Table 1; N = 12 per group, 100% female) using an online randomization tool. The 20 μ L cell
317	suspension then was injected with a 20-gauge needle into the pancreas of each nude mouse
318	through a 5 mm incision in the left upper quadrant, under isoflurane anesthesia within a small
319	animal operating room. Mice were euthanized 6 weeks after injection using CO ₂ asphyxiation as
320	described above, and tumors and organs were harvested for gross and histologic analysis, as
321	described in the previous paragraph.

- 322

Statistics and power analysis 323

324 Data are reported as mean \pm standard deviation. Groups of continuous data were 325 compared with ANOVA and the unpaired t-test. Categorical data were compared with the Fisher 326 or Chi square test. For the power analysis of the murine subcutaneous tumor implant assay, tumor diameter was selected as the endpoint. Setting alpha = 0.05 and power = 0.8, ten mice per 327 328 group were needed across three groups to detect a difference in means of 30% with the standard 329 deviation estimated at 20% of the mean. In the orthotopic implantation assay, N = 10 mice per 330 treatment group across three treatment groups were needed to detect a 100% difference in effect (+tumor) at a single metastatic site (with alpha set at 0.05 and power = 0.8); or, combining all 331 seven metastatic sites together, N = 10 mice per group were needed to detect a 40% difference in 332 333 effect.

334 **Results**

335

Isolation of primary porcine pancreatic ductal epithelial cells

337 Cells cultured from micro-dissected pancreatic ducts displayed epithelial morphology
338 under phase microscopy and stained for CK19 (an established marker of pancreatic ductal

epithelium [35]; Fig. 1A-B). Based on these results, we were confident that we had a population

of pancreatic epithelial cells that we could use to generate tumorigenic cell lines.

341

342 Generation of tumorigenic cell lines

In order to transform our primary porcine pancreatic ductal epithelial cells, we first 343 generated a lentiviral construct containing $KRAS^{G12D}$ and $TP53^{R167H}$, genes previously identified 344 [29] as the porcine equivalents to the mutant KRAS and TP53 which are present in multiple 345 346 human cancers [36-40]; in the mouse, expression of these mutants was the basis for the 347 KRAS/p53 genetically engineered murine model of pancreatic cancer [41]. For our model, we 348 chose to use a lentiviral platform for the vector, because its genome would be large enough to 349 accommodate insertion of both mutant genes; in addition, we believed that a lentivirus would be 350 optimal for transforming primary cells. 351 Since initial sequencing of the porcine genome has been accomplished [42], we were able to utilize the National Library of Medicine's nucleotide BLAST® database 352 353 (blast.ncbi.nlm.nih.gov/blast.cgi) to determine the porcine genetic equivalents for human SMAD4 354 and *CDKN2A*. We then designed primers (Table S3) to amplify these two genes from genomic 355 DNA isolated from skin of a healthy domestic pig. We sequenced our amplification products,

356	and accessed the BLAST® database to confirm that our products aligned with the porcine
357	SMAD4 and CDKN2A gene sequences. We then proceeded to generate lentiviral constructs to
358	transform primary porcine pancreatic ductal epithelial cells into cell lines expressing various
359	combinations of mutant KRAS and p53, SMAD4 shRNA, and p16 ^{Ink4A} shRNA (see cell line
360	definitions in Table 1), as described under Materials and Methods.
361	Primary porcine epithelial cells next were transduced with the GKP lentivirus to generate
362	transformed cell lines. Overexpression of KRAS ^{G12D} and p53 ^{R167H} was confirmed in these cell
363	lines with qPCR and immunoblotting (Fig. 1C-E). Of note, we could not obtain a reliable
364	antibody to detect porcine KRAS with immunoblotting, so we had to rely on qPCR results and
365	expression of GFP as markers of KRAS ^{G12D} expression. Preliminary <i>in vitro</i> analyses to probe
366	the tumorigenic properties of these GKP-transformed cell lines demonstrated modest increases in
367	soft agar colony formation and migration speed over wild type cells (Fig. 2A & B). Interestingly,
368	the cell line (2.22) with the best performance in the soft agar and migration assays had only
369	modest overexpression of KRAS ^{G12D} and p53 ^{R167H} (Fig. 1 & 2); in contrast, the cell lines with
370	the highest mutant overexpression performed relatively poorly in these in vitro assays of
371	"tumorigenesis" (i.e., evidence of transformed behavior in cell culture).
372	While in vitro experiments were being performed, in vivo pancreatic tumor induction was
373	attempted utilizing a transgenic mini-pig available from the NSRRC. Known as the "Oncopig,"
374	[26], this subject carries an LSL-cassette containing the dominant negative $TP53^{R167H}$ and the
375	activated KRAS ^{G12D} sequences [26,43,44]; i.e., this subject is the porcine analog of the
376	KRAS/p53 mouse [41,45]. As demonstrated previously, site-specific expression of Cre
377	recombinase in the Oncopig resulted in localized p53 inhibition and KRAS activation, while
378	subcutaneous injection of AdCre produced mesenchymal tumors at the injection sites [26]. We

379	injected Cre recombinase into the pancreas of five Oncopigs (Protocol S2; Fig. S2; Tables S5
380	and S6). After four months, we observed no gross tumors. However, there was
381	immunohistochemical evidence of transgene expression at the pancreatic injection sites along
382	with numerous microscopic proliferative lesions with desmoplastic features (Fig. S2).
383	Based on the modest evidence of <i>in vitro</i> transformation and the lack of gross <i>in vivo</i>
384	tumorigenesis using expression of p53 ^{R167H} and KRAS ^{G12D} only, we decided that additional
385	oncogenic stress might be helpful to increase the tumor-like properties of transformed pancreatic
386	ductal epithelial cells. Utilizing cell line 2.22 (hereafter referred to PGKP; see Table 1), which
387	had relatively good performance in the soft agar and migration assays (Fig. 2A & B), sequential
388	transduction with lentiviral constructs expressing shRNA against SMAD4 and then $p16^{Ink4A}$ was
389	performed to generate cell lines PGKPS and PGKPSC (see Table 1), respectively. RT-PCR then
390	was used to confirm knockdown of the targeted transcripts in these two cell lines (Fig. 2C).

391

392 *In vitro* tumorigenic properties of transformed cells

The *in vitro* "tumorigenic" properties of the PGKP, PGKPS, and PGKPSC cell lines first 393 were compared with the soft agar and migration assays (Fig. 2D & E). Addition of SMAD4 ± 394 p16^{Ink4A} knockdown enhanced the ability of transformed cells to form colonies in soft agar and 395 increased their migration speed (2D wounding assay), particularly when both transcripts were 396 targeted (i.e., the PGKPSC line). We then compared population doubling time, proliferation 397 398 (metabolic dye conversion), and Matrigel® invasion ability among the three transformed lines with respect to wild type cells (Fig. 3A-C). Both the PGKPS and PGKPSC cell lines had greater 399 400 proliferation and invasive ability compared to either wild type cells or the PGKP cell line (Fig. **3B, C**). The doubling time for all three transformed cell lines was approximately the same at ~ 15 401

402	h, compared to the ~4 d doubling time of wild type cells (Fig. 3A). Based on the <i>in vitro</i> assays
403	of tumorigenesis, we suspected that all three of our transformed cell lines had the potential to
404	form tumors in vivo, albeit to varying degrees. We subsequently decided to compare the in vivo
405	tumorigenicity among all three cell lines in an immunodeficient mouse model.
406	
407	Subcutaneous and orthotopic tumor transplants in immunodeficient
408	mice
409	In order to determine if our cell lines retained their tumorigenic properties in vivo, we
410	utilized homozygous athymic mice to generate subcutaneous and orthotopic cell implantation
411	models. The subcutaneous model was used to assess in vivo tumor growth. All three cell lines
412	grew sizeable tumors (>1 cm diameter) within 6 weeks; growth rates were not statistically
413	different among the three cell lines (Fig. 4A & B). The subcutaneous tumors were well-
414	vascularized and mucinous in gross appearance (Fig. 4A). Confirmation of GKP lentiviral
415	transduction was demonstrated with immunohistochemistry of the p53 ^{R167H} mutant in
416	subcutaneous tumors (Fig. S3).
417	Tumors from the subcutaneous implant model then underwent immunohistochemical
418	staining with an array of epithelial and mesenchymal markers (Fig. 5). The distribution of
419	staining for the epithelial markers (E-cadherin, epithelial cell adhesion molecule, pan-
420	cytokeratin, cytokeratin-19) generally was more diffuse than the mesenchymal marker staining.
421	In some regions the epithelial marker staining was clustered and intense. The overall abundance
422	of staining for the epithelial markers appeared greater in the PGKPS and PGKPSC lines with
423	respect to the PGKP line. The distribution of staining for the mesenchymal markers (α -smooth
424	muscle actin, vimentin, and type I collagen) was variable, sometimes appearing in cords or

strands in some sections, reminiscent of the desmoplastic reaction in human pancreatic cancer
[46,47]. In other sections, mesenchymal marker staining was minimal. Similar to the epithelial
markers, the overall abundance of staining for the mesenchymal markers appeared greater in the
PGKPS and PGKPSC lines compared to the PGKP line.

429 With the immunohistochemical studies of the subcutaneous tumors demonstrating some 430 epithelial characteristics, the nude mouse orthotopic implantation model was used next to assess the metastatic potential of all three cell lines. The percentage of mice implanted with each cell 431 line that subsequently developed metastasis in the small bowel, diaphragm, liver, lung, lymph 432 433 node, peritoneum, or spleen is shown in Fig. 4C. The degree of metastatic spread was minimal; 434 nodal tissue was the only metastatic site common to all three lines. The PGKPCS cell line 435 exhibited the greatest array of metastatic spread (p < 0.002, Chi-square), with the most common 436 site being the spleen (though it was not clear in two of five mice with splenic disease after 437 PGKPSC implantation whether the spleen was involved with extension from the primary tumor, 438 or from direct seeding, or whether these were true metastases). Interestingly, one of the two 439 subjects with liver metastasis after PGKPSC implantation had primary tumor within the 440 gallbladder, rather than within the pancreas. Similar to the subcutaneous tumor model, most 441 tumors in the orthotopic model were well-vascularized and mucinous in gross appearance.

442

445 **Discussion**

446

465

444

447	Our overall goal with this project was to generate tumorigenic pancreatic cell lines that
448	could be used in an immunocompetent porcine model of pancreatic cancer. Current murine
449	models for pancreatic cancer will continue to be helpful, particularly for the study of molecular
450	mechanisms. However, murine models are limited in their ability to replicate human biology and
451	size, so a large animal model of pancreatic cancer likely would enhance our ability to develop
452	and test new diagnostic and treatment modalities for this disease. The data presented herein
453	demonstrated that wild type porcine pancreatic ductal epithelium can be transformed with
454	modulation of common tumor-associated target genes, and that these transformed cells
455	subsequently can grow tumors in immunodeficient mice. These data provide a pathway for the
456	construction of an autochthonous porcine model of pancreatic cancer, namely, orthotopic
457	implantation of tumorigenic pancreatic cells. Proof-of-principle for tumor growth in pigs using
458	subcutaneous implantation of ex-vivo transformed autologous fibroblasts was demonstrated in
459	2007 [29].
460	Porcine biomedical models have been used for decades in the fields of trauma and
461	hemostasis [48], xenotransplantation [49,50], dermal healing [51], toxicology [52],
462	atherosclerosis [53], and cardiac regeneration [54]; the utility of these models is growing. A
463	porcine genome map was generated in 2012 [42], and further coverage, annotation, and
464	confirmation is ongoing [55,56]. Porcine-centered online tools and databases are now available

466 expression [29,58-65]) with similar tools as used in the mouse is becoming more routine, with

[57]. Genetic manipulation of pigs (including knockouts, tissue-specific transgenics, inducible

467	new gene-edited porcine models emerging in 2015-2017 for diseases such as atherosclerosis,
468	cystic fibrosis, Duchenne muscular dystrophy, and ataxia telangiectasia [44,66,67].
469	The rationale to build a porcine model of pancreatic cancer is (1) to have a platform for
470	diagnostic/therapeutic device development otherwise not achievable in murine models; and (2) to
471	have a highly predictive preclinical model in which anti-cancer therapies (including
472	immunotherapies) could be vetted/optimized prior to a clinical trial [68]. The rationale to use the
473	pig in this modeling effort is that this species mimics human genomics [55,69-72], epigenetics
474	[73], physiology [52,69,74,75], metabolism [69,75,76], inflammation and immune response
475	[72,77-81], and size [75,82] remarkably well (in particular, better than mice), with reasonable
476	compromises towards cost and husbandry [75]. So based on the pig's relatively large size and its
477	proven track record in replicating human biology which, incidentally, is a demonstrably better
478	replication than can be obtained with rodents, we selected swine as the model organism for this
479	pancreatic cancer project.
480	Research on immunocompetent large animal cancer models [83-85] includes prostate
481	cancer, for which there is a canine model [86]. In addition, in 2012 a group in Munich reported
482	the engineering of (i) an APC mutant pig that developed rectal polyposis [16,87] and (ii) a pig
483	with Cre-inducible p53 deficiency [63]. This group subsequently determined that their p53-null
484	subjects (TP53 ^{R167H/R167H}) developed osteosarcoma by age 7-8 months [88]. Other p53-deficient
485	pigs have been engineered since this initial report [64,89]; in the report from Iowa, half (5 out of
486	10) of p53-deficient (TP53 ^{R167H/R167H}) pigs developed lymphoma or osteogenic tumor at age 6-18
487	months [64]. A group in Denmark reported the creation of a BRCA mutant pig in 2012. [90].
488	A KRAS/p53 "Oncopig" was reported in 2015 [26,43,44,84]. This subject has a somatic

489 LSL-cassette that can express dominant negative p53 (R167H mutation) and activated KRAS

490	(G12D mutation); i.e., the porcine analog of the KRAS/p53 mouse [41,45]. Site-specific
491	expression of Cre recombinase in the Oncopig resulted in localized p53 inhibition and KRAS
492	activation; subcutaneous injection of AdCre produced mesenchymal tumors at the injection sites
493	[26]. In 2017, initial work was published on a Oncopig-based model of hepatocellular carcinoma
494	[91]. Also in 2017, another genetic porcine model of intestinal neoplasia was reported [92],
495	utilizing inducible expression of KRAS ^{G12D} , c-Myc, SV40 large T antigen, and retinoblastoma
496	protein (pRb). One out of three pigs total in this model developed duodenal neuroendocrine
497	carcinoma with lymph node metastasis at two months after induction. A porcine model of
498	pancreatic cancer has not yet been reported, other than some preliminary data presented by us in
499	2017 [93].
500	The process we used for developing transformed porcine pancreatic ductal epithelial cell
501	lines for future orthotopic implantation was somewhat iterative, in that we modified our strategy
502	along the way based on our early results. Commonly mutated genes in pancreatic cancer include
503	KRAS [94,95] and TP53 [95-97]. In mice, somatic activation of KRAS via the G12D mutation
504	(KRAS ^{G12D}) produced widely metastatic pancreatic tumors; survival duration in these subjects
505	decreased further with p53 inactivation [41]. Based on this murine model, and the published
506	success with subcutaneous tumor induction in the KRAS/p53 Oncopig [26], we elected to
507	transform pancreatic ductal epithelial cells with expression of activated $KRAS^{G12D}$ and $p53^{R167H}$
508	only. However, the initial results from our in vitro transformation assays with these two gene
509	edits (i.e., the PGKP cell line of Table 1) were somewhat underwhelming. Combined with the
510	finding of no gross tumor four months after pancreatic AdCre injection in five Oncopig subjects,
511	we decided that additional genetic "hits" might be necessary for transformation of porcine
512	pancreatic ductal epithelial cells. Of note, Schook et al. [29] found that porcine dermal

513 fibroblasts required six genetic edits (human telomerase reverse transcriptase, dominant negative p53, cyclin D1, activated cyclin dependent kinase, oncogenic c-Myc, and oncogenic H-Ras) to 514 515 optimize the tumorigenic phenotype of this particular cell. 516 Other commonly mutated genes in pancreatic cancer include SMAD4 [95,98] and CDKN2A [95,99]. Deletion of SMAD4 or CDKN2A in a KRAS^{G12D} murine pancreatic cancer 517 518 model enhanced tumor growth [100, 101]. Based on these published data and our above transformation results with just the KRAS and TP53 edits, we elected to add knockdown of 519 520 SMAD4 and p16 to our list of hits for transformation of porcine pancreatic ductal epithelial cells. 521 Ultimately, all three of our cell lines (Table 1) demonstrated transformed behavior *in vitro* and 522 the ability to form tumors *in vivo* (nude mice), with perhaps some enhancement by the addition 523 of SMAD4 and p16 knockdown. In the future, we intend to utilize CRISPR/Cas9 editing to 524 disrupt the genes of these and/or other targets. 525 Although we utilized a relatively high number of cells to obtain tumor formation in our nude mice experiments, we feel that this is due to the relative young age of our cell lines, which 526 527 did not undergo as many passages as other cell lines which have been used to study pancreatic 528 cancer. Thus, the transformed cell lines in this report likely did not undergo an inadvertent 529 selection for the fastest growing cells, as may occur in older, extensively-passaged lines. 530 Regarding the lack of desmoplasia in our murine xenograft model, we did not consider this 531 surprising, in that most immunodeficient murine models of pancreatic cancer do not recapitulate 532 the extent of desmoplasia or metastasis seen with human disease. We anticipate that future experiments involving the implantation of transformed pancreatic ductal epithelial cells into wild 533 534 type swine (and thus into a "normal" microenvironment with "normal" immunoediting) will 535 produce tumors with desmoplasia and metastasis.

536	Of note, the pathologic findings in our five Oncopig subjects, while not macroscopically
537	tumorous, displayed tissue architecture reminiscent of desmoplasia. Regarding the lack of
538	macroscopic tumor in these transgenic pigs, it is conceivable that the induction process was not
539	optimal secondary to an inadequate dose of AdCre, inadequate recombinase activity, inadequate
540	tissue delivery of the enzyme, or some other technical issue. Our future plans in this respect will
541	involve additional attempts at induction of pancreatic tumor in the Oncopig with and without
542	introduction of some additional gene edits, such as local disruption of SMAD4 and CDKN2A
543	(e.g., with in vivo CRISPR/Cas9 gene editing [102,103]).

544 **References**

545	1.	American Cancer Society. Cancer Facts & Figures 2016. Atlanta: American Cancer
546		Society; 2016. Available from:
547		http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/index.
548	2.	SEER (Surveillance, Epidemiology, and End Results Program) Stat Fact Sheets:
549		Pancreas Cancer. National Cancer Institute. Accessed December 12, 2016. URL:
550		http://seer.cancer.gov/statfacts/html/pancreas.html.
551	3.	National Comprehensive Cancer Network. Pancreatic Adenocarcinoma, Version 1.2018.
552		In: NCCN Clinical Practice Guidelines In Oncology (NCCN Guidelines®). NCCN; 27
553		April 2018. Available from: <u>www.nccn.org</u> .
554	4.	Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic
555		responses in mouse models poorly mimic human inflammatory diseases. PNAS 2013;
556		110(9): 3507-12. PMID: 23401516. doi: 10.1073/pnas.1222878110.
557	5.	Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research.
558		Nature 2012; 483(7391): 531-3. PMID: 22460880. doi: 10.1038/483531a.
559	6.	Cook N, Jodrell DI, Tuveson DA. Predictive in vivo animal models and translation to
560		clinical trials. Drug Discov Today 2012; 17(5-6): 253-60. PMID: 22493784. doi:
561		10.1016/j.drudis.2012.02.003.
562	7.	Le Magnen C, Dutta A, Abate-Shen C. Optimizing mouse models for precision cancer
563		prevention. Nat Rev Cancer 2016; 16(3): 187-96. PMID: 26893066. doi:
564		10.1038/nrc.2016.1.

565	8.	Reichert JM, Wenger JB. Development trends for new cancer therapeutics and vaccines.
566		Drug Discov Today 2008; 13(1-2): 30-7. PMID: 18190861. doi:
567		10.1016/j.drudis.2007.09.003.
568	9.	Sharpless NE, Depinho RA. The mighty mouse: genetically engineered mouse models in
569		cancer drug development. Nat Rev Drug Discov 2006; 5(9): 741-54. PMID: 16915232.
570		doi: 10.1038/nrd2110.
571	10.	Ebos JM, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression,
572		and metastasis. Nat Rev Clin Oncol 2011; 8(4): 210-21. PMID: 21364524. doi:
573		10.1038/nrclinonc.2011.21.
574	11.	Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. Mouse models of advanced
575		spontaneous metastasis for experimental therapeutics. Nat Rev Canc 2011; 11(2): 135-41.
576		PMID: 21258397. doi: doi:10.1038/nrc3001.
577	12.	O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW.
578		1,026 experimental treatments in acute stroke. Ann Neurol 2006; 59(3): 467-77. PMID:
579		16453316. doi: 10.1002/ana.20741.
580	13.	Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, et al. Design, power,
581		and interpretation of studies in the standard murine model of ALS. Amyotroph Lat Scler
582		2008; 9(1): 4-15. PMID: 18273714. doi: 10.1080/17482960701856300.
583	14.	Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and
584		conventional therapeutic strategies for cancer. Am J Pathol 2007; 170(3): 793-804.
585		PMID: 17322365. doi: 10.2353/ajpath.2007.060929.

586	15.	Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, et al.
587		Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs.
588		Science 2008; 321(5897): 1837-41. PMID: 18818360. doi: 10.1126/science.1163600.
589	16.	Flisikowska T, Merkl C, Landmann M, Eser S, Rezaei N, Cui X, et al. A porcine model
590		of familial adenomatous polyposis. Gastroenterology 2012; 143: 1173-5. PMID:
591		22864254. doi: 10.1053/j.gastro.2012.07.110.
592	17.	Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO,
593		et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis
594		lung. Nature 2012; 487(7405): 109-13. PMID: 22763554. doi: 10.1038/nature11130.
595	18.	Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, et al. In vivo
596		engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system.
597		Nature 2014; 516(7531): 423-7. PMID: 25337876. doi: 10.1038/nature13902.
598	19.	Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar
599		A, et al. Rapid modelling of cooperating genetic events in cancer through somatic
600		genome editing. Nature 2014; 516(7531): 428-31. PMID: 25337879. doi:
601		10.1038/nature13906.
602	20.	Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of
603		opportunities and challenges. Cell 2015; 163(1): 39-53. PMID: 26406370. doi:
604		10.1016/j.cell.2015.08.068.
605	21.	Singh M, Murriel CL, Johnson L. Genetically engineered mouse models: closing the gap
606		between preclinical data and trial outcomes. Cancer Res 2012; 72(11): 2695-700. PMID:
607		22593194. doi: 10.1158/0008-5472.CAN-11-2786.

608	22.	Zitvogel L, Pitt JM, Daillere R, Smyth MJ, Kroemer G. Mouse models in
609		oncoimmunology. Nat Rev Cancer 2016; 16(12): 759-73. PMID: 27687979. doi:
610		10.1038/nrc.2016.91.
611	23.	Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience
612		research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol
613		2010; 8(6): e1000412. PMID: 20613859. doi: 10.1371/journal.pbio.1000412.
614	24.	National Institutes of Health. Principles and Guidelines for Reporting Preclinical
615		Research. Accessed 5 February 2016. https://www.nih.gov/research-training/rigor-
616		reproducibility/principles-guidelines-reporting-preclinical-research.
617	25.	National Institutes of Health. Enhancing Reproducibility through Rigor and
618		Transparency. NOT-OD-15-103. June 9, 2015. http://grants.nih.gov/grants/guide/notice-
619		files/NOT-OD-15-103.html
620	26.	Schook LB, Collares TV, Hu W, Liang Y, Rodrigues FM, Rund LA, et al. A Genetic
621		Porcine Model of Cancer. PLOS ONE 2015; 10(7): e0128864. PMID: 26132737. doi:
622		10.1371/journal.pone.0128864.
623	27.	Committee for the Update of the Guide for the Care and Use of Laboratory Animals.
624		Guide for the Care and Use of Laboratory Animals. Washington, DC: The National
625		Academies Press; 2011.
626	28.	American Veterinary Medical Association Panel on Euthanasia. AVMA Guidelines for the
627		Euthanasia of Animals. Schaumberg, IL: American Veterinary Medical Association;
628		2013.

629	29.	Adam SJ, Rund LA, Kuzmuk KN, Zachary JF, Schook LB, Counter CM. Genetic
630		induction of tumorigenesis in swine. Oncogene 2007; 26(7): 1038-45. PMID: 16964292.
631		doi: 10.1038/sj.onc.1209892.
632	30.	Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T)
633		method. Nat Protoc 2008; 3(6): 1101-8. PMID: 18546601. doi:
634	31.	Grinnell F, Zhu M, Carlson MA, Abrams JM. Release of mechanical tension triggers
635		apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res
636		1999; 248(2): 608-19. PMID: 10222153. doi: 10.1006/excr.1999.4440.
637	32.	Macpherson I, Montagnier L. Agar Suspension Culture for the Selective Assay of Cells
638		Transformed by Polyoma Virus. Virology 1964; 23: 291-4. PMID: 14187925. doi:
639	33.	Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive
640		method for analysis of cell migration in vitro. Nat Protoc 2007; 2(2): 329-33. PMID:
641		17406593. doi: 10.1038/nprot.2007.30.
642	34.	Tsutsumida H, Swanson BJ, Singh PK, Caffrey TC, Kitajima S, Goto M, et al. RNA
643		interference suppression of MUC1 reduces the growth rate and metastatic phenotype of
644		human pancreatic cancer cells. Clin Cancer Res 2006; 12(10): 2976-87. PMID:
645		16707592. doi: 10.1158/1078-0432.CCR-05-1197.
646	35.	Gioviale MC, Damiano G, Montalto G, Buscemi G, Romano M, Lo Monte AI. Isolation
647		and culture of beta-like cells from porcine Wirsung duct. Transplant Proc 2009; 41(4):
648		1363-6. PMID: 19460560. doi: 10.1016/j.transproceed.2009.02.062.
649	36.	Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic
650		landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012;
651		150(6): 1121-34. PMID: 22980976. doi: 10.1016/j.cell.2012.08.024.

652	37.	Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and
653		significance across 12 major cancer types. Nature 2013; 502(7471): 333-9. PMID:
654		24132290. doi: 10.1038/nature12634.
655	38.	Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The
656		landscape of cancer genes and mutational processes in breast cancer. Nature 2012;
657		486(7403): 400-4. PMID: 22722201. doi:
658	39.	Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr., Kinzler KW.
659		Cancer genome landscapes. Science 2013; 339(6127): 1546-58. PMID: 23539594. doi:
660		10.1126/science.1235122.
661	40.	Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes
662		redefine the mutational landscape of pancreatic cancer. Nature 2015; 518: 495-501.
663		PMID: PMC4523082. doi: 10.1038/nature14169.
664	41.	Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al.
665		Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely
666		metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7(5): 469-83.
667		PMID: 15894267. doi: 10.1016/j.ccr.2005.04.023.
668	42.	Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al.
669		Analyses of pig genomes provide insight into porcine demography and evolution. Nature
670		2012; 491(7424): 393-8. PMID: 23151582. doi: 10.1038/nature11622.
671	43.	Rodrigues F, Hu W, Rund L, Liang Y, Counter C, Schook L. Development of the "Onco-
672		Pig": An Inducible Transgenic Porcine Model for Human Cancer [poster]. 2013
673		Brazilian Genetics Conference; URL:

674		http://www.dbs.illinois.edu/comparativegenomics/userfiles/file/ocnopigPoster_Brazilian
675		%20Genetics%20Conference2013.pdf.
676	44.	Conference Proceedings: Swine in Biomedical Research. July 6-8, 2014. Raleigh, NC.
677	45.	DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral
678		or lentiviral delivery of Cre recombinase. Nat Protoc 2009; 4(7): 1064-72. PMID:
679		19561589. doi: 10.1038/nprot.2009.95.
680	46.	Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T, et al. Sonic
681		hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 2008; 14(19):
682		5995-6004. PMID: 18829478. doi: 10.1158/1078-0432.CCR-08-0291.
683	47.	Handra-Luca A, Hong SM, Walter K, Wolfgang C, Hruban R, Goggins M. Tumour
684		epithelial vimentin expression and outcome of pancreatic ductal adenocarcinomas. BrJ
685		Cancer 2011; 104(8): 1296-302. PMID: 21448168. doi: 10.1038/bjc.2011.93.
686	48.	Kheirabadi BS, Mace JE, Terrazas IB, Fedyk CG, Estep JS, Dubick MA, et al. Safety
687		evaluation of new hemostatic agents, smectite granules, and kaolin-coated gauze in a
688		vascular injury wound model in swine. J Trauma 2010; 68(2): 269-78. PMID: 20154537.
689		doi: 10.1097/TA.0b013e3181c97ef1.
690	49.	Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D. The role of genetically
691		engineered pigs in xenotransplantation research. J Pathol 2016; 238(2): 288-99. PMID:
692		26365762. doi: 10.1002/path.4635.
693	50.	Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, et al. Inactivation of porcine
694		endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017; 357(6357): 1303-7.
695		PMID: 28798043. doi: 10.1126/science.aan4187.

696	51.	Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound
697		healing. Wound Repair Regen 2001; 9(2): 66-76. PMID: 11350644. doi: 10.1046/j.1524-
698		475x.2001.00066.x.
699	52.	Swindle MM, Makin A, Herron AJ, Clubb FJ, Jr., Frazier KS. Swine as models in
700		biomedical research and toxicology testing. Vet Pathol 2012; 49(2): 344-56. PMID:
701		21441112. doi: 10.1177/0300985811402846.
702	53.	Xiangdong L, Yuanwu L, Hua Z, Liming R, Qiuyan L, Ning L. Animal models for the
703		atherosclerosis research: a review. Protein Cell 2011; 2(3): 189-201. PMID: 21468891.
704		doi: 10.1007/s13238-011-1016-3.
705	54.	Gouadon E, Moore-Morris T, Smit NW, Chatenoud L, Coronel R, Harding SE, et al.
706		Concise Review: Pluripotent Stem Cell-Derived Cardiac Cells, A Promising Cell Source
707		for Therapy of Heart Failure: Where Do We Stand? Stem Cells 2016; 34(1): 34-43.
708		PMID: 26352327. doi: 10.1002/stem.2205.
709	55.	Walters E, Wolf E, Whyte J, Mao J, Renner S, Nagashima H, et al. Completion of the
710		swine genome will simplify the production of swine as a large animal biomedical model.
711		BMC Med Genom 2012; 5(1): 55. PMID: 23151353. doi: 10.1186/1755-8794-5-55.
712	56.	Schook LB, Collares TV, Darfour-Oduro KA, De AK, Rund LA, Schachtschneider KM,
713		et al. Unraveling the swine genome: implications for human health. Annu Rev Anim
714		Biosci 2015; 3: 219-44. PMID: 25689318. doi: 10.1146/annurev-animal-022114-110815.
715	57.	Dawson HD, Chen C, Gaynor B, Shao J, Urban JF, Jr. The porcine translational research
716		database: a manually curated, genomics and proteomics-based research resource. BMC
717		Genomics 2017; 18(1): 643. PMID: 28830355. doi: 10.1186/s12864-017-4009-7.

718	58.	Gun G, Kues WA. Current progress of genetically engineered pig models for biomedical
719		research. Biores Open Access 2014; 3(6): 255-64. PMID: 25469311. doi:
720		10.1089/biores.2014.0039.
721	59.	Fan N, Lai L. Genetically modified pig models for human diseases. J Genet Genomics
722		2013; 40(2): 67-73. PMID: 23439405. doi: 10.1016/j.jgg.2012.07.014.
723	60.	Prather RS, Lorson M, Ross JW, Whyte JJ, Walters E. Genetically engineered pig models
724		for human diseases. Annu Rev Anim Biosci 2013; 1: 203-19. PMID: 25387017. doi:
725		10.1146/annurev-animal-031412-103715.
726	61.	Luo Y, Li J, Liu Y, Lin L, Du Y, Li S, et al. High efficiency of BRCA1 knockout using
727		rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res
728		2011; 20(5): 975-88. PMID: 21181439. doi: 10.1007/s11248-010-9472-8.
729	62.	Luo Y, Bolund L, Sorensen CB. Pig gene knockout by rAAV-mediated homologous
730		recombination: comparison of BRCA1 gene knockout efficiency in Yucatan and
731		Gottingen fibroblasts with slightly different target sequences. Transgenic Res 2012;
732		21(3): 671-6. PMID: 22020980. doi: 10.1007/s11248-011-9563-1.
733	63.	Leuchs S, Saalfrank A, Merkl C, Flisikowska T, Edlinger M, Durkovic M, et al.
734		Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLoS ONE
735		2012; 7(10): e43323. PMID: 23071491. doi: 10.1371/journal.pone.0043323.
736	64.	Sieren JC, Meyerholz DK, Wang XJ, Davis BT, Newell JD, Jr., Hammond E, et al.
737		Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin
738		Invest 2014; 124(9): 4052-66. PMID: 25105366. doi: 10.1172/JCI75447.

739	65.	Yang L, Guell M, Niu D, George H, Lesha E, Grishin D, et al. Genome-wide inactivation
740		of porcine endogenous retroviruses (PERVs). Science 2015; 350(6264): 1101-4. PMID:
741		26456528. doi: 10.1126/science.aad1191.
742	66.	Beraldi R, Meyerholz D, Savinov A, Kovács A, Weimer J, Dykstra J, et al. Genetic
743		Ataxia Telangiectasia porcine model phenocopies the multisystemic features of the
744		human disease. Biochim Biophys Acta 2017: ePub ahead of print, 2017 Jul 23. PMID:
745		28746835. doi: 10.1016/j.bbadis.2017.07.020.
746	67.	Perleberg C, Kind A, Schnieke A. Genetically engineered pigs as models for human
747		disease. Dis Model Mech 2018; 11(1): dmm030783. PMID: 29419487. doi:
748		10.1242/dmm.030783.
749	68.	Segatto NV, Remiao MH, Schachtschneider KM, Seixas FK, Schook LB, Collares T. The
750		Oncopig Cancer Model as a Complementary Tool for Phenotypic Drug Discovery. Front
751		Pharmacol 2017; 8: 894. PMID: 29259556. doi: 10.3389/fphar.2017.00894.
752	69.	Kuzmuk KN, Schook LB. Pigs as a Model for Biomedical Sciences. In: Rothschild MF,
753		Ruvinsky A, editors. The Genetics of the Pig. Oxfordshire, UK: CABI; 2011. p. 426-44.
754	70.	Emes RD, Goodstadt L, Winter EE, Ponting CP. Comparison of the genomes of human
755		and mouse lays the foundation of genome zoology. Hum Mol Genet 2003; 12(7): 701-9.
756		PMID: 12651866. doi: 10.1093/hmg/ddg078.
757	71.	Dawson HD, McAnulty P, Dayan A, Ganderup N, Hastings K. A comparative assessment
758		of the pig, mouse and human genomes. In: McAnulty P, Dayan A, Ganderup N, Hastings
759		K, editors. The Minipig in Biomedical Research. Boca Raton, FL: CRC Press; 2012. p.
760		323-42.

761	72.	Dawson HD, Smith AD, Chen C, Urban JF, Jr. An in-depth comparison of the porcine,
762		murine and human inflammasomes; lessons from the porcine genome and transcriptome.
763		Vet Microbiol 2017; 202: 2-15. PMID: 27321134. doi: 10.1016/j.vetmic.2016.05.013.
764	73.	Schachtschneider KM, Madsen O, Park C, Rund LA, Groenen MA, Schook LB. Adult
765		porcine genome-wide DNA methylation patterns support pigs as a biomedical model.
766		BMC Genomics 2015; 16: 743. PMID: 26438392. doi: 10.1186/s12864-015-1938-x.
767	74.	Vodicka P, Smetana K, Jr., Dvorankova B, Emerick T, Xu YZ, Ourednik J, et al. The
768		miniature pig as an animal model in biomedical research. Ann N Y Acad Sci 2005; 1049:
769		161-71. PMID: 15965115. doi: 10.1196/annals.1334.015.
770	75.	Swindle MM, Smith AC. Swine in the Laboratory: Surgery, Anesthesia, Imaging, and
771		Experimental Techniques. 3rd ed. Boca Raton, FL: CRC Press; 2016.
772	76.	Spurlock ME, Gabler NK. The development of porcine models of obesity and the
773		metabolic syndrome. J Nutr 2008; 138(2): 397-402. PMID: 18203910. doi:
774	77.	Röthkotter HJ. Anatomical particularities of the porcine immune systema physician's
775		view. Dev Comp Immunol 2009; 33(3): 267-72. PMID: 18775744. doi:
776		10.1016/j.dci.2008.06.016.
777	78.	Bailey M. The mucosal immune system: recent developments and future directions in the
778		pig. Dev Comp Immunol 2009; 33(3): 375-83. PMID: 18760299. doi:
779		10.1016/j.dci.2008.07.003.
780	79.	Fairbairn L, Kapetanovic R, Sester DP, Hume DA. The mononuclear phagocyte system
781		of the pig as a model for understanding human innate immunity and disease. J Leukoc
782		Biol 2011; 89(6): 855-71. PMID: 21233410. doi: 10.1189/jlb.1110607.

783	80.	Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human
784		infectious diseases. Trends Microbiol 2012; 20(1): 50-7. PMID: 22153753. doi:
785		10.1016/j.tim.2011.11.002.
786	81.	Petersen B, Carnwath JW, Niemann H. The perspectives for porcine-to-human
787		xenografts. Comp Immunol Microbiol Infect Dis 2009; 32(2): 91-105. PMID: 18280567.
788		doi: 10.1016/j.cimid.2007.11.014.
789	82.	Ferrer J, Scott WE, 3rd, Weegman BP, Suszynski TM, Sutherland DE, Hering BJ, et al.
790		Pig pancreas anatomy: implications for pancreas procurement, preservation, and islet
791		isolation. Transplantation 2008; 86(11): 1503-10. PMID: 19077881. doi:
792		10.1097/TP.0b013e31818bfda1.
793	83.	Flisikowska T, Kind A, Schnieke A. Pigs as models of human cancers. <i>Theriogenology</i>
794		2016; 86(1): 433-7. PMID: 27156684. doi: 10.1016/j.theriogenology.2016.04.058.
795	84.	Schachtschneider KM, Schwind RM, Newson J, Kinachtchouk N, Rizko M, Mendoza-
796		Elias N, et al. The Oncopig Cancer Model: An Innovative Large Animal Translational
797		Oncology Platform. Front Oncol 2017; 7: 190. PMID: 28879168. doi:
798		10.3389/fonc.2017.00190.
799	85.	Watson AL, Carlson DF, Largaespada DA, Hackett PB, Fahrenkrug SC. Engineered
800		Swine Models of Cancer. Front Genet 2016; 7: 78. PMID: 27242889. doi:
801		10.3389/fgene.2016.00078.
802	86.	Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R, et al. Animal Models
803		of Human Prostate Cancer: The Consensus Report of the New York Meeting of the
804		Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Canc Res
805		2013; 73(9): 2718-36. PMID: 23610450. doi: 10.1158/0008-5472.CAN-12-4213.

806	87.	Stachowiak M, Flisikowska T, Bauersachs S, Perleberg C, Pausch H, Switonski M, et al.
807		Altered microRNA profiles during early colon adenoma progression in a porcine model
808		of familial adenomatous polyposis. Oncotarget 2017; 8(56): 96154-60. PMID: 29221194.
809		doi: 10.18632/oncotarget.21774.
810	88.	Saalfrank A, Janssen KP, Ravon M, Flisikowski K, Eser S, Steiger K, et al. A porcine
811		model of osteosarcoma. Oncogenesis 2016; 5: e210. PMID: 26974205. doi:
812		10.1038/oncsis.2016.19.
813	89.	Shen Y, Xu K, Yuan Z, Guo J, Zhao H, Zhang X, et al. Efficient generation of P53
814		biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer.
815		J Transl Med 2017; 15(1): 224. PMID: 29100547. doi: 10.1186/s12967-017-1327-0.
816	90.	Luo Y, Kofod-Olsen E, Christensen R, Sorensen CB, Bolund L. Targeted genome editing
817		by recombinant adeno-associated virus (rAAV) vectors for generating genetically
818		modified pigs. J Gen Genom 2012; 39(6): 269-74. PMID: 22749014. doi:
819		10.1016/j.jgg.2012.05.004.
820	91.	Schachtschneider K, Schwind R, Darfour-Oduro K, De A, Rund L, Singh K, et al. A
821		validated, transitional and translational porcine model of hepatocellular carcinoma.
822		Oncotarget 2017: Epub ahead of print, 2017 Jun 29. PMID: 28733541. doi:
823		10.18632/oncotarget.18872.
824	92.	Callesen MM, Arnadottir SS, Lyskjaer I, Orntoft MW, Hoyer S, Dagnaes-Hansen F, et al.
825		A genetically inducible porcine model of intestinal cancer. Mol Oncol 2017; 11(11):
826		1616-29. PMID: 28881081. doi: 10.1002/1878-0261.12136.
827	93.	Remmers N, Cox J, Grandgenett P, Grunkemeyer J, Rund L, Schook L, et al.
828		Development of a Porcine Model of Pancreatic Cancer [poster]. Annual Meeting of the

829		American Association of Cancer Research; Washington, D.C. April 1-5, 2017.
830		http://cancerres.aacrjournals.org/content/77/13_Supplement/813.short
831	94.	Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ, Bos JL. KRAS codon 12
832		mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 1988;
833		16(16): 7773-82. PMID: 3047672. doi:
834	95.	Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling
835		pathways in human pancreatic cancers revealed by global genomic analyses. Science
836		2008; 321(5897): 1801-6. PMID: 18772397. doi: 10.1126/science.1164368.
837	96.	Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol 2013; 15(1): 2-8. PMID:
838		23263379. doi: 10.1038/ncb2641.
839	97.	Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins,
840		consequences, and clinical use. Cold Spring Harbor Perspectives in Biology 2010; 2(1).
841		PMID: 20182602. doi: 10.1101/cshperspect.a001008.
842	98.	Blackford A, Serrano OK, Wolfgang CL, Parmigiani G, Jones S, Zhang X, et al. SMAD4
843		gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res
844		2009; 15(14): 4674-9. PMID: 19584151. doi: 10.1158/1078-0432.CCR-09-0227.
845	99.	Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, et al. Frequent
846		somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic
847		adenocarcinoma. Nat Genet 1994; 8(1): 27-32. PMID: 7726912. doi: 10.1038/ng0994-27.
848	100.	Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, et al. Smad4 is
849		dispensable for normal pancreas development yet critical in progression and tumor
850		biology of pancreas cancer. Genes Dev 2006; 20(22): 3130-46. PMID: 17114584. doi:
851		10.1101/gad.1478706.

852	101.	Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, et al. Both
853		p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic
854		adenocarcinoma in the mouse. Proc Natl Acad Sci USA 2006; 103(15): 5947-52. PMID:
855		16585505. doi: 10.1073/pnas.0601273103.
856	102.	Wang K, Jin Q, Ruan D, Yang Y, Liu Q, Wu H, et al. Cre-dependent Cas9-expressing
857		pigs enable efficient in vivo genome editing. Genome Res 2017; 27(12): 2061-71. PMID:
858		29146772. doi: 10.1101/gr.222521.117.
859	103.	Ryu J, Prather RS, Lee K. Use of gene-editing technology to introduce targeted
860		modifications in pigs. J Anim Sci Biotechnol 2018; 9: 5. PMID: 29423214. doi:
861		10.1186/s40104-017-0228-7.
862		
863		

864 Acknowledgements

865

866	This study is the result of work supported in part with resources and the use of facilities
867	at the Omaha VA Medical Center (Nebraska-Western Iowa Health Care System). Portions of this
868	study were presented at the 108th Annual Meeting of the American Association for Cancer
869	Research (AACR) in Washington, D.C., April 1-5, 2017. The authors would like to acknowledge
870	the technical assistance of Gerri Siford, Chris Hansen, Kelly O'Connell, and Tom Caffrey. The
871	authors also would like to thank Dr. Lawrence B. Schook and Dr. Laurie A. Rund at the
872	University of Illinois for the gift of their plasmid that contained the <i>KRAS</i> ^{G12D} mutation, along
873	with comments, insights and suggestions for its use in this project. Datasets from this manuscript
874	will be freely shared upon request to the senior author (MAC).
875	

877 Author Contributions

Contributor Role	Description	Author
Conceptualization	Ideas; formulation or evolution of overarching research goals and aims.	MAC
Data Curation	Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse.	NR, JLC, JAG, SA
Formal Analysis	Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data.	NR, MAC, SA
Funding Acquisition	Acquisition of the financial support for the project leading to this publication.	MAC
Investigation	Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection.	NR, JLC, JAG, SA, MAC
Methodology	Development or design of methodology; creation of models.	NR, MAH, MAC
Project Administration	Management and coordination responsibility for the research activity planning and execution.	MAC
Resources	Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools.	MAH, SA, MAC
Software	Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components.	na
Supervision	Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team.	MAH, MAC
Validation	Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs.	NR, JLC, JAG, SA
Visualization	Preparation, creation and/or presentation of the published work, specifically visualization/data presentation.	NR, MAC
Draft Preparation	Creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation).	NR, MAC
Review & Editing	Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision – including pre- or post-publication stages.	NR, JLC, JAG, SA, MAH, MAC

na = not applicable.

Cell line	AcGFP1 protein	KRAS ^{G12D} protein	p53 ^{R167H} protein	SMAD4 shRNA	p16 ^{Ink4A} shRNA
PGKP	+	+	+		
PGKPS	+	+	+	+	
PGKPSC*	+	+	+	+	+

Table 1. Tumorigenic cell lines and their expression products.

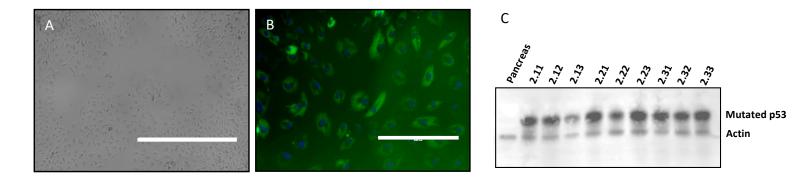
882 883 All cell lines based on primary porcine pancreatic ductal epithelial cells. *Abbreviation key: $\underline{\mathbf{P}} =$ 884 pancreatic ductal epithelium; $\underline{\mathbf{G}} = \text{GFP}$; $\underline{\mathbf{K}} = \text{KRAS}$; $\underline{\mathbf{P}} = \text{p53}$; $\underline{\mathbf{S}} = \text{SMAD4}$; $\underline{\mathbf{C}} =$ 885 p16^{Ink4A}/CDKN2A.

886

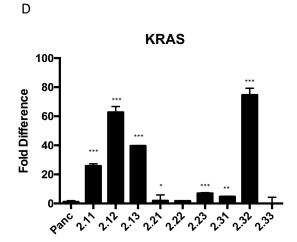
887 Figure Legends

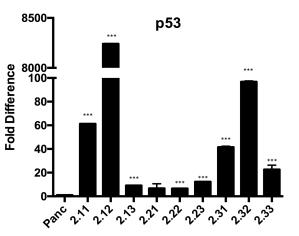
889	Fig. 1. Isolation and transduction of primary porcine pancreatic ductal epithelial cells. (A)
890	Phase image of cells isolated from porcine pancreatic duct, showing epithelial-like morphology
891	(bar = 1,000 μ m). (B) Immunofluorescent staining for cytokeratin 19 in the cultured primary
892	cells (bar = 200 μ m). (C) Immunoblot for the p53 mutant in nine different cells lines transduced
893	with the GKP virus (PGKP cells). Pancreas = wild type pancreatic ductal epithelial cells.
894	Representative blot of three separate experiments. (D-E) qPCR of KRAS and p53 mutants in the
895	nine PKGP cell lines. Each bar represents mean of three separate experiments. *p<0.05, **
896	p<0.03, ***p<0.01 (unpaired t-test, compared to wild type).
897	
898	Fig. 2. Effect of SMAD4 and p16 ^{Ink4A} knockdown on transformation in the PGKP cell line.
899	(A) Soft agar assay and (B) migration assay in the nine GKP-transduced cell lines. Pancreas =
900	wild type pancreatic ductal epithelial cells. Each bar represents mean of three separate
901	experiments. (C) RT-PCR of SMAD4 and p16 ^{Ink4A} /CDKN2A mRNA in cell lines expressing
902	targeted or scramble shRNA. Representative blot of three separate experiments. (D) Soft agar
903	assay and (E) migration assay of selected cell lines (PGKP, PGKPS, and PGKPSC), showing the
904	<i>in vitro</i> effect of additional knockdown of SMAD4 \pm p16 ^{Ink4A} on the transformation of GKP-
905	transduced pancreatic ductal epithelial cells.
906	
907	Fig. 3. In vitro transformation assays comparing the PGKP, PGKPS, and PGKPSC cell
908	lines . (A) Cell culture population doubling time (count-based assay). Pancreas = wild type
909	pancreatic ductal epithelial cells. (B) Proliferation rate (metabolic dye-based assay), represented

910	as fold change, normalized to wild type cells. (C) Invasion (Matrigel®-based assay). Each bar or
911	data point represents mean of three separate experiments.
912	
913	Fig. 4. In vivo tumorigenesis assays comparing the PGKP, PGKPS, and PGKPSC cell lines.
914	(A) Sample of a resected tumor from subcutaneous injection in nude mice; note size and
915	vascularity. (B) Tumor growth curve from the subcutaneous injection in nude mice. Each data
916	point represents mean of 10 mice. (C) Metastasis after orthotopic implantation in nude mice
917	
918	Fig. 5. Tumor immunohistochemistry from subcutaneous nude mouse assay. Representative
919	images of primary tumors derived from the PGKP, PGKPS, and PGKPSC cell lines stained with
920	an array of epithelial markers, including E-cadherin (Ecad; B, G, L), Epithelial Cell Adhesion
921	Molecule (EpCAM; C, H, M), Pan-Cytokeratin (PanCK; D, I, N), and Cytokeratin-19 (CK19; E,
922	J, O); and also stained with mesenchymal markers, including α -Smooth Muscle Actin (SMA; P,

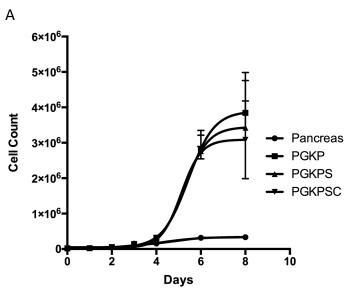

S, V), Vimentin (Vim; Q, T, W), and Type I Collagen (Col I; R, U, X). Bar = 200 µm.

924

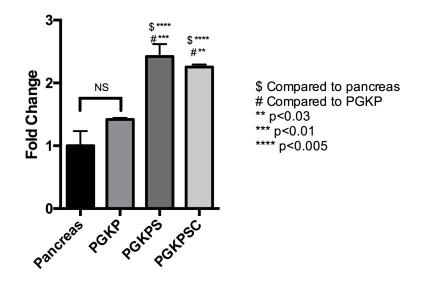

925 Supporting Information

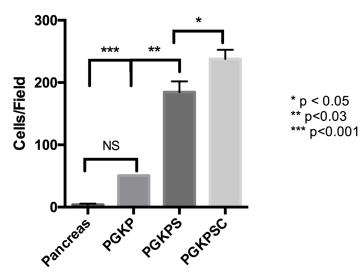

926

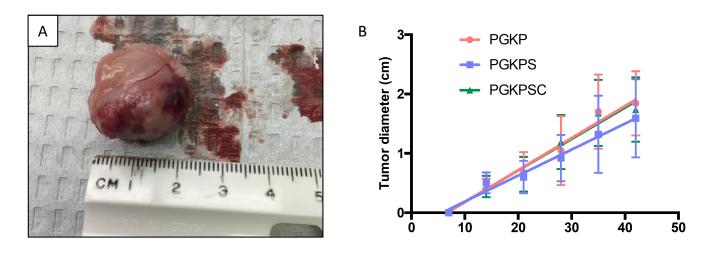

- 927 Fig. S1. pIRES2-AcGFP1 Vector Information
- 928 Fig. S2. Studies with the NSRRC KRAS/p53 Oncopig
- 929 Fig. S3. KRAS/p53 immunohistochemistry of subcutaneous murine tumors
- 930 **Protocol S1.** Isolation of Epithelial Cells from Porcine Pancreas
- 931 **Protocol S2**. Porcine methodology
- **Table S1**. Responses to the ARRIVE recommendations
- 933 **Table S2**. Responses to the NIH Preclinical Research Guidelines
- 934 Table S3. Primers and other short sequences
- 935 **Table S4**. Antibody information
- **Table S5**. Oncopig descriptive data
- 937 **Table S6**. Oncopig serum laboratory testing

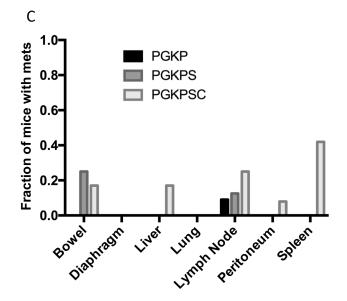


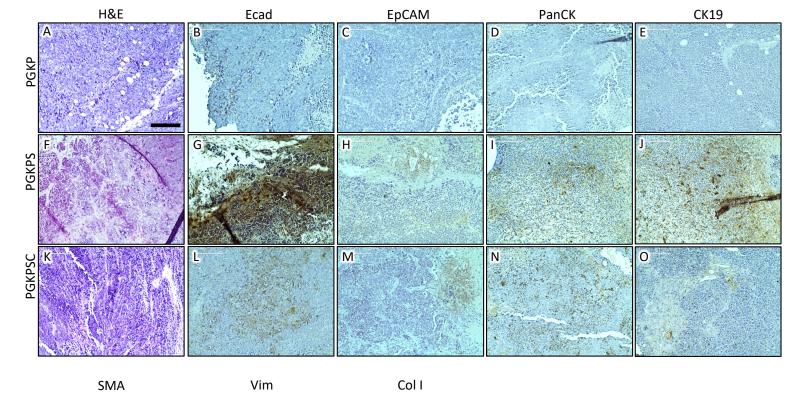
Е











Mesenchymal markers

R

Х

Q

W

Epithelial markers

P

S

РGKP

PGKPS

PGKPSC