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Abstract  22 

 23 

Background. A large animal model of pancreatic cancer would permit development of 24 

diagnostic and interventional technologies not possible in murine models, and also would 25 

provide a more biologically-relevant platform for penultimate testing of novel therapies, prior to 26 

human testing. Here, we describe our initial studies in the development of an autochthonous, 27 

genetically-defined, large animal model of pancreatic cancer, using immunocompetent pigs.  28 

 29 

Methods. Primary pancreatic epithelial cells were isolated from pancreatic duct of domestic 30 

pigs; epithelial origin was confirmed with immunohistochemistry. Three transformed cell lines 31 

subsequently were generated from these primary cells using expression of oncogenic KRAS and 32 

dominant negative p53, with/without knockdown of p16 and SMAD4. We tested these cell lines 33 

using in vitro and in vivo assays of transformation and tumorigenesis.  34 

 35 

Results. The transformed cell lines outperformed the primary cells in terms proliferation, 36 

population doubling time, soft agar growth, 2D migration, and Matrigel invasion, with the 37 

greatest differences observed when all four genes (KRAS, p53, p16, and SMAD4) were targeted. 38 

All three transformed cell lines grew tumors when injected subcutaneously in nude mice, 39 

demonstrating undifferentiated morphology, mild desmoplasia, and staining for both epithelial 40 

and mesenchymal markers. Injection into the pancreas of nude mice resulted in distant 41 

metastases, particularly when all four genes were targeted.  42 

 43 
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Conclusions. Tumorigenic porcine pancreatic cell lines were generated. Inclusion of four genetic 44 

“hits” (KRAS, p53, p16, and SMAD4) appeared to produce the best results in our in vitro and in 45 

vivo assays. The next step will be to perform autologous or syngeneic implantation of these cell 46 

lines into the pancreas of immunocompetent pigs. We believe that the resultant large animal 47 

model of pancreatic cancer could supplement existing murine models, thus improving preclinical 48 

research on diagnostic, interventional, and therapeutic technologies.  49 

 50 

  51 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/267112doi: bioRxiv preprint 

https://doi.org/10.1101/267112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Porcine PC Model, version 2018-05-17, 10:01  Page 4 of 47 

Introduction 52 

In the United States in 2016, approximately 53,000 people (48% female) were diagnosed 53 

with pancreatic cancer (~3.1% of all new cancer diagnoses), and there were ~42,000 deaths (49% 54 

female) from pancreatic cancer (~7.0% of all cancer deaths) [1,2]. The lifetime risk for 55 

pancreatic cancer is approximately 1 in 65 [1,2]. The incidence of pancreatic cancer has been 56 

gradually increasing since the mid-1990’s, and generally is higher in the African-American 57 

population [1,2]. Pancreatic cancer is now is the fourth most common cause of cancer-related 58 

death in both men and women (after lung, prostate, and colorectal cancer, or lung, breast, and 59 

colorectal cancer, respectively) [1,2]. Despite apparent advances in treatment modalities and 60 

strategies [3], mortality from pancreatic cancer has not decreased [1,2]. As of 2012, the U.S. 61 

overall 5-year survival rate from pancreatic cancer was 7.7%; 5-year survival rates in localized, 62 

regional (nodal spread), or metastatic disease were 29.3, 11.1, and 2.6%, respectively [1,2]. So 63 

there remains a need for improved early diagnosis and therapy for pancreatic cancer.  64 

Rodent models of pancreatic cancer may not accurately reflect human biology because of 65 

differences in physiology, anatomy, immune response, and genetic sequence between the two 66 

species [4-7]. Remarkably, only 5-8% of anti-cancer drugs that emerged from preclinical studies 67 

and entered clinical studies have been ultimately approved for clinical use [8,9]. The cause of 68 

this low approval rate is multifactorial, but likely includes the less-than-optimal predictive ability 69 

of some murine models (e.g., tumor xenografting into immunosuppressed mice) to determine the 70 

efficacy of various therapeutics in humans [4-6,10-14]. Moreover, there are a number of genes 71 

for which the genotype-phenotype relationship is discordant between mice and human, including 72 

CFTR–/– and APC+/– [15,16]. Incidentally, both the porcine CFTR–/– and APC+/– mutants reiterate 73 
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the human phenotype (pulmonary/GI disease and rectal polyposis, respectively) [15-17], in 74 

contradistinction to the murine mutants.  75 

In fairness, the recent trend to employ genetically-engineered mouse models (GEMM), 76 

patient-derived xenografts (PDX), humanized mice, and in vivo site-directed CRISPR/Cas9 77 

gene-edited mice in the testing of anti-cancer therapeutics may yield murine models with better 78 

predictive ability than obtained with previously [6,18-22]. Though promising, these more 79 

advanced murine models come with increased cost and complexity [20], and experience with 80 

them still is early. Importantly, all murine models have limited utility in the development of 81 

diagnostic or interventional technology that requires an animal subject whose size approximates 82 

a human. So at present, there remains a need for improved animal models of pancreatic cancer 83 

that (1) are more predictive of human response to anti-cancer therapy [20,22], and (2) are of 84 

adequate size for development of specific technologies. Herein we describe some initial steps 85 

taken in the development of a genetically-defined, autochthonous model of pancreatic cancer in 86 

immunocompetent pigs.  87 

  88 
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Materials and Methods 89 

 90 

Standards, rigor, reproducibility, and transparency  91 

The animal studies of this report were designed, performed, and reported in accordance 92 

with both the ARRIVE recommendations (Animal Research: Reporting of In Vivo Experiments 93 

[23]) and the National Institutes of Health Principles and Guidelines for Reporting Preclinical 94 

Research [24,25]; for details, refer to Tables S1 and S2, respectively.  95 

 96 

Materials and animal subjects  97 

All reagents were purchased through Thermo Fisher Scientific (www.thermofisher.com) 98 

unless otherwise noted. Short DNA sequences for vector construction, mutagenesis, and 99 

amplification purposes are shown in Table S3. Antibody information is given in Table S4. Wild 100 

type domestic swine (male and female; age 3 months at time of purchase; 30-32 kg) were 101 

purchased from the Animal Research and Development Center of the University of Nebraska 102 

Lincoln (ardc.unl.edu). Athymic homozygous nude mice (Crl:NU(NCr)-Foxn1nu; female; 8-9 103 

weeks old) were purchased from Charles River Laboratories, Inc. (www.criver.com). Primers 104 

utilized in this report (Table S3) were synthesized by Integrated DNA Technologies, Inc. 105 

(www.idtdna.com). DNA sequencing was performed by the UNMC Genomics Core Facility 106 

(www.unmc.edu/vcr/cores/vcr-cores/genomics). Oncopigs [26] were purchased from the 107 

National Swine Resource and Research Center (NSRRC; www.nsrrc.missouri.edu).  108 

 109 

Animal welfare 110 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/267112doi: bioRxiv preprint 

https://doi.org/10.1101/267112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Porcine PC Model, version 2018-05-17, 10:01  Page 7 of 47 

The animals utilized to generate data for this report were maintained and treated in 111 

accordance with the Guide for the Care and Use of Laboratory Animals (8th ed.) from the 112 

National Research Council and the National Institutes of Health [27], and also in accordance 113 

with the Animal Welfare Act of the United States (U.S. Code 7, Sections 2131 – 2159). The 114 

animal protocols pertaining to this manuscript were approved by the Institutional Animal Care 115 

and Use Committee (IACUC) of the VA Nebraska-Western Iowa Health Care System (ID 116 

numbers 00927, 00937, 00998, and 01017) or by the IACUC of the University of Nebraska 117 

Medical Center (ID number 16-133-11-FC). All procedures were performed in animal facilities 118 

approved by the Association for Assessment and Accreditation of Laboratory Animal Care 119 

International (AAALAC; www.aaalac.org) and by the Office of Laboratory Animal Welfare of 120 

the Public Health Service (grants.nih.gov/grants/olaw/olaw.htm). All surgical procedures were 121 

performed under isoflurane anesthesia, and all efforts were made to minimize suffering. 122 

Euthanasia was performed in accordance with the AVMA Guidelines for the Euthanasia of 123 

Animals [28].  124 

 125 

Porcine operative procedures  126 

Further details on transgenic porcine subjects and related welfare, safety, husbandry, 127 

operative procedures, and perioperative management are given in the Supporting Information.  128 

 129 

Isolation of porcine pancreatic ductal epithelial cells  130 

A detailed protocol for isolation of porcine pancreatic ductal epithelial cells is provided 131 

in the Supporting Information (Protocol S1). In brief, the intact pancreas from male porcine 132 

research subjects (age 5 mo) was harvested within 5 min after euthanasia, which was 133 
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accomplished by transection of the intrathoracic inferior vena cava and exsanguination while 134 

under deep isoflurane anesthesia. These pigs had been on a protocol to study biomaterials within 135 

skin wounds of the dorsum. The subject had not received any recent medication other the 136 

anesthetics given for euthanasia; buprenorphine and cefovecin sodium had been given 4 weeks 137 

prior to euthanasia. Immediately after explantation of the pancreas, the main pancreatic duct was 138 

dissected sterilely with micro instruments from the organ body under 3.5x loupe magnification. 139 

The duct then was mechanically digested by passage through a 70 µm sieve (Corning™ Sterile 140 

Cell Strainers, Thermo Fisher Scientific, cat. no. 07-201-431).  141 

The collected fragments were enzymatically digested with 1 mg/mL of Collagenase D at 142 

37˚C for 1 h with gentle shaking. The cells were pelleted (600 g x 5 min), the supernatant was 143 

discarded, the cell pellet was resuspended in whole media, which was defined as: DMEM (high 144 

glucose with L-glutamine; Thermo Fisher Scientific, cat. no. 12100-046) supplemented with 145 

10% (final concentration) fetal bovine serum (FBS; Thermo Fisher Scientific, cat. no. 26140079) 146 

and 1% Antibiotic-Antimycotic Solution (Corning Inc., cat. no. 30-004-CI; cellgro.com). Cell 147 

concentration in the resuspension was determined with a hemocytometer, and cells then were 148 

diluted and pipetted into a 96-well plate (1-10 cell/well, 100-200 µL/well). After 5-7 days of 149 

culture under standard conditions (whole media, 37˚C, 5% CO2), wells that contained cells with 150 

epithelial-like morphology were trypsinized and re-plated into a new 96-well plate, in order to 151 

dilute out any fibroblasts. Cells were passaged in this fashion at least four times, until no cells 152 

with fibroblast morphology were present. The resulting cells were passaged up to a T25 flask, 153 

and maintained with standard conditions.  154 

 155 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/267112doi: bioRxiv preprint 

https://doi.org/10.1101/267112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Porcine PC Model, version 2018-05-17, 10:01  Page 9 of 47 

Generation of p53 and KRAS mutants and construction of 156 

expression vector  157 

In order to generate the porcine p53R167H mutant, wild-type p53 cDNA first was amplified 158 

from cervical lymph node tissue, which was obtained <5 min after euthanasia of a 4-month-old 159 

male domestic swine that had been on an unrelated research protocol. In brief, fresh nodal tissue 160 

was flash-frozen in liquid N2 and then pulverized with a mortar and pestle, with continual 161 

addition of liquid N2 during pulverization. The frozen powder then was placed into the first 162 

buffer solution of the QIAGEN RNEasy Mini Kit (cat. no. 74104; www.qiagen.com), and total 163 

RNA was isolated per the manufacturer’s instructions.  164 

After isolation, the total RNA underwent reverse transcription to cDNA with a Verso 165 

cDNA Synthesis Kit (Thermo Fisher Scientific, cat. no. AB1453A), per the manufacturer’s 166 

instructions. The wild type p53 sequence was amplified out of the cDNA using the PCR primers 167 

shown in Table S3, which flanked the p53 cDNA with SalI and BamHI restriction sites. 168 

Successful amplification of the wild-type p53 cDNA was confirmed by inserting the amplified 169 

candidate sequence into the TOPO® vector (TOPO® TA Cloning® Kit; Invitrogen™/Life 170 

Technologies™, Thermo Fisher Scientific, cat. no. K202020) per the manufacturer’s 171 

instructions, followed by sequencing.  172 

Site-directed mutation of wild-type p53 into p53R167H was performed using Agilent 173 

Technologies’ QuickChange II Site-Directed Mutagenesis Kit (cat. no. 200523; 174 

www.genomics.agilent.com) with the mutagenic primers shown in Table S3, per the 175 

manufacturer’s instructions. Presence of the p53R167H mutation was verified by sequencing as 176 

described above. The multiple cloning site of a pIRES2-AcGFP1 Vector (Takara Bio USA, Inc., 177 
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cat. no. 632435; www.clontech.com; manufacturer’s vector information included as Fig. S1) was 178 

cut with SalI and BamHI, and the p53R167H sequence then was ligated into this plasmid.  179 

The source of the porcine KRASG12D mutant was the plasmid used to generate the 180 

p53/KRAS Oncopig [26,29]. The KRASG12D cDNA was amplified out of this plasmid with 181 

primers (see Table S3) that flanked the sequence with XhoI and PstI restriction sites. The 182 

amplified product was inserted into the TOPO vector and verified by sequencing, as described 183 

above. The above pIRES2-AcGFP1 Vector (already containing the p53R167H sequence) then was 184 

cut with XhoI and PstI, and the KRASG12D sequence was ligated into this plasmid, producing a 185 

pIRES2-AcGFP1 Vector which contained both mutant cDNAs within its multiple cloning site 186 

(KRASG12D upstream).  187 

The newly-constructed plasmid, hereafter designated as GKP (G = AcGFP1; K = 188 

KRASG12D; P = p53R167H), was transformed into One Shot™ Stbl3™ Chemically Competent E. 189 

coli (Invitrogen™/Thermo Fisher Scientific, cat. no. C737303), per the manufacturer’s 190 

instructions, and plasmid DNA subsequently was isolated using a QIAGEN Plasmid Maxi Kit 191 

(cat. no. 12162), per the manufacturer’s instructions. This plasmid then was transfected into 192 

Takara’s Lenti-X™ 293T cells (Clontech, cat. no. 632180), using Takara’s Xfect™ Transfection 193 

Reagent (Clontech, cat. no. 631317), per the manufacturer’s instructions, to generate infectious 194 

lentiviral particles that would direct expression of AcGFP1, KRASG12D, and p53R167H mutants in 195 

transduced cells.  196 

 197 

Generation of shRNA-expressing vectors  198 

Short hairpin RNA (shRNA) constructs targeting the porcine SMAD4 and p16 genes 199 

were created using InvivoGen’s siRNA Wizard™ software (www.invivogen.com/sirnawizard). 200 
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Three targeting sequences for each gene along with scrambled controls initially were generated 201 

and tested. The shRNA construct that demonstrated the best target knock-down in preliminary 202 

experimentation (as verified by PCR, data not shown) was utilized for subsequent experiments 203 

(see Table S3 for sequences ultimately selected for the shRNA constructs). Primers were cloned 204 

into the psiRNA-h7SKhygro G1 and psiRNA-h7SKneo G1 vectors (InvivoGen, cat. no. ksirna3-205 

h21 and ksirna3-n21, respectively; www.invivogen.com) and plasmids then were isolated, all per 206 

the manufacturer’s protocol.  207 

 208 

Cell transformations  209 

Primary porcine pancreatic epithelial cells in T75 flasks were grown to 80% confluency 210 

under standard conditions. The media then was exchanged with 2-3 mL of supernatant from non-211 

lysed Lenti-X™ 293T cells (containing GKP viral particles) with 2 µg/mL polybrene (cat. no. 212 

TR1003, Thermo Fisher Scientific). After 24-48 h at 37˚C, treated epithelial cells were re-seeded 213 

into 6-well plates under standard conditions and grown to 80% confluency. An exchange with 214 

whole media containing 2 µg/mL G418 aminoglycoside antibiotic then was performed; the G418 215 

dose was chosen based on preliminary dose-response studies against non-treated epithelial cells. 216 

After 24 h, a whole media exchange was done, and the presence of transduced cells was 217 

determined with inverted GFP fluorescent microscopy of living cells. Subsequent transfections 218 

for RNAi were done with the above plasmids employing shRNA sequences against SMAD4 219 

and/or p16, and using the LyoVec™ reagent (InvivoGen, cat. no. lyec-12), all per the 220 

manufacturer’s protocol. Transfected cells then were selected for expression of the shRNA 221 

vector using the appropriate aminoglycoside antibiotic (G418 or hygromycin B).  222 

 223 
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PCR  224 

Cell and tissue RNA was isolated using the QIAGEN RNEasy Mini Kit. Purified RNA 225 

then was used to generate cDNA using the Verso cDNA Synthesis Kit. The Platinum® Blue 226 

PCR Supermix (Invitrogen™/Life Technologies, cat. no. 12580) subsequently was used for all 227 

PCR reactions. Amplified products were separated with agarose gel electrophoresis, and then 228 

visualized using a UV-light box. qPCR was performed using the PowerUp™ SYBR® Green 229 

Master Mix (Applied Biosystems™/ Thermo Fisher Scientific, cat. no. A25741) per 230 

manufacturer’s protocol, and run on an Applied Biosystems™ 7500 Fast Dx Real-Time PCR 231 

Instrument. Fold changes in gene expression were calculated using the comparative CT method 232 

[30]. All primers used are listed in Table S3.  233 

 234 

Immunoblotting  235 

Western blot analysis was performed to confirm overexpression of the mutant p53 protein 236 

(see Table S4 for a list of antibodies used), as previously described [31]. An antibody specific for 237 

the mutant KRAS protein was not commercially available. Antibody expression was visualized 238 

using the Li-Cor Odyssey Electrophoresis Imaging System (www.licor.com).  239 

 240 

Soft agar assay  241 

A standard soft agar assay [32] was used to determine anchorage independent growth. A 242 

base layer of 1% agarose was plated into 6-well plates. A total of 2,500 cells/well were mixed 243 

with 0.7% agarose and plated on top of the base layer. The plates were incubated under standard 244 

conditions for 21 days. The cells then were stained with crystal violet, and counted using an 245 
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inverted microscope. Cells were plated in triplicate, and total counts from all three wells were 246 

averaged.  247 

 248 

Migration assay  249 

A standard scratch assay (monolayer wounding) [33] was performed to determine cellular 250 

migration rate. Cells were plated in triplicate into 6-well plates. A horizontal scratch using a 10 251 

µL pipet tip was made in each well. After washing away scratched-off cells, baseline images 252 

along the scratch were obtained, the plates were incubated under standard conditions, and 253 

subsequent images were captured at 3, 6, 9, 12, and 15 h after the initial scratch. ImageJ software 254 

(imagej.nih.gov/ij) was used to measure the distance between the two migrating cellular fronts 255 

(scratch edges) at 3-5 locations along the scratch. Average distance at each time point was 256 

plotted to generate the migratory rate (µm/h).  257 

 258 

Invasion assay  259 

BioCoat™ Matrigel™ Invasion Chambers (Corning™, Thermo Fisher Scientific, cat. no. 260 

08-774) were plated with 50,000 cells (upper chamber) in triplicate, and incubated under 261 

standard conditions for 24 h. The media from the upper chamber then was removed, and any 262 

cells remaining in the upper chamber were removed using a cotton swab. Cells that had migrated 263 

to the bottom of the membrane were stained using a Kwik-Diff™ kit (Shandon™, Thermo Fisher 264 

Scientific, cat. no. 9990701). Membranes were mounted onto glass slides, and cells per high-265 

power field were counted using ImageJ software.  266 

 267 

Population doubling assay  268 
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Cells were plated in 6-well plates (20,000 cell/well), and cultured under standard 269 

conditions. Triplicate plates then were trypsinized on days 1, 2, 3, 4, 6, and 8, and cells were 270 

counted with a hemocytometer. Cell number vs. day was plotted to determine the day range in 271 

which linear growth was achieved. The data from this linear growth phase were used to 272 

determine population doubling time (DT) using the formula: DT = (∆t) ´ ln(2) ÷ ln(Nf /Ni ) 273 

where ∆t = time interval between initial and final cell count, Nf  = cell count at final time, and Ni  274 

= cell count at initial time.  275 

 276 

Proliferation assay  277 

Relative cell proliferation rates were assayed using an MTT (3-(4,5-dimethylthiazol-2-278 

yl)-2,5-diphenyltetrazolium bromide) assay kit (Vybrant™ MTT Cell Proliferation Assay Kit, 279 

Invitrogen™, Thermo Fisher Scientific, cat. no. V13154). Cells were plated in triplicate in a 96-280 

well plate (5,000 cell/well), and cultured under standard conditions for 48 h. MTT reagent then 281 

was added to the cells per the manufacturer’s instructions, followed by addition of the solvent 282 

solution 3.5 h later. Absorbance was measured with a plate reader 3.5 h after solvent addition. 283 

Mean absorbance was normalized to absorbance from wild type pancreatic ductal epithelial cells 284 

to calculate fold-difference in proliferation.  285 

 286 

Immunofluorescence and immunohistochemistry  287 

Antibodies used in immunofluorescent and immunohistochemical experiments are listed 288 

in Table S4. Agilent Dako EnVision kits (www.agilent.com) were used for all IHC analyses per 289 

the manufacturer’s instructions.  290 

 291 
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Subcutaneous tumorigenic cell injection  292 

Subcutaneous implantation of tumorigenic cells was performed as previously described 293 

[34], with some modifications. Transformed porcine pancreatic ductal epithelial cells (the three 294 

lineages described in Table 1) were trypsinized, counted, and resuspended in DMEM at a 295 

concentration of 1 ´ 107 viable cells/mL. Nude mice (N = 30; 100% female; maintained in 296 

microisolator cages with soft bedding and fed regular chow) were randomized into three 297 

treatment groups (representing each transformed cell line in Table 1; N = 10 mice per group, 298 

100% female) using an online randomization tool. Mice then were injected with 5 ´ 106 cells 299 

(500 µL) into the right hind flank under brief isoflurane inhalational anesthesia, administered 300 

with a Matrx VMS® small animal anesthesia machine, within a small animal operating room. 301 

Tumors were allowed to grow for 6 weeks or until they reached 2 cm in diameter, as measured 302 

with a caliper, and then subjects were euthanized using an AVMA-approved [28] method of CO2 303 

asphyxiation. At necropsy all gross tumor was measured and collected, portions underwent 304 

formalin fixation and paraffin embedding, and sections subsequently underwent H&E or 305 

immunohistochemical staining as described above. An independent, a blinded pathologist 306 

analyzed the stained sections to determine whether tumors were epithelial in origin, and if they 307 

displayed malignant features.  308 

 309 

Orthotopic tumorigenic cell injection  310 

Orthotopic implantation of tumorigenic cells was performed as previously described [34] 311 

to analyze metastases and desmoplasia. In brief, transformed porcine pancreatic ductal epithelial 312 

cells (the three lineages described in Table 1) were trypsinized and counted, and 1 ´ 104 viable 313 

cells were suspended into 20 µL DMEM. Nude mice (N = 36; 100% female) housed as described 314 
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above were randomized into three treatment groups (representing each transformed cell line in 315 

Table 1; N = 12 per group, 100% female) using an online randomization tool. The 20 µL cell 316 

suspension then was injected with a 20-gauge needle into the pancreas of each nude mouse 317 

through a 5 mm incision in the left upper quadrant, under isoflurane anesthesia within a small 318 

animal operating room. Mice were euthanized 6 weeks after injection using CO2 asphyxiation as 319 

described above, and tumors and organs were harvested for gross and histologic analysis, as 320 

described in the previous paragraph.  321 

 322 

Statistics and power analysis  323 

Data are reported as mean ± standard deviation. Groups of continuous data were 324 

compared with ANOVA and the unpaired t-test. Categorical data were compared with the Fisher 325 

or Chi square test. For the power analysis of the murine subcutaneous tumor implant assay, 326 

tumor diameter was selected as the endpoint. Setting alpha = 0.05 and power = 0.8, ten mice per 327 

group were needed across three groups to detect a difference in means of 30% with the standard 328 

deviation estimated at 20% of the mean. In the orthotopic implantation assay, N = 10 mice per 329 

treatment group across three treatment groups were needed to detect a 100% difference in effect 330 

(+tumor) at a single metastatic site (with alpha set at 0.05 and power = 0.8); or, combining all 331 

seven metastatic sites together, N = 10 mice per group were needed to detect a 40% difference in 332 

effect.   333 
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Results 334 

 335 

Isolation of primary porcine pancreatic ductal epithelial cells 336 

Cells cultured from micro-dissected pancreatic ducts displayed epithelial morphology 337 

under phase microscopy and stained for CK19 (an established marker of pancreatic ductal 338 

epithelium [35]; Fig. 1A-B). Based on these results, we were confident that we had a population 339 

of pancreatic epithelial cells that we could use to generate tumorigenic cell lines.  340 

 341 

Generation of tumorigenic cell lines 342 

In order to transform our primary porcine pancreatic ductal epithelial cells, we first 343 

generated a lentiviral construct containing KRASG12D and TP53R167H, genes previously identified 344 

[29] as the porcine equivalents to the mutant KRAS and TP53 which are present in multiple 345 

human cancers [36-40]; in the mouse, expression of these mutants was the basis for the 346 

KRAS/p53 genetically engineered murine model of pancreatic cancer [41]. For our model, we 347 

chose to use a lentiviral platform for the vector, because its genome would be large enough to 348 

accommodate insertion of both mutant genes; in addition, we believed that a lentivirus would be 349 

optimal for transforming primary cells.  350 

Since initial sequencing of the porcine genome has been accomplished [42], we were able 351 

to utilize the National Library of Medicine’s nucleotide BLAST® database 352 

(blast.ncbi.nlm.nih.gov/blast.cgi) to determine the porcine genetic equivalents for human SMAD4 353 

and CDKN2A. We then designed primers (Table S3) to amplify these two genes from genomic 354 

DNA isolated from skin of a healthy domestic pig. We sequenced our amplification products, 355 
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and accessed the BLAST® database to confirm that our products aligned with the porcine 356 

SMAD4 and CDKN2A gene sequences. We then proceeded to generate lentiviral constructs to 357 

transform primary porcine pancreatic ductal epithelial cells into cell lines expressing various 358 

combinations of mutant KRAS and p53, SMAD4 shRNA, and p16Ink4A shRNA (see cell line 359 

definitions in Table 1), as described under Materials and Methods.  360 

Primary porcine epithelial cells next were transduced with the GKP lentivirus to generate 361 

transformed cell lines. Overexpression of KRASG12D and p53R167H was confirmed in these cell 362 

lines with qPCR and immunoblotting (Fig. 1C-E). Of note, we could not obtain a reliable 363 

antibody to detect porcine KRAS with immunoblotting, so we had to rely on qPCR results and 364 

expression of GFP as markers of KRASG12D expression. Preliminary in vitro analyses to probe 365 

the tumorigenic properties of these GKP-transformed cell lines demonstrated modest increases in 366 

soft agar colony formation and migration speed over wild type cells (Fig. 2A & B). Interestingly, 367 

the cell line (2.22) with the best performance in the soft agar and migration assays had only 368 

modest overexpression of KRASG12D and p53R167H (Fig. 1 & 2); in contrast, the cell lines with 369 

the highest mutant overexpression performed relatively poorly in these in vitro assays of 370 

“tumorigenesis” (i.e., evidence of transformed behavior in cell culture).  371 

While in vitro experiments were being performed, in vivo pancreatic tumor induction was 372 

attempted utilizing a transgenic mini-pig available from the NSRRC. Known as the “Oncopig,” 373 

[26], this subject carries an LSL-cassette containing the dominant negative TP53R167H and the 374 

activated KRASG12D sequences [26,43,44]; i.e., this subject is the porcine analog of the 375 

KRAS/p53 mouse [41,45]. As demonstrated previously, site-specific expression of Cre 376 

recombinase in the Oncopig resulted in localized p53 inhibition and KRAS activation, while 377 

subcutaneous injection of AdCre produced mesenchymal tumors at the injection sites [26]. We 378 
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injected Cre recombinase into the pancreas of five Oncopigs (Protocol S2; Fig. S2; Tables S5 379 

and S6). After four months, we observed no gross tumors. However, there was 380 

immunohistochemical evidence of transgene expression at the pancreatic injection sites along 381 

with numerous microscopic proliferative lesions with desmoplastic features (Fig. S2).  382 

Based on the modest evidence of in vitro transformation and the lack of gross in vivo 383 

tumorigenesis using expression of p53R167H and KRASG12D only, we decided that additional 384 

oncogenic stress might be helpful to increase the tumor-like properties of transformed pancreatic 385 

ductal epithelial cells. Utilizing cell line 2.22 (hereafter referred to PGKP; see Table 1), which 386 

had relatively good performance in the soft agar and migration assays (Fig. 2A & B), sequential 387 

transduction with lentiviral constructs expressing shRNA against SMAD4 and then p16Ink4A was 388 

performed to generate cell lines PGKPS and PGKPSC (see Table 1), respectively. RT-PCR then 389 

was used to confirm knockdown of the targeted transcripts in these two cell lines (Fig. 2C).  390 

 391 

In vitro tumorigenic properties of transformed cells 392 

The in vitro “tumorigenic” properties of the PGKP, PGKPS, and PGKPSC cell lines first 393 

were compared with the soft agar and migration assays (Fig. 2D & E). Addition of SMAD4 ± 394 

p16Ink4A knockdown enhanced the ability of transformed cells to form colonies in soft agar and 395 

increased their migration speed (2D wounding assay), particularly when both transcripts were 396 

targeted (i.e., the PGKPSC line). We then compared population doubling time, proliferation 397 

(metabolic dye conversion) , and Matrigel® invasion ability among the three transformed lines 398 

with respect to wild type cells (Fig. 3A-C). Both the PGKPS and PGKPSC cell lines had greater 399 

proliferation and invasive ability compared to either wild type cells or the PGKP cell line (Fig. 400 

3B, C). The doubling time for all three transformed cell lines was approximately the same at ~15 401 
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h, compared to the ~4 d doubling time of wild type cells (Fig. 3A). Based on the in vitro assays 402 

of tumorigenesis, we suspected that all three of our transformed cell lines had the potential to 403 

form tumors in vivo, albeit to varying degrees. We subsequently decided to compare the in vivo 404 

tumorigenicity among all three cell lines in an immunodeficient mouse model.  405 

 406 

Subcutaneous and orthotopic tumor transplants in immunodeficient 407 

mice 408 

In order to determine if our cell lines retained their tumorigenic properties in vivo, we 409 

utilized homozygous athymic mice to generate subcutaneous and orthotopic cell implantation 410 

models. The subcutaneous model was used to assess in vivo tumor growth. All three cell lines 411 

grew sizeable tumors (>1 cm diameter) within 6 weeks; growth rates were not statistically 412 

different among the three cell lines (Fig. 4A & B). The subcutaneous tumors were well-413 

vascularized and mucinous in gross appearance (Fig. 4A). Confirmation of GKP lentiviral 414 

transduction was demonstrated with immunohistochemistry of the p53R167H mutant in 415 

subcutaneous tumors (Fig. S3).  416 

Tumors from the subcutaneous implant model then underwent immunohistochemical 417 

staining with an array of epithelial and mesenchymal markers (Fig. 5). The distribution of 418 

staining for the epithelial markers (E-cadherin, epithelial cell adhesion molecule, pan-419 

cytokeratin, cytokeratin-19) generally was more diffuse than the mesenchymal marker staining. 420 

In some regions the epithelial marker staining was clustered and intense. The overall abundance 421 

of staining for the epithelial markers appeared greater in the PGKPS and PGKPSC lines with 422 

respect to the PGKP line. The distribution of staining for the mesenchymal markers (a-smooth 423 

muscle actin, vimentin, and type I collagen) was variable, sometimes appearing in cords or 424 
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strands in some sections, reminiscent of the desmoplastic reaction in human pancreatic cancer 425 

[46,47]. In other sections, mesenchymal marker staining was minimal. Similar to the epithelial 426 

markers, the overall abundance of staining for the mesenchymal markers appeared greater in the 427 

PGKPS and PGKPSC lines compared to the PGKP line. 428 

With the immunohistochemical studies of the subcutaneous tumors demonstrating some 429 

epithelial characteristics, the nude mouse orthotopic implantation model was used next to assess 430 

the metastatic potential of all three cell lines. The percentage of mice implanted with each cell 431 

line that subsequently developed metastasis in the small bowel, diaphragm, liver, lung, lymph 432 

node, peritoneum, or spleen is shown in Fig. 4C. The degree of metastatic spread was minimal; 433 

nodal tissue was the only metastatic site common to all three lines. The PGKPCS cell line 434 

exhibited the greatest array of metastatic spread (p < 0.002, Chi-square), with the most common 435 

site being the spleen (though it was not clear in two of five mice with splenic disease after 436 

PGKPSC implantation whether the spleen was involved with extension from the primary tumor, 437 

or from direct seeding, or whether these were true metastases). Interestingly, one of the two 438 

subjects with liver metastasis after PGKPSC implantation had primary tumor within the 439 

gallbladder, rather than within the pancreas. Similar to the subcutaneous tumor model, most 440 

tumors in the orthotopic model were well-vascularized and mucinous in gross appearance.  441 

 442 

443 
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  444 

Discussion 445 

 446 

Our overall goal with this project was to generate tumorigenic pancreatic cell lines that 447 

could be used in an immunocompetent porcine model of pancreatic cancer. Current murine 448 

models for pancreatic cancer will continue to be helpful, particularly for the study of molecular 449 

mechanisms. However, murine models are limited in their ability to replicate human biology and 450 

size, so a large animal model of pancreatic cancer likely would enhance our ability to develop 451 

and test new diagnostic and treatment modalities for this disease. The data presented herein 452 

demonstrated that wild type porcine pancreatic ductal epithelium can be transformed with 453 

modulation of common tumor-associated target genes, and that these transformed cells 454 

subsequently can grow tumors in immunodeficient mice. These data provide a pathway for the 455 

construction of an autochthonous porcine model of pancreatic cancer, namely, orthotopic 456 

implantation of tumorigenic pancreatic cells. Proof-of-principle for tumor growth in pigs using 457 

subcutaneous implantation of ex-vivo transformed autologous fibroblasts was demonstrated in 458 

2007 [29].  459 

Porcine biomedical models have been used for decades in the fields of trauma and 460 

hemostasis [48], xenotransplantation [49,50], dermal healing [51], toxicology [52], 461 

atherosclerosis [53], and cardiac regeneration [54]; the utility of these models is growing. A 462 

porcine genome map was generated in 2012 [42], and further coverage, annotation, and 463 

confirmation is ongoing [55,56]. Porcine-centered online tools and databases are now available 464 

[57]. Genetic manipulation of pigs (including knockouts, tissue-specific transgenics, inducible 465 

expression [29,58-65]) with similar tools as used in the mouse is becoming more routine, with 466 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/267112doi: bioRxiv preprint 

https://doi.org/10.1101/267112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Porcine PC Model, version 2018-05-17, 10:01  Page 23 of 47 

new gene-edited porcine models emerging in 2015-2017 for diseases such as atherosclerosis, 467 

cystic fibrosis, Duchenne muscular dystrophy, and ataxia telangiectasia [44,66,67]. 468 

The rationale to build a porcine model of pancreatic cancer is (1) to have a platform for 469 

diagnostic/therapeutic device development otherwise not achievable in murine models; and (2) to 470 

have a highly predictive preclinical model in which anti-cancer therapies (including 471 

immunotherapies) could be vetted/optimized prior to a clinical trial [68]. The rationale to use the 472 

pig in this modeling effort is that this species mimics human genomics [55,69-72], epigenetics 473 

[73], physiology [52,69,74,75], metabolism [69,75,76], inflammation and immune response 474 

[72,77-81], and size [75,82] remarkably well (in particular, better than mice), with reasonable 475 

compromises towards cost and husbandry [75]. So based on the pig’s relatively large size and its 476 

proven track record in replicating human biology which, incidentally, is a demonstrably better 477 

replication than can be obtained with rodents, we selected swine as the model organism for this 478 

pancreatic cancer project.  479 

Research on immunocompetent large animal cancer models [83-85] includes prostate 480 

cancer, for which there is a canine model [86]. In addition, in 2012 a group in Munich reported 481 

the engineering of (i) an APC mutant pig that developed rectal polyposis [16,87] and (ii) a pig 482 

with Cre-inducible p53 deficiency [63]. This group subsequently determined that their p53-null 483 

subjects (TP53R167H/R167H) developed osteosarcoma by age 7-8 months [88]. Other p53-deficient 484 

pigs have been engineered since this initial report [64,89]; in the report from Iowa, half (5 out of 485 

10) of p53-deficient (TP53R167H/R167H) pigs developed lymphoma or osteogenic tumor at age 6-18 486 

months [64]. A group in Denmark reported the creation of a BRCA mutant pig in 2012. [90].  487 

A KRAS/p53 “Oncopig” was reported in 2015 [26,43,44,84]. This subject has a somatic 488 

LSL-cassette that can express dominant negative p53 (R167H mutation) and activated KRAS 489 
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(G12D mutation); i.e., the porcine analog of the KRAS/p53 mouse [41,45]. Site-specific 490 

expression of Cre recombinase in the Oncopig resulted in localized p53 inhibition and KRAS 491 

activation; subcutaneous injection of AdCre produced mesenchymal tumors at the injection sites 492 

[26]. In 2017, initial work was published on a Oncopig-based model of hepatocellular carcinoma 493 

[91]. Also in 2017, another genetic porcine model of intestinal neoplasia was reported [92], 494 

utilizing inducible expression of KRASG12D, c-Myc, SV40 large T antigen, and retinoblastoma 495 

protein (pRb). One out of three pigs total in this model developed duodenal neuroendocrine 496 

carcinoma with lymph node metastasis at two months after induction. A porcine model of 497 

pancreatic cancer has not yet been reported, other than some preliminary data presented by us in 498 

2017 [93].  499 

The process we used for developing transformed porcine pancreatic ductal epithelial cell 500 

lines for future orthotopic implantation was somewhat iterative, in that we modified our strategy 501 

along the way based on our early results. Commonly mutated genes in pancreatic cancer include 502 

KRAS [94,95] and TP53 [95-97]. In mice, somatic activation of KRAS via the G12D mutation 503 

(KRASG12D) produced widely metastatic pancreatic tumors; survival duration in these subjects 504 

decreased further with p53 inactivation [41]. Based on this murine model, and the published 505 

success with subcutaneous tumor induction in the KRAS/p53 Oncopig [26], we elected to 506 

transform pancreatic ductal epithelial cells with expression of activated KRASG12D and p53R167H 507 

only. However, the initial results from our in vitro transformation assays with these two gene 508 

edits (i.e., the PGKP cell line of Table 1) were somewhat underwhelming. Combined with the 509 

finding of no gross tumor four months after pancreatic AdCre injection in five Oncopig subjects, 510 

we decided that additional genetic “hits” might be necessary for transformation of porcine 511 

pancreatic ductal epithelial cells. Of note, Schook et al. [29] found that porcine dermal 512 
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fibroblasts required six genetic edits (human telomerase reverse transcriptase, dominant negative 513 

p53, cyclin D1, activated cyclin dependent kinase, oncogenic c-Myc, and oncogenic H-Ras) to 514 

optimize the tumorigenic phenotype of this particular cell.  515 

Other commonly mutated genes in pancreatic cancer include SMAD4 [95,98] and 516 

CDKN2A [95,99]. Deletion of SMAD4 or CDKN2A in a KRASG12D murine pancreatic cancer 517 

model enhanced tumor growth [100,101]. Based on these published data and our above 518 

transformation results with just the KRAS and TP53 edits, we elected to add knockdown of 519 

SMAD4 and p16 to our list of hits for transformation of porcine pancreatic ductal epithelial cells. 520 

Ultimately, all three of our cell lines (Table 1) demonstrated transformed behavior in vitro and 521 

the ability to form tumors in vivo (nude mice), with perhaps some enhancement by the addition 522 

of SMAD4 and p16 knockdown. In the future, we intend to utilize CRISPR/Cas9 editing to 523 

disrupt the genes of these and/or other targets.  524 

Although we utilized a relatively high number of cells to obtain tumor formation in our 525 

nude mice experiments, we feel that this is due to the relative young age of our cell lines, which 526 

did not undergo as many passages as other cell lines which have been used to study pancreatic 527 

cancer. Thus, the transformed cell lines in this report likely did not undergo an inadvertent 528 

selection for the fastest growing cells, as may occur in older, extensively-passaged lines. 529 

Regarding the lack of desmoplasia in our murine xenograft model, we did not consider this 530 

surprising, in that most immunodeficient murine models of pancreatic cancer do not recapitulate 531 

the extent of desmoplasia or metastasis seen with human disease. We anticipate that future 532 

experiments involving the implantation of transformed pancreatic ductal epithelial cells into wild 533 

type swine (and thus into a “normal” microenvironment with “normal” immunoediting) will 534 

produce tumors with desmoplasia and metastasis.  535 
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Of note, the pathologic findings in our five Oncopig subjects, while not macroscopically 536 

tumorous, displayed tissue architecture reminiscent of desmoplasia. Regarding the lack of 537 

macroscopic tumor in these transgenic pigs, it is conceivable that the induction process was not 538 

optimal secondary to an inadequate dose of AdCre, inadequate recombinase activity, inadequate 539 

tissue delivery of the enzyme, or some other technical issue. Our future plans in this respect will 540 

involve additional attempts at induction of pancreatic tumor in the Oncopig with and without 541 

introduction of some additional gene edits, such as local disruption of SMAD4 and CDKN2A 542 

(e.g., with in vivo CRISPR/Cas9 gene editing [102,103]).   543 
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Table 1. Tumorigenic cell lines and their expression products.  880 
 881 

Cell line 
AcGFP1 
protein 

KRASG12D 
protein 

p53R167H 
protein 

SMAD4 
shRNA 

p16Ink4A 
shRNA 

PGKP  + + +   

PGKPS  + + + +  

PGKPSC*  + + + + + 
              882 
All cell lines based on primary porcine pancreatic ductal epithelial cells. *Abbreviation key: P = 883 
pancreatic ductal epithelium; G = GFP; K = KRAS; P = p53; S = SMAD4; C = 884 
p16Ink4A/CDKN2A.  885 
  886 
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Figure Legends  887 

 888 

Fig. 1. Isolation and transduction of primary porcine pancreatic ductal epithelial cells. (A) 889 

Phase image of cells isolated from porcine pancreatic duct, showing epithelial-like morphology 890 

(bar = 1,000 µm). (B) Immunofluorescent staining for cytokeratin 19 in the cultured primary 891 

cells (bar = 200 µm). (C) Immunoblot for the p53 mutant in nine different cells lines transduced 892 

with the GKP virus (PGKP cells). Pancreas = wild type pancreatic ductal epithelial cells. 893 

Representative blot of three separate experiments. (D-E) qPCR of KRAS and p53 mutants in the 894 

nine PKGP cell lines. Each bar represents mean of three separate experiments. *p<0.05, ** 895 

p<0.03, ***p<0.01 (unpaired t-test, compared to wild type).  896 

 897 

Fig. 2. Effect of SMAD4 and p16Ink4A knockdown on transformation in the PGKP cell line. 898 

(A) Soft agar assay and (B) migration assay in the nine GKP-transduced cell lines. Pancreas = 899 

wild type pancreatic ductal epithelial cells. Each bar represents mean of three separate 900 

experiments. (C) RT-PCR of SMAD4 and p16Ink4A/CDKN2A mRNA in cell lines expressing 901 

targeted or scramble shRNA. Representative blot of three separate experiments. (D) Soft agar 902 

assay and (E) migration assay of selected cell lines (PGKP, PGKPS, and PGKPSC), showing the 903 

in vitro effect of additional knockdown of SMAD4 ± p16Ink4A on the transformation of GKP-904 

transduced pancreatic ductal epithelial cells.  905 

 906 

Fig. 3. In vitro transformation assays comparing the PGKP, PGKPS, and PGKPSC cell 907 

lines. (A) Cell culture population doubling time (count-based assay). Pancreas = wild type 908 

pancreatic ductal epithelial cells. (B) Proliferation rate (metabolic dye-based assay), represented 909 
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as fold change, normalized to wild type cells. (C) Invasion (Matrigel®-based assay). Each bar or 910 

data point represents mean of three separate experiments.  911 

 912 

Fig. 4. In vivo tumorigenesis assays comparing the PGKP, PGKPS, and PGKPSC cell lines. 913 

(A) Sample of a resected tumor from subcutaneous injection in nude mice; note size and 914 

vascularity. (B) Tumor growth curve from the subcutaneous injection in nude mice. Each data 915 

point represents mean of 10 mice. (C) Metastasis after orthotopic implantation in nude mice  916 

 917 

Fig. 5. Tumor immunohistochemistry from subcutaneous nude mouse assay. Representative 918 

images of primary tumors derived from the PGKP, PGKPS, and PGKPSC cell lines stained with 919 

an array of epithelial markers, including E-cadherin (Ecad; B, G, L), Epithelial Cell Adhesion 920 

Molecule (EpCAM; C, H, M), Pan-Cytokeratin (PanCK; D, I, N), and Cytokeratin-19 (CK19; E, 921 

J, O); and also stained with mesenchymal markers, including a-Smooth Muscle Actin (SMA; P, 922 

S, V), Vimentin (Vim; Q, T, W), and Type I Collagen (Col I; R, U, X). Bar = 200 µm.  923 

  924 
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