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Cell differentiation is often associated with specific divisions and
generations in a lineage tree. The presence of phenotypic noise, how-
ever, can make it difficult to observe such patterns. Using the group
symmetry representation of a binary tree, it is shown how variation
in a lineage can be compactly described by a set of natural variables
each of which is labelled by the division at which a type of variation
arises and the generation at which it is expressed. This harmonic
analysis for a rooted tree provides a disciplined way to aggregate
tree-structured data, improving the ability to identify differentiation
patterns in noisy lineages. It also allows the proportion of variation of
a phenotypic fate associated with each division to be estimated and
compared to the proportion of variation expressed at each genera-
tion. The method has been applied to T-lymphocyte lineages tracked
using time-lapse microscopy over several generations. For compari-
son, the analysis has been applied to C. elegans, a lineage with clear
differentiation stages, and to a stationary branching process, which
has none.

1. Introduction. In embryonic cell lineages, differentiation is often
tightly synchronised to specific cell divisions and generations (Chisholm,
2001; Hadjantonakis and Arias, 2016). Low levels of variability in lineages
such as for the roundworm C. elegans has allowed unambiguous identifica-
tion of the developmental patterns (Sulston et al., 1983) without the need for
statistical analysis. In contrast, the presence of substantial phenotypic noise
in, for example, lymphocyte lineages (Hawkins et al., 2007) may be prevent-
ing underlying differentiation patterns from being observed. Whether noise
has a functional role in multi-cellular development has been much debated
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2 D. G. HICKS ET AL.

(Balázsi, van Oudenaarden and Collins) with indications that the stability
of certain hematopoietic subpopulations arises simply from the law of large
numbers, not from programmed differentiation (Gerlach et al., 2013). A sta-
tistical method that can detect underlying differentiation patterns in noisy
lineage trees would be an important contribution to this debate.

Early approaches to statistical inference in cell lineages (Cowan and Staudte,
1986; Huggins and Staudte, 1994) focused on stationary processes in micro-
bial populations and were not designed to address differentiation patterns.
More recently, models have been developed in the context of particular hy-
potheses, such as chaotic dynamics (Sandler et al., 2015) or state-switching
processes (Hormoz et al., 2016) but do not address the general problem of
characterising variation in a lineage. The theory of branching processes (Hac-
cou et al., 2005), which has been applied to lymphocyte proliferation and
death (Zilman, Ganusov and Perelson, 2010), does not address lineage infer-
ence. Phylogenetic inference (Felsenstein, 2003) involves reconstructing an
unknown tree structure but is not designed to infer developmental patterns
in a known tree structure.

Identifying signal from noisy measurements requires aggregating data, yet
for tree-structured data this most elementary of operations is non-trivial.
The source of the difficulty is that, with noisy data, daughters are statisti-
cally indistinguishable (that is, unindentifiable or exchangeable). This means
that their subtrees are indistinguishable too, and so on, recursively through
all descendants, leading to a particular pattern of indistinguishability. Now
in statistical analysis, one generally aims to aggregate as much of the data
as possible to maximise signal-to-noise, but not so much that meaningful
associations are lost. Achieving this requires both respecting and exploiting
the pattern of indistinguishability.

The optimal aggregation scheme can be found by examining the symme-
try invariance of a rooted tree. The indistinguishability of daughters and
their subtrees means it is possible to permute family members in ways that
preserve the joint distribution over the tree, with the set of all possible per-
mutations forming a group. Group representation theory (Diaconis, 1988;
Stiefel and Fässler, 1992) can then be used to identify a linear transforma-
tion that not only aggregates tree-structured data optimally but also defines
a natural set of variables that is free of the redundancies caused by indistin-
guishable variables.

This analysis is related to the conventional practice of blocking in nested
groups. What is new here is that the observations are distributed at all levels
of the nested groups (the tree structure), not just at the lowest level as would
be necessary for a conventional analysis of variance (ANOVA) to apply.
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STATISTICAL INFERENCE IN CELL LINEAGE TREES 3

This generalisation has profound consequences as the variance components
are no longer just scalar eigenvalues, as in an ANOVA (Speed, 1987), but
instead form orthogonal subsets of dependent variables where each subset is
associated with variation from a particular division.

In this paper this statistical framework is developed and applied to differ-
entiation patterns in various lineage trees, from the highly-ordered structure
observed in C. elegans to the featureless character of a simulated branching
process. The framework is able to characterise the continuum between these
two extreme cases of differentiation where most systems of interest, includ-
ing the T-lymphocytes discussed here, lie. The technique is analogous to the
spectral analysis of a noisy time series where spectral lines can exist concur-
rently with a broadband background. In that case, the lines are interpreted
as arising from ordered processes while the flat background is considered to
be from unstructured noise. It is in the spectral domain that this distinction
between signal and noise becomes clear.

The rest of the paper is organised as follows. Section 2 shows aspects
of the 3 lineage types used in this paper. The framework of the model,
and how family members are assigned to variables, is given in Section 3.
The core of the paper, Section 4, examines ways to improve inference on
trees by progressively increasing model constraints until real data can be
analysed. Graphical models are used to visualise and interpret the dynamics
of variation in a lineage in Section 5. The progression and expression of
phenotypic fate is defined and illustrated in Section 6. A discussion about
the interpretations and prospects for this analysis is given in Section 7.

2. Lineage Data. Three types of lineage data are analysed:

T cells Unpublished lineage data on CD8+ T cells from GFP:OT-1 trans-
genic mice. Naive cells, expressing a T cell receptor for SIINFEKL
peptide from ovalbumin, interact with peptide-pulsed bone marrow-
derived dendritic cells to activate clonal expansion (Oliaro et al., 2010).
Cells and their descendants are tracked using time-lapse fluorescence
microscopy and analysed using custom software (Shimoni et al., 2013).
Although multiple phenotypic traits were recorded, in this paper the
only trait analysed is the average area of a dividing cell over its life-
time. Note that only dividing cells were used in the analysis; cells that
die or whose fate is unknown were counted as missing data. 19 replicate
families were used.

Worm Published (Santella et al., 2016) embryonic lineage data from the
RW10425 transgenic strain of C. elegans. In this strain the PHA-4
protein, a marker for pharyngeal and intestinal tissue, is tagged with
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4 D. G. HICKS ET AL.

green fluorescent protein. Gut differentiation occurs early during em-
bryogenesis, with PHA-4 expression beginning by generations 7 and 8.
There are 10 replicate families.

Branching Process Simulated lineages from a stationary branching pro-
cess. 20 replicate families are used, with a missing data fraction of
20% assumed. Here we define a branching process to be one with a
particularly simple pattern of correlations between family members
ς and ς ′: The mother-daughter correlation is h while the correlation
between any two family members ς and ς ′ separated by a kinship dis-
tance ∆ςς′ is given by h∆ςς′ . Mother-daughters have ∆ = 1, sisters have
∆ = 2, cousins ∆ = 4 and so on. Importantly, in this scheme daughter-
daughter correlations are the square of mother-daughter correlations
making daughters independent conditional on their common mother.
As will be shown in Section 5, the underlying graphical model for this
branching process is a binary tree which is generally not the case for
real lineages. For our purposes, this stationary branching process rep-
resents a null model since, despite the presence of correlations between
family members, there are no preferred differentiation stages.

Sample lineages from these 3 lineage types are shown in Fig. 1 while the
expression of each phenotype as a function of generation is shown in Fig. 2.

3. Modelling Framework and Labelling Conventions. As with
any statistical model, we must first assign variables to each data point.
In general, a lineage measurement, Yhijk, might be indexed by 4 factors:
Conditions (h), Family (i), Member (j), and Trait (k). The Condition factor
corresponds to the cell type being studied or the experimental arrangement
under which a founder cell is chosen or cultured (and may itself consist of
multiple factors). Each factor level of Family refers to a particular founder
cell and its descendents; each level of Member corresponds to a position in
the family tree; and each level of Trait refers to a given phenotype recorded
for a cell (such as average size or marker expression intensity).

To focus on the associations among family members, we restrict our atten-
tion to modelling a single trait from families subject to the same conditions.
A multi-family sample can then be represented by a two-factor array (Yij),
where i has n levels corresponding to the number of families and j has p
levels corresponding to the number of members within a family. With no
meaningful distinctions among families (they are all of the same cell type
and subject to the same conditions) we assume families are independent
and identically distributed replicates. The data can thus be represented by
a matrix Y with n replicates (rows) and p variables (columns).
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Fig 1. Comparison of some sample lineages. Colouring of the nodes reflects quantification
of the phenotype under analysis (average area over lifetime for T cells, PHA-4 expression
for C. elegans). The absence of a node on a branch represents a missing data point. Note
that for the T cell lineage the root node is the naive cell while for the worm lineage the
root node is the zygote (labelled P0 in the C. elegans naming convention).
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Fig 2. Expression of each phenotype as a function of generation. For T cells the measured
phenotype is the average cell area in µm2; for C. elegans it is PHA-4 fluorescence intensity.
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6 D. G. HICKS ET AL.

Each of the p dimensions corresponds to a family member. We use a bi-
nary number to label each family member so that, for example, the first
3 generations are labelled as founder (1), daughters (10, 11), and grand-
daughters (100, 101, 110, 111), where each label thus encodes the family
member position.

The group symmetry methodology described in Section 4.2.5 demands
a clear distinction between the terms generation and division: generation
refers to the depth of a family member in a tree while division refers to a
process occurring between two adjacent generations. A cell thus belongs to
a generation but arises from a division. It will be necessary to assign each
division a unique two-factor index (`, τ) with ` referring to the longitudinal
coordinate of the division and τ to the transverse coordinate. In our con-
vention, a cell in generation g always arises from a division with ` = g. We
choose the convention that the founder cell is in generation 1. This means
that the first division within the family is actually ` = 2 since it produces
daughters in g = 2. The ‘division’ ` = 1 refers to a process, occurring outside
the family, that gave rise to the founder cell. Variation attributed to ` = 1
therefore refers to inter-family variation. Fig. 3 gives a summary of these
definitions and conventions.

Often in lineage measurements there are many more members of a family
(p) than there are families (n). Thus p & n, with the disparity getting expo-
nentially worse with the number of generations studies. Performing reliable
inference when p/n > 1 is an open research question (Hastie, Tibshirani and
Wainwright, 2015). Best results are achieved when prior knowledge of the
problem can be incorporated.

In the next section we describe increasingly more sophisticated steps to
reduce the effective dimensionality of the inference calculation, first by ex-
ploiting known symmetry properties and then by using observed sparsity
properties. Our practical goal is to identify a scheme where the data require-
ment of the model (the number of replicates required to infer its parameters)
is independent of the number of generations studied.

4. Statistical Inference. Our objective is to infer the joint probability
distribution P(y) from a sample of size n where y is a p-dimensional random
variable representing the single trait for each family member in the lineage.
In this study we discuss inference for a multivariate Gaussian since the traits
we examine for T cells and C. elegans are continuous and approximately
marginally Gaussian. Thus,

P(y;µ,Σ) =
|Σ|−1/2

(2π)p/2
exp

[
−1

2
(y − µ)′Σ−1(y − µ)

]
,
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STATISTICAL INFERENCE IN CELL LINEAGE TREES 7

Fig 3. Labeling convention for family members, generations, and divisions. Each family
member is identified with a binary number. The founder cell is defined to be at generation
g = 1. Each division is uniquely identified with a 2-index label written as (`, τ) where `
refers to the longitudinal coordinate and τ refers to the transverse coordinate. ‘Division’
(1, 1) actually represents the process that distinguishes different founder cells and will be
use to label inter-family variation. According to group representation theory, each division
is a potential source of variation. Importantly, in this study, only the longitudinal division
coordinates are distinguishable.

where Σ is the variance-covariance matrix and µ is the multivariate mean.
Our preliminary goal is to infer the maximum-likelihood estimate Σ̂ and

its inverse, the precision matrix K̂ = Σ̂−1. Since there are many shared
associations between family members it will turn out to be more useful to
estimate the covariance matrix for a natural set of variables. These will be
determined from group symmetry arguments.

4.1. Unstructured Gaussian. A naive method for finding Σ̂ is to assume
no prior structure on Σ, allowing for all possible associations between family
members. Then, if the sample mean (y) and (biased) sample covariance (S)
are given by the usual

y =
1

n

n∑
i=1

Yi, S =
1

n

n∑
i=1

YiY
′
i − y y′(1)

where Yi is the data vector from family i, the mean and variance-covariance
estimates are given explicitly by

µ̂ = y, Σ̂ = S(2)
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8 D. G. HICKS ET AL.

Using this to analyse the first G generations, the effective number of
dimensions peff, the number of unknown variance-covariance parameters NΣ,
and the minimum number of replicates nmin required to ensure existence of
the MLE are:

peff = p, NΣ = p(p+ 1)/2, nmin = p+ 1.(3)

where the number of family members p = 2G − 1. Although peff = p for this
unstructured case, with group symmetries peff < p.

Note how nmin increases exponentially with the number of generations
G being studied, making this simple model impractical for analyzing trees.
Nevertheless it provides a reference for our improved models which aim to
make nmin independent of G. For each model we will examine the reduction
in peff, NΣ and nmin, as will be shown.

4.2. Symmetry. To reduce nmin requires identifying constraints. Con-
straints on Σ can be found from the group symmetry properties of a tree.
We first demonstrate how this pattern can be determined by inspection
alone and then use group representation theory to identify the natural set
of variables associated with this pattern.

4.2.1. Shared Parameters. To reduce the number of unknowns in the
model, we start by identifying a pattern of shared parameters in the covari-
ance matrix. The shared parameters arise from the indistinguishability of
daughters and their subtrees.

For example, consider the pair of cells 10 and 110 which have 1 as their
Most Recent Common Ancestor (MRCA). We can uniquely identify the
covariance matrix element for this pair by using the 3-index 231 to specify
the generation of each cell (2 and 3) and the generation of their MRCA
(1). Now because of daughter indistinguishability, the association between a
different cell pair, 11 and 101, must have the same 3-digit label 231. We can
proceed to give a 3-index label to each covariance matrix element, leading
to the following patterned covariance matrix ΣG for the first 3 generations:
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STATISTICAL INFERENCE IN CELL LINEAGE TREES 9

ΣG =

1 10 11 100 101 110 111



σ111 σ121 σ121 σ131 σ131 σ131 σ131 1
σ121 σ222 σ221 σ232 σ232 σ231 σ231 10
σ121 σ221 σ222 σ231 σ231 σ232 σ232 11
σ131 σ232 σ231 σ333 σ332 σ331 σ331 100
σ131 σ232 σ231 σ332 σ333 σ331 σ331 101
σ131 σ231 σ232 σ331 σ331 σ333 σ332 110
σ131 σ231 σ232 σ331 σ331 σ332 σ333 111

(4)

where lines separate different generations. We use the subscript G to indicate
when a matrix has this patterned structure. Because a generation denotes
the lineage distance to the founder cell, a meaningful quantity in cell differ-
entiation, we need to specify the generations of the cell pair and its MRCA,
not just generational differences. For example, sisters in generation 3 may
have different statistical associations to sisters in generation 2.

The MLE of a Gaussian with this form of Σ can be found explicitly. To
understand why, consider the log-likelihood of the multivariate Gaussian

L(µ,K;Y ) = lnP(Y ;µ,K)

=
n

2
[ln detK − tr (SK)− p ln(2π)](5)

over positive definite matrices K. If the pattern is in the covariance ma-
trix (Anderson, 1973), maximum likelihood (ML) optimisation is not in
general convex; if the pattern is in the precision matrix, ML optimization is
convex and leads to explicit estimates for Σ (Hojsgaard and Lauritzen, 2008;
Szatrowski, 1980). Since, as we will show in the next section, this particu-
lar pattern arises from group symmetries in the binary tree, the pattern is
invariant under the action of an inverse and is thus the same for covariance
and precision matrices. Convex optimisation is thus guaranteed.

To constrain the structure of K we represent it as a linear combination
of matrices. The resulting patterned inverse covariance is then

KG =
∑
α

aαAα(6)

where each Aα is a matrix of 0’s and 1’s which has the same dimensions as
KG , with 1’s identifying a particular shared parameter and aα giving the
value of that parameter.

imsart-aos ver. 2014/10/16 file: main1.tex date: December 18, 2017

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 18, 2018. ; https://doi.org/10.1101/267450doi: bioRxiv preprint 

https://doi.org/10.1101/267450
http://creativecommons.org/licenses/by/4.0/


10 D. G. HICKS ET AL.

The MLE is found by differentiating Eq. 5 with respect to each aα and
setting dL/daα = 0, giving

d

daα
ln detKG =

d

daα
tr(SKG).(7)

Substituting Eq. 6 gives

tr(Σ̂GAα) = tr (SAα) .(8)

Since the matrices are symmetric we can equate the inner products of the
matrices:

〈Σ̂G ,Aα〉 = 〈S,Aα〉.(9)

Thus the MLE of each shared parameter in Σ̂G is found by averaging the
corresponding elements in S (Hojsgaard and Lauritzen, 2008). The result,
SG , is thus the MLE of the patterned covariance:

Σ̂G = SG(10)

This aggregation of selected elements improves the signal-to-noise in just
the right way, enhancing information about all possible associations in the
tree by averaging over the indistinguishability pattern.

Note that the MLE of the mean, µ̂, is also given explicitly for a multivari-
ate Gaussian with group symmetries (Gehrmann and Lauritzen, 2012). For
the case of a binary tree µ̂ is found by pooling data from family members
sharing the same generation, following the pattern in the variances shown
on the diagonal of ΣG (Eq. 4).

While the shared parameters have reduced the number of variance and
covariance elements, it is difficult to evaluate how many replicates, nmin, are
now required to ensure that S is positive definite (Uhler, 2012). The answer
will become apparent when we examine the invariant subspaces of the group
representation.

4.2.2. Indistinguishability and Symmetry Invariance. The shared param-
eter pattern, found above by inspection, arises directly from the symmetry
invariance properties of the tree. These symmetries have deep implications,
beyond just optimal data aggregation.

An object possesses a symmetry if it remains invariant under the actions
of a group. Symmetries are possible in a binary tree because daughters
are statistically indistinguishable. We can thus exchange the two subtrees
descended from any ancestor without altering the joint distribution over the
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STATISTICAL INFERENCE IN CELL LINEAGE TREES 11

Fig 4. Group symmetry in a binary tree arises from the possible permutations of family
members that preserve their mutual relatedness. In this example, the 8 permutations of a
tree with 3 generations are shown.

tree. Here we use the term ancestor to mean a branch node, i.e. any family
member that has daughters.

The complete set of group actions is found by considering all the ances-
tors together, allowing each to be in one of two ‘states’: having its subtrees
exchanged or not. For a tree with G generations and thus A = 2G−1 − 1
ancestors, there are 2A unique configurations of all ancestor states that keep
the family relationships invariant. These configurations form the complete
set of elements in the group of order 2A.

For example, a tree consisting of the first 3 generations has A = 3 (corre-
sponding to members 1, 10, and 11). The order of the group is thus 23 = 8.
Each of the 8 permutations is shown in Fig. 4.

4.2.3. Group-Averaged MLE. Symmetry constrains the joint distribution
because each relationship-preserving configuration of family members is a
permutation of the p variables that keeps P(y) invariant. Thus if Ds is
the p-dimensional permutation matrix representing an action s of the group
G, symmetry invariance (referred to as G-invariance) requires P(Dsy) =
P(y), ∀s ∈ G. For a multivariate Gaussian, this means that the covariance
matrix belongs to the set

WG = {M ∈ Rp×p|DsMD′s = M ∀s ∈ G},(11)

referred to as the fixed point subspace of the group G. Note that a G-invariant
covariance matrix implies a G-invariant precision matrix since if DsΣD

′
s =

Σ then DsΣ
−1D′s = Σ−1.
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12 D. G. HICKS ET AL.

A fundamental technique for transforming an unconstrained matrix M
into one that is symmetry invariant is the group-average or Reynolds oper-
ator given by:

PG(M) =
1

|G|
∑
s∈G

DsMD′s, PG : Rp×p →WG(12)

where |G| is the order of the group. This projects the matrix onto the fixed
point subspace by averaging with respect to the orbits of the group. It is
straightforward to demonstrate that the pattern that arises from PG(Σ),
when G is the symmetry group of the tree, is the same as that shown in
Eq 4 that was found by inspection.

The requirement that Σ ∈ WG places a constraint on the log-likelihood
optimisation (Eq. 5). The resulting constrained MLE is given by (Shah and
Chandrasekaran, 2012)

Σ̂G =
1

|G|
∑
s∈G

DsSD
′
s,(13)

or just Σ̂G = PG(S) from Eq. 12. Thus the MLE is found by projecting
the sample covariance onto the fixed point subspace of the group, a result
that necessarily agrees with Eq. 9 since the underlying pattern is the same.
PG() is the general operation for pooling data with group symmetries that
preserves associations between variables.

This method for finding the shared parameters is only practical when
the order of the group, |G|, is small. In a binary tree, |G| increases super-
exponentially, as 2A where A = 2G−1 − 1. Thus, even with 4 generations,
|G| = 128, and the group-averaging approach of Eq. 13 is awkward to im-
plement in practice.

4.2.4. Decomposition into Irreducible Components. Deeper insight, and
computational benefit, arises from examining the invariant subspaces of the
group representation. This identifies a set of orthogonal components that
are a particularly meaningful and concise way of describing tree-structured
variation. In this subsection we briefly summarise the general theory for
decomposition according to group symmetries, following (Stiefel and Fässler,
1992; Shah and Chandrasekaran, 2012). In the next subsection we apply it
to a binary tree.

Let ϑ : s → Ds ∀s ∈ G be the representation of G on the vector space
V ∈ Rp. From Maschke’s theorem, and by induction, a linear representation
ϑ of a finite group is a direct sum of irreducible representations. Accordingly,
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STATISTICAL INFERENCE IN CELL LINEAGE TREES 13

ϑ =
⊕I

ω=1mωϑ
(ω) where each inequivalent irreducible representation ϑ(ω)

has a multiplicity mω and a dimensionality dω such that p =
∑I

ω=1mωdω.
This ensures that any matrix M ∈ WG can be decomposed as

T †MT =

C
(1) 0

. . .

0 C(I)

(14)

where each C(ω) ∈ Rmωdω×mωdω corresponds to an isotypic component. Here
T is a unitary change-of-basis matrix that transforms M to a symmetry-
adapted basis where its block diagonal form is revealed.

Furthermore, Schur’s lemma states that, since C(ω) and ϑω commute, the
isotypic components themselves decompose and can be written as a direct
sum of repeated subblocks,

C(ω) =

M
(ω)
Ω 0

. . .

0 M
(ω)
Ω

(15)

where there are dω repeated subblocks of M
(ω)
Ω ∈ Rmω×mω . Note that this

requires the appropriate arrangement of symmetry-adapted basis vectors
within each isotypic component as specified in T (Stiefel and Fässler, 1992).

The fundamental decomposition of M ∈ WG is thus

T †MT =

I⊕
ω=1

[
dω⊕
ν=1

M
(ω)
Ω

]
, M

(ω)
Ω ∈ Rmω×mω ,(16)

where ν indexes the repeated subblocks M
(ω)
Ω . This expression highlights

how the M
(ω)
Ω are orthogonal building blocks of M . Each M

(ω)
Ω is referred

to as an irreducible block while the set of mω variables from which it is
composed is an irreducible component. Irreducible blocks are thus the main
objects of inference and, as we will see for the case of a binary tree, represent
the variation arising from each division.

Since M is either ΣG or KG in this paper, Eq. 16 states that a model
with p variables decomposes into I unique irreducible components each with
mω variables. This reduces the number of pairwise associations in the model
since Eq. 16 only permits associations between variables within an irre-
ducible component. It also reduces the total number of unique variables since
only one of the dω identical copies of each irreducible component needs to
be considered.
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14 D. G. HICKS ET AL.

4.2.5. Decomposition for a Binary Tree. Here we show the results of
applying group representation theory (Serre, 1977; Diaconis, 1988; Stiefel
and Fässler, 1992) to the vector space defined by all members of a binary
tree. Detailed calculations (see Supplement S1) show that for a completely
reducible representation on a binary tree with G generations, the number
of active irreducible representations I (here indexed by 1 ≤ ω ≤ I), their
dimensionalities dω and multiplicities mω are

I = G(17)

dω =

{
1, if ω = 1, 2

2ω−2, if ω ≥ 3
(18)

mω = G− ω + 1.(19)

As required, this satisfies p =
∑I

ω=1mωdω when p = 2G − 1.
The change-of-basis matrix T is calculated using the standard method

for identifying the symmetry-adapted basis (Stiefel and Fässler, 1992). For
example, with 3 generations:

T =

1,1 1,1 1,1 2,1 2,1 3,1 3,2
1 2 3 2 3 3 3



1 0 0 0 0 0 0 1
0 1√

2
0 1√

2
0 0 0 10

0 1√
2

0 −1√
2

0 0 0 11

0 0 1
2 0 1

2
1√
2

0 100

0 0 1
2 0 1

2
−1√

2
0 101

0 0 1
2 0 −1

2 0 1√
2

110

0 0 1
2 0 −1

2 0 −1√
2

111

(20)

This unitary (and orthonormal) matrix defines a set of symmetry-adapted,
or natural, variables in columns based on linear combinations of the standard
variables in rows. This transformation of data to its natural basis defined
by a group symmetry is referred to simply as spectral analysis by Diaconis,
see Chapter 8 (Diaconis, 1988).

The parts of Haar transformation matrices (Strang, 1993) for each gener-
ation can be recognised and are outlined in blue for generation 2 and green
for generation 3. Because representation theory requires the natural bases be
grouped into isotypic components, shown here separated by vertical lines,
T is not simply a direct sum of Haar matrices. The column headers give
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STATISTICAL INFERENCE IN CELL LINEAGE TREES 15

Fig 5. Construction of the natural variables for a tree with 4 generations. The + and − on
each family member indicates how members of a generation are combined. Each natural
variable is identified by the division (`, τ) on which the asymmetry is centered and the
generation g on which the variation is observed. The 15 natural variables thus defined by
the 3-tuple (`, τ, g) are listed in the bottom row. Since the transverse division coordinates
are arbitrary and there is no way to distinguish between them, only 10 of these variables
(those with τ = 1, say) are unique.

the natural variables in terms of divisions and generations, following the
interpretation to be described next.

How the natural variables are constructed from standard variables is illus-
trated in Fig. 5 for the case of 4 generations. Examining these combinations
suggests labelling each natural variable with a 3-integer tuple (`, τ, g) where

`: Longitudinal division The longitudinal coordinate of a division, `,
corresponds to an isotypic component, ω. The fact that there are G
longitudinal division coordinates is consistent with there being I = G
isotypic components (Eq. 17).

τ : Transverse division The transverse coordinate of a division, τ , corre-
sponds to an irreducible component ν within an isotypic component.
The fact that there is 1 transverse division coordinate for ` = 1, 2
and 2`−2 coordinates for ` ≥ 3 (see e.g. Fig. 5) is consistent with the
dimensionalities dω found for each irreducible representation (Eq. 18).

g: Generation The variables within each irreducible component corre-
spond to the generations g at which variation arising from division
(`, τ) can be observed. Given that variation from a division can only
be observed in members after that division, g is restricted to ` ≤ g ≤ G
and thus has G− `+ 1 values. This is consistent with the multiplicity
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16 D. G. HICKS ET AL.

of each irreducible representation being mω = G − ω + 1 (Eq. 19).
Importantly, since each accessible g occurs exactly once in each irre-
ducible component, the irreducible component consists of an ordered
sequence and is thus a time series.

The most important aspect of the natural variables is their second order
properties. It is straightforward to check that, using T from Eq. 20, the nat-
ural decomposition Eq. 16 transforms the patterned covariance, ΣG (Eq. 4),
into its block-diagonal form, ΣΩ (see Supplement S2). Just to be clear on
the subscript notation, the covariance matrix (or its inverse) can take on 3
forms: unstructured Σ, patterned ΣG , and transformed into its natural basis
ΣΩ. Then for the 3-generation tree,

ΣΩ = T †ΣGT(21)

=



ξ
(1)
11 ξ

(1)
12 ξ

(1)
13 · · · ·

ξ
(1)
12 ξ

(1)
22 ξ

(1)
23 · · · ·

ξ
(1)
13 ξ

(1)
23 ξ

(1)
33 · · · ·

· · · ξ
(2)
22 ξ

(2)
23 · ·

· · · ξ
(2)
23 ξ

(2)
33 · ·

· · · · · ξ
(3)
33 0

· · · · · 0 ξ
(3)
33


(22)

Matrix elements within each isotypic block are labelled with a superscript
(`) and 2 subscripts referencing the interacting generations. Each division
` forms an isotypic block. Starting at ` = 3, degeneracy occurs and re-
peated eigenvalues appear. Elements outside the isotypic blocks are zero
and labelled with a dot; elements inside an isotypic block but outside an ir-
reducible block are zero and labelled with a 0. For the case of 4 generations,
ΣΩ is shown as a heat map in Fig. 6, alongside ΣG

Each division (`, τ) thus represents an independent source of variation.
This means that variation at generation g can be decomposed into inde-
pendent contributions from all divisions where ` ≤ g. This is simply the
traditional concept of variance components in our language of divisions and
generations. We will use this to estimate the contributions of each division
to the pattern of fate expression (see Section 6).

The decomposition has thus taken a model with associations between all
variables and partitioned it into a set of independent ordered sequences each
representing the effects of variation from a division (`, τ). In summary: (i)
Each natural variable (`, τ, g) represents variation originating at division
(`, τ) and observed at generation g, (ii) Each division is a source of varia-
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Fig 6. Heat map of (a) the patterned covariance ΣG, and (b) the corresponding transformed
covariance ΣΩ for the first 4 generations, taken from the branching process. Natural vari-
ables along the axes of ΣΩ are given in the format (`, τ, g). Isotypic blocks are bounded by
dashed squares and correspond to a longitudinal division coordinate, `. Irreducible blocks
correspond to a unique division (`, τ) and are bounded by a dotted square. Each irreducible
component has a dimension m` and is repeated d` times in its isotypic component `. For
` = 1, 2 the isotypic and irreducible blocks coincide since d` = 1.

tion that can influence generations after it, (iii) Variation originating from
different divisions is independent.

Note that because the transverse division coordinates identify identical
irreducible components we only need to consider one irreducible component
per isotypic block, say (`, 1). Variation from different transverse divisions
τ with the same ` are thus identically distributed. This is a consequence
of the degeneracy of eigenvalues arising from the non-commutative symme-
try group. Physically this is because transverse division coordinates cannot
be distinguished. Thus, in practice we will only decompose variation into
longitudinal division components, not transverse division components.

These natural variables provide an intuitive language for characterising
differentiation patterns in a tree. Fig. 7 shows examples of some differentia-
tion ‘collective modes’ (to use a term from physics) and their corresponding
` and g. Since τ ’s are not distinguishable we will ignore their values.

Note that if we only had data from a single generation, G, the symmetry
group would still be the same as for the case of the entire tree. However, the
group would be represented on a vector space with dimension 2G−1, given by
the number of leaves of the tree. In this case T reduces to the Haar transfor-
mation matrix (Strang, 1993), and ΣΩ is diagonal with eigenvalues given by
classical nested ANOVA (Speed, 1987). ΣΩ is then the spectral covariance.
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18 D. G. HICKS ET AL.

Fig 7. Examples of asymmetric expression patterns in a tree and the `-divisions to which
they correspond. Each colour identifies an irreducible component associated with division `
and observed at some generations {g}. For example, the green asymmetry arises at division
5 but is not observed until generations 6 and 7. Note that transverse division coordinates,
τ , cannot be diagnosed and are ignored.

What is new here is that we have examined the group representation on
all the generations up to and including G, a vector space with dimension
2G − 1. The abstract group is same in both cases; the difference is in its
representation.

We remark that these variables are called natural because the underlying
group symmetry of the tree required the standard variables be aggregated in
just this way. It is satisfying that the groupings correspond to the those one
would intuitively want to define in a nested ANOVA if we were to consider
each generation separately.

4.2.6. MLE from Irreducible Components. The linear decomposition of a
matrix into block-diagonal form reduces the single MLE calculation over all
p variables into several smaller independent MLE calculations. To see this,
let K ∈ WG . Then using Eq. 16 to decompose K into irreducible blocks
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STATISTICAL INFERENCE IN CELL LINEAGE TREES 19

K
(`)
Ω gives:

ln detK = ln detT †KT = ln detKΩ

=

I∑
`=1

d` ln detK
(`)
Ω(23)

and

tr (SK) = tr
(
T †STT †KT

)
= tr (SΩKΩ)

=
I∑
`=1

d∑̀
τ=1

〈S(`,τ)
Ω ,K

(`)
Ω 〉(24)

Note that K
(`)
Ω has the same dimensionality as S

(`,τ)
Ω but is independent

of τ . Substituting Eqs. 23 and 24 in Eq. 5, it is thus apparent that each
irreducible block can be treated as an independent MLE calculation. The
result,

Σ̂
(`)
Ω =

1

d`

d∑̀
τ=1

S
(`,τ)
Ω = S

(`)
Ω(25)

states that Σ̂
(`)
Ω is found by averaging the d` irreducible subblocks in the

transformed sample covariance. This procedure ensures that elements of SΩ

that are outside the block diagonal are ignored.
The resulting Σ̂ can be reconstructed by substituting Eq. 25 in Eq. 16

and transforming back to the original basis:

Σ̂Ω =

I⊕
`=1

[
d⊕̀
τ=1

Σ̂
(`)
Ω

]
(26)

Σ̂ = T Σ̂ΩT
†(27)

The procedure for finding Σ̂ for a G-invariant covariance is thus as follows:

1. Transform S into the symmetry-adapted basis.
2. Zero the elements outside the irreducible blocks.
3. Average the irreducible blocks within each isotypic block (if there is

more than one).
4. Transform back to the original basis.

This result is necessarily the same as the projection of S onto the fixed
point subspace of the group (Eq. 13) but Σ̂Ω provides a more compact and
informative way of describing tree-structured variation.
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20 D. G. HICKS ET AL.

Importantly, Eq. 25 gives an explicit MLE of the irreducible block that
involves simply re-arranging terms in the sufficient statistic S. Each of these
blocks is thus a descriptive statistic for tree-structured data, involving linear
combinations of data points, sums of squares and no parameters.

4.2.7. Complexity of MLE calculation. Transforming Σ to the symmetry-
adapted basis makes it clear how much group symmetry reduces the com-
plexity of the model. The effective number of dimensions, peff, is found by
summing the dimensions of each unique irreducible component. The num-
ber of free parameters in the covariance matrix, NΣ, is found by summing
the number of parameters in each unique irreducible block. The minimum
number of replicates required, nmin, is found from the dimensionality of the
largest irreducible block (` = 1). Thus

peff =

G∑
`=1

(G− `+ 1) =
G(G+ 1)

2
= O(G2)(28)

NΣ =
1

2

G∑
`=1

(G− `+ 1)(G− `+ 2) =
G

6
(G+ 1)(G+ 2) = O(G3)(29)

nmin = G+ 1 = O(G)(30)

The group-symmetric model is thus significantly more constrained than the
unstructured model (compare Eq. 3), with the number of parameters grow-
ing polynomially with G instead of exponentially. Note how peff < p (when
G ≥ 3), a reduction in the effective number of dimensions that was not
apparent from the fixed-point subspace perspective. Even with these sym-
metry constraints however, nmin still grows with G, albeit linearly (Eq. 30)
instead of exponentially. This means that for a fixed set of n replicates there
will always be a limit to the number of generations that can be analysed.
An additional constraint is required.

4.3. Sparsity. The additional constraint comes from recognising that
each irreducible component ` is a time series from generation ` to G (see
Section 4.2.5). Together, the irreducible components form a set of G inde-
pendent time series each starting at a different generation but all ending
at G. A standard procedure for restricting the complexity of a time series
is to consider a fixed order Markov process. This restricts each irreducible
block of the transformed precision matrix to having non-zero values along
a diagonal band (the tri-diagonal in the case of a 1st order Markov pro-

cess). Remember that here it is the structure of each K
(`)
Ω that is sparse;

the precision matrix itself, K, is not particularly sparse.
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A restricted-order Markov chain is a simple case of a decomposable Gaus-
sian graphical model (Speed and Kiiveri, 1986; Lauritzen, 1996) and thus
yields an explicit MLE whose calculation we briefly summarise here. Fol-
lowing the standard procedure for a decomposable model, variables in the
block are organised into cliques and separators, a straightforward exercise

for a Markov chain of any order. The corresponding sub-blocks within S
(`)
Ω

are defined as

S
(`)
Ω,ci

, i = 1, ...,NC ; S
(`)
Ω,si

, i = 2, ...,NC

where the subscript ci refers to a clique, si refers to a separator, and NC is
the number of cliques in the irreducible block. The MLE for an irreducible
block is then given explicitly by (Lauritzen, 1996)

K̂
(`)
Ω =

NC∑
i=1

{[
S

(`)
Ω,ci

]−1
}0

−
NC∑
i=2

{[
S

(`)
Ω,si

]−1
}0

(31)

Σ̂
(`)
Ω =

[
K̂

(`)
Ω

]−1
(32)

where the expression {Υ}0 denotes a matrix with the dimensions of K̂
(`)
Ω

which has its appropriate sub-block occupied by Υ and zeros elsewhere.
This expression makes it clear that, since it is the inverse of the clique

and separator sub-blocks that are required, it is only these sub-blocks that
need to be positive definite. The mininum number of replicates required
for positive definiteness is thus set by the order M of the Markov process,
which is fixed, rather than by the size of the irreducible block, which grows
linearly with G. In general, nmin = 2 +M and we have finally achieved
our goal of having the data requirements be independent of the number of
generations being analysed. Note that restricting the non-zero parameters
in the precision matrix to be on the diagonal band means that NΣ ∼ O(G2),
down from the cubic dependence in Eq. 29. peff remains unchanged.

Inspection of the T-cell and worm lineage data show that, at least up to

generation 4, non-zero values in K
(`)
Ω are indeed primarily confined to the

tri-diagonal. This justifies the (first-order) Markov process assumption, and
we hereafter use it to extend the analysis to higher generations.

4.4. Missing Data. The MLE calculations for the models described above
assume complete data. In reality, some measurements are missing, often be-
cause data collection is imperfect but also because cells die and have no
descendants. This creates problems. Having to marginalise over the miss-
ing variables would mean that the MLE calculations are no longer convex
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22 D. G. HICKS ET AL.

and the explicit expressions for the MLE no longer apply. Also, with such
partially-balanced data we would not be able to perform the similarity trans-
formation to the symmetry-adapted basis.

A simple solution is to apply the Expectation-Maximization (EM) Al-
gorithm (Dempster, Laird and Rubin, 1977). This iteratively improves the
estimate of the covariance matrix, generating expected values of the suffi-
cient statistic at each step. In the E-step, the current estimate of the mean
µ̂ and covariance matrix Σ̂ are used to calculate the expected sufficient
statistic for each replicate, conditioned on the observed data. The average
sufficient statistic Ŝ over all replicates is then calculated. In the M-step, Ŝ
is used in the MLE calculation of the irreducible blocks (as described above)
to update the estimate Σ̂. The E and M steps are then repeated until Σ̂
converges.

In more detail (Little and Rubin, 2002), the first and second order statis-
tics are calculated for each replicate i by partitioning the variables into
observed sets, labelled oi, and unobserved sets, labelled ui. Members of each
set usually differ from one replicate to the next. The vector of unobserved
values in each replicate is then filled by its expected value conditioned on
the vector of observed values:

Yi,ui = E(Yi,ui |Yi,oi)
= µ̂ui + Σ̂ui,oiΣ̂

−1
oi,oi (Yi,oi − µ̂oi)(33)

These combined with the observed values completes the first order statistic,
Yi = {Yi,oi ,Yi,ui} for i.

The second order statistic (Y Y )i for each replicate i, partitioned into
observed and unobserved sections, is found from

(Y Y ′)i,oioi = Yi,oiY
′
i,oi

(Y Y ′)i,uioi = Yi,uiY
′
i,oi

(Y Y ′)i,oiui = Yi,oiY
′
i,ui

(Y Y ′)i,uiui = Yi,uiY
′
i,ui + Σ̂uiui|oioi ,(34)

where

Σ̂uiui|oioi = Σ̂ui,ui − Σ̂ui,oiΣ̂
−1
oi,oiΣ̂oi,ui

is the residual covariance of the unobserved variables after conditioning on
the observed variables.
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Once this exercise has been completed for all replicates, the sample mean
and covariance are calculated from the usual

µ̂ =
1

n

n∑
i=1

Yi, Ŝ =
1

n

n∑
i=1

(Y Y ′)i − µ̂µ̂′(35)

The estimated sample covariance, Ŝ, is then used in the procedures described
in the previous sections to calculate a new estimate, Σ̂.

Iterating these steps gives the following algorithm:

1. Initialize µ̂ and Σ̂.
2. Expectation step to determine the expected value of the sufficient

statistics for each replicate. Use Eqs. 33, 34, 35 to calculate the up-
dated estimate µ̂ and the estimated sample covariance, Ŝ

3. Maximization step to find Σ̂ from Ŝ.

(a) Find ŜΩ = T †ŜT .

(b) Set elements outside the diagonal blocks to zero.

(c) Find the average of the repeated irreducible blocks in each iso-
typic component.

(d) For each unique irreducible block, find Σ̂
(`)
Ω from Ŝ

(`)
Ω using Eq. 31

and 32, assuming a Markov chain of given order M.

(e) Recover Σ̂ = T Σ̂ΩT
†

4. Return to Step 2 until convergence.

5. Graphical Models of a Lineage. Having estimated the parame-
ters in the model we can visualise and interpret the results using graphical
models. Here we use two types of graphs: an undirected graph in the stan-
dard basis where the individual family members are nodes, and a directed
graph in the symmetry-adapted basis where the natural variables are nodes.
As will become apparent, the natural basis is a more compact way of viewing
all the parameters at once.

5.1. Standard Basis, Undirected Graph. To visualise the network of sta-
tistical associations between different family members we use an undirected
graph (Speed and Kiiveri, 1986; Lauritzen, 1996). Here we examine the
graphs defined either by marginal or by conditional associations. The first
is found from Σ while the second is found from K.

For the network of marginal associations the strength of an edge between
a pair of variables is defined by the Pearson correlation coefficient, ρjj′ =

σjj′/
√
σjjσj′j′ where σjj′ is an element of Σ̂. For the network of conditional
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e) Partial correlation: Worm
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f) Partial correlation: Branch-
ing process

Fig 8. Undirected graphs in the standard basis. The colour of edges in each graph corre-
sponds to the correlation (top row) or partial correlation (bottom row) between pairs of
family members. To avoid clutter only the first 4 generations are shown. Note how the
graph of partial correlations (8f) is a binary tree for the simulated branching process but
not for the real lineages. This emphasises how the graphical model of real lineages has the
symmetry properties of a tree but not the sparsity properties.
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associations the strength of an edge is determined by the partial correlation
%jj′|V \{j,j′} = −κjj′/

√
κjjκj′j′ where κjj′ is an element of K̂, and V \{j, j′}

refers to the set of variables excluding j and j′.
Both types of undirected graphs are shown in Fig. 8 for the 3 lineage types.

The network of conditional associations identifies direct interactions between
variables, conditioned on all other variables, and, as expected, provides a
sparser representation than does the network of marginal associations.

Note how a binary tree is revealed in the graph of partial correlations for
the branching process (Fig. 8f). This is expected since the branching process
was designed so that daughters were independent when conditioned on their
common mother. In the network of partial correlations this assumption re-
veals itself as the lack of an edge between sisters. In contrast, in the partial
correlation graphs for T-cell (Fig. 8d) and worm (Fig. 8e) lineages, sisters
are often joined by edges.

We emphasise that the inferred undirected graph for all lineages has the
symmetry structure of a binary tree but not necessarily its sparsity structure.
We are thus able to examine how the inferred network of statistical relation-
ships compares to the known network of familial relationships; though the
latter is a binary tree, the former may not be.

5.2. Natural Basis, Directed Graph. One problem with representing each
family member as a node is that the graph appears cluttered since that there
are many edges and nodes with similar parameters. This problem gets ex-
ponentially worse with increasing generations. Such redundancies disappear
when examining the tree over its natural, or symmetry-adapted, variables,
where the indistinguishabilities have been removed.

Since the natural variables in each irreducible component are ordered by
generation they can be represented by a directed graph, with each variable
conditioned on the past (Wermuth, 1980; Kiiveri, Speed and Carlin, 1984;
Pearl, 1988). Each irreducible component is a chain and the tree is repre-
sented by G independent chains.

The structural equation model, sometimes called a causal model, underly-
ing each chain is a non-stationary time series given by the following system
of equations:

zj =

j−1∑
j′=`

βjj′zj′ + εj , for ` ≤ j ≤ G(36)

Note that each irreducible component is represented by its own system of
equations but we avoid the superscripts ` to reduce index clutter. Here zj
is a natural variable corresponding to a generation j, βjj′ is the regression

imsart-aos ver. 2014/10/16 file: main1.tex date: December 18, 2017

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 18, 2018. ; https://doi.org/10.1101/267450doi: bioRxiv preprint 

https://doi.org/10.1101/267450
http://creativecommons.org/licenses/by/4.0/
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coefficient of generation j on j′, and εj is an independent zero-bias random
variable representing the noise originating at generation j. Defining a lower-
triangular coefficient matrix B = (bjj′) gives the system of equations in
matrix form:

Bz = ε,

bjj′ =


1, if j = j′

0, if j − j′ < 0 or j − j′ >M
−βjj′ , otherwise.

(37)

To find the parameters in the structural equation model, βjj′ and E(ε2
j ),

from the inferred Σ̂Ω we use the modified Cholesky decomposition:

ΣΩ = LΦL′(38)

where Φ = (ϕjj′) is diagonal and L is lower triangular. Then since E(zz′) =
ΣΩ, we find that L−1 = (bjj′). Thus βjj′ can be found from Eq. 37 while
the noise terms are found directly from E(ε2

j ) = ϕjj .
The directed graph can then be defined with edge weights given by βjj′

and node strengths given by E(ε2
j ). The edges represent transmission of vari-

ation while the nodes represent innovations. If |βjj′ | < 1 then transmission
is regressive, with descendants gradually losing memory of previous gener-
ations. However, if |βjj′ | > 1 then variation from that division observed at
generation j′ is amplified during transmission to generation j. Thus varia-
tion can arise directly from a noisy generation (node) or it can by amplified
by strong transmission between generations (edge), or both.

The directed graphs for the 3 lineage types are shown in Fig. 9. It is
striking how βjj′ is particularly high for certain generations and divisions in
the worm lineage. For the T cells division ` = 1 has large innovations and
high transmission between generations whereas the other divisions are fairly
quiet. The branching process is largely featureless across all generations and
divisions, as expected.

6. Explaining Fate. The directed graphs shown in Fig. 9 give a de-
tailed summary of variation throughout lineage. We now examine what the
results mean for our understanding of cell fate, addressing two questions in
particular: How much each division contributes to cell fate, and how well an
ancestor’s phenotype predicts the fate of its descendants.

In this study, fate is defined to be the phenotype y observed at the latest
generation modelled, G. This practical definition allows us to develop the
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Fig 9. Directed graphs in the natural basis. These graphs show the dynamics of variation
arising from each longitudinal division. The colour (and thickness) of an edge between

node j and j′ in division ` corresponds to the transmission strength, β
(`)

jj′ . The size of the

node corresponds to the innovation strength, E(ε2
j ).

quantitative framework for understanding fate in terms of explained vari-
ance. Of course fate at generation G may not represent the ultimate fate of
cells in a lineage, especially if G is an early generation. Furthermore, cell
fate is often conceptualised in terms of cell types and thus represented by
discrete states. However cell types are usually identified by the continuous
expression levels of certain underlying phenotypes. It seems reasonable then
to define fate directly in terms of the measured (continuous) traits rather
than the derived (discrete) cell types.

With this definition, a statistical analysis of cell fate involves explaining
the variability of the phenotype at generation G in terms of other variables.
If a set of variables can be shown to account for most of the variability at
generation G then we can say that those variables explain fate (in the sta-
tistical sense). First we will explain a cell’s fate by the hidden contributions
from each division; then we will explain it by the observed phenotypes of the
cells’ ancestors. The first we interpret as a measure of fate progression (or
commitment) while the second we interpret as a measure of fate expression.

6.1. Contributions to Fate. Whether certain divisions are more impor-
tant than others, and how committed cells are to particular fates at different
stages in the lineage are questions of obvious scientific interest.

It is straightforward to estimate the contributions to cell fate at generation
G from each division `, where 1 ≤ ` ≤ G. This is just the standard problem
of estimating the variance components for nested groups of family members
in a single generation, a trivial exercise now that we have estimated the
transformed covariance.

Consider the variance of a cell in generation G, represented by a diagonal
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element in ΣG and, in the 3-index notation used in Eq. 4, denoted by σGGG.

This can be written in terms of the elements ξ
(`)
gg′ of ΣΩ (from Eq. 22) by

applying the similarity transformation ΣG = TΣΩT
† to ΣΩ. Supplement S2

gives a specific example. The result shows that σGGG is just the sum of
independent contributions from each division (`, τ) :

σGGG =
1

Ndiv

G∑
`=1

d∑̀
τ=1

ξ
(`)
GG =

1

Ndiv

G∑
`=1

ξ
(`)
GGd`,(39)

where Ndiv =
∑G

`=1 d` = 2G is the total number of divisions (which is equal
to the number of members of generation G). As before, d` is the dimension
of the `-th irreducible eigenspace or, equivalently, the number of transverse
divisions for the `-th division (Section 4.2.5).

The components of variance, ξ
(`)
GGd`/Ndiv, given in Eq. 39 are the nor-

malised eigenvalues of a classical ANOVA (Speed, 1987). In a classical ANOVA
for nested groups, the data are confined to the lowest group level. As men-
tioned in Section 4.2.5, the resulting covariance matrix is that for a single
generation of the tree and is diagonalisable with the common variance sat-
isfying Eq. 39.

The resulting proportion of variance, η2, for a cell in generation G that
is attributable to the `-th division is:

η2(G, `) =
ξ

(`)
GGd`∑G

`′=1 ξ
(`′)
GGd`′

, ` ≤ G(40)

It will also be useful to calculate the cumulative proportion of total variance
attributable to divisions from 1 to `, inclusive:

η2
cml(G, `) =

∑`
`′=1 ξ

(`′)
GGd`′∑G

`′=1 ξ
(`′)
GGd`′

, ` ≤ G(41)

which is related to the intraclass correlation.
An obvious question is how the results would differ if we had simply

performed an ANOVA on the single generation G, ignoring measurements
in the other generations. With complete data, this would give the identical
result to a classical ANOVA calculation: our approach using a decomposable
model for a Markov chain ensures that estimates of diagonal elements in ΣΩ

are given by their corresponding sufficient statistics. With incomplete data
however, data from other generations provide a better estimate of missing
data in generation G and thus improve the estimate of ΣΩ.
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6.2. Predictability of Fate. The question of how well a cell’s fate can be
predicted from the phenotypes of its ancestors is a measure of how much
information about a given phenotypic fate is being expressed in earlier gen-
erations.

We define the predictability of fate to be the proportion of variance of
a family member in generation G that can be explained by the phenotypes
of its ancestors, where here the ‘explaining’ is by linear regression. Given a
family member in generation G and its direct ancestor in generation g, the
proportion of explained variance is just the squared correlation coefficient,
or coefficient of determination,

R2(G, g) =
σ2
gG

σggσGG
= ρ2

gG, g < G.(42)

In the subscripts we have simplified the 3-index notation from Eq. 4 by
ignoring the third index. This does not cause confusion since in this context
we are only concerned with direct ancestors; the third index, associated
with the MRCA, is thus redundant. For example, σ34 is understood to be
the covariance between a mother in generation 3 and one of its daughters in
generation 4, not any other daughter.

Generalising to prediction using multiple generations of direct ancestors
up to and including that in generation g gives

R2
cml(G, g) =

ΣGgΣ−1
ggΣgG

σGG
(43)

where g represents a vector of direct ancestors of the cell in generation
G that are from generations 1 to g inclusive. Note that Eq. 43 accounts for
possible dependencies in the variation between ancestors. Unlike for the case
of components of variance, variation between ancestral generations is not (in
general) orthogonal.

6.3. Comparing Explanations of Variance. The two explanations of phe-
notypic variability are complementary: η2 explains variance in terms of
shared ancestral divisions, compares members within the same generation,
and involves the transformed covariance matrix ΣΩ; in contrast, R2 explains
variance in terms of ancestral generations, compares members across gener-
ations, and involves the covariance matrix Σ. The two quantities are shown
in Fig. 10 for the 3 lineage types with the top row giving the explained vari-
ance and the bottom row giving the cumulative explained variance. Note
that because of the first order Markov process assumption (Section 4.3),
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c) Branching process

Fig 10. Explained variance (top row) and the cumulative explained variance (bottom row)
for different lineages. η2 (blue) measures the contribution to the variance in generation
G by each `-division. R2 (orange) measures how well a generation-G cell’s phenotype is
predicted by its ancestor.

R2 = R2
cml in these plots. For the case of the simulated branching process

the exact result is also shown.
η2(G, `) (blue line, top row) gives the contributions to fate at generation G

from each of the earlier divisions `. For the worm, ` = 3, 4, 6 are particularly
important divisions for explaining fate (at G = 8) while ` = 1 is irrelevant.
For the T cell ` = 1 is by far the important division for explaining fate
(at G = 5) while higher divisions are unimportant. As expected, for the
branching process, contributions for all divisions are comparable.
R2(G, g) (orange line, top row) gives the predictability of fate at gener-

ation G using each of the earlier generations g. For the worm R2 is zero
until g = 7, when differentiation, and thus expression of fate, has started
to occur and successive generations start to resemble each other. Strikingly
then, none of the structure in η2 from 1 ≤ ` ≤ 6 is reflected in R2. For the
T cell, even though most of the variation is explained by division ` = 1, R2

is low for g = 1, 2 indicating that the phenotypes of those ancestors contain
little information about their descendants despite their fate having largely
been set. For both these lineages then, cell fate is being determined in early
generations but is not being expressed until later.

Such ‘hidden’ fate progression is best visualised in the cumulative ex-
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plained variance shown in the bottom row of Fig. 10. For the worm, η2
cml

increases unevenly with each division while R2
cml(G, g) remains zero. For the

T cell, even though η2
cml starts high at ` = 1, R2

cml(G, g) starts at zero. Con-
trast both these lineages with the branching process where η2

cml and R2
cml

both start near zero and increase steadily in a similar fashion. This would
be expected since all the variation in the branching process is expressed.
Clearly a T cell lineage cannot be modelled by a branching process.

Based on these observations we interpret η2
cml as a measure of fate pro-

gression (or commitment) and R2
cml as a measure of fate expression. In the

two real lineages fate progression is always higher than fate expression, with
the difference representing hidden fate progression. This reflects cells com-
mitting to a particular fate before they express individual markers of that
fate.

7. Discussion. We have developed a general method for inferring the
structure of lineage heterogeneity. Symmetry invariance, invoked to con-
strain the joint probability distribution, identifies a set of natural variables
which compactly describe tree-structured variation. To apply the method to
real measurements we employed a Markovian constraint and used the EM
algorithm to account for missing data.

The inferred parameters were interpreted in two ways. First, directed
graphs over the irreducible components gave a fine-grained, causal view of
all variation throughout the lineage. Second, variation in a late generation
was explained in terms of earlier divisions and generations, allowing the
progression and expression of cell fate to be inferred. Comparing the two
methods distills how much of the fine-grained behaviour seen in the directed
graphs actually affects later generations: ancestral variation only influences
fate if it is effectively transmitted through intermediate generations. This
makes it possible to distinguish between variation that influences fate and
variation that is inconsequential noise.

Examining the differences between the worm and branching process high-
lights how regularities in noisy lineage patterns can be distinguished from
noise. The sharp features, analogous to spectral lines, seen in the ‘fate spec-
trum’ of the worm, Fig. 10b, are associated with asymmetric divisions that
give rise to well-known differentiation structure. Supplement S3 shows a
detailed worm lineage with each family member annotated by its standard
label, highlighting the specific divisions contributing to the spectral features.
In contrast the branching process seen in Fig. 10c has a comparatively fea-
tureless structure, analogous to a white noise spectrum. The T cell lineage
in Fig. 10a lies somewhere in between, showing a single peak at ` = 1, but
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no other structure.
We emphasise that lineage patterns do not have to be invariant (as in

C. elegans) in order to be detected. In mammalian lineages, where cell dif-
ferentiation is more likely to occur over clusters of closely-related divisions
and generations rather than at specific ones, peaks in η2 would be spread
over neighbouring `. This would be analogous to the broadening of spectral
lines. We note that the concept of a fate map has largely been a deterministic
one, describing at what stage a particular fate is specified (Chisholm, 2001).
This method can thus be regarded as the first steps towards a probabilistic
representation of the fate map.

The development of new lineage measurement techniques (Amat et al.,
2014; Frieda et al., 2016) has been increasing the need for statistical methods
to analyse lineage variation. Moreover, since the method can be viewed as a
generalisation of ANOVA or multilevel modelling, it may find similarly broad
use. The ubiquity of binary trees in both natural and human-designed sys-
tems suggest that potential applications exist in areas beyond cell lineages.

SUPPLEMENTARY MATERIAL

Supplement to ‘Statistical Inference in Cell Lineage Trees’:
(sup1.pdf). Additional information is provided in a separate file. This covers
the derivation of the group representation for a binary tree (Supplement S1),
explicit expressions for the decomposition of a tree-structured covariance
matrix (Supplement S2), and a figure showing C. elegans lineage with stan-
dard notation (Supplement S3).
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