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Abstract

New approaches to lineage tracking allow the study of cell differentiation over many
generations of cells during development in multicellular organisms. Understanding the
variability observed in these lineage trees requires new statistical methods. Whereas
invariant cell lineages, such as that for the nematode Caenorhabditis elegans, can be
described using a lineage map, defined as the fixed pattern of phenotypes overlaid onto
the binary tree structure, the variability of cell lineages from higher organisms makes it
impossible to draw a single lineage map. Here, we introduce lineage variability maps
which describe the pattern of second-order variation throughout the lineage tree. These
maps can be undirected graphs of the partial correlations between every lineal position
or directed graphs showing the dynamics of bifurcated patterns in each subtree. By
using the symmetry invariance of a binary tree to develop a generalized spectral analysis
for cell lineages, we show how to infer these graphical models for lineages of any depth
from sample sizes of only a few pedigrees. When tested on pedigrees from C. elegans
expressing a marker for pharyngeal differentiation potential, the maps recover essential
features of the known lineage map. When applied to highly-variable pedigrees
monitoring cell size in T lymphocytes, the maps show how most of the phenotype is set
by the founder naive T cell. Lineage variability maps thus elevate the concept of the
lineage map to the population level, addressing questions about the potency and
dynamics of cell lineages and providing a way to quantify the progressive restriction of
cell fate with increasing depth in the tree.

Author summary

Multicellular organisms develop from a single fertilized egg by sequential cell divisions.
The progeny from these divisions adopt different traits that are transmitted and
modified through many generations. By tracking how cell traits change with each
successive cell division throughout the family, or lineage, tree, it has been possible to
understand where and how these modifications are controlled at the single-cell level,
thereby addressing questions about, for example, the developmental origin of tissues,
the sources of differentiation in immune cells, or the relationship between primary
tumors and metastases. Such lineages often show large variability, with apparently
identical founder cells giving rise to different patterns of descendants. Fundamental
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scientific questions, such as about the range of possible cell types a cell can give rise to,
are often about this variability. To characterize this variation, and thus understand the
lineage at the population level, we introduce lineage variability maps. Using data from
worm and mammalian cell lineages we show how these maps provide quantifiable
answers to questions about any developing lineage, such as the potency of founder cells
and the progressive restriction of cell fate at each stage in the tree.

Introduction 1

The cells of developing organisms differentiate into their specialized types by integrating 2

signals from their present surroundings with instructions from their ancestral past. This 3

interplay of mechanisms is reflected in the pattern of phenotypes that emerge in the cell 4

lineage tree [1]. Measurement of this pattern, which involves recording both the 5

phenotypes of, and ancestral relationships between, each cell throughout the lineage 6

tree, results in what is called a lineage map [2]. Lineage maps illustrate the successive 7

bifurcations in phenotypes that underpin a particular differentiation pathway, making 8

them invaluable to experiments investigating the mechanisms involved in fate 9

determination [3]. Development in the nematode Caenorhabditis elegans is the classic 10

example of how the lineage map can be used to untangle the roles of pre-programmed 11

instruction and cell-to-cell communication [4–6] in cellular differentiation. 12

The lineage map allows the common ancestry of cells with shared phenotypes to be 13

identified, thus indicating how deep within the tree a particular cell fate is specified. 14

While fate might not have been specified at a common ancestor itself (lateral inhibition 15

between co-located descendants could be responsible, for example), locating its lineal 16

position is an important step towards finding the mechanisms involved. Interpretation 17

of a lineage map thus starts with identifying the subclones of shared phenotypes. If a 18

phenotype is clonal, meaning exclusive to a subclone, that phenotype can be associated 19

with a single common ancestor; if it is non-clonal, multiple common ancestors were 20

involved (see Table 1). Much of the logic for understanding lineage maps and inferring 21

differentiation pathways from an invariant lineage can be automated [7, 8]. However, in 22

the presence of significant variability, these established techniques become difficult to 23

implement as the procedure of identifying the subclones of shared phenotypes becomes 24

increasingly ambiguous. 25

Variability in cell lineages 26

The lineage map is a concept born from the study of invariant lineages, such as that for 27

C. elegans, where the fixed pattern of phenotypes can, at least in principle, be measured 28

by tracking the progeny of a single founder cell. However, when pedigrees are highly 29

variable, seemingly identical founder cells can give rise to different patterns of 30

descendants. Which of these defines the lineage map? Calculating an average phenotype 31

at each lineal position by pooling across multiple pedigrees can give misleading results 32

since the averaging will suppress the correlations between lineal positions that are so 33

essential for interpreting patterns. Furthermore, the variability between pedigrees, 34

which reflects the potency of founder cells, is an important quantity itself and cannot be 35

represented in a lineage map. While lineage variability is minimal in simple organisms 36

such as C. elegans [9, 10] and leech [11], it is greater in higher organisms such as insects 37

and vertebrates [1, 12] and is significant in mammalian cells of clinical importance such 38

as stem cells [13] and lymphocytes [14,15]. Given the additional variation inherent in 39

molecular-level measurements [16] it is becoming increasingly important to extend the 40

concept of the lineage map to account for variability. 41
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A further problem arises, particularly in higher organisms, when it is not possible to 42

distinguish between the daughter cells from a cell division. This makes the assignment 43

of their relative lineal position arbitrary. Reliably distinguishing between two daughters 44

is possible only when there is symmetry-breaking information available, such as from 45

the orientation of the developing organism. For example, in time-lapse microscopy 46

measurements on C. elegans, daughters can be labeled anterior or posterior, dorsal or 47

ventral, left or right depending on their relative positions at the time of division [4, 17]. 48

In higher organisms, however, such symmetry-breaking information often does not exist 49

or cannot be seen. This results in what we will call ‘unordered’ lineages, where there is 50

an ambiguity in the labelling of daughters and, consequently, their subtrees. 51

A lineage being unordered is not a problem in itself if the phenotype pattern is clear 52

and invariant, since a single complete pedigree measurement represents the lineage map. 53

However, considerable difficulties arise if pedigrees are both variable and unordered. 54

Naive aggregation of multiple pedigrees to get an average phenotype at each lineal 55

position risks suppressing any bifurcation patterns since there is no symmetry-breaking 56

information available to order different pedigrees the same way [18]. 57

Since the majority of pedigree measurements from higher organisms are both 58

variable and unordered [1] (see Table 1), a critical question is whether it is even possible 59

to derive a lineage map from lineage measurements. How do we associate fate 60

specification with fixed lineal positions when the pattern of descendants varies from one 61

apparently identical founder to the next? Clearly a statistical approach is required. 62

Species Cell origin (tissue) Clonal Variability Ordered Ref.
Worm Embryonic (germ) 3 low 3 [5]

Embryonic (pharynx) 7 low 3 [5]
Leech Embryonic (epidermis) 7 low 3 [11]

Zebrafish Embryonic (various) 7 high 7 [19]
Mouse Embryonic (various) 7 high 7 [20]

Lymphoma 3 high 7 [21]
B-lymphocyte 7 high 7 [14]

Table 1. Characteristics of some cell lineage patterns. Organisms are listed in
order of increasing complexity. Lineages are characterized in terms of whether cell fate
is exclusive to a subclone, the degree of phenotypic variability, and whether there is a
way to distinguish between daughters. Lineages from higher organisms are generally
unordered, have high variability, and may or may not be clonal.

Previous statistical approaches 63

A number of statistical methods have been developed to analyze variable, unordered 64

lineage trees. Though these approaches do not directly address the question of how to 65

construct a lineage map, many of them address central aspects of the problem. 66

A bifurcating autoregressive model [22,23] was developed to estimate 67

mother-daughter and daughter-daughter correlations using a sample of unordered 68

pedigrees from either E. coli or tumor cultures. The model was later used to analyze 69

data from ordered pedigrees to test for lineage asymmetry [24,25]. This stationary, 70

parametric model allowed for daughters to be conditionally dependent (with respect to 71

their common mother) but forced cousins and more distant relatives to be conditionally 72

independent (with respect to their most recent common ancestor). The subsequent 73

discovery that cousins could be conditionally dependent motivated a theory of cellular 74

inheritance involving chaotic dynamics in lymphoblasts [26]. However, such distant 75

intragenerational dependence might also be interpreted as a delay between fate 76
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specification and expression, where a phenotype that has been specified in a mother and 77

its daughters is not expressed until its four granddaughters. These analyses illustrate 78

the importance of having lineages that are large enough, and a model that is general 79

enough, to examine correlations of distant relatives [27]. They also remind us that 80

simple branching process models, which we define to be those assuming conditional 81

independence of daughters, do not properly represent the correlations in a lineage, a fact 82

that was established in early lineage analysis [28, 29]. Although population numbers can 83

be modeled using branching processes [30], allowing for sibling correlations can have 84

important effects on population dynamics [14,31]. 85

As we indicated earlier, identifying the subtree, or subclone, of shared phenotypes is 86

the first step to inferring where fate is specified. This idea forms the basis of methods to 87

study cell state transitions in bacterial cells or mouse embryonic stem cells [32, 33], 88

where phenotypic similarity among relatives in the same generation was used to infer 89

how much earlier in the pedigree a transition occurred. A similar idea was used in 90

hematopoietic stem cells to measure the multi-generational delay between when an 91

invisible molecular decision occurred and when its effect was expressed as a surface 92

marker [34] . These techniques assume that cell states transition over timescales that 93

are slow compared to the cell cycle duration; alternatively they could be synchronized 94

to cell divisions [35]. Note that, in a lineage map, the generation of a cell is a 95

meaningful quantity, representing the number of divisions since the founder cell, 96

whether that be a zygote, a naive lymphocyte, or some progenitor initiated with a 97

particular stimulus. Thus any model of a developing lineage must be non-stationary. 98

Several other approaches to statistical lineage analysis have been reported recently. 99

A factor graph method was used to model conditional dependence between 100

daughters [36], with the goal of testing whether pre-programmed instruction or 101

differential cell death was responsible for differentiation of hematopoietic progenitor 102

cells; direct inference of Nanog expression, a pluripotency factor, was used to 103

understand its dynamics in embryonic stem cell lineages [37]; and, a parametric 104

characterization of lineage patterns has been applied to achieve early identification of 105

hematopoietic stem cells [38]. However, these methods are of less relevance to our 106

question of how to build a statistical lineage map. 107

Outline 108

Major efforts are underway to improve the throughput and quality of lineage 109

measurements (see reviews [13,39–42] and commentary [43,44]). Recent breakthroughs 110

have resulted in a wealth of data from automated microscopy-based [19,45–47] and 111

sequencing-based [20,48–56] techniques. While the technological barriers for these 112

measurements are severe, there are significant barriers to the analysis of the data as 113

well. As we have discussed, there is currently no way to construct a useful lineage map 114

from variable, unordered pedigrees. Since “Central unresolved problems in human 115

biology and medicine are in fact questions about the human cell lineage tree: its 116

structure, dynamics, and variability during development, growth, renewal, aging and 117

disease” [40], generalizing the concept of the lineage map to the population level is of 118

critical importance. 119

In this paper we provide a solution by proposing lineage variability maps. These 120

involve the variances of, and covariances between, every position in the tree. The 121

supposition is that, to interpret lineage patterns, it is not only the phenotypic values at 122

each lineal position that are important, but also the phenotypic associations between 123

different lineal positions. By developing a generalized spectral analysis for binary trees, 124

we show how to estimate variability maps for a lineage of any depth using measurements 125

from only a few pedigrees. For complete data, our approach is a non-parametric one, 126

involving first and second moments of the data but assuming no distribution function. 127
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We could thus, alternatively, refer to these maps as second order lineage maps. 128

The rest of the paper is organized as follows. Section “Lineage data” describes 129

essential aspects of the data used in this paper. The framework of the model, and how 130

lineal positions are assigned to variables, is given in Section “Analysis framework and 131

labeling conventions”. Section “Covariance estimation”, shows how to estimate all 132

pairwise associations by employing general constraints on symmetry and sparsity. 133

Graphical models are used to create the lineage variability maps and interpret dynamics 134

in Section “Lineage variability maps”. Fate restriction and expression profiles are 135

defined and illustrated in Section “Fate profiles”. A discussion about the interpretations 136

and prospects for this analysis is given in Section “Discussion”. 137

Lineage data 138

Data from 3 types of lineages are analyzed in the paper. Experimental data from T cells 139

provide an example of a lineage with extreme variability and no obvious structure. 140

Previously-published data from C. elegans are the example of a lineage with 141

complicated but highly-reproducible structure. Finally, a simulated, stationary 142

branching process provides the benchmark of a featureless, variable lineage and to test 143

the accuracy of the inference procedure. In more detail: 144

T cells New lineage data on CD8+ T cells from GFP:OT-1 transgenic mice. Naive 145

cells, expressing a T cell receptor for SIINFEKL peptide from ovalbumin, interact 146

with peptide-pulsed bone marrow-derived dendritic cells to activate clonal 147

expansion [57]. Cells and their descendants are tracked using time-lapse 148

fluorescence microscopy and analysed using custom software [58]. Although 149

multiple phenotypic traits were recorded, in this paper the only trait analyzed is 150

the average area of a dividing cell over its lifetime. Note that only dividing cells 151

were used in the analysis; cells whose fate is unknown, or which died, were 152

counted as missing data. For the early generations used in this study, the numbers 153

of cell deaths were negligible so there was thus no need to account for cell death 154

explicitly. 19 replicate families were used. 155

Worm Published [59] embryonic lineage data from the RW10425 transgenic strain of 156

C. elegans. In this strain the PHA-4 gene for pharyngeal and intestinal tissue is 157

tagged with green fluorescent protein. Gut differentiation occurs early during 158

embryogenesis, with PHA-4 expression beginning by generations 7 and 8. There 159

are 10 replicate pedigrees. 160

Branching Process Simulated lineages from a stationary branching process. 20 161

replicate pedigrees are used, with a missing data fraction of 20% assumed. Here 162

we define a branching process to be one where the correlation between mothers 163

and daughters is h and daughters are conditionally independent with respect to 164

their common mother. Then, the correlation between any two lineal positions ς 165

and ς ′ is hD(ς,ς′), where D(ς, ς ′) is the lineage distance between them. For 166

example, the correlation between sisters is h2 and between cousins is h4 and so on. 167

As will be shown in Section “Lineage variability maps”, the underlying graphical 168

model (of partial correlations) for this branching process is a binary tree. This is 169

generally not the case for real lineages. 170

Sample lineages from these 3 lineage types are shown in Fig 1 while the expression of 171

each phenotype as a function of generation is shown in Fig 2. 172
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Fig 1. Comparison of some sample lineages. Coloring of the nodes reflects the strength of the trait under analysis
(average area over lifetime for T cells, PHA-4 expression for C. elegans). The absence of a node on a branch represents a
missing data point. Note that for T cells the root node is the naive cell while for the worm lineage the root node is the zygote
(labelled P0 in the C. elegans naming convention).

Analysis framework and labeling conventions 173

In this study, lineage data are regarded as repeated measurements on pedigrees arising 174

from individual founder cells, each selected at random from a population of similar cells. 175

We restrict our attention to modeling a single trait from pedigrees subject to the same 176

conditions. A sample consisting of multiple replicate pedigrees can then be represented 177

by a two-factor array (Yij), where i has n levels corresponding to the number of 178

pedigrees and j has p levels corresponding to the number of lineal positions within a 179

pedigree. With no meaningful distinctions among pedigrees (they are all of the same 180

cell type and subject to the same conditions) we assume they are independent and 181

identically-distributed replicates. The data can thus be represented by a matrix Y with 182

n replicates (rows) and p variables (columns). 183

Each of the p dimensions corresponds to a lineal position. We use a binary number 184

to label each position so that, for example, the first 3 generations are labeled as founder 185

(1), daughters (10, 11), and granddaughters (100, 101, 110, 111), where each label 186
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Fig 2. Expression of each phenotype as a function of generation. For T cells the measured phenotype is the
average cell area in µm2; for C. elegans it is the intensity of green fluorescent protein used to tag PHA-4 expression.

thus encodes the lineal position. We will also need to label generations and subtrees. 187

Generations, g, refer to the depth in the tree where we define the founder cell to be at 188

generation g = 1. Subtrees are defined by two indices, (`, τ), where ` refers to the 189

longitudinal coordinate and τ to the transverse coordinate of the root node (see Fig 3). 190

By convention, the subtree at ` = 1 is the entire tree. As we will show, subtrees will be 191

associated with sources of variation. We will need to define a ‘subtree’ (0, 0) that sits 192

outside the lineage and represents variation among lineages. This concept does not exist 193

for a lineage map but is essential for a lineage variability map when different pedigrees 194

may not be the same. 195

Often in lineage measurements there are many more lineal positions (p) than there 196

are families (n). Thus p & n, with the disparity getting exponentially worse with the 197

number of generations studied. Performing reliable inference when p/n > 1 is an open 198

research question [60]. Best results are achieved when prior knowledge of the problem 199

can be incorporated. 200

In the next section we describe increasingly more sophisticated steps to reduce the 201

effective dimensionality of the inference calculation, first by exploiting known symmetry 202

properties and then by using observed sparsity properties. Our goal is to identify a 203

scheme where the number of replicates required is independent of the number of 204

generations studied. This is because in practice we might want build maps over many 205

generations from data consisting of only a few pedigrees. 206

Covariance estimation 207

The essential idea for this analysis is to measure second-order variation throughout the 208

lineage by estimating the variance of, and covariance between, every lineal position. 209

This population covariance matrix Σ for the lineage involves no assumption about the 210

underlying distribution. It involves just the first and second order moments of the data. 211

Unstructured covariance 212

Let y be a p-dimensional random variable representing the single trait for each lineal
position. A naive method for estimating the covariance matrix for y is to assume it has
no structure. This means that only data from the same lineal position in different
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Fig 3. Labeling convention for a lineage tree. (a) Each lineal position is labeled
with a binary number. The founder of the tree is located at generation g = 1. (b) Each
subtree is labeled with two indices (`, τ) representing the longitudinal (`) and transverse
(τ) coordinates of its root node. Because, as we discuss later, roots of subtrees are
associated with sources of variation we need to create a ‘subtree’ located outside the
lineage, called (0, 0), to represent variation among pedigrees. Note that τ values are
indistinguishable in an unordered tree and will often be ignored.

pedigrees can be pooled. The sample mean (y) and (biased) sample covariance (S) are
given by

y =
1

n

n∑
i=1

Yi, S =
1

n

n∑
i=1

YiY
′
i − y y′, Yi ∈ Rp, i = 1, . . . , n, (1)

where Yi is the data vector from pedigree i. This results in the usual estimates of the
population mean, µ, and population covariance matrix, Σ̂,

µ̂ = y, Σ̂ = S. (2)

This is not a practical way to estimate Σ since, as is well known, S will not be positive
definite unless n > p. To appreciate why this is a prohibitive limitation for lineage data,
we examine the complexity of the problem using 3 measures: the effective number of
dimensions peff, the number of unknown variance-covariance parameters NΣ, and the
minimum number of replicates nmin required to ensure Σ̂ is positive definite. These are
given by

peff = p, NΣ = p(p+ 1)/2, nmin = p+ 1. (3)

The number of lineal positions for a complete tree of G generations is p = 2G − 1. This 213

means that the number of dimensions, the number of unknowns, and, most importantly, 214

the number of replicates required nmin, increases exponentially with the number of 215

generations being studies. This makes the unstructured covariance matrix impractical 216

for analyzing trees. As we progressively invoke more constraints, we will examine the 217

reduction in these measures of complexity. For example, although peff = p for this 218

unstructured case, with group symmetries peff < p. 219

For the analysis to be practical, nmin should be small and independent of G. Then 220

Σ can be estimated up to any generation G with a modest number of pedigrees nmin. 221

To achieve this, our approach is to identify constraints associated with symmetry and 222

sparsity that are specific to the problem of tree-structured variation. 223
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Symmetry 224

To understand how symmetry invariance constrains tree-structured variation, we start 225

with intuitive arguments for why certain covariance matrix elements must be equal in 226

an unordered tree. This gives rise to a particular structured form for Σ. We then 227

describe how the framework of symmetry invariance formalizes this intuition and reveals 228

the independent (orthogonal) components underlying this structured form. The result is 229

a nonparametric spectral analysis for trees that facilitates both inference and 230

interpretation of tree-structured data. 231

Structured covariance matrix 232

To reduce the number of unknowns in Σ, we begin by identifying a pattern of shared 233

means, variances, and covariances that arise in the unordered tree. This allows pooling 234

of data within a family, in addition to the pooling between families already used in the 235

unstructured covariance estimate. 236

For the case of first moments, the pattern of shared elements is found by recognizing
that, for an unordered tree, some lineal positions are indistinguishable, namely those in
the same generation. Equivalently, we could say that the labels identifying members of
the same generation are not meaningful. Thus all members within a generation must be
assigned the same mean. For example, the mean vector for a 3-generation tree is given
by

µG =
1 10 11 100 101 110 111

( )q1 q2 q2 q3 q3 q3 q3
′, (4)

where the subscript G identifies the structured mean vector, qg corresponds to the mean 237

of a cell in generation g, and we have explicitly written the cell labels above each 238

element. It is thus apparent that data should be pooled within generations to improve 239

the estimate of these shared means. 240

Note how, because the tree is unordered, the only information in the first moment of 241

the data is the average of each generation. Other details about the lineage pattern have 242

been lost. Thus, in unordered trees, we must look at second moments of the data if we 243

want to understand lineage patterns. 244

For the case of second moments, the pattern of shared elements is found by 245

recognizing which relationships are indistinguishable. For example, there are two 246

mother-daughter pairs between generations 2 and 3; both must be assigned the same 247

covariance since there is no way to distinguish between the two. We can generalize this 248

intuition by identifying the Most Recent Common Ancestor (MRCA) of a cell pair and 249

adopting a labeling scheme that identifies the generation of each cell and of their 250

MRCA. For example, the pair of cells 10 and 110, which have 1 as their MRCA, 251

should be identified with the 3-index ‘231’, where the first two indices specify the 252

generation of each cell (2 and 3) and the third index specifies the generation of their 253

MRCA (1). Now since the 3-index for another cell pair 11 and 101 is also ‘231’, the 254

two covariances must be equal. 255

Note how our 3-index scheme identifies the specific generations of both cells and 256

their MRCA, not just the lineage distance between the two cells. This is necessary 257

because, for non-stationary variation in a tree, specific generations are meaningful, not 258

just generational differences. For example, we need to allow for the possibility that 259

sisters in generation 3 have a different statistical association than do sisters in 260

generation 2, even though the lineage distance (between sisters) is the same. 261

Applying this labeling scheme to each variance and covariance element, the following
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structured covariance matrix emerges for a 3-generation tree

ΣG =

1 10 11 100 101 110 111



σ111 σ121 σ121 σ131 σ131 σ131 σ131 1
σ121 σ222 σ221 σ232 σ232 σ231 σ231 10
σ121 σ221 σ222 σ231 σ231 σ232 σ232 11
σ131 σ232 σ231 σ333 σ332 σ331 σ331 100
σ131 σ232 σ231 σ332 σ333 σ331 σ331 101
σ131 σ231 σ232 σ331 σ331 σ333 σ332 110
σ131 σ231 σ232 σ331 σ331 σ332 σ333 111

, (5)

where the subscript G denotes a covariance matrix with shared elements. Improved 262

covariance estimation can thus be achieved by pooling across matrix elements with the 263

same 3-index. 264

Note that the outer product of the structured mean, µGµ
′
G , has a pattern of shared 265

elements that are bounded by the lines in Eq 5. The shared parameters in this less 266

complex pattern are identified by the first two indices of the 3-index in Eq 5. This 267

highlights how ΣG represents the structure of variation that is in addition to that due 268

to generational trends seen in Fig 2. 269

We remark that assuming shared variances and covariances is necessary because, in 270

an unordered tree, we have no information to assume otherwise. We are certainly not 271

assuming that the biology of the lineage tree is symmetric. The need to assume shared 272

parameters for an unordered tree is the same as the need to assume random effects, 273

rather than fixed effects, for batched data when the labels for different batches are not 274

meaningful (see e.g. p.21 [61]). 275

Permutation invariance 276

This pattern of shared means, variances and covariances can be found more formally 277

from symmetry considerations. In general, an object is defined to have a symmetry if it 278

remains invariant under the actions of a group (see Weyl [62] for the classic 279

introduction). A lineage tree has a symmetry because (the action of) permuting 280

daughter subtrees keeps the relationships between lineal positions invariant (see Fig 4). 281

Since no symmetry-breaking information is available (given that the tree is unordered), 282

the permutation has changed nothing about the tree. 283

Fig 4. Permutation symmetry of lineal relationships. Certain permutations of
lineal positions do not change the relationships in the tree. Here the 8
symmetry-invariant permutations of a tree with 3 generations are shown.
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For our purposes, the key idea is that Σ remains invariant under such permutations 284

of subtrees (since the symmetry group of Σ is a subgroup of the symmetry group of µµ′ 285

we can focus our attention on the symmetry group of Σ). Quantifying this intuitive idea 286

involves group representation theory, where matrix multiplications are used to represent 287

symmetry operations [63]. For example, if Ds is the (p-dimensional) permutation 288

matrix representing the action s of the group G, then the permutation s of the variables 289

in y is represented by Dsy. The same permutation of variables in the matrix Σ is 290

represented by DsΣD
′
s, where such conjugation by Ds is necessary to permute both 291

rows and columns. 292

The condition that Σ be invariant under the action of any member of G can thus be
stated as

DsΣD
′
s = Σ, ∀s ∈ G. (6)

Any symmetry-invariant (i.e. G-invariant) Σ thus belongs to the set

WG = {M ∈ Rp×p|DsMD′s = M ∀s ∈ G}, (7)

referred to as the fixed point subspace of the group G [64]. This is the set of all matrices 293

that are invariant with respect to the group. 294

Group-averaged covariance 295

A standard technique for transforming an unconstrained matrix Σ into one that is
symmetry invariant is the group-average or Reynolds operator (see p. 74 [65]) given by

PG(Σ) =
1

|G|
∑
s∈G

DsΣD
′
s, PG : Rp×p →WG , (8)

= ΣG ,

where |G| is the order of the group (the number of group elements). This projects the 296

matrix onto the fixed point subspace by averaging over shared elements (referred to as 297

the orbits) of Σ. It is straightforward to check that the pattern that arises from PG(Σ), 298

when G is the symmetry group of the tree, is the same as that shown in Eq 5. Thus, 299

averaging Σ over all its allowed permutations (members of the group) generates the 300

properly structured covariance that is invariant to (any further) permutations of the 301

group. 302

Although this group-averaging approach generates the structured covariance 303

associated with the symmetry group, it is not a practical method for tree-structured 304

data since the number of permutations, |G|, grows super-exponentially with G. To show 305

this, let A be the number of ancestors in the tree, where ancestor refers to any lineal 306

position that has daughters. Let each ancestor be in one of two ‘states’: having its 307

daughter subtrees exchanged or not. For a tree with G generations and thus 308

A = 2G−1 − 1 ancestors, there are 2A unique configurations of all ancestor states that 309

keep the lineage relationships invariant. These configurations form the complete set of 310

elements in the group of order 2A. 311

Thus, for a 3-generation tree, A = 3 (corresponding to members 1, 10, and 11) and 312

|G| = 23 = 8, where the 8 permutations were shown in Fig 4. For trees with 4 or 5 313

generations, |G| = 128 and |G| = 32768, respectively, and the number of permutations 314

quickly becomes unmanageable. Thus the group-averaging approach (Eq 8) is more of a 315

conceptual bridge, connecting the symmetry formalism to the covariance structure, than 316

a practical method for deriving the covariance structure itself. 317
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Symmetry and generalized spectral analysis 318

The true benefit of the symmetry formalism is in how it can reduce the original 319

high-dimensional problem into independent lower-dimensional problems that have 320

scientific meaning (see p.161 [66]). This is achieved through a linear transformation 321

from the set of original variables to the set of natural variables defined by the symmetry 322

of the system. The most common example of this is the spectral decomposition of 323

stationary time series data where the underlying symmetry is time invariance and the 324

corresponding natural variables are the Fourier components. Decomposition of a system 325

into its natural variables is thus called generalized spectral analysis, or simply spectral 326

(or harmonic) analysis [66] and has been used in many areas of science and 327

engineering [63]. 328

Formal application of generalized spectral analysis to covariance estimation has been 329

discussed recently [64,67]. To motivate its application to a complete tree, here we 330

briefly summarize two well-known types of spectral decomposition, Fourier analysis and 331

the analysis of variance (ANOVA), showing how the underlying symmetry of the system 332

defines a linear transformation that diagonalizes the structured covariance matrix.

Fig 5. Cyclic and tree-structured symmetries (a) A cyclic symmetry structure is
one that remains invariant under a shift of all the variables (around the circle in the
figure shown) that preserves their relative ordering. This cyclic symmetry defines the
discrete Fourier transform. (b) A tree symmetry structure is one that remains invariant
under permutations within groups and permutations of groups. This symmetry gives
rise to the analysis of variance for nested pairs and also defines the Haar wavelet
transform. It is applicable when it is just the leaf nodes that are of interest. (c) When
all the nodes of a tree are of interest, the underlying symmetry is still that for the tree.
The associated transformation is derived in this paper and discussed in the next section.

333

Fourier analysis. Consider 4 variables with the cyclic symmetry shown in Fig 5a.
These could be, for example, variables in a temporal sequence where the absolute value
of time is not meaningful. Such time invariance means that the covariance matrix does
not change if the variables are cyclically shifted, as long as there is no change in their
relative ordering. Variation in this set of variables is regarded as stationary since only
the differences between variables matter, not their absolute position. The covariance
matrix then has a circulant structure

ΣF
G =


a b c b
b a b c
c b a b
b c b a

 . (9)

It is well-known that the circulant structure defines a unitary transformation matrix
called the discrete Fourier transform (DFT) matrix which, for 4 variables, is given by

F =
1

2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 . (10)
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Each column represents a natural variable of the cyclic symmetry, better known as a
Fourier basis vector. Using F to transform ΣF

G into this natural basis results in a
diagonal matrix

ΣF
Ω = F †ΣF

GF =


a+ 2b+ c · · ·

· a− c · ·
· · a− 2b+ c ·
· · · a− c

 . (11)

called the spectral covariance, where the diagonal elements represent the spectrum. 334

Thus, the circulant-structured matrix is transformed into the spectral covariance using 335

the DFT matrix. 336

ANOVA on nested pairs (Haar wavelet analysis). Now consider the problem
of nested batches of variables, a standard problem in the analysis of variance, or
variance components analysis. Consider the case of 2 batches each containing 2
variables. This can be depicted as leaves on a binary tree as shown in Fig 5b. The
symmetry operations for this structure are the permutations within groups and
permutations of groups, or, as we discussed earlier, the exchange of daughter subtrees.
The covariance matrix invariant under these symmetry operations has the form

ΣH
G =


a b c c
b a c c
c c a b
c c b a

 , (12)

which was given in the bottom right corner of Eq 5. The matrix that diagonalizes this
structure,

H =
1

2


1 1

√
2 0

1 1 −
√

2 0

1 −1 0
√

2

1 −1 0 −
√

2

 , (13)

is known as the Haar (wavelet) transform matrix. Each column defines a natural
variable of the tree symmetry and represents a source of variation or a wavelet
component. Using H to transform ΣH

G into this natural basis results in a (diagonalized)
spectral covariance

ΣH
Ω = H†ΣH

GH =


a+ b+ 2c · · ·

· a+ b− 2c · ·
· · a− b ·
· · · a− b

 , (14)

where the diagonal elements are known as the components of variance (if we regard this 337

from the ANOVA perspective), or the Haar wavelet spectrum (if we regard this as 338

wavelet analysis). Here there are 3 sources of variation: between trees (a+ b+ 2c), 339

within trees (a+ b− 2c), and within subtrees (a− b). 340

We emphasize that the change-of-basis matrices F and H are defined by the 341

symmetry of each system. They transform the original variables into a set of 342

non-interacting natural variables (Fourier or Haar wavelet components) which define the 343

meaningful components of variance. It was Tukey [68] who first showed that Fourier 344

decomposition can be regarded as a branch of variance components analysis. 345

It is worth pointing out how this diagonalization, or eigendecomposition, of the 346

covariance matrix, relates to traditional principal components analysis. In generalized 347
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spectral analysis, the eigenvectors (given by the columns in F and H), or, more 348

precisely, the eigenspaces, are determined by the structure of Σ and do not depend on 349

its entries. In addition, the eigenvalues are linear functions of the entries. Neither of 350

these properties are true, in general, for principal components analysis. 351

Generalized spectral analysis of a complete tree 352

Having examined the case of a tree where only the leaf nodes are of interest (Fig 5b), 353

we now examine the case where all positions in the tree are of interest (Fig 5c). For the 354

complete tree, we already know the structured covariance ΣG (see Eq 5). Our tasks 355

then are to derive the change-of-basis matrix, interpret the natural variables, and 356

calculate the spectral covariance. 357

The derivation of the change-of-basis matrix, T , for a complete tree is shown in
Appendix A2. This represents the generalization of the Haar transform matrix H to a
complete tree. For a 3-generation tree it is given by

T =

` : 0 0 0 1 1 2 2
τ : 0 0 0 0 0 0 1
g : 1 2 3 2 3 3 3



1 0 0 0 0 0 0 1
0 1√

2
0 1√

2
0 0 0 10

0 1√
2

0 −1√
2

0 0 0 11

0 0 1
2 0 1

2
1√
2

0 100

0 0 1
2 0 1

2
−1√

2
0 101

0 0 1
2 0 −1

2 0 1√
2

110

0 0 1
2 0 −1

2 0 −1√
2

111

(15)

where the columns, as usual, define the natural variables. There are two equivalent ways 358

of interpreting these natural variables: from the ANOVA perspective, and from the 359

wavelet perspective. It is useful to consider both. 360

From the nested ANOVA perspective, each natural variable is associated with a 361

source of variation (`, τ) located at the root of a subtree. Because we are considering 362

more than one generation, we must also specify the generation g in which the variation 363

is observed (see Fig 3 for the labeling convention). From the wavelet perspective, ` 364

represents the transverse scale of the variation, τ the transverse position, and g is the 365

generation in which the variation is observed. The 3-index label for each natural variable 366

is given above each column in Eq 15, with vertical lines used to partition the different `. 367

The change-of-basis matrix is straightforward to extend. For example, a tree with 4
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generations gives

T =

` : 0 0 0 0 1 1 1 2 2 2 2 3 3 3 3
τ : 0 0 0 0 0 0 0 0 0 1 1 0 1 2 3
g : 1 2 3 4 2 3 4 3 4 3 4 4 4 4 4



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0
√

2
2 0 0

√
2

2 0 0 0 0 0 0 0 0 0 0 10

0
√

2
2 0 0 −

√
2

2 0 0 0 0 0 0 0 0 0 0 11

0 0 1
2 0 0 1

2 0
√

2
2 0 0 0 0 0 0 0 100

0 0 1
2 0 0 1

2 0 −
√

2
2 0 0 0 0 0 0 0 101

0 0 1
2 0 0 − 1

2 0 0 0
√

2
2 0 0 0 0 0 110

0 0 1
2 0 0 − 1

2 0 0 0 −
√

2
2 0 0 0 0 0 111

0 0 0
√

2
4 0 0

√
2

4 0 1
2 0 0

√
2

2 0 0 0 1000

0 0 0
√

2
4 0 0

√
2

4 0 1
2 0 0 −

√
2

2 0 0 0 1001

0 0 0
√

2
4 0 0

√
2

4 0 − 1
2 0 0 0

√
2

2 0 0 1010

0 0 0
√

2
4 0 0

√
2

4 0 − 1
2 0 0 0 −

√
2

2 0 0 1011

0 0 0
√

2
4 0 0 −

√
2

4 0 0 0 1
2 0 0

√
2

2 0 1100

0 0 0
√

2
4 0 0 −

√
2

4 0 0 0 1
2 0 0 −

√
2

2 0 1101

0 0 0
√

2
4 0 0 −

√
2

4 0 0 0 − 1
2 0 0 0

√
2

2 1110

0 0 0
√

2
4 0 0 −

√
2

4 0 0 0 − 1
2 0 0 0 −

√
2

2 1111

A visual representation of how these natural variables are constructed from the original 368

variables is shown in Fig 6 for the case of a 4-generation tree. This emphasizes how the 369

`-coordinate of the source of variation characterizes the scale of the pattern. Fig 7 370

shows a few examples of the natural variables to illustrate how they are convenient, 371

elemental components for describing tree-structured variation. 372

The natural variables thus correspond to patterns of bifurcated expression on 373

subtrees, or, more succinctly, bifurcated subtrees. These are are the analogs to Fourier 374

components. Thus it is not subtrees that are the fundamental units of expression in a 375

binary tree but rather bifurcated subtrees. 376

Fig 6. Construction of the natural variables for a tree with 4 generations.
Each natural variable is identified by a source of variation (`, τ), corresponding to the
root of a subtree, and a generation g. The + and − at each lineal position illustrate how
the original variables are combined to form a natural variable. The 15 natural variables
thus defined by the 3-tuple (`, τ, g) are listed in the bottom row. Since the τ coordinates
are indistinguishable, only 10 of the natural variables (those with τ = 0, say) are unique.

The natural variables are not particularly surprising: they are just those one would
define in a nested ANOVA or Haar wavelet analysis if each generation were considered
separately. Perhaps more surprising is their arrangement in T : although Eq 15 contains
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Fig 7. Bifurcated subtrees. Patterns on a tree can be described in terms of natural
variables, or elemental components, examples of which are shown here. Each component
is a bifurcated pattern centered on a subtree (`, τ) and expressed in a generation g
(where τ is ignored in an unordered tree). For example, the blue/non-blue bifurcated
pattern is centered on subtree ` = 3 and observed at generations 5, 6, and 7. Note that
` = 1 variation (on the right) is a bifurcation across the whole pedigree, while ` = 0 (not
shown) represents variation among different pedigrees.

every column of the Haar transform matrix for generations 2 (dotted lines) and 3
(dashed lines), these matrices are not incorporated simply as a direct sum. Instead,
representation theory demands that we group the natural variables by (`, τ). When we
do this and apply T to ΣG from Eq 5 we get a block -diagonalized spectral covariance,

ΣΩ = T †ΣGT

=



ξ
(0)
11 ξ

(0)
12 ξ

(0)
13 · · · ·

ξ
(0)
12 ξ

(0)
22 ξ

(0)
23 · · · ·

ξ
(0)
13 ξ

(0)
23 ξ

(0)
33 · · · ·

· · · ξ
(1)
22 ξ

(1)
23 · ·

· · · ξ
(1)
23 ξ

(1)
33 · ·

· · · · · ξ
(2)
33 ·

· · · · · · ξ
(2)
33


, (16)

where each block corresponds to a source of variation ` and its associated generations g, 377

where g > `. Here we label matrix elements as ξ
(`)
gg′ where subscripts refer to the pair of 378

interacting generations, g and g′ (there is no need to use τ as a label since elements 379

differing only in τ have identical values). Note how the components of variation that we 380

encountered on the diagonal in ΣH
Ω (Eq 14), where only third generation variables were 381

of interest, are here labeled as ξ
(0)
33 , ξ

(1)
33 , and ξ

(2)
33 . They are still on the diagonal but are 382

grouped with their counterparts from generations 1 and 2. 383

To better appreciate the block-diagonal structure of ΣΩ, we show it as a heat map 384

for the case of a 4-generation tree (Fig 8b) along with the corresponding ΣG (Fig 8a). 385

This emphasizes how each block ` is further block-diagonalized by τ . In the terminology 386
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of group representation theory, ` identifies an isotypic subspace while τ identifies an 387

irreducible subspace - a subset of the isotypic subspace. In Fig 8b, the isotypic blocks 388

are bounded by dashed lines, while the irreducible blocks are bounded by dotted lines. 389
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(b) ΣΩ = T †ΣGT

Fig 8. Heat maps of ΣG and ΣΩ for a complete tree. This example was taken
from the first 4 generations of the branching process. Natural variables along the axes
of ΣΩ are given in the format (`, τ, g). Isotypic blocks are bounded by dashed squares
and correspond to a given `. Irreducible blocks correspond to a source of variation (`, τ)
and are bounded by a dotted square. For ` = 0 and 1 the isotypic and irreducible blocks
coincide since there is only one τ index.

The primary benefit of identifying the spectral transformation for the complete tree 390

is that ΣΩ contains all the information in ΣG but in a much simpler form. Having 391

pooled the data to obtain Σ̂G one simply performs the linear transformation to get Σ̂Ω. 392

We pause briefly to examine how this generalized spectral analysis for a complete 393

tree is analogous to traditional Fourier analysis for a time series. As we mentioned, 394

bifurcated subtrees are the natural variables for a binary tree and are thus analogous to 395

sine and cosine waves. Any pattern on a tree, whether or not it is clonal, can thus be 396

defined as a superposition of bifurcated subtrees. This idea is useful when trying to 397

interpret non-clonal lineage patterns: whereas a clonal pattern is associated with a 398

single subtree, a non-clonal pattern is a superposition of multiple subtrees. 399

Another analogy is between the ordering of the tree and the phase of a time series. 400

Our ability to average different trees regardless of their ordering is similar to the ability 401

to average the spectra of different time series having unknown starting phases. Here one 402

knows that to detect structure in the time series, one should average their spectra, not 403

the time series themselves. Other analogies are shown in Table 2. 404

Fourier analysis Tree analysis
Sine, Cosine waves Bifurcated subtrees

Phase Ordering of the tree
Auto-covariance Structured covariance, ΣG (Eq 5)

Discrete Fourier Transform matrix Change-of-basis matrix, T (Eq 15)
Power spectrum Spectral covariance, ΣΩ (Eq 16)

Table 2. Generalized spectral analysis. Well-known quantities in Fourier analysis
have their direct analogs in the spectral analysis of a tree.
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Complexity of the structured covariance 405

Spectral decomposition shows that the high-dimensional covariance estimation problem 406

involving shared parameters in Σ̂G is equivalent to several, lower-dimensional covariance 407

estimation problems given by the irreducible blocks in Σ̂Ω. We can use this to calculate 408

the complexity of Σ̂Ω as we did for the unstructured covariance (Eq 3). 409

Because each unique irreducible block is an independent, unstructured estimate of a
covariance matrix, the effective number of dimensions, peff, is given by summing the
number of dimensions for each unique irreducible subspace. The number of free
parameters in the covariance matrix, NΣ, is found by summing the number of
parameters in each unique irreducible block. The minimum number of replicates
required, nmin, is found from the dimensionality of the largest irreducible block (` = 0).
Thus

peff =
G−1∑
`=0

(G− `) =
G(G+ 1)

2
= O(G2) (17)

NΣ =
1

2

G−1∑
`=0

(G− `)(G− `+ 1) =
G

6
(G+ 1)(G+ 2) = O(G3) (18)

nmin = G+ 1 = O(G) (19)

The group-symmetric model is thus significantly more constrained than the 410

unstructured model, with the number of parameters growing polynomially with G 411

instead of exponentially (compare Eq 3). Note how peff < p (when G ≥ 3), a reduction 412

in the effective number of dimensions that was not apparent from ΣG alone. 413

Nevertheless, even with these symmetry constraints, nmin still grows with G, albeit 414

linearly (Eq 19) instead of exponentially (Eq 3). This means that, for a fixed set of n 415

replicates, there will always be a limit to the number of generations that can be 416

analyzed. We need an additional constraint. 417

Sparsity 418

The additional constraint comes from recognizing that the G− ` natural variables in 419

each irreducible subspace (`, τ) represent a time series from generation `+ 1 to G (see 420

Section “Generalized spectral analysis of a complete tree”). Together, the unique 421

irreducible subspaces comprise a set of G independent time series each starting at a 422

different generation but all ending at G. A standard technique for imposing structure 423

on a time series is to consider it a fixed order Markov chain. 424

Before doing this, we first need to justify some properties of the inverse covariance,
or precision, matrix K = Σ−1. In particular, because ΣG is G-invariant, its inverse KG ,
has the same structure [69]. This means that the spectral precision matrix,
KΩ = T †KGT has the same block-diagonal structure as ΣΩ. Hence each irreducible

block K
(`)
Ω in the spectral precision matrix is just the inverse of the corresponding

irreducible block in the spectral covariance Σ
(`)
Ω :

K
(`)
Ω =

[
Σ

(`)
Ω

]−1

. (20)

The problem of imposing a Markov constraint on Σ
(`)
Ω is thus one of imposing 425

sparsity on K
(`)
Ω . More specifically, matrix elements in K

(`)
Ω outside a diagonal band 426

(the tri-diagonal in the case of a 1st order Markov process) are constrained to be zero. 427

Remember that it is the structure of each K
(`)
Ω that is sparse; the precision matrix itself, 428

K, may not be particularly sparse. We remark that a zero in the precision matrix 429
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enforces conditional uncorrelatedness between two variables without assuming 430

Gaussianity (if the distribution is Gaussian, then this pair of variables is also 431

conditionally independent). 432

A restricted-order Markov chain is a simple case of a decomposable graphical
model [70,71] and thus yields an explicit estimate of the covariance matrix. Following
the procedure for a decomposable model, we organize variables in the irreducible block
into cliques and separators, a straightforward exercise for a Markov chain of any order.

If S
(`)
Ω is the (unstructured) estimate of the irreducible block, we label sub-blocks of

cliques and separators within S
(`)
Ω as

S
(`)
Ω,ci

, i = 1, ...,NC ; S
(`)
Ω,si

, i = 2, ...,NC

where the subscript ci refers to a clique, si refers to a separator, and NC is the number
of cliques in the irreducible block. The covariance estimate for an irreducible block is
then given by (p.145 [71])

K̂
(`)
Ω =

NC∑
i=1

{[
S

(`)
Ω,ci

]−1
}0

−
NC∑
i=2

{[
S

(`)
Ω,si

]−1
}0

(21)

Σ̂
(`)
Ω =

[
K̂

(`)
Ω

]−1

(22)

where the expression {Υ}0 denotes a matrix with the dimensions of K̂
(`)
Ω which has its 433

appropriate sub-block occupied by Υ and zeros elsewhere. 434

This expression makes it clear that, since it is the inverse of the clique and separator 435

sub-blocks that are required, it is only these sub-blocks (with maximum dimension 436

M+ 1) that need to be positive definite. The minimum number of replicates required 437

for positive definiteness is thus set by the order M of the Markov process, which is 438

fixed, rather than by the size of the irreducible block, which grows linearly with G. In 439

general then, nmin =M+ 2 and we have finally achieved our goal of having the data 440

requirements be independent of the number of generations being analyzed. Note that 441

restricting the non-zero parameters in the precision matrix to be on the diagonal band 442

means that NΣ ∼ O(G2), down from the cubic dependence in Eq 18. peff remains 443

unchanged. 444

Inspection of the T-cell and worm lineage data show that, at least up to generation 445

4, non-zero values in K
(`)
Ω are indeed primarily confined to the tri-diagonal. This 446

justifies the (first-order) Markov process assumption, and we hereafter use it to extend 447

the analysis to higher generations. 448

Missing data 449

The covariance estimates described above assume complete data. In reality, some 450

measurements are missing, often because data collection is imperfect but also because 451

cells die and have no descendants (although in the datasets analyzed in the paper, cell 452

death is essentially negligible). 453

A simple solution is to apply the Expectation-Maximization (EM) algorithm [72], 454

assuming a multivariate Gaussian to impute the missing data. Before describing how we 455

do this, we remark that the covariance estimation procedure we have described thus far 456

is distribution-free, providing a non-parametric estimate of second-order variation. It is 457

only to account for missing data that we invoke a distributional assumption. In 458

Appendix A3 we show that the maximum likelihood estimate (MLE) for a multivariate 459

Gaussian with the symmetry and Markovian constraints discussed above is in fact the 460

covariance estimate we have already found. It is thus straightforward to apply the EM 461

algorithm with a multivariate Gaussian to address the missing data problem. 462
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The EM algorithm iteratively improves the estimate of the covariance matrix, 463

generating expected values of the sufficient statistics at each step. In the E-step, the 464

current estimate of the mean µ̂ and covariance matrix Σ̂ are used to calculate the 465

expected sufficient statistics for each replicate, conditioned on the observed data. The 466

average Ŝ over all replicates is then calculated. In the M-step, Ŝ is used in the MLE 467

calculation of the irreducible blocks (as described above) to update the estimate Σ̂. The 468

E and M steps are then repeated until Σ̂ converges. 469

In more detail (p.223 [73]), the first and second order statistics are calculated for
each replicate i by partitioning the variables into observed sets, labelled oi, and
unobserved sets, labelled ui. Members of each set usually differ from one replicate to
the next. The vector of unobserved values in each replicate is then filled by its expected
value conditioned on the vector of observed values:

Yi,ui
= E(Yi,ui

|Yi,oi)
= µ̂ui + Σ̂ui,oiΣ̂

−1
oi,oi (Yi,oi − µ̂oi) . (23)

Combining these with the observed values completes the first order statistic, 470

Yi = {Yi,oi ,Yi,ui} for i. 471

The second order statistic (Y Y )i for each replicate i, partitioned into observed and
unobserved sections, is found from

(Y Y ′)i,oioi = Yi,oiY
′
i,oi

(Y Y ′)i,uioi = Yi,ui
Y ′i,oi

(Y Y ′)i,oiui = Yi,oiY
′
i,ui

(Y Y ′)i,uiui
= Yi,ui

Y ′i,ui
+ Σ̂uiui|oioi , (24)

where

Σ̂uiui|oioi = Σ̂ui,ui
− Σ̂ui,oiΣ̂

−1
oi,oiΣ̂oi,ui

is the residual covariance of the unobserved variables after conditioning on the observed 472

variables. 473

Once this exercise has been completed for all replicates, the sample mean and
covariance are calculated from the usual

µ̂ =
1

n

n∑
i=1

Yi, Ŝ =
1

n

n∑
i=1

(Y Y ′)i − µ̂µ̂′. (25)

The estimated sample covariance, Ŝ, is then used in the procedures described in the 474

previous sections to calculate a new estimate, Σ̂. Iterating these steps gives the 475

following algorithm: 476

1. Initialize µ̂ and Σ̂. 477

2. Expectation step to determine the expected value of the sufficient statistics for 478

each replicate. Use Eqs. 23, 24, 25 to calculate the updated estimate µ̂ and the 479

estimated sample covariance, Ŝ 480

3. Maximization step to find Σ̂ from Ŝ. 481

(a) Find ŜΩ = T †ŜT . 482

(b) Set elements outside the diagonal blocks to zero. 483

(c) If there is more than one irreducible block in a given isotypic block, average 484

them and assign the result to all of them. 485
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(d) For each unique irreducible block, find Σ̂
(`)
Ω from Ŝ

(`)
Ω using Eq 21 and 22, 486

assuming a Markov chain of given order M. 487

(e) Recover Σ̂ = T Σ̂ΩT
†

488

4. Return to Step 2 until convergence. 489

Note that here, rather than pooling matrix elements in Ŝ to estimate ŜG and then 490

spectrally transforming the result to get the block-diagonalized SΩ, we instead 491

spectrally transform S and perform the averaging the the spectral domain (steps 3b and 492

3c) to get SΩ. The two approaches give identical results. 493

Lineage variability maps 494

Our focus thus far has been to estimate Σ for the complete tree. The approach we 495

described can in principle be applied to lineages with any number of generations and 496

needs only a few replicates (pedigrees) to ensure positive definiteness. For the rest of 497

the paper we turn to the problem of interpreting Σ. 498

In this section we visualize Σ̂G and Σ̂Ω using graphical models to produce different 499

‘maps’ of the variation in the lineage. We call these lineage variability maps. For Σ̂G we 500

use undirected graphs, since lineal positions within a generation have no ordering, and 501

we call the result a lineage correlation map. 502

For Σ̂Ω we can use directed graphs, since natural variables belonging to an 503

irreducible block are ordered in a sequence. Thus the spectral transformation allows the 504

undirected graph to be converted into a directed one. This graph, which we call a 505

dynamic lineage map, compactly represents the dynamics of the bifurcated expression 506

pattern in each subtree. 507

Lineage correlation map 508

To visualize the network of statistical associations between different lineal positions we 509

use undirected graphs [70,71] defined either by marginal or by conditional associations. 510

For the network of marginal associations the strength of an edge between a pair of 511

variables is defined by the Pearson correlation coefficient, ρjj′ = σjj′/
√
σjjσj′j′ where 512

σjj′ is an element of Σ̂. For the network of conditional associations the strength of an 513

edge is determined by the partial correlation %jj′|V \{j,j′} = −κjj′/
√
κjjκj′j′ where κjj′ 514

is an element of K̂, and V \{j, j′} refers to the set of variables excluding j and j′. 515

Both types of undirected graphs are shown in Fig 9 for the 3 lineage types. The 516

network of conditional associations identifies direct interactions between variables, 517

conditioned on all other variables, and, as expected, generally provides a sparser 518

representation than does the network of marginal associations. 519

Note how a binary tree is revealed in the graph of partial correlations for the 520

branching process (Fig 9f). This is expected since our branching process defined 521

daughters to be conditionally uncorrelated. In the network of partial correlations this 522

assumption reveals itself as the lack of an edge between sisters. In contrast, in the 523

partial correlation graphs for T-cell (Fig 9d) and worm (Fig 9e) lineages, sisters are 524

often joined by edges. This arises when the correlation between sisters is greater or less 525

than the squared correlation between mother and daughter, a long-documented 526

observation in cell lineages (see e.g. [28,29]). This is the simplest demonstration of the 527

fact that phenotypic variation in real lineages cannot be modeled as a branching process. 528

The graphs in Fig 9 allow us to examine how the network of phenotypic associations 529

compares with the network of lineal relationships; though the latter is a binary tree, the 530

former may not be. This emphasizes that, although we must assume that phenotypic 531
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(c) Correlation: Branching process
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(d) Partial correlation: T cell
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(e) Partial correlation: Worm
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(f) Partial correlation: Branching process

Fig 9. Lineage correlation maps. These are undirected graphs in the original variables. The color of edges in each graph
corresponds to the correlation (top row) or partial correlation (bottom row) between pairs of lineal positions. To avoid clutter
only the first 4 generations are shown. Note how the graph of partial correlations (9f) for the simulated branching process,
where daughters are conditionally uncorrelated, is a binary tree. This is not the case for the real lineages.

variation in an unordered tree has the symmetry of a binary tree, we do not assume it 532

has the sparsity of a binary tree. 533

Dynamic lineage map 534

A problem with representing each lineal position as a node is that the graph appears 535

cluttered since there are many edges and nodes with similar strengths. This problem 536

gets exponentially worse with increasing generations. Such redundancies disappear 537

when examining the tree over its natural variables. 538

Since the natural variables in each irreducible subspace are ordered by generation 539

they can be represented by a directed graph [74–76], with each variable conditioned on 540

the past. Each irreducible subspace is thus a chain representing a subtree `, with the 541

complete tree thus being represented by G independent chains. In the language of graph 542

theory, the tree is composed of connected components, each of which is a chain. Each 543

chain describes how the bifurcated expression pattern associated with a subtree ` 544

propagates through subsequent generations. 545

The structural equation, or causal, model underlying each chain is a non-stationary
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time series given by the following system of equations:

zj =

j−1∑
j′=`+1

βjj′zj′ + εj , for ` < j ≤ G (26)

Note that each irreducible subspace is represented by its own system of equations but
we avoid the superscripts ` to reduce index clutter. Here zj is a natural variable
corresponding to a generation j, βjj′ is the regression coefficient of generation j on j′,
and εj is an independent random variable with a mean of zero representing variation
originating at generation j that has expected variance E(ε2

j ). Defining a lower-triangular
coefficient matrix B = (bjj′) gives the system of equations in matrix form:

Bz = ε,

bjj′ =


1, if j = j′

0, if j − j′ < 0 or j − j′ >M
−βjj′ , otherwise.

(27)

The structural equation model parameters βjj′ and E(ε2
j ) can be found using a

modified Cholesky decomposition of each Σ̂
(`)
Ω ,

Σ̂
(`)
Ω = LΦL′, (28)

where Φ = (ϕjj′) is diagonal and L is lower triangular. Then since E(zz′) = Σ̂
(`)
Ω , we 546

find that L−1 = (bjj′). This means that βjj′ can be found using Eq 27 and E(ε2
j ) = ϕjj . 547

The directed graph can then be defined with edge weights given by βjj′ and node 548

strengths given by E(ε2
j ). The edges represent transmission of variation while the nodes 549

represent innovations. If |βjj′ | < 1 then transmission is regressive, with descendants 550

gradually losing memory of previous generations. However, if |βjj′ | > 1 then variation 551

from source (`) observed at generation j′ is amplified during transmission to generation 552

j. Thus large variation can either arise directly from a large innovation or it can be the 553

result of strong amplification of small variation (or both). 554

These directed graphs compactly summarize the dynamics of phenotypic variation 555

throughout the lineage. Examples for the 3 lineages types are shown in Fig 10. Each 556

connected component, given by a row, represents how the bifurcated expression pattern 557

associated with a subtree ` propagates down successive generations. 558

As expected, the worm graph has the most structure. For example, transmission and 559

innovation is small for the first few generations of each subtree, before “turning on ” 560

after generation 6. This means that the bifurcated expression of a subtree may be silent 561

for many generations before appearing simultaneously over multiple descendants at a 562

later generation. Note how transmission and innovations at ` = 0 are weak, illustrating 563

how variation on the inter-pedigree level is small, as expected for a totipotent cell. 564

Strong transmission is observed in particular subtrees at certain generations. For 565

example, βjj′ is highest for ` = 2 between generations 6 and 7, and for ` = 5 between 566

generations 7 and 8. We will discuss these features later when we assess the fate 567

restriction associated with each subtree. 568

Although these characteristics could have been inferred just by viewing a single 569

worm lineage directly, the point is that we now have a statistical method to extract such 570

features from variable lineages. For example, the primary feature of the graph for T 571

cells, which was not obvious from just looking at the lineages, is that subtree ` = 0 has 572

the largest innovations and consistently strong transmission between generations (the 573

exception is from generation 1, whose phenotype is not transmitted). This indicates 574
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Fig 10. Dynamic lineage maps These directed graphs in the natural variables show the dynamics of the bifurcated
expression pattern in each subtree `. The color (and thickness) of an edge between node j and j′ corresponds to the
transmission strength, βjj′ . The size of the node corresponds to the innovation strength, E(ε2

j ).

that much of the variation is between pedigrees, rather than within the pedigree as it 575

was for the worm. We will describe this in more detail in the next section. 576

Finally, we note that the graph for the branching process is featureless across all 577

generations and in all subtrees, as would be expected for a stationary process. 578

Fate profiles 579

Lineage variability maps describe the pattern of phenotypic associations throughout the 580

lineage. However, as with lineage maps, our interest is often in using them to infer 581

where fate is specified. In the introduction, we described how this involves identifying 582

the most recent common ancestor of cells with shared fate. For a clonal pattern, where 583

a cell fate is exclusive to a single subtree, we infer that fate was specified at (or near) a 584

single lineal position - the root of that subtree. For a non-clonal pattern, which is likely 585

for lineages with high variability, cell fate is expressed in multiple subtrees and we 586

would infer that some fate was specified at multiple lineal positions. In C. elegans these 587

inferences could be made visually [5]. Here we show how, by knowing the lineage 588

variability map Σ, we can make these inferences statistically, overcoming the problem of 589

how to identify subtrees which shared phenotypes. 590

Before we begin, we must define what we mean by cell fate. In this study we define 591

cell fate to be the measured phenotype of a cell at the latest generation studied, G. 592

This practical definition allows us to analyze cell fate whether or not the phenotype in 593

the last generation is actually a terminal fate. Also, by defining cell fate to be the 594

phenotype itself rather than the cell type to which it is assigned, we can use the 595

phenotypic measurements as is, without having to cluster or threshold them. Such 596

discretization procedures can be difficult to define when phenotypes exist on a 597

continuum of differentiation, as is often the case [77]. 598

Having defined fate, we turn now to explaining its variability in terms of aspects of 599

the lineage. We first partition the variability among the subtrees, or sources of variation. 600

This quantifies how much of a cell’s fate is restricted by, or specified by, each subtree. 601

We then examine the correlation of cell’s fate with the phenotypes of its ancestors. This 602

identifies the generations over which a phenotypic fate has been stably expressed. 603

Together these two measures, of fate restriction and fate expression, make up what we 604

call fate profiles. 605
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Fate restriction by subtree 606

To determine how much cell fate is restricted by (i.e. specified by) each subtree, we 607

partition the fate variability among the different sources of variation, each of which is 608

located at the root of a bifurcated subtree. This is just the traditional problem of 609

variance components analysis in nested groups (see Fig 5b). Since we have already 610

calculated the spectral covariance matrix, we need only locate the appropriate 611

components of variance along its diagonal (see Eq 16). 612

Consider the variance of a cell in generation G, given by σGGG (see Eq 5). This can
be written as the the sum of independent contributions from each source (`, τ). These
are known as the (normalized) components of variance in a classical ANOVA [78]. A
convenient way to show this decomposition in our framework is to perform the inverse
spectral transform of ΣΩ (for an example, see the Appendix A2.9). The result is given
by

σGGG =
1

Nsrc

G−1∑
`=0

d`−1∑
τ=0

ξ
(`)
GG, d` =

{
1, if ` = 0,

2`−1, if ` ≥ 1,
(29)

=
1

Nsrc

G−1∑
`=0

ξ
(`)
GGd`, (30)

where d` is the number of transverse sources of variation at a given `, and 613

Nsrc =
∑G−1
`=0 d` = 2G is the total number of sources of variation in a G-generation tree. 614

The component of variance corresponding to source ` is thus given by ξ
(`)
GGd`/Nsrc where 615

ξ
(`)
GG is found along the diagonal of ΣΩ. 616

The resulting proportion of variance attributable to the `-th source for a cell in
generation G is given by

η2(`|G) =
ξ

(`)
GGd`∑G−1

`′=0 ξ
(`′)
GGd`′

, 0 ≤ ` < G. (31)

This measures the relative importance of each source of variation ` in explaining cell 617

fate. Equivalently, it measures how much cell fate is restricted by subtree `. 618

It will also be useful to calculate the cumulative proportion of total variance
attributable to subtrees from 0 to `, inclusive,

η2
cml(`|G) =

∑`
`′=0 ξ

(`′)
GGd`′∑G−1

`′=0 ξ
(`′)
GGd`′

, 0 ≤ ` < G. (32)

This gives a running total of the cell fate restricted by each successive subtree, starting 619

at ` = 0 and is related to the intraclass correlation. 620

An obvious question is whether η2(`|G) would differ if we had simply performed a 621

variance components analysis on the single generation G, ignoring measurements in the 622

other generations. With complete data, our method would give the identical result to a 623

variance components calculation: using a decomposable model for a Markov chain 624

ensures that estimates of diagonal elements in ΣΩ (the components of variance) are 625

given by the corresponding diagonal elements in SΩ. If there were incomplete data 626

however, data from other generations would help to estimate the missing data in 627

generation G, improving the estimate of η2(`|G). 628

Fate expression by generation 629

Having determined how much fate is restricted by each subtree, we now determine how 630

much cell fate is expressed by each generation. We do this by correlating the phenotype 631
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of a cell in generation G with those of its direct ancestors. The degree to which earlier 632

generations are correlated with the last is a measure of when fate becomes expressed. 633

This definition of fate expression emphasizes the stability, or persistence, of a 634

phenotypic fate rather than the absolute value of a phenotypic measurement. We have 635

chosen this definition since our analysis should be general enough to work on data with 636

substantial variability, where it may be difficult to define a cell fate in terms of some 637

threshold level of expression. 638

Given a lineal position in generation G and its direct ancestor in generation g, the
proportion of explained variance is just the squared correlation coefficient, or coefficient
of determination,

R2(g|G) =
σ2
gG

σggσGG
= ρ2

gG, 1 ≤ g < G. (33)

In the subscripts we have simplified the 3-index notation from Eq 5 by ignoring the 639

third index. This does not cause confusion since in this context we are only concerned 640

with direct ancestors. 641

Generalizing to prediction using multiple generations of direct ancestors up to and
including that in generation g gives

R2
cml(g|G) =

ΣGgΣ−1
gg ΣgG

σGG
(34)

where g represents a vector of direct ancestors of the cell in generation G that are from 642

generations 1 to g inclusive. Note that Eq 34 accounts for possible dependencies in the 643

variation between ancestors. Unlike for the case of components of variance, 644

contributions from different ancestral generations are not (in general) orthogonal. 645

Comparing fate restriction and fate expression 646

Our measures of fate restriction and fate expression are complementary ways of 647

explaining the variation of cell fate: η2(`|G) explains fate in terms of shared ancestry 648

(subtrees) while R2(g|G) explains fate in terms of ancestral phenotypes. We call these 649

fate profiles. Both are plotted in Fig 11, with the top row giving the explained variance 650

and the bottom row giving the cumulative explained variance. 651

η2(`|G) (blue line, top row) shows how much variation in G is restricted by each of 652

the subtrees `. For T cells, ` = 0 is by far the most important “subtree” for explaining 653

fate (at G = 5). This is consistent with a cell that has limited potency, where the choice 654

of founder cell severely restricts the range of fates available. In this case, any founder 655

cell has already had 80% of its cell fate restricted. For the worm, cell fate is restricted 656

by all subtrees except ` = 0. Each zygote thus has 100% of its cell fate potential. This is 657

consistent with the behavior for a totipotent cell. All subsequent subtrees contribute to 658

cell fate, with ` = 2, 3, 5 being particularly important. This spread of fate specification 659

over different subtrees might have been expected given the non-clonal expression 660

pattern of PHA-4. While a clonal pattern is projected onto a single subtree, non-clonal 661

patterns are projected onto multiple subtrees. For the branching process, contributions 662

from all subtrees are comparable, as expected. Each subtree is, roughly speaking, 663

equally important. 664

R2(g|G) (orange line, top row) gives the correlation of a cell in generation G with its 665

direct ancestor in generation g. For T cells, R2 ' 0 for g = 1 indicating that, even 666

though most cell fate (at least at G = 5) is set by the choice of founder cell, the founder 667

does not actually resemble its descendants. For the worm, R2 ' 0 for 1 ≤ g ≤ 6. Thus 668

none of the complicated structure in η2 for 0 ≤ ` ≤ 6 is reflected in R2. 669
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(c) Branching process

Fig 11. Fate profiles for different lineages. Explained variance (top row) and the cumulative explained variance
(bottom row). η2(`|G) (blue) measures how much the fate of a cell at generation G is restricted by each subtree `. R2(g|G)
(orange) measures how much a generation-G cell’s phenotype is correlated with its direct ancestor in generation g. Note that
because of the Markov process is assumed to be first order (see Section ‘Sparsity’), R2 = R2

cml. For the case of the simulated
branching process the exact result is also shown to illustrate the accuracy of the inference procedure.

This difference between fate restriction and fate expression is emphasized in the 670

cumulative explained variance shown in the bottom row of Fig 11. For the worm, η2
cml 671

increases with each subtree (for ` > 0) while R2
cml(g|G) remains zero until g = 7. For 672

the T cell, η2
cml starts high at ` = 0, while R2

cml(g|G) starts at zero and increases slowly 673

with each generation. Contrast this with the branching process where η2
cml and R2

cml 674

both start near zero and increase steadily in a similar fashion. Clearly a T cell lineage 675

cannot be modeled as a branching process. 676

In the worm lineage, such fate restriction before fate expression captures what is 677

perhaps obvious from the lineage map. Just by looking at Fig 1b we see how PHA-4 678

expression is negligible until generation 7 whereupon it appears simultaneously across 679

multiple subtrees. This implies that cells across those subtrees coordinated their fates 680

before expressing them. Thus, for the worm, the fate profile merely restates, albeit in a 681

quantitative way, what can be visualized in a single (invariant) pedigree. However, the 682

advantage of the fate profile is that it can be applied to variable lineages, when simple 683

visualization fails. 684

Discussion 685

The lineage map, which has been instrumental in the discovery of fate specification 686

mechanisms in simple organisms, was born from the study of invariant lineages and is 687
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not a particularly useful concept for understanding the more ubiquitous case of variable 688

lineages. To address this, we have introduced lineage variability maps, which provide a 689

way to describe lineages at the population level. Whereas the lineage map is a 690

description of the pattern of phenotypes across a pedigree, the lineage variability map 691

describes the pattern of phenotypic associations across a pedigree. This map of 692

phenotypic associations, Σ, provides quantitative answers to essential scientific 693

questions such as those about cell potency, fate restriction, and the sources of variation 694

in a lineage. 695

We have constructed lineage variability maps from a sample of highly-variable 696

pedigrees from CD8+ T-lymphocytes up to five generations. These show that most of 697

the variation in cell fate, defined here to be cell size at generation 5, is explained by the 698

choice of naive cell. Yet, despite the pivotal role played by this founder in restricting 699

cell fate, its phenotype is not predictive of fate: though a naive cell may specify that its 700

descendants be large, it may not be large itself. 701

Although we expect to apply our technique primarily to variable pedigrees which are 702

difficult to interpret by visualization alone, we can also apply it to invariant lineages to 703

check our results. In fact, by constructing lineage variability maps from sample 704

wild-type pedigrees from C. elegans marked for pharyngeal expression, we successfully 705

recovered essential information in the known lineage map, identifying global features 706

such as the small degree of inter-pedigree variation characteristic of a totipotent zygote, 707

and the several-generation delay between fate specification and expression. 708

Yet our lineage variability maps capture important finer detail as well. Consider the 709

peak in fate restriction at ` = 2 observed in Fig 11b. This arises from the strong 710

bifurcation of fate traced back to the division of both P1 and of AB, progenitors located 711

at ` = 2 (see Fig A1 for the labeling of lineal positions). That only a single daughter 712

from P1 and from AB exhibit pharyngeal fate results in the spike in fate restriction that 713

we observe. Interestingly, this phenomenon, of pharyngeal fate ensuing from two cousins 714

at generation 3 (ABa and EMS) but not from their sisters, is a phenomenon that has 715

been investigated in detail [79]. Such work laid the foundation for several further 716

studies leading to a fundamental understanding of the molecular and cellular 717

mechanisms for specification of pharyngeal tissue [80]. This demonstrates how, even 718

though we may be ignorant of the ordering of the lineage, we can still detect a 719

phenomenon of biological relevance that had previously required knowledge of this 720

ordering. In other words, although we must assume lineage relationships are symmetric, 721

this does not prevent us from detecting the effects of asymmetric lineage patterns from 722

the ‘boost’ they give to the variance in particular subtrees. 723

Recent technological innovations have introduced a variety of methods for recording 724

lineage data, involving both advanced imaging [19,45–47] and genetic 725

barcoding [20,48,50–56] techniques. With the statistical lineage mapping and fate 726

profiling methods described in this manuscript, it should be possible to quantify several 727

of the fundamental features of these lineages, such as the potency of progenitors, 728

whether heterogeneity is clonal, and at what depth such heterogeneity appears. Just as 729

the visual identification of fate bifurcations in the worm lineage map enabled the 730

location of fate specification events to be discovered, the capacity to perform systematic 731

screens to rapidly identify the important stages of fate restriction should contribute to a 732

deeper understanding of the mechanisms of fate specification in more complex, more 733

variable systems. 734

Supporting information 735

S1 Appendix Supplemental mathematical theory and derivations; 736

nomenclature for C. elegans lineage. Group symmetry and matrix decomposition 737
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(A1), Group representation for a complete tree (A2), Maximum likelihood estimation 738

(A3), and Lineage nomenclature for C. elegans (A4). 739

S1 Data Lineage data. 740
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