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Abstract Birth-death-movement processes, modulated by interactions be-
tween individuals, are fundamental to many biological processes such as devel-
opment, repair and disease. Similar interactions are also relevant in ecology.
A key feature of the movement of cells within in vivo environments are the
interactions between motile cells and stationary obstacles, such as the extracel-
lular matrix and stationary macromolecules. Here we propose a multi-species
individual-based model (IBM) of individual-level motility, proliferation and
death. In particular, we focus on examining the case where we consider a
population of motile, proliferative agents within an environment that is pop-
ulated by stationary, non-proliferative obstacles. To provide a mathematical
foundation for the analysis of the IBM, we derive a system of spatial moment
equations that approximately governs the evolution of the density of agents
and the density of pairs of agents. By using a spatial moment approach we
avoid making the usual mean field assumption so that our IBM and continuous
model are able to predict the formation of spatial structure, such as clustering
and aggregation. We explore several properties of the obstacle field, such as
systematically varying the obstacle density, obstacle size, and the nature and
strength of the interactions between the motile, proliferative agents and the
stationary, non-proliferative obstacles. Overall we find that the spatial mo-
ment model provides a reasonably accurate prediction of the dynamics of the
system, including subtle but important effects, such as how varying the prop-
erties of the obstacles leads to different patterns of clustering and segregation
in the population.
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2 A. Surendran et al.

1 Introduction

Movement, birth and death processes are important individual-level mecha-
nisms that can drive population-level outcomes in both biological and ecolog-
ical systems. Cell migration and cell proliferation, modulated by interactions
among neighboring cells, are essential for embryonic development (Kurosaka
and Kashina 2008), tissue repair (Martin 1997; Shaw and Martin 2009) and
many diseases, including cancer (Friedl and Wolf 2003). Live cell imaging and
simulation-based studies show that the movement of intracellular molecules
is also strongly influenced by crowding (Hasnain et al. 2014; Reverey et al.
2015). Similarly, in many ecological systems, the movement of individuals,
and interactions between individuals, can have important consequences on the
spatio-temporal dynamics of the population. Interspecies spatial segregation
and intraspecies clustering in predator-prey systems (Tobin and Bjornstad
2003) and the emergence of spatial structure in plant communities (Law and
Dieckmann 2000) are direct results of interactions between individuals. These
common observations from different areas of the life sciences suggest a role
for individual-level, agent-based mathematical models to represent molecules,
cells, plants and animals. Popular modelling frameworks include lattice-based
models and continuous space lattice free models (Plank and Simpson 2012;
Bruna and Chapman 2012; Dyson and Baker 2015). Some of these models
consider the dynamics and interaction within a single population (Lewis 2000;
Middleton et al. 2014). Other models, often called multi-species models, direct-
ly incorporate the influence of interaction among different types of agents to
represent different subpopulations (Murrell 2005; Plank and Law 2015; Smith
et al. 2017).

Cell migration in living tissues involves complicated heterogeneous envi-
ronments that are occupied by various biological structures and scaffolds, in-
cluding macromolecules and cells of varying size, shape and adhesive proper-
ties (Ellery et al. 2014; Ellery et al. 2016). Such obstacles and scaffolds can
have a significant impact on the migration of cells due to the interplay be-
tween crowding and cell-to-substrate adhesion (Welch 2015; Sun and Zaman
2017; Simpson and Plank 2017). The extracellular matrix (ECM), composed
of polysaccharides and protein fibers, is one example of a biological obstacle
which influences the cell migration in many different ways, such as providing
biochemical stimuli, mechanical cues and steric hindrances (Zaman et al. 2006;
Harley et al. 2008). ECM geometry and microarchitecture play a significant
role in regulating the motility of cancer (Condeelis and Segall 2003) and im-
mune cells (Bajenoff et al. 2006). The highly compartmentalised structure of
the cytoplasm and the presence of macromolecular obstacles such as nucleic
acids, proteins and polysaccharides in intracellular environments is known to
have a significant impact on both biochemical reactions (Minton 2001; Tan
et al. 2013; Hansen et al. 2016) and physical transport processes inside the
cell (Ghosh et al. 2016; Smith et al. 2017). These examples from various or-
ganizational levels suggest that the incorporation of both obstacles and their
crowding effects in a mathematical model of cell migration is important. In
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Spatial moments for birth-death-movement process with obstacles 3

this tudy, we explicitly consider how various properties of the crowding en-
vironment, such as obstacle size, density and obstacle adhesion, impacts the
population-level dynamics of a population of agents in a discrete individual
based model (IBM) of cell migration, proliferation and death.

Standard models of biological and ecological systems are based on the
mean field assumption which, roughly speaking, assumes that individuals in
the population encounter each other in proportion to their average density
(Law and Dieckmann, 2000). Classical examples of mean field models include
Lotka-Volterra models of ecological competition (Murray 1989), the Keller-
Segel model of chemotaxis (Keller and Segel 1971), the logistic growth model
(Edelstein-Keshet 2005), and many others including models of gene expression
(Shreshtha et al. 2016). Standard models based on ordinary and partial differ-
ential equations typically invoke the mean field assumption, either explicitly
or implicitly. In this work we take a more general approach by accounting for
spatial correlations present in the population. In particular we study the pop-
ulation dynamics in terms of the dynamics of spatial moments, which accounts
for the dynamics of individuals, dynamics of pairs of individuals, and so on
(Plank and Law, 2015). This approach means that we do not need to rely on
performing a large number of repeated stochastic simulations to understand
the population dynamics. This benefit comes with the added complication
that we have to deal with an infinite system of equations governing the spatial
moments of the system. To deal with this, we use a moment closure approx-
imation to give a tractable finite system of moment equations (Murrell et al.
2004; Raghib et al. 2011).

The first studies that used spatial moments focused on modelling birth-
death processes in ecology with a single species (Bolker and Pacala 1997;
Lewis 2000), and later studies examined competition and prey-predator inter-
actions in a multi-species birth-death framework (Murrell 2005; Barraquand
and Murrell 2013). More recently these kinds of ecological models have been
extended to include birth, death and movement processes that are motivat-
ed by observations from cell biology experiments (Baker and Simpson 2010;
Simpson et al. 2013). However, these first models that include cell migration
are lattice-based, which means that the movement of individuals is restricted
to an artificial lattice (Plank and Simpson 2012). Lattice-free moment dynam-
ics models of cell migration and cell proliferation have also been presented
(Middleton et al. 2014; Binny et al. 2015, 2016a, 2016b). Unlike the lattice-
based models in which volume exclusion effects are strictly enforced (Dyson
and Baker 2015; Bruna and Chapman 2012), lattice-free models use interaction
kernels to describe interactions and crowding effects. This approach is more
biologically realistic than hard sphere interactions as cells are able to deform
as they move close to neighboring cells (Le Clainche and Carlier 2008). In this
work we present a lattice-free model of cell migration, cell proliferation and
cell death. In an attempt to make the model relevant to in vivo conditions, we
take a multi-species approach where we consider one species to be a popula-
tion of motile and proliferative cells, whereas the other population represents
an immobile subpopulation of obstacles.
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This manuscript is organised in the following way. In Section 2, we describe
the IBM, and explain the different features of the model, the notation and
the simulation method. In Section 3, we give a comprehensive description of
crowding effects and the nature of neighbor-dependent directional bias in terms
of the bias landscape which explicitly accounts for cell-to-cell interactions,
and cell-to-obstacle interactions. In Section 4, we derive a moment dynamics
description of the IBM to provide a means of analysing the model. In Section
5, we present stochastic simulation results to explore how the presence and
characteristics of obstacles influence the dynamics of the population of cells.
Finally, in section 6, we summarise our findings and conclusions.

2 Individual-based model

We consider an IBM to describe the movement, proliferation and death of
individuals within a population composed of many subpopulations. One pos-
sible application of the IBM would be to describe the collective dynamics of
a population of motile biological cells, where individual cells in the popula-
tion undergo movement, proliferation and death events. An important feature
of our model is that we explicitly incorporate crowding effects. For exam-
ple, these effects are able to accommodate contact inhibition of proliferation
and/or contact inhibition of migration, where the ability of individuals to ei-
ther proliferate or migrate is reduced in regions of high density (Warne et al.
2017; Vedel et al. 2013). Another key feature of the IBM is that it permits the
simulation of different types of subpopulations within the total population.
This gives great flexibility since the model can be used to study the movemen-
t, proliferation and death of different types of individuals, and it also allows
for different types of interactions between the different subpopulations. The
state of the IBM depends on the position of each individual, and the prop-
erties of agents within each subpopulation. In the model, we have a total of
N(t) agents that are associated with I subpopulations. The location of the
nth agent is xn ∈ R2, and each agent belongs to a particular subpopulation,
in ∈

{
1, 2, . . . , I

}
, where n = 1, 2, . . . , N(t). We always initiate the IBM with

a random spatial distribution of individuals. This means that our model is
relevant for spatially homogeneous problems without macroscopic gradients in
density of individuals.

Individuals undergo movement, proliferation and death events with a rate
per unit time given by M̂n, P̂n and D̂n respectively. The IBM is a continuous-
time Markov process, where the probability of agent n undergoing a move-
ment during a short time interval, of duration δt, is M̂nδt + O(δt2). Similar
expressions govern the probability of proliferation and death events occurring
within a short time interval. The total event rates are comprised of a neigh-
bor independent, intrinsic component, and a neighbor-dependent component
accounting for interactions with neighboring individuals. The neighborhood
contribution is specified by an interaction kernel that depends upon the dis-
placement, ξ between pairs of individuals. We assume the interaction kernel
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Spatial moments for birth-death-movement process with obstacles 5

is isotropic and decays to zero at larger distances, |ξ|, ensuring that only rel-
atively close individuals have a significant interaction. For movement events,
the intrinsic component of the movement rate of an individual of type i is
denoted by mi, and the neighbor dependency from a neighboring individual

of type j is governed by an interaction kernel ω
(m)
ij (ξ). Hence we write the net

movement rate of individual n of type i as,

M̂n = max

0,min +
∑
r 6=n

ω
(m)
injr

(xr − xn)

 . (1)

Similarly, we write the net proliferation and net death rates as,

P̂n = max

0, pin +
∑
r 6=n

ω
(p)
injr

(xr − xn)

 , (2)

D̂n = max

0, din +
∑
r 6=n

ω
(d)
injr

(xr − xn)

 , (3)

where pi and di are the intrinsic proliferation and death rates, respectively, for
an agent of type i. This description of the IBM is equivalent to the spatially
homogeneous model presented by Plank and Law (2015). For simplicity, we
assume a constant death rate and a fixed distribution for the direction of
placement of daughter agents which is not affected by the interactions with
other individuals when we implement the IBM.

When an individual of type i undergoes a movement event, it travels a dis-

placement ξ that is drawn from a probability density function (PDF) µ
(m)
i (ξ).

If an individual of type i proliferates, a daughter of the same type is placed at a

displacement ξ, that is drawn from a PDF µ
(p)
i (ξ). Now we generalise the move-

ment PDF by introducing a neighbor-dependent bias vector, to accommodate
the influence of neighboring individuals upon the direction of movement. We

introduce an interaction kernel, ω
(b)
ij (ξ), to account for neighbor-dependent di-

rectional bias acting on the reference individual, of type i, due to the presence
of a second individual, of type j, at a displacement ξ. The neighbor-dependent

bias is defined as the gradient of interaction kernel, ∇ω(b)
ij (ξ). This definition

is same as that of Binny et al. (2016b), however here we generalize that previ-
ous model to account for the contributions to the directional bias arising from
multiple species present within the total population. The net bias vector is the
sum of contributions from each of the neighboring individuals, and a constant
neighbor-independent global bias bin ∈ R2, giving

B̂n = bin +
∑
r 6=n

∇ω(b)
injr

(xr − xn). (4)

The angular direction of the net bias vector, denoted by arg(B̂n) ∈ [0, 2π], is
the preferred direction of movement for a particular individual. In this frame-
work, the preferred direction of movement is driven, in part, by the sum of the
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6 A. Surendran et al.

gradient of the interaction kernels. The strength of bias is given by the mag-
nitude of bias vector, |B̂n|. Now we assume that the neighboring individuals
affect the direction of movement arg(ξ) ∈ [0, 2π], but not the actual distance
moved, |ξ|.

During a movement event, the direction of movement is drawn from a von
Mises distribution, g(θ; B̂n) whose concentration parameter is |B̂n|, and the

mean direction is given by arg(B̂n),

g(θ; B̂n) =
exp

(
|B̂n|cos

(
θ − arg(B̂n)

))
2πI0

(
|B̂n|

) , (5)

where I0 is the zeroth order modified Bessel function (Abramowitz and Stegun
1972). This PDF ensures that individuals are most likely move in the direction

of arg(B̂n), and the bias to move in this preferred direction increases with

|B̂n|. When the net bias is zero, B̂n = 0, the von Mises distribution reduces to
the uniform distribution (Binny et al. 2016b). Individuals located where the

gradient is steep will have a large |B̂n|, hence they are more likely to move in

the direction of B̂n. On the other hand, individuals located where the gradient
is relatively flat will have a weaker bias. As a result, the direction of movement
of those individuals becomes almost uniformly distributed (Browning et al.
2017). We assume that the distance moved by an agent is independent of local
crowding, and is given by a fixed PDF, ui(|ξ|). Hence the net movement PDF
is the product of the distance PDF and the direction PDF, giving

µ
(m)
i (ξ; B̂n) = ui(|ξ|)g(arg(ξ); B̂n). (6)

2.1 Description of IBM for a population of motile, proliferative agents in an
environment containing obstacles

The IBM can be applied to numerous problems involving populations com-
posed of various combinations of motile and stationary subpopulations by
appropriate choice of parameters. Here we focus on one specific scenario with
two distinct subpopulations, I = 2. We consider the first subpopulation to be
a group of agents undergoing movement, proliferation and death events. This
first subpopulation can be thought of as a population of motile, proliferative
cells. The first subpopulation interacts with a second subpopulation that is
composed of stationary, non-proliferating obstacles. The event rates for indi-
vidual agents in the first subpopulation will be influenced by the presence of
both obstacles and other agents in their neighborhood, given by Equations
(1)-(3). Since the obstacles never undergo birth, death or movement events,
they contribute to the overall dynamics by interactions between the obstacles
and the agents.

We introduce interaction kernels: ω
(m)
ij (ξ); ω

(p)
ij (ξ); and ω

(b)
ij (ξ), to account

for the contribution from surrounding agents and obstacles to the movement

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 18, 2018. ; https://doi.org/10.1101/267708doi: bioRxiv preprint 

https://doi.org/10.1101/267708


Spatial moments for birth-death-movement process with obstacles 7

rate, proliferation rate, and the directional bias of an agent, respectively. We
choose these interaction kernels to be two-dimensional Gaussian functions.
The movement interaction kernel is given by,

ω
(m)
ij (ξ) = γ

(m)
ij exp

− |ξ|2

2(σ
(m)
ij )

2

 , (7)

where γ
(m)
ij and σ

(m)
ij > 0 represent the interaction strength and the spatial ex-

tent of interaction, respectively. We assume a similar form for the proliferation
and bias kernels, given by,

ω
(p)
ij (ξ) = γ

(p)
ij exp

− |ξ|2

2(σ
(p)
ij )

2

 , (8)

ω
(b)
ij (ξ) = γ

(b)
ij exp

− |ξ|2

2(σ
(b)
ij )

2

 . (9)

In our simulations we have two subpopulations. The first subpopulation, de-
noted i = 1, corresponds to the motile and proliferative agents. The second
subpopulation, denoted i = 2, corresponds to the stationary, non-proliferative
obstacles. The intrinsic rates of movement and proliferation of agents are m1

and p1, respectively. These rates for obstacles are zero. The presence of sub-
populations of agents and obstacles results in different types of interaction-
s. The interactions involving the pairs of individuals of same type such as,

agent-agent and obstacle-obstacle pairs, are specified by ω
(m)
11 (ξ) and ω

(m)
22 (ξ),

respectively. Similar kernels apply for proliferation and bias. Interactions in-
volving individuals from different subpopulations are specified by the inter-

action kernels ω
(m)
12 (ξ) and ω

(m)
21 (ξ). Since obstacles are both stationary and

non-proliferative, the presence of neighboring agents and obstacle does not
affect the dynamics and spatial arrangement of obstacles in any way. Hence

the interaction strengths γ
(m)
21 and γ

(m)
22 are both set to zero. Positive γ

(m)
11

and γ
(m)
12 values enhance the movement rate of agents, and can be thought

of as representing contact stimulation of migration. In contrast, a negative
interaction strength results in a reduction of the movement rate, which can be
thought of as representing contact inhibition of migration. Similarly, the net
proliferation rate of agents, and the nature of directional bias depend on the
sign of interaction strength.

We use a univariate Gaussian distribution, with mean µ
(s)
1 and standard

deviation σ
(s)
1 , to specify the distribution of movement distance for agents

u1(ξ). The movement displacement kernels, µ
(m)
11 (ξ, t) and µ

(m)
12 (ξ, t), also re-

quire the specification of the movement distance distribution, u1(ξ), and the
neighbor-dependent direction probability density function given by Equation
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(5). For simplicity, the dispersal kernel µ
(p)
1 (ξ) is chosen to be neighbor in-

dependent, and specified as a bivariate Gaussian distribution with zero mean

and standard deviation σ
(d)
1 .

2.2 Numerical implementation

We simulate the IBM using the Gillespie algorithm (Gillespie 1977). In each
simulation the population is initially composed of N1(0) agents and N2(0)
obstacles, distributed according to a spatial Poisson process across a square
domain of size L×L. This configuration ensures the absence of spatial structure
in the initial population. The movement, proliferation and death rates of the
agents are computed using Equations (1)-(3). For this study, we use a constant
death rate for all the agents, hence the neighbor-dependent term in Equation
(3) is set to zero. The sum of event rates of all agents is given by,

λ(t) =

N1(t)∑
n=1

(
M̂n + P̂n + D̂n

)
. (10)

Since the event rates for obstacles are always zero, those terms do not con-
tribute to λ(t). The time interval between consecutive events is exponentially
distributed with mean 1/λ(t). At each event time, one of the three possible
events occurs to an agent. The probability of occurrence of an event is pro-
portional to the rate of that event. For a movement event, the agent moves
a displacement specified by the bias vector and movement kernel in Equation
(4) and Equation (6), respectively. For a proliferation event, the proliferative
agent places a daughter agent at a displacement specified by dispersion kernel

µ
(p)
1 (ξ), and the total number of agents increases by one. For a death event

the total number of agents is reduced by one.
To provide a mathematical description of the IBM we analyse the dy-

namics of the first and second spatial moments of the agents and obstacles.
The first moment of agents and obstacles is given by dividing the total num-
ber of agents and obstacles by the area of the domain, giving N1(t)/L2 and
N2(t)/L2, respectively. We use a pair correlation function (PCF) to quantify
the second spatial moment. Here the PCF depends on both the separation
distance, r, and time, t. However, to be consistent with previous studies, our
notation will explicitly focus on the separation distance, r. Since there are
two different subpopulations, we will have two different PCFs. First, we de-
note the auto-correlation PCF between agents as C11(r). Second, we denote
the cross-correlation between agents and obstacles as C12(r). To compute the
auto-correlation function, we consider a reference agent at xi, and calculate
all distances, r = |xj − xi|, to the other N1 − 1 agents. We follow the same
procedure with each of the remaining agents until all agents have acted as the
reference agent. Note that we always take care to measure distances across
periodic boundaries. With this information, the auto-correlation PCF is con-
structed by enumerating the distances between pairs of agents that fall into the
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Spatial moments for birth-death-movement process with obstacles 9

interval,
[
r− δr/2, r+ δr/2

]
. That means we use a bin width of δr. To ensure

that C11(r) = 1 in the absence of spatial structure, we normalize the bin count
by a factor of N1(t)(N1(t)−1)(2πrδr)/L2. When C11(r) > 1, we have a larger
number of pairs of agents separated by a distance r than we would have in the
spatially random population. In contrast, for C11(r) < 1, we have a smaller
number of pairs of agents separated by a distance r than we would have in the
spatially random population. Similarly, we compute the cross-correlation PCF,
C12(r), by counting, binning and normalizing all distances between agents and
obstacles. A similar calculation could be made for C22(r), by counting, bin-
ning and normalizing all distances between pairs of obstacles. However, since
obstacles are stationary, non-proliferative and initialized at random, we always
have C22(r) = 1. Only when C11(r) = C12(r) = C22 = 1 are agents and obsta-
cles are arranged at random, which is an implicit assumption in all mean-field
models. One of the important features of our model and our analysis is that
we can have spatial structure, such as clustering and segregation, present in
the population. This is signified by having C11(r) 6= 1 and C12(r) 6= 1.

There are several key variables relevant to specifying different obstacle field-
s and different obstacle properties. These include obstacle density, obstacle size
and obstacle interactions, such as whether obstacles are adhesive or repulsive.
We will now explore how systematically varying these properties influences
the development of spatial structure in a population of motile and prolifera-
tive agents that are placed into an environment containing obstacles. We first
explore this by performing repeated realisations of the IBM and analysing av-
eraged ensemble data in terms of the first spatial moment and PCF. Second,
we then compare these results with the prediction from our analysis of spatial
moment dynamics in Section 5. A summary of key variables and notation for
these calculations is given in Table 1.

3 Bias landscape

One key feature of the IBM is the neighbor-dependent bias. This formalism
helps us in understanding how the spatial arrangement of obstacles and other
agents affects the movement of a particular reference agent. To interpret and
visualize the neighbor-dependent bias, we define the bias landscape as,

C(x) = C1(x) + C2(x), (11)

where,

C1(x) =
∑
n∈N1

ω
(b)
11 (xn − x), (12)

C2(x) =
∑
n∈N2

ω
(b)
12 (xn − x), (13)

are contributions to overall bias landscape from the agents and the obstacles,
respectively. For an agent located at x, C(x) acts as a measure of the degree
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Table 1 Model parameters and typical values.

Parameter Symbol Value

Densities

Agents Z1,1(t) 0.25 to 0.9

Obstacles Z1,2(t) 0.0 to 0.375

Initial density of agents Z1,1(0) 0.25

Initial density of obstacles Z1,2(0) 0.0 to 0.375

Intrinsic rates

Birth p1, p2 1, 0

Death d1, d2 0.5, 0

Movement m1, m2 5, 0

Neighbor-dependent interaction strengths

Birth γ
(p)
11 , γ

(p)
12 , γ

(p)
21 , γ

(p)
22 -0.38 to 0

Movement γ
(m)
11 , γ

(m)
12 , γ

(m)
21 , γ

(m)
22 0

Bias γ
(b)
11 , γ

(b)
12 , γ

(b)
21 , γ

(b)
22 -0.2 to 0.4

Spatial extent of interactions

Birth σ
(p)
11 , σ

(p)
12 , σ

(p)
21 , σ

(p)
22 0.25 to 0.6

Movement σ
(m)
11 , σ

(m)
12 , σ

(m)
21 , σ

(m)
22 0.25 to 0.6

Bias σ
(b)
11 , σ

(b)
12 , σ

(b)
21 , σ

(b)
22 0.25 to 0.6

Movement and dispersion distance

Mean movement distance µ
(s)
1 , µ

(s)
2 0.4

Standard deviation movement distance σ
(s)
1 , σ

(s)
2 0.1

Standard deviation dispersion distance σ
(d)
1 , σ

(d)
2 0.5

of crowding. The neighbor-dependent bias vector, Bn, is the negative gradient
of the bias landscape, −∇C(x). With these definitions it is straightforward
to see that agents in the model move in response to the gradient of the bias
landscape. Writing the negative gradient of the bias landscape in terms of the
contributions from the two subpopulations, −∇C(x) = −∇C1(x) − ∇C2(x),
it is clear that the spatial arrangements of both the agents and the obstacles
play a role in influencing the movement of agents in the IBM.

The influence of bias depends on the spatial arrangement of the agents

and obstacles, and properties of the interaction kernels, ω
(b)
11 (ξ) and ω

(b)
12 (ξ),

respectively. When the kernels are decreasing functions of ξ, agents experience
a repulsive bias that encourages them to move away from the regions of high
crowding. Figure 1 shows how the repulsive bias affects the movement of a-
gents in a particular arrangement of agents and stationary obstacles. The bias
landscape and corresponding level curves due to agent-agent interactions alone
are shown in Figure 1(a)-(b). The locations of agents are represented by red
dots, and the arrows indicate the preferred direction of movement. The length
of these arrows indicates the strength of bias. We note that crowded agents
experience a strong repulsive bias, and prefer to move towards a lower densi-
ty region. Figure 1(c)-(d) shows the crowding effects generated by obstacles
only, and Figure 1(e)-(f) shows how both the agent-agent and agent-obstacle
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Spatial moments for birth-death-movement process with obstacles 11

interactions sum to give the total bias landscape. Note that, if the bias inter-

action strength is negative, then the interaction kernels ω
(b)
11 (ξ) and ω

(b)
12 (ξ) are

increasing functions of ξ. In that case, the orientation of the bias landscape
structure would be reversed, and we would have an attractive bias.
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Fig. 1 Effect of neighbor dependent bias visualized for a particular arrangement of 20 agents
(red dots) and 20 obstacles (black dots). In this case we have a positive Gaussian interaction
kernel to specify the interactions among agents as well as the interactions between agents
and obstacles. a Shows the locations of agents (red dots). b Shows the location of obstacles
(black dots). c Shows the location of both agents (red dots) and obstacles (black dots). In
each subfigure, a,c,e, the locations of individuals are superimposed with the level curves of
various components of the bias landscape. b,d,f shows the different components of the bias
landscape: C1(x); C2(x); and C(x), respectively. The bias vectors in a show −∇C1(xn),
which is the negative gradient of the component of the bias landscape corresponding to agent-
agent interactions. The bias vectors in c show−∇C(xn), which is the negative gradient of the
net bias landscape corresponding to the sum of agent-agent and agent-obstacle interactions.
The length of arrows indicate the strength of bias. Results in a-b correspond to interactions
between agents only. Results in c-d show interactions between obstacles. Results in e-f show

the net interactions between agents and obstacles. Parameters are γ
(b)
11 = γ

(b)
12 = 0.2 and

σ
(b)
11 = σ

(b)
12 = 0.5

.
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Spatial moments for birth-death-movement process with obstacles 13

Another key variable in the IBM is the size of the obstacles, which de-
termines the spatial extent of the obstacle-agent bias. We use the parameter

describing the spatial extent of interactions, σ
(b)
12 , as a proxy for obstacle size.

Here we make the natural assumption that larger obstacles correspond to in-

creased σ
(b)
12 , so that larger obstacles tend to exert an influence over a larger

neighborhood. Note that we maintain the bias strength, γ
(b)
12 , as a constant

and we only vary σ
(b)
12 to mimic the influence of obstacle size. Results in Figure

2 show the same spatial arrangement of 20 agents and 20 obstacles as in Fig-

ure 1, except that we reduce σ
(b)
12 so that the obstacles in Figure 2 influence a

smaller neighborhood than the obstacles in Figure 1. This change in obstacle
size does not affect the agent-agent component of the bias landscape, C1(x),
but it does affect the agent-obstacle component, C2(x).
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Fig. 2 Effect of neighbor dependent bias visualized for a particular arrangement of 20 agents
(red dots) and 20 smaller obstacles (black dots). In this case we have a positive Gaussian
interaction kernel to specify the interactions among agents as well as the interactions between
agents and obstacles. a Shows the locations of agents (red dots). b Shows the location
of obstacles (black dots). c Shows the location of both agents (red dots) and obstacles
(black dots). In each subfigure, a,c,e, the locations of individuals are superimposed with
the level curves of various components of the bias landscape. b,d,f shows the different
components of the bias landscape: C1(x); C2(x); and C(x), respectively. The bias vectors in
a show −∇C1(xn), which is the negative gradient of the component of the bias landscape
corresponding to agent-agent interactions. The bias vectors in c show −∇C(xn), which is
the negative gradient of the net bias landscape corresponding to the sum of agent-agent
and agent-obstacle interactions. The length of arrows indicate the strength of bias. Results
in a-b correspond to interactions between agents only. Results in c-d show interactions
between obstacles. Results in e-f show the net interactions between agents and obstacles.

Parameters are γ
(b)
11 = γ

(b)
12 = 0.2, σ

(b)
11 = 0.5 and σ

(b)
12 = 0.25

.
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Spatial moments for birth-death-movement process with obstacles 15

4 Spatial moment dynamics

Here, we derive a continuum approximation for the IBM in terms of spatial
moments. We present the derivation for a general case where we consider an
arbitrary number of motile and proliferative subpopulations. Then we present
a specific model that can be used to describe a special case where there are
two subpopulations: the first subpopulation is a population of motile and pro-
liferative agents that can be thought of as biological cells, and the second
subpopulation is a population of stationary and non-proliferative obstacles.

4.1 Definition of spatial moments for general multi-species model

Let us define a random variable, Ni(A), to be the number of agents of type i
in a region A ⊂ R2 at a given time t. Let Dh(x) ⊂ R2 denote a disc of radius h
centered on x ∈ R2. As mentioned in the Introduction, we consider a spatially
homogeneous environment, which means the probability of finding an agent
in a given small region is independent of the position of that small region in
space. Hence the key quantity of interest is the distance between agents (Binny
et al. 2016a; Baker and Simpson, 2010). Since we are considering population
dynamics in a spatially homogeneous environment, we assume without loss of
generality that one of the agents is located at the origin, x = 0.

In our simulations, we approximate the first spatial moment, Z1,i(t), by
dividing the population size of agents of type i, given by Ni(t), by the area of
the domain, L2. Formally we have,

Z1,i(t) = lim
h→0

1

h
E
[
Ni

(
Dh(0)

)]
. (14)

The second spatial moment, Z2,ij(ξ, t), is the average density of pairs of agents.
For a pair of individuals consisting of an agent of type i present at x = 0, and
an agent of type j present at a displacement ξ, we have

Z2,ij(ξ, t) = lim
h→0

1

h2
E
[
Ni(Dh(0))Nj(Dh(ξ))− δijNi(Dh(0) ∩Dh(ξ))

]
. (15)

The second term in the expectation in Equation (15) is necessary to avoid
counting self-pairs. If the discs Dh(0) and Dh(ξ) are non-overlapping, this
term becomes zero (Plank and Law 2015). The third spatial moment is the
density of triplets of agents, and is similarly defined as,

Z3,ijk(ξ, ξ′, t) = lim
h→0

1

h3
E
[
Ni(Dh(0))Nj(Dh(ξ))Nk(Dh(ξ′))

− δijNi(Dh(0) ∩Dh(ξ))Nk(Dh(ξ′))

− δikNi(Dh(0) ∩Dh(ξ′))Nj(Dh(ξ)) (16)

− δjkNj(Dh(ξ) ∩Dh(ξ′))Ni(Dh(0))

+ 2δijkNi(Dh(0) ∩Dh(ξ′) ∩Dh(ξ))
]
.
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16 A. Surendran et al.

Again, the extra terms in Equation (16) are needed to avoid counting non-
distinct triplets.

4.2 Dynamics of spatial moments

The expected rates of movement and proliferation of an agent, denoted by
M1,i(t) and P1,i(t), depend on the contribution from another agent at a dis-
placement ξ. The conditional probability of having an agent of type j at a
displacement ξ given that an agent of type i is located at 0, is given by
Z2,ij(ξ, t)/Z1,i(t). The expected movement and proliferation rates of an agent
of type i is given by multiplying this conditional probability by the corre-

sponding interaction kernels, ω
(m)
ij (ξ) or ω

(p)
ij (ξ), respectively, and integrating

over all possible displacements, giving

M1,i(t) = mi +
∑
j

∫
ω
(m)
ij (ξ)

Z2,ij(ξ, t)

Z1,i(t)
dξ, (17)

P1,i(t) = pi +
∑
j

∫
ω
(p)
ij (ξ)

Z2,ij(ξ, t)

Z1,i(t)
dξ. (18)

We now consider the dynamics of the first moment. The first moment dynamics
depends solely upon the balance between the expected rate of proliferation,
P1,i(t), and death rate, di. The movement and neighbor-dependent directional
bias does not directly influence the dynamics of the first moment. The time
evolution of the first moment is given by,

d

dt
Z1,i(t) =

(
P1,i(t)− di

)
Z1,i(t). (19)

The dynamics of average density of pairs of agents depends on the condi-
tional occupancy of a third agent in the neighborhood. The conditional prob-
ability of having an agent of type k located at a displacement ξ′, given that
a pair of agents consisting of type j and i, where each of them are located at
ξ and 0, respectively, is Z3,ijk(ξ, ξ′, t)/Z2,ij(ξ, t). Hence the expected rate of
movement and proliferation is found by multiplying Z3,ijk(ξ, ξ′, t)/Z2,ij(ξ, t)
by the interaction kernels and integrating over all possible displacements as
follows,

M2,ij(ξ, t) = mi +
∑
k

∫
ω
(m)
ik (ξ′)

Z3,ijk(ξ, ξ′, t)

Z2,ij(ξ, t)
dξ′ + ω

(m)
ij (ξ), (20)

P2,ij(ξ, t) = pi +
∑
k

∫
ω
(p)
ik (ξ′)

Z3,ijk(ξ, ξ′, t)

Z2,ij(ξ, t)
dξ′ + ω

(p)
ij (ξ). (21)

The third term on the right of Equations (20)-(21) accounts for the direct
influence of the agent of type j at a displacement ξ from the agent of type i.
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Spatial moments for birth-death-movement process with obstacles 17

The gradient of the interaction kernel gives the contribution of agents to
the bias vector of the neighboring agent. The expected net bias vector of an
agent of type i, conditional on presence of an agent of type j, is given by,

B2,ij(ξ, t) = bi +
∑
k

∫
∇ω(b)

ik (ξ′)
Z3,ijk(ξ, ξ′, t)

Z2,ij(ξ, t)
dξ′ +∇ω(b)

ij (ξ). (22)

Again, the third term on the right of Equation (22) accounts for the direc-
t influence of the agent of type j, at a displacement ξ, from the agent of
type i. We note that Equation (22) combines directional bias (Binny et al.
2016a,2016b) with multi-species spatial moment equations (Law and Dieck-
mann 2000; Murrell 2005; Plank and Law 2015) in a way that has not been
considered previously. Now we consider the probability of a motile agent of
type i moving a displacement ξ′, conditional on the presence of a neighbor of
type j at displacement ξ as,

µ
(m)
2,ij (ξ′, ξ, t) = µ

(m)
ij (ξ′;B2,ij(ξ, t)). (23)

For the dynamics of the second moment, we must consider two factors which
include the loss of pairs of agents at displacement ξ, and the creation of pairs
at displacement ξ. The loss of pairs occurs either by movement or death events,
whereas the creation of pairs occurs through movement or proliferation events.
The time evolution of the second moment is given by,

∂

∂t
Z2,ij(ξ, t) =−

(
M2,ij(ξ, t) +M2,ji(−ξ, t) + di + dj

)
Z2,ij(ξ, t)

+

∫ (
µ
(m)
ij (ξ′, ξ′ + ξ, t)M2,ij(ξ

′ + ξ, t)

+ µ
(p)
i (ξ′)P2,ij(ξ

′ + ξ, t)
)
Z2,ij(ξ

′ + ξ, t) dξ′ (24)

+

∫ (
µ
(m)
ji (ξ′, ξ′ − ξ, t)M2,ji(ξ

′ − ξ, t)

+ µ
(p)
j (ξ′)P2,ji(ξ

′ − ξ, t)
)
Z2,ji(ξ

′ − ξ, t)dξ′

+ 2δijµ
(p)
j (−ξ)P1,j(t)Z1,j(t).

In Equation (24), the two integral terms and the factor of two in the last term
on the right arises due to the fact that a pair can be created or destroyed by
either of the individuals in that pair.

Just as the dynamics of the first moment depends on the second moment,
we see that the dynamics of the second moment depends on the third mo-
ment. If we continue in this way we could develop an infinite hierarchy of
moment equations which is difficult to analyze (Ovaskainen and Cornell 2006;
Finkelshtein et al. 2009; Ovaskainen et al. 2014). However, previous studies
focusing on applications in cell biology (Binny et al. 2016a,2016b) and ecol-
ogy (Law and Dieckmann 2000) provide useful results by closing the infinite
system of moment equations to produce a truncated system. Here we follow
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a similar approach and approximate the third order terms in Equations (20)-
(22) using a moment closure approximation. While various approximations,
such as the power-1 closure, power-2 closure and Kirkwood superposition ap-
proximation, are available (Murrell et al. 2004), in this study we focus on the
power-2 closure scheme given by,

Z3,ijk(ξ, ξ′, t) =
1

α+ γ

(
α
Z2,ij(ξ, t)Z2,ik(ξ′, t)

Z1,i(t)
+ β

Z2,ij(ξ, t)Z2,jk(ξ′ − ξ, t)
Z1,j(t)

+ γ
Z2,ik(ξ′, t)Z2,jk(ξ′ − ξ, t)

Z1,k(t)
− βZ1,i(t)Z1,j(t)Z1,k(t)

)
, (25)

which expresses the third moment in terms of the first and second moment.
For all results presented here we choose the parameters (α, β, γ) = (4, 1, 1),
which corresponds to the asymmetric power-2 closure as discussed by Law et
al. (2003).

4.3 Spatial moment dynamics description for a population of motile,
proliferative agents in an environment containing obstacles

For clarity, we will now present the governing equations for the specific case
of a population of motile, proliferative agents in an environment containing
stationary, non-proliferative obstacles. The first spatial moment of agents and
obstacles are denoted Z1,1(t) and Z1,2(t), respectively. The second spatial mo-
ments, corresponding to the density of pairs are denoted: Z2,11(ξ, t); Z2,12(ξ, t);
Z2,21(ξ, t); and Z2,22(ξ, t). The terms Z2,11(ξ, t) and Z2,22(ξ, t) correspond to
the average densities agent-agent pairs and obstacle-obstacle pairs. The other
two terms, Z2,12(ξ, t) and Z2,21(ξ, t), corresponds to the average densities of
agent-obstacle pairs, and obstacle-agent pairs.

The expected rate of movement of an agent, M1,1(t), is given by multiply-

ing the interaction kernels of movement, ω
(m)
11 (ξ) or ω

(m)
12 (ξ), by the conditional

probability of having an agent or obstacle present at a displacement ξ from the
reference agent, and integrating over all possible displacements. These condi-
tional probabilities of either an agent or obstacle located at a displacement
ξ are given by Z2,11(ξ, t)/Z1,1(t) and Z2,12(ξ, t)/Z1,1(t), respectively. The ex-
pected proliferation rate is also calculated in the same way by replacing the

movement kernels with proliferation kernels, ω
(p)
11 (ξ) and ω

(p)
12 (ξ). Using this

information, the expected rate of movement and proliferation of an agent is
given by,

M1,1(t) = m1 +
1

Z1,1(t)

∫ (
ω
(m)
11 (ξ)Z2,11(ξ, t) + ω

(m)
12 (ξ)Z2,12(ξ, t)

)
dξ, (26)

P1,1(t) = p1 +
1

Z1,1(t)

∫ (
ω
(p)
11 (ξ)Z2,11(ξ, t) + ω

(p)
12 (ξ)Z2,12(ξ, t)

)
dξ. (27)

The expected movement and proliferation rates of obstaclesM1,2(t) and P1,2(t)
are zero, by definition.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 18, 2018. ; https://doi.org/10.1101/267708doi: bioRxiv preprint 

https://doi.org/10.1101/267708


Spatial moments for birth-death-movement process with obstacles 19

Now we derive the dynamics of the first moment. The time evolution of
density of agents depends only on the expected rate of proliferation and death
of agents. The density of obstacles remains constant. Hence we have,

d

dt
Z1,1(t) = (P1,1(t)− d1)Z1,1(t), (28)

d

dt
Z1,2(t) = 0. (29)

The conditional probability of having an agent located at ξ′, given that an
another agent is present at ξ, is Z3,111(ξ, ξ′, t)/Z2,11(ξ, t). Similarly three more
conditional probabilities can be specified by considering different arrangements
of agents and obstacles around the reference agent at displacement 0. The
expected event rates, M2,11(ξ, t) and P2,11(ξ, t), of an agent conditional on the
presence of another agent at displacement ξ can be computed by multiplying
these conditional probabilities by the corresponding interaction kernels and
integrating over all possible displacements. The expected rates are given by,

M2,11(ξ, t) =
1

Z2,11(ξ, t)

∫ (
ω
(m)
11 (ξ′)Z3,111(ξ, ξ′, t) + ω

(m)
12 (ξ′)Z3,112(ξ, ξ′, t)

)
dξ′

+m1 + ω
(m)
11 (ξ), (30)

P2,11(ξ, t) =
1

Z2,11(ξ, t)

∫ (
ω
(p)
11 (ξ′)Z3,111(ξ, ξ′, t) + ω

(p)
12 (ξ′)Z3,112(ξ, ξ′, t)

)
dξ′

+ p1 + ω
(p)
11 (ξ). (31)

Using similar arguments, we compute the remaining movement and prolifera-
tion rates of an agent arising from the presence of an obstacle at a displacement
ξ as follows,

M2,12(ξ, t) =
1

Z2,12(ξ, t)

∫ (
ω
(m)
11 (ξ′)Z3,121(ξ, ξ′, t) + ω

(m)
12 (ξ′)Z3,122(ξ, ξ′, t)

)
dξ′

+m1 + ω
(m)
12 (ξ), (32)

P2,12(ξ, t) =
1

Z2,12(ξ, t)

∫ (
ω
(p)
11 (ξ′)Z3,121(ξ, ξ′, t) + ω

(p)
12 (ξ′)Z3,122(ξ, ξ′, t)

)
dξ′

+ p1 + ω
(p)
12 (ξ). (33)

The gradient of the bias kernel gives the contribution of agents and obstacles
to the bias vector of the neighboring agent. The expected net bias vector of
an agent conditional on presence of another agent is given by,

B2,11(ξ, t) =b1 +
1

Z2,11(ξ, t)

∫ (
∇ω(b)

11 (ξ′)Z3,111(ξ, ξ′, t)

+∇ω(b)
12 (ξ′)Z3,112(ξ, ξ′, t)

)
dξ′ +∇ω(b)

11 (ξ). (34)
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Similarly, the expected net bias vector of an agent conditional on presence of
an obstacle is given by,

B2,12(ξ, t) =b1 +
1

Z2,12(ξ, t)

∫ (
∇ω(b)

11 (ξ′)Z3,121(ξ, ξ′, t)

+∇ω(b)
12 (ξ′)Z3,122(ξ, ξ′, t)

)
dξ′ +∇ω(b)

12 (ξ). (35)

Now we develop the equations governing the dynamics of the second moments.
The equations for the density of pairs involving agents depends on the loss of
pairs of agents at displacement ξ, which can occur either by movement or
death, and creation of pair at displacement ξ which can occur through move-
ment or proliferation. The density of pairs of obstacles, Z2,22(ξ, t), remains
constant over time. Now the equations governing the dynamics of second mo-
ments for agent-obstacle population are given by,

∂

∂t
Z2,11(ξ, t) =−

(
M2,11(ξ, t) +M2,11(−ξ, t) + 2d1

)
Z2,11(ξ, t)

+

∫ (
µ
(m)
11 (ξ′, ξ′ + ξ, t)M2,11(ξ′ + ξ, t)

+ µ
(p)
1 (ξ′)P2,11(ξ′ + ξ, t)

)
Z2,11(ξ′ + ξ, t) dξ′ (36)

+

∫ (
µ
(m)
11 (ξ′, ξ′ − ξ, t)M2,11(ξ′ − ξ, t)

+ µ
(p)
1 (ξ′)P2,11(ξ′ − ξ, t)

)
Z2,11(ξ′ − ξ, t) dξ′

+ 2µ
(p)
1 (−ξ)P1,1(t)Z1,1(t),

∂

∂t
Z2,12(ξ, t) =−

(
M2,12(ξ, t) + d1

)
Z2,12(ξ, t)

+

∫ (
µ
(m)
12 (ξ′, ξ′ + ξ, t)M2,12(ξ′ + ξ, t) (37)

+ µ
(p)
1 (ξ′)P2,12(ξ′ + ξ, t)

)
Z2,12(ξ′ + ξ, t) dξ′,

∂

∂t
Z2,21(ξ, t) =−

(
M2,12(−ξ, t) + d1

)
Z2,21(ξ, t)

+

∫ (
µ
(m)
12 (ξ′, ξ′ − ξ, t)M2,12(ξ′ − ξ, t) (38)

+ µ
(p)
1 (ξ′)P2,12(ξ′ − ξ, t)

)
Z2,12(ξ′ − ξ, t) dξ′,

∂

∂t
Z2,22(ξ, t) = 0. (39)

4.4 Numerical methods

The system of equations governing the dynamics of the second spatial mo-
ments, Equations (36)-(39) are solved numerically using the forward Euler
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method. The numerical scheme involves spatially discretizing the displace-
ment, ξ = (ξx, ξy), over the domain {−ξmax ≤ ξx, ξy ≤ ξmax}, with a grid
spacing ∆ξ. In all cases we have ∆ξ = 0.2, and our calculations show that
this choice is sufficient to produce grid-independent results. We choose ξmax

to be sufficiently large so that Z2,ij(ξ, t) ≈ Z1,i(t) × Z1,j(t) at the boundary.
The integral terms in Equations (26)-(27) and Equations (30)-(39) are approx-
imated using the trapezoid rule. To evaluate the integrals we need the values
of Z2,ij(ξ + ξ′, t). For sufficiently large ξ and ξ′, these values will lie outside
of the computational domain. In that case, we replace those terms with the
value of Z2,ij(ξ, t) at the boundary, Z2,ij((ξmax, ξmax), t). The movement and
dispersal PDFs are normalized using the trapezoid rule with the same spatial

discretization such that
∫
µ
(m)
ij (ξ, ξ′)dξ = 1 and

∫
µ
(p)
i (ξ)dξ = 1, for a fixed

value of ξ′.
To solve the system of equations corresponding to the second spatial mo-

ments, Equations (36)-(39), we also need the values of Z1,1(t) and Z1,2(t).
The large computational domain, together with the fact that we only consider
local interactions, means that the usual mean-field condition will hold at large
displacements. This means that we can evaluate the first moments without
solving the Equations (28)-(29). At each time step, we use values of Z2,11(ξ, t)
and Z2,22(ξ, t) at the boundary to compute the first moments since we have

Z1,1(t) =
√
Z2,11((ξmax, ξmax), t) and Z1,2(t) =

√
Z2,22((ξmax, ξmax), t), re-

spectively. To compare predictions from the spatial moment model with re-
sults from the IBM, we compute auto-correlation and cross-correlation PCF-
s as Z2,11(ξ, t)/Z1,1(t) and Z2,12(ξ, t)/(Z1,1(t)Z1,2(t)), respectively. The ini-
tial condition used in solving the dynamics of the second spatial moment is
Z2,ij(ξ, 0) = Z1,i(0)Z1,j(0) at t = 0. For all results we set the time step to
be dt = 0.1, which is sufficiently small so that our numerical solutions are
insensitive to this choice.

5 Results and discussion

In this section we present snapshots from the IBM to explore the dynamics
of the two species agent-obstacle system. In these simulations we systemati-
cally vary the density of obstacles, the size of obstacles, and the interactions
between agents and obstacles. In addition to presenting IBM simulations, we
also present solutions of the spatial moment dynamics model to explore how
well the model predicts the dynamics of the different conditions we consid-
er. Another outcome is to examine how various properties of obstacle field
influence spatial structure.

5.1 Effect of varying the obstacle density

Here we first explore how variations in the density of obstacles affects the
spatial structure and the dynamics of the agent subpopulation. Results in
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Figure 3 show a series of snapshots from the IBM. Each row shows snapshots
at t = 0, 10, 20 and 60, whereas each column shows results for different densities
of obstacles. The initial number of obstacles is varied from N2(0) = 0, 50, 100
to 150, in the columns from left-to-right, respectively. In all cases we consider a
constant initial number of agents, N1(0) = 100, and a random initial placement
of obstacles and agents. Results in Figure 3(a)-(d) show the most fundamental
case where there are no obstacles present, and we note that the multi-species
model simplifies to the previous single species model presented by Binny et al.
(2016b) in this case. We use this first scenario to emphasise the differences in
the population dynamics for the agent subpopulation in presence and absence
of obstacles, which are shown in the second, third and fourth column of Figure
3. By repeating the stochastic simulations in Figure 3 many times, we can
calculate the density of obstacles, the density of agents, the auto-correlation
PCF and the cross-correlation PCF, as shown in Figure 4.
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Fig. 4 Comparison of spatial moment results and averaged data from 40 identically-
prepared realizations of the IBM. Results in a show the evolution of the first spatial moment
for the agents, Z1,1(t). Various results are superimposed for different obstacle densities of
obstacles: Z1,2(0) = 0/400 (solid), Z1,2(0) = 50/400 (dotted), Z1,2(0) = 100/400 (dash-
dotted) and Z1,2(0) = 150/400 (dashed). Results in b show the constant first spatial mo-
ment for the obstacles. Results in c-d show the second spatial moment of agents expressed
in terms of C11(r) and C12(r), respectively. Both PCFs are given at t = 60. The curves in
red correspond to results from the spatial moment dynamics model, whereas curves in blue
correspond to averaged data from the IBM. Parameter values are p1 = 1, d1 = 0.5, m1 = 5,
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Results in Figure 3(a)-(d) show the evolution of the population of agents
and the associated spatial structure in the absence of obstacles. Overall we see
that the initially small population of agents increases with time until there is
a balance of net proliferation and death, leading to the formation of a steady
density of agents at later time. For this choice of parameters we observe the
formation of a segregated spatial pattern. The main reason for the emergence

of the segregation pattern is the choice of a positive bias strength, γ
(b)
11 > 0

which means that agents tend to move away from regions of high density. The
segregated nature of the distribution of agents is evident in the auto-correlation
PCF as we see that C11(r) < 1 over relatively short distances, r.

The incorporation of obstacles in the system leads to a reduction in the
long time steady density of agents, as shown in Figure 4(a). In general we
see that the more obstacles present, the smaller the steady state density of
agents. This results makes intuitive sense as the presence of obstacles in the
system increases the role of agent-obstacle interactions, which acts to reduce
the net proliferation rate. Results in Figure 4(b) show the time evolution of
density of obstacles and we see the expected result that the density remains
constant. However, the presence of obstacles influences the spatial structure
of the population of agents by contributing to the directional bias. Since the
obstacles are stationary, the obstacles prevent agents residing in certain regions
of the domain. As we increase the obstacle density, we observe a progressive
shift from the long time segregation of agents over short distances when there
are no obstacles present, to a more clustered long time pattern of agents as
the obstacle density increases. The auto-correlation PCF for each of the cases
shown in Figure 4(c) illustrates this transition. The cross-correlation PCF
between agents and obstacles appears to be less sensitive to the density of
obstacles than the auto-correlation PCF. For all cases we see that C12(r) <
1 over relatively short distances, r, for all the cases considered, indicating
segregation of agents and obstacles.

5.2 Effect of varying the obstacle size

Next we explore how variations in obstacle size affects the spatial structure
and dynamics of the agent subpopulation. The notion of obstacle size is in-
corporated into the model by varying the spatial extent of the interaction of

obstacles, σ
(p)
12 and σ

(b)
12 . We assume that larger obstacles interact with agents

over a greater distance than smaller obstacles. Therefore, we vary the size of
the obstacles and examine how this impacts the evolution of the density of
agents, and the spatial structure. We consider a total population composed of
agents and obstacles with initial population sizes, N1(0) = N2(0) = 100, re-
spectively, as shown in Figure 5. We then consider increasing the obstacle size,

shown from left-to-right in Figure 5, where we have σ
(p)
12 = σ

(b)
12 = 0.25, 0.4,

0.5, and 0.6, respectively. By repeating the stochastic simulations in Figure 5
many times, we can calculate the density of obstacles, the density of agents,
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the auto-correlation PCF and the cross-correlation PCF, as shown in Figure
6.
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Fig. 6 Comparison of spatial moment results and averaged data from 40 identically-
prepared realizations of the IBM. Results in a show the evolution of the first spatial
moment for agents, Z1,1(t). Various results are superimposed for different obstacle size:
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Results in Figure 6(a)-(b) show the time evolution of the density of agents
and the density of obstacles in each of the four cases considered. As the size
of obstacles increase, we observe a decrease in the long time steady agent
density. The wider range of interactions for the larger obstacles enables them
to influence the proliferation rate of more distant agents. Even though the
obstacle density is same, the proliferation rate of more agents reduces in the
presence of large obstacles, leading to a reduced long time density of agents.

Figure 5 shows the snapshot of the spatial structure of population for
each case considered and corresponding auto-correlation and cross-correlation
PCFs are given in Figure 6(c)-(d). The population consisting of small obstacles
shows a small-scale segregated spatial pattern of agents. Due to the narrow
interaction range of the smaller obstacles, a relatively small number of agents
are affected by the obstacles. However, the agents are also subject to a repulsive
bias from other agents, which results in a small scale spatial segregation of
agents for this choice of parameters. The cross-correlation PCF is less than
unity over short displacements, thereby suggesting some segregation between
agents and obstacles, but the effects are less pronounced than the segregation
between agents. As the obstacle size increases, the agent population became

less segregated, and the case we consider with the largest, σ
(p)
12 = 0.6, leads to

agent clustering over short distances.

5.3 Effect of varying the obstacle interaction strength

Finally, we explore how variations in interaction strength, and the nature of
the interactions between agents and obstacles, affects the spatial structure
and the dynamics of the agent population. We examine the influence of both
attractive interactions, as well as repulsive interactions. Similar to the previous
simulations in Figure 5, we consider a random initial spatial distribution of
agents and obstacles with initial population size N1(0) = N2(0) = 100. We

then vary the strength of interactions, γ
(b)
12 , between 0.4 and -0.2. This means

that we consider both attractive and repulsive interactions between agents and
obstacles in this suite of simulations. Snapshots from the IBM are shown in
Figure 7, and by repeating these stochastic simulations many times, we can
calculate the density of obstacles, the density of agents, the auto-correlation
PCF and the cross-correlation PCF, as shown in 8.
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Results in Figure 7(a)-(d) show the spatial structure arising when there
is a relatively strong repulsive bias between the obstacles and agents. This
repulsion means that agents tend to move away from the obstacles, leading to
the formation of a segregated spatial structure among agent-obstacle pairs. The
corresponding auto-correlation and cross-correlation PCFs, given in Figure
8(c)-(d), are consistent with this as we see that C12(r) < 1 over small distances.
Here we note that the repulsive interactions between agents are sufficiently
strong to counteract the short-range dispersal of agents. Hence we also observe
a spatial segregation among agents over short distances. Results in Figure
7(e)-(h) and Figure 7(i)-(l) show a similar spatial pattern, but the effects
are less pronounced due to the reduced repulsion. Results in Figure 7(m)-(p)
are quite different since we have attraction between the agents and obstacles,
and the agents are biased to move towards the obstacles. The attractive bias
from obstacles is sufficiently large to counter the repulsive interaction between
agents, leading to clustering of agents around obstacles.

Figure 8(a) shows the density dynamics of agents for each of the cases con-
sidered. The agent density decreases as the bias strength decreases and lowest
when bias strength is negative. When the obstacle bias strength is negative
corresponding to attractive obstacles, agents form clusters around obstacles.
Since a large number of agents present at short distances, the proliferation rate
of agents in clusters reduces significantly. Hence the population size increases
more slowly than the case where obstacles are repulsive. Figure 8(b) shows the
constant density of obstacles in each of the four cases.

6 Conclusion

In this work, we develop an IBM describing multi-species neighbor-dependent
birth-death-movement processes, and we derive a continuum approximation
of the stochastic dynamics using a spatial moment framework (Law et al.
2003; Plank and Law 2015; Binny et al. 2016a). Our modelling incorporates
various processes such as neighbor-dependent directional bias from multiple
subpopulations, and crowding effects such as contact inhibition of proliferation
and contact inhibition of motility. We use this general framework to explore the
case where one subpopulation is stationary and non-proliferative, and we treat
this subpopulation as acting like biological obstacles in an in vivo environment.
This framework allows us to explore how different properties of obstacles such
as density, size and interaction strength influence the dynamics and emergence
of spatial structure in the population.

Overall we see that the details of the dynamics of the population of agents
and the spatial structure predicted using many identically prepared realiza-
tions of the IBM is reasonably well approximated by the numerical solution of
the spatial moment model. Our results reveal some interesting features that
are not obvious without careful consideration. For example, our results in Fig-
ure 3-4 show that as we increase the obstacle density, we observe that the
steady state density of agents decreases, as we might expect. However, when
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we compare the accuracy of the spatial moments prediction, we see that the
accuracy of the spatial moments model increases as the density of obstacles
increases, which is not obvious. Overall, we see that the role of spatial pattern-
s, such as clustering and segregation, is subtle. For example, results in Figure
3-4 shows that the long time steady arrangement of agents is segregated at
short distances when there is a sufficiently low density of obstacles present.
In contrast, we see a clustered arrangement of agents at short distances when
there is a sufficiently large density of obstacles present. Without the kind of
modelling framework that we present here these details are not at all obvious.

While our modelling framework is relatively general, there are many ways
that our approach could be extended. For example, in this work we consid-
er a spatially uniform initial distribution of agents and obstacles, and this
kind of simulation is relevant to study relatively common cell biology experi-
ments called a proliferation assay. However, other kinds of experiments, such
as scratch assays, are initiated by considering an initial density of cells that
varies spatially. To deal with this generalization, both the IBM and our anal-
ysis needs modification. Furthermore, throughout this study we always con-
sider the influence of stationary obstacles. However, in some applications it
is thought that mobile obstacles are more relevant (Wedemeier et al. 2009),
and this could be dealt with by setting the obstacle motility rate to be posi-
tive. Another way that our work could be generalized is to consider different
types of closure assumptions. While we obtain reasonable results using the
power-2 closure scheme, it would also be of interest to consider other closure
approximations (Murrell et al. 2004), or to consider extending the hierarchy of
moment equations to deal with the dynamics of single agents, pairs of agents
and triples of agents. Finally, while some recent progress has been made at
calibrating single species IBM models to match experimental data (Browning
et al. 2018), we are unaware of any attempts to calibrate multi-species IBMs
to cell biology experiments. We leave these extensions for future consideration.
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