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Abstract 17 

Humans typically make near-optimal sensorimotor judgments but show systematic biases when 18 
making more cognitive judgments. Here we test the hypothesis that, while humans are sensitive to 19 
the noise present during early sensory processing, the “optimality gap” arises because they are 20 
blind to noise introduced by later cognitive integration of variable or discordant pieces of 21 
information. In six psychophysical experiments, human observers judged the average orientation 22 
of an array of contrast gratings. We varied the stimulus contrast (encoding noise) and orientation 23 
variability (integration noise) of the array. Participants adapted near-optimally to changes in 24 
encoding noise, but, under increased integration noise, displayed a range of suboptimal behaviours: 25 
they ignored stimulus base rates, reported excessive confidence in their choices, and refrained from 26 
opting out of objectively difficult trials. These overconfident behaviours were captured by a 27 
Bayesian model which is blind to integration noise. Our study provides a computationally 28 
grounded explanation of suboptimal cognitive inferences.  29 
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 The question of whether humans make optimal choices has received considerable attention 30 
in the neural, cognitive and behavioural sciences. On one hand, the general consensus in sensory 31 
psychophysics and sensorimotor neuroscience is that choices are near-optimal. For example, 32 
humans have been shown to combine different sources of stimulus information in a statistically 33 
near-optimal manner, weighting each source by its reliability (Ernst & Banks, 2002; Knill, Kersten, 34 
& Yuille, 1996; Körding & Wolpert, 2006; Ma, Beck, Latham, & Pouget, 2006; Mamassian, 35 
Landy, & Maloney, 2002; Trommershäuser, Maloney, & Landy, 2008). Humans have also been 36 
shown to near-optimally utilise knowledge about stimulus base rates to resolve stimulus ambiguity 37 
(Kersten, Mamassian, & Yuille, 2004; Körding & Wolpert, 2004; O’Reilly, Jbabdi, Rushworth, & 38 
Behrens, 2013; Sun & Perona, 1998; Vilares, Howard, Fernandes, Gottfried, & Kording, 2012).  39 

On the other hand, psychologists and behavioural economists, studying more cognitive 40 
judgments, have argued that human choices are suboptimal (Tversky & Kahneman, 1974). For 41 
example, when required to guess a person’s occupation, humans neglect the base rate of different 42 
professions and solely rely on the person’s description provided by the experimenter. Such 43 
suboptimality has been attributed to insufficient past experience (Hertwig & Erev, 2009), limited 44 
stakes in laboratory settings (Levitt & List, 2007), the format in which problems are posed 45 
(Jarvstad, Hahn, Rushton, & Warren, 2013), distortions in representations of values and 46 
probabilities (Ackermann & Landy, 2014), and/or a reluctance to employ costly cognitive 47 
resources (Gershman, Horvitz, & Tenenbaum, 2015; Kahneman, 2011). However, an account of 48 
human decision-making that can explain both perceptual optimality and cognitive suboptimality 49 
has yet to emerge (Summerfield & Tsetsos, 2015). 50 

Here we propose that resolving this apparent paradox requires recognizing that perceptual 51 
and cognitive choices often are corrupted by different sources of noise. More specifically, choices 52 
in perceptual and cognitive tasks tend to be corrupted by noise which arises at different stages of 53 
the information processing leading up to a choice (Faisal & Wolpert, 2009; Hunt, 2014; Juslin & 54 
Olsson, 1997; Ma & Jazayeri, 2014). In perceptual tasks, experimenters typically manipulate noise 55 
arising before or during sensory encoding. For example, they may vary the contrast of a grating, 56 
or the net motion energy in a random dot kinematogram, which affects the signal-to-noise ratio of 57 
the encoded stimulus and in turn the sensory percept. Conversely, in cognitive tasks, which often 58 
involve written materials or clearly perceptible stimuli, experimenters typically seek to manipulate 59 
noise arising after stimulus encoding. For example, they may vary the discrepancy between 60 
different pieces of information bearing on a choice, such as the relative costs and benefits of a 61 
consumer product (Kahneman, 2011). These types of judgment are difficult because they require 62 
integration of multiple, sometimes highly discordant, pieces of information within a limited-63 
capacity system (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Eriksen & Eriksen, 1974; 64 
MacLeod, 1991).  65 

Here we test the hypothesis that, while humans are sensitive to noise arising during early 66 
sensory encoding, they are blind to the additional noise introduced by their own cognitive system 67 
when integrating variable or discordant pieces of information. We tested this hypothesis using a 68 
novel psychophysical paradigm which separates, within a single task, these two types of noise. In 69 
particular, observers were asked to categorise the average tilt of an array of gratings. We 70 
manipulated encoding noise (i.e. the perceptual difficulty of encoding an individual piece of 71 
information) by changing the contrast of the array of gratings, with decisions being harder for low-72 
contrast arrays. Second, we manipulated integration noise (i.e. the cognitive difficulty of 73 
integrating multiple pieces of information) by changing the variability of the orientations of 74 
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individual gratings, with decisions being harder for high-variability arrays. Manipulating these 75 
different sources of noise within a single task allows us to rule out previous explanations of the 76 
optimality gap which hinge on task differences. To pre-empt our results, we show that, while 77 
observers adapt near-optimally to increases in encoding noise, they fail to adapt to increases in 78 
integration noise. We argue that such “noise blindness” is a major driver of suboptimal inference 79 
and may explain the gap in optimality between perceptual and cognitive judgments. 80 

Results 81 

Experimental dissociation of encoding noise and integration noise 82 

All six experiments were based on the same psychophysical task (see Methods). On each 83 
trial, participants were presented with eight tilted gratings organized in a circular array. 84 
Participants were required to categorise the average orientation of the array as oriented clockwise 85 
(CW) or counter-clockwise (CCW) from the horizontal axis (Fig. 1A-B). After having made a 86 
response, participants received categorical feedback about choice accuracy, before continuing to 87 
the next trial. We manipulated two features of the stimulus array to dissociate encoding noise and 88 
integration noise: the contrast of the gratings (root mean square contrast, rmc: {0.15, 0.6}), which 89 
affects encoding noise, and the variability of the gratings’ orientations (standard deviation of 90 
orientations, std: {0°, 4°, 10°}), which affects integration noise. The distribution of average 91 
orientations was identical for all experimental conditions.  92 

In Experiments 1 (n = 20) and 2 (n = 20), we assessed the effects of contrast and variability 93 
on choice accuracy and evaluated participants’ awareness of these effects. In both experiments, at 94 
the beginning of a trial, we provided a “prior” cue which, on half of the trials, signalled the correct 95 
stimulus category with 75% probability (henceforth “biased” trials), and, on the other half of trials, 96 
provided no information about the stimulus category (henceforth “neutral” trials) (Fig. 1B). The 97 
neutral trials provided us with a baseline measure of participants’ choice accuracy in the different 98 
conditions of our factorial design, and the biased trials allowed us to assess the degree to which – 99 
if at all – participants compensated for reduced choice accuracy in a given experimental condition 100 
by relying more on the prior cue. In Experiment 2, to provide additional insight into participants’ 101 
awareness of their own performance, we also asked participants to report their confidence in the 102 
choice (i.e. the probability that a choice is correct; Fig. 1C).  103 

Matched performance for different levels of encoding and integration noise  104 

We first used the neutral trials to benchmark the effects of contrast and variability on choice 105 
accuracy. As intended, choice accuracy decreased with lower contrast (Exp1: F(1,19) = 15.54, p  106 
< .001; Exp2: F(1,19) = 41.08, p < .001; collapsed: F(1,39) = 49.3, p < .001) and with higher 107 
variability (Exp1: F(1.3,24.7) = 8.51, p < .001; Exp2: F(1.6,32.2) = 26.0, p < .001; collapsed: 108 
F(1.4,57.3) = 30.61, p < .001). Our factorial design contained three critical conditions which 109 
allowed us to compare participants’ behaviour under distinct sources of noise: (i) “baseline”, (ii) 110 
“low-c” and (iii) “high-v”. In the baseline condition, the total amount of noise is lowest (high 111 
contrast, .6; zero variability, 0º). In the low-c condition (low contrast, .15; zero variability, 0º), 112 
encoding noise is high but integration noise is low. Conversely, in the high-v condition, integration 113 
noise is high but encoding noise is low (high contrast, 0.6; high variability, 10º). As expected, 114 
choice accuracy was reduced both in the low-c and in the high-v conditions (about 12%) compared 115 
to the baseline condition (baseline>low-c: t(39) = 9.24, p < .001; baseline>high-v: t(39) = 9.70, p 116 
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< .001; Fig. 2A). Critically, choice accuracy was at statistically similar levels in the low-c and the 117 
high-v conditions (Exp1, high-v>low-c: t(19) = 0.36, p > 0.7; Exp2, high-v>low-c: t(19) = 0.11, p 118 
> 0.9; collapsed, high-v>low-c: t(39) = 0.34, p > 0.7; Fig. 2A). Overall, the results show that we 119 
successfully manipulated noise at different stages of information processing. 120 

 121 
Fig. 1. Experimental paradigm. (A) We manipulated the stimulus contrast and the orientation variability 122 
of an array of eight gratings in a factorial manner. Here we highlight the three critical conditions. (B) 123 
Participants categorized the average orientation of the array as clockwise (CW, “left”) or counter-clockwise 124 
(CCW, “right”) relative to horizontal. A cue, which was shown at the start of each trial and remained on 125 
the screen until a response had been made, indicated the prior probability of occurrence of each stimulus 126 
category (L: 25% CW, 75% CCW; N: 50% CW, 50% CCW; R: 75% CW, 25% CCW). Participants received 127 
categorical feedback about choice accuracy, before continuing to the next trial. Feedback was based on the 128 
average orientation of the displayed array. (C) In Experiment 2, after having made a choice, participants 129 
estimated the probability that the choice was correct by sliding a marker along a scale (50% to 100% in 130 
increments of 1%). (D) In Experiment 3, participants could opt out of making a choice and receive  “correct” 131 
feedback with a 75% probability. (E) In Experiment 4, after having made a choice, participants were 132 
required to categorise (low versus high) either the contrast or the variability of the stimulus array. Here we 133 
show a “contrast” trial. 134 

Do people utilise the prior cue to compensate for increased errors? 135 

We next leveraged the biased trials to assess the degree to which participants adapted to 136 
the changes in choice accuracy induced by our factorial design. Given the above results, we would 137 
expect participants to rely more on the prior cue in the low-c and the high-v condition than in the 138 
baseline condition. To test this prediction, we applied Signal Detection Theory (Macmillan & 139 
Creelman, 2004; Stanislaw & Todorov, 1999) to quantify the degree to which participants shifted 140 
their decision criterion in accordance with the prior cue (see Methods). Briefly, we constructed a 141 
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“bias index” computed as the difference in the decision criteria between the condition in which the 142 
prior cue was “clockwise” and the condition in which the prior cue was “counter-clockwise”. The 143 
higher the bias index, the higher the influence of the prior cue on choice. As expected under an 144 
ideal observer framework, participants used the prior cue more in the low-c than in the baseline 145 
condition (t(39) = 4.89, p < .001; Fig. 2C). However, contrary to an ideal observer framework, 146 
participants used the prior cue less in the high-v than in the baseline condition (t(39) = 2.85, p < 147 
.01; Fig. 2C). This pattern is clear from the psychometric curves constructed separately for each 148 
condition shown in Fig. 2B (compare inflection points).  149 

In line with these results, a full factorial analysis of the bias index identified a positive main 150 
effect of contrast (F(1,39) = 24.02, p < .001) and a negative main effect of variability (F(1.9,37.1) 151 
= 9.9, p  < .001; Fig. 2D). Finally, including both neutral and biased trials, we used trial-by-trial 152 
logistic regression to investigate how contrast (c) and variability (v) affected the influence of the 153 
prior cue and sensory evidence (µq) on choices (µq, cue, µq*c, µq*v, cue*c, cue*v; Fig. 2E). The 154 
prior cue had a larger influence on choices on low-contrast compared to high-contrast trials (t(39) 155 
= 4.05, p < .001) and on low-variability compared to high-variability trials (t(39) = 5.21, p < .001). 156 
Taken together, these results show that participants did not adapt to the additional noise arising 157 
during integration of discordant pieces of information.  158 

 159 
Fig. 2. Effects of contrast and variability on choice behaviour. (A) Choice accuracy for the baseline, 160 
reduced contrast (low-c) and increased variability (high-v) conditions. (B) Psychometric curves are 161 
shallower in the low-c and high-v conditions compared to baseline. The x-axis indicates average orientation 162 
relative to horizontal, with negative and positive values for CCW and CW, respectively. Choices shift 163 
towards the cued category on biased trials (blue: 75% CW; red: 25% CW) compared to neutral trials (black) 164 
but least so in the high-v condition. Vertical lines mark the inflection points of psychometric functions fitted 165 
to the average data. Psychometric curves were created for illustration. (C) Bias index, a measure of cue 166 
usage, is higher in the low-c condition but lower in the high-v condition compared to baseline. (D) Factorial 167 
analysis of the effects of contrast and variability on the bias index shows an increase with contrast (dark 168 
blue: high contrast; pale blue: low contrast) but a decrease with variability. (E) Trial-by-trial influence of 169 
prior cue on choices measured using logistic regression. c: contrast; v: variability; µq: signed mean 170 
orientation; cue: signed prior cue. (A-E) Data is represented as group mean ± SEM. * p < .05, ** p < .01, 171 
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*** p < .001. For panel A, only neutral trials were used. For panel B and E, both neutral and biased trials 172 
were used. For panels C and D, only biased trials were used. 173 

Are people blind to integration noise? 174 
To test whether participants failed to adapt because they were “blind” to integration noise, 175 

we analysed the confidence reports elicited in Experiment 2 (Fig. 1C). We implemented a strictly-176 
proper scoring rule such that it was in participants’ best interest (i) to make as many accurate 177 
choices as possible and (ii) to estimate the probability that a choice is correct as accurately as 178 
possible (Sonnemans & Theo Offerman, 2001). In support of our hypothesis, analysis of the full 179 
factorial design showed that, while confidence varied with contrast (F(1,19) = 32.97, p < .001), it 180 
did not vary with variability (F(1.2,22.5) = 0.73, p > 0.4). In addition, direct comparison between 181 
the low-c and high-v conditions showed that participants were more confident in the high-v 182 
condition (t(19) = 3.98, p < .001; Fig. 3A), with participants overestimating their performance 183 
(difference between mean confidence and mean accuracy; t(19) = 2.66, p < .05; Fig. 3A). Although 184 
participants reported lower confidence in the high-v condition compared to baseline (Fig. 3A), this 185 
decrease was due to participants utilising response times as a cue to confidence (Zakay & Tuvia, 186 
1998): a trial-by-trial regression analysis showed that confidence decreased with longer response 187 
times (RTs) and was unaffected by variability once RTs had been accounted for (v: t(19) = 0.38, 188 
p > 0.7;  all other t-values > 4, all p < .001; see Fig. 3B and Response times in the Supplementary 189 
Information). Overall, these results show that participants were overconfident under integration 190 
noise, as if they were “blind” to the impact of integration noise on their performance.  191 

 192 
Fig. 3. Effects of contrast and variability on explicit and implicit markers of confidence. (A) Mean 193 
confidence in the baseline, reduced contrast (low-c) and increased variability (high-v) conditions. (B) Trial-194 
by-trial confidence is not influenced by variability (v) but is influenced by the deviation of the average 195 
orientation from horizontal (|µq|), contrast (c), choice accuracy (cor) included in order to account for error 196 
detection (Yeung & Summerfield, 2012), and response times (RTs). (C) Overconfidence, the difference 197 
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between mean confidence and mean choice accuracy, is highest in the high-v condition. (D) Higher 198 
probability of making a choice (and thus not opting out) in the high-v condition compared to the low-c 199 
condition. (A-D) Data are represented as group mean ± SEM. For panel B, only biased trials were used. For 200 
all other panels, only neutral trials were used. 201 

In Experiment 3 (n = 18), because explicit confidence reports can be highly idiosyncratic 202 
(Aitchison, Bang, Bahrami, & Latham, 2015; Bang et al., 2017), we obtained an implicit, but 203 
perhaps more direct measure, of confidence (Hampton, 2001; Kepecs & Mainen, 2012; Kiani & 204 
Shadlen, 2009). Specifically, on half of the trials (“optional trials”), we introduced an additional 205 
choice option, an opt-out option, which yielded “correct” feedback with a 75% probability. On the 206 
other half of trials (“forced trials”), participants had to make an orientation judgment. Under this 207 
design, to maximise reward, participants should choose the opt-out option whenever they thought 208 
they were less than 75% likely to make a correct choice. Despite matched levels of choice accuracy 209 
in the low-c and the high-v conditions (forced trials, t(17) = 0.24, p > 0.8), participants decided to 210 
make an orientation judgment more often on high-v than on low-c trials (optional trials, t(17) = 211 
2.32, p < .05; Fig. 3D), again indicating overconfidence in the face of integration noise. A full 212 
factorial analysis verified that the proportion of such opt-in trials varied with contrast (F(1,17) = 213 
21.2, p < .001) but not with variability (F(1.4,23.9) = 3.6, p > 0.05). Similarly, a trial-by-trial 214 
logistic regression showed that the probability of opting in varied with contrast (t(17) = 6.93, p < 215 
.001) but not with variability (t(17) = 1.6, p > 0.1), after controlling for other task-relevant factors 216 
(e.g., average orientation and RTs). In sum, participants opted out more often when encoding noise 217 
was high, but did not do so when integration noise was high, despite making a comparable 218 
proportion of errors in the two conditions. 219 

Computational model of noise blindness 220 

We next compared a set of computational models based on the ideal observer framework 221 
to provide a mechanistic explanation for the observed data (see Methods). There are broadly three 222 
components to our modelling approach. First, a generative (true) model which describes the task 223 
structure and the generation of noisy sensory data. Second, an agent’s internal model of the task 224 
structure and how sensory data is generated; the internal model may differ from the generative 225 
model. Finally, a Bayesian inference process which involves inverting the internal model in order 226 
to estimate the probability of a stimulus category given sensory data and generate a response. This 227 
inference process involves marginalising over contrast and variability levels according to a belief 228 
distribution over experimental conditions. Optimal behaviour can be said to occur when there is a 229 
direct correspondence between the generative model and the agent’s internal model. We evaluated 230 
the models both qualitatively (i.e. model predictions for critical experimental conditions) and 231 
quantitatively (i.e. BIC scores). 232 

We focus on an “omniscient” model, which has perfect knowledge of the task structure and  233 
how sensory data is generated, and two suboptimal models which propose different mechanistic 234 
explanations of participants’ lack of sensitivity to the performance cost associated with stimulus 235 
variability. The suboptimal models relax the omniscient assumptions about an agent’s beliefs about 236 
(i) the task structure and/or (ii) the sources of noise in play. See Supplementary Information for 237 
details about all models considered. 238 

In our task the average orientation of a stimulus array was sampled from a common 239 
distribution of orientations across experimental conditions (Fig. 4A). We modelled an agent’s 240 
sensory data as a random (noisy) sample from a Gaussian distribution centred on the average 241 
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orientation of the stimulus array (Fig. 4B), with the variance of this distribution determined by 242 
both encoding noise and integration noise. We used each participant’s data from the neutral trials 243 
to parameterise their levels of encoding noise and integration noise in each experimental condition 244 
(see Methods). The fitted noise levels, which are part of the generative model, were the same for 245 
all models; thus no additional free parameters were fitted to the data and the models only differed 246 
with respect to their assumptions about the internal model used for Bayesian inference.   247 

 248 
Fig. 4. Computational model. (A) Distribution of average orientations conditioned on CCW (red) 249 

and CW (blue). (B) An agent’s sensory data was modelled as a sample from a Gaussian distribution centred 250 
on the average orientation of the eight gratings in a stimulus array (black vertical lines), with the variance 251 
of this distribution determined by both encoding noise and integration noise. The yellow star marks the 252 
sensory data for an example trial. (C) An omniscient agent has a pair of category-conditioned probability 253 
density functions over sensory data for each experimental condition (i.e. contrast × variability level; here a 254 
single condition is shown). The agent uses the relevant pair of density functions to compute the probability 255 
of the observed sensory data (yellow star) given each category (red and blue dots). Note that, for an 256 
omniscient agent, these density functions match the true probability density over sensory data under the 257 
generative model. See an example of a full set of density functions for an experiment in Fig. S1. (D) Density 258 
functions from panel C after scaling by the prior cue (here 75% CW). The sensory data (yellow star) is now 259 
more likely to have come from a CW stimulus than a CCW stimulus. (E) The noise-blind model only takes 260 
into account encoding noise: the density functions therefore overlap less than in panel C and they do not 261 
match the true probability density over sensory data. (F) Posterior belief that the stimulus is CW as a 262 
function of the same sensory data (yellow star) for the examples shown in panels C (black, omniscient 263 
model on neutral trials), D (dark grey, omniscient model when prior cue is 75% CW) and E (light grey, 264 
noise-blind model on neutral trials). Steeper curves indicate higher confidence; categorisation accuracy (on 265 
neutral trials) is the same for all models. The variability-mixer curve would have intermediate slope 266 
between that of the omniscient and the noise blind model in conditions of high variability. 267 

The omniscient model has, for each experimental condition, a pair of functions that specify 268 
the probability density over sensory data given a CW and a CCW stimulus, taking into account 269 
both encoding and integration noise. As the model can identify the current condition (e.g., knows 270 
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with certainty that a trial is drawn from the high-contrast, high-variability condition), it only uses 271 
the relevant pair of density functions to compute the probability of the observed sensory data given 272 
a CCW and a CW category (Fig. 4C). On neutral trials, each category is equally likely, and the 273 
agent computes the probability that a stimulus is CW and CCW directly from the density functions. 274 
On biased trials, the categories have different prior probabilities, and the agent scales the density 275 
functions by the prior probability of each category as indicated by the prior cue (Fig. 4D). After 276 
having calculated the probability that a stimulus is CW and CCW, the agent can compute a choice 277 
(i.e. chose the category with the higher posterior probability) and confidence in this choice (i.e. 278 
the probability that the choice is correct) 279 

 280 

Fig. 5. Comparison of model and human behaviour. (A) Correspondence between mean accuracy and 281 
mean confidence (explicit estimates or proportion of opt-in responses) for participants (blue, data from 282 
Exp1-3) and the  omniscient (grey), noise-blind (orange) and variability-mixer (green) models in the critical 283 
experimental conditions. Coloured lines indicate best-fitting slope of a linear regression analysis: solid for 284 
p < .05, dotted for p > 0.4. (B) Model comparison (Exp1-3) suggests strong evidence in favour of the noise-285 
blind model over the omniscient model (left panel, average DBIC = -32.9) and also over the variability-286 
mixer model (right panel, DBIC = -20.4). (C) Omniscient model (left) makes opposite predictions to noise-287 
blind model (middle) and variability-mixer model (right) for the influence of the prior cue on choice (Exp1-288 
2) as variability increases (positive versus negative slopes) but similar predictions as contrast decreases 289 
(lighter lines above darker ones). Dark colours: high contrast. Light colours: low contrast.  (D) Trial-by-290 
trial analysis of signed confidence (Exp2; negative for CCW and positive for CW) for participants (blue) 291 
and the omniscient (grey), noise-blind (orange) and variability-mixer (green) models. (C-D). Data are 292 
represented as group mean ± SEM. For panel A, only neutral and optional trials were used. For panels B 293 
and C, only biased trials were used. For panel D, both neutral and biased trials were used. Within-model 294 
variability in predictions comes from variability in encoding and integration noise across participants. 295 

*** *** *** *** * *

participants
omniscient
noise-blind
variab-mixer

against 
omniscient

against 
variability-mixer

Av
er

ag
e 

re
po

rte
d 

co
nf

id
en

ce
 / 

av
er

ag
e 

pr
op

or
tio

n 
op

te
d 

in

A B

 

Average proportion correct

baseline lower contrast higher variability

C Participants (ordered)

D

μθ cu
e
μθ

*c
μθ

*v
cu

e*c
cu

e*v

1 60
-360

0

70

1 60

�
 B

IC
Bi

as
 In

de
x

ze
ro 

v
med

 v
hig

h v
W

ei
gh

t o
n 

si
gn

ed
 

co
nf

id
en

ce
 (a

.u
.)

ze
ro 

v
med

 v
hig

h v
ze

ro 
v

med
 v
hig

h v

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/268045doi: bioRxiv preprint 

https://doi.org/10.1101/268045


 

 11 

We now consider two competing explanations of the participants’ lack of sensitivity to the 296 
performance cost associated with stimulus variability. First, a variability-mixer model which 297 
relaxes the assumption that an agent can identify the current variability condition. The model 298 
therefore uses a single pair of density functions for all variability conditions (which are a mixture 299 
of density functions across variability levels). As a result, compared to the omniscient model, the 300 
density functions are wider on low-variability trials but narrower on high-variability trials. Second, 301 
a noise-blind model which relaxes the assumption that the agent is aware of integration noise. As 302 
for the variability-mixer model, the noise-blind model uses a single pair of density functions for 303 
all variability conditions, but, critically, these density functions do not take into account the 304 
additional noise induced by stimulus variability. Because of these differences in the internal model 305 
used for Bayesian inference, the models differ in the degree of confidence in a choice for a given 306 
sensory data (Fig. 4F) and, by extension, the influence of the prior cue on choice on biased trials. 307 

In support of our hypothesis, the noise-blind model provided the best fit to our data. First, the 308 
noise-blind model, and not the omniscient model, predicted three key features of participants’ 309 
behaviour: (i) overconfidence on high-variability trials within participants (Fig. S2), (ii) no 310 
correlation between mean accuracy and mean confidence across participants (Fig. 5A) and (iii) a 311 
diminished influence of the prior cue on high-variability trials, as seen by both the analysis of the 312 
bias index (Fig. 5C) and the trial-by-trial regression predicting confidence (Fig. 5D), where the 313 
prior cue has a positive effect on confidence but its effect decreases with high contrast and high 314 
variability (in line with noise blindness). In addition, quantitative comparison yielded “very strong 315 
evidence” (Kass & Raftery, 1995) for the noise-blind model over the omniscient model, with an 316 
average DBIC across participants of -32.9 (Fig. 5B). Similarly, analyses of the patterns of 317 
overconfidence in the critical conditions of our factorial design favoured the noise-blind over the 318 
variability-mixer model (Fig. S2), and quantitative comparison yielded “very strong evidence” for 319 
the noise-blind over the variability-mixer model (DBIC = -20.4, Fig. 5B). In sum, the modelling 320 
indicates that participants neglected integration noise altogether. 321 

Participants are noise blind and not variability blind 322 

To further rule out the hypothesis that participants were simply unable to discriminate the 323 
variability conditions as proposed by the variability-mixer model, we ran Experiment 4 (n = 24). 324 
After having made a choice, participants were asked to categorise either the contrast of the stimulus 325 
array (rmc, high: .6 vs. low: .15) or the variability of the stimulus array (std, high: 10º vs. low: 0º) 326 
(Fig. 1E). Again, choice accuracy on neutral trials in the low-c and the high-v conditions was 327 
statistically indistinguishable (t(23) = 1.16, p > 0.2). We reasoned that, if participants had difficulty 328 
identifying the variability condition but otherwise aware of integration noise, then they should 329 
behave closer to optimal when they correctly identified the variability condition. To test this 330 
prediction, we used the biased trials to compare cue usage when the variability condition was 331 
correct and incorrectly categorised (75.71% ± 2.26% of the variability-condition judgments were 332 
correct). In contrast to the prediction, but in line with our hypothesis, participants showed blindness 333 
to integration noise even when they correctly identified the variability condition: participants were 334 
more biased on low-c than high-v trials regardless of whether the variability categorisation was 335 
correct (t(23) = 3.21, p < .01) or incorrect (t(23) = 4.05, p < .001; Fig. 6A-B). 336 

In Experiments 1-4, the experimental conditions were interleaved across trials, which may 337 
have made it too difficult for participants to separate the different sources of noise in play. To test 338 
the generality of our results, we ran Experiment 5 (n = 24) in which either the contrast or variability 339 
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level were kept constant across a block of trials (Fig. 6C-D). Even then, and despite receiving trial-340 
by-trial feedback, participants were not, compared to the baseline condition, more influenced by 341 
the prior cue when variability was high (biased trials, t(23) = 0.32, p > 0.7), but they were when 342 
contrast was low (biased trials, t(23) = 3.31, p < .01). In other words, even under blocked 343 
conditions participants failed to learn about the performance cost associated with stimulus 344 
variability. 345 

 346 

 347 

Fig. 6. Experimental evidence against variability mixing. (A) Choice accuracy for the baseline, 348 
reduced contrast (low-c) and increased variability (high-v) conditions for Experiment 4. (B) In Experiment 349 
4, the influence of the prior cue is highest when encoding noise is high (low-c) and lowest when integration 350 
noise is high (high-v). (C) Same as panel A, but for Experiment 5. (D) Same as panel B, but for Experiment 351 
5. (A-B) Coloured lines indicate trials where the categorisation of contrast was correct (pink) and where 352 
the categorisation of variability was correct (yellow). (C-D) Coloured lines indicate trials where the contrast 353 
level was blocked (pink) or when the variability level was blocked (brown). We note that the difference in 354 
bias index for the low-c condition between contrast blocking and variability blocking can be explained by 355 
a general shift in the bias index according to block difficulty: when contrast is blocked, the low-c condition 356 
is accompanied by the hardest condition (the condition with low contrast and high variability), but when 357 
variability is blocked, the low-c condition is accompanied by the easiest condition (the condition with high 358 
contrast and zero variability). (A-D) Data are represented as group mean ± SEM. For panels A and C, 359 
neutral trials were used. For panels B and D, biased trials were used. 360 

Sequential sampling account of noise blindness 361 

A recent study investigated how stimulus volatility (i.e. changes in evidence intensity 362 
across a trial) affected choice and confidence (Zylberberg, Fetsch, & Shadlen, 2016). Participants 363 
were found to make faster responses and report higher confidence when stimulus volatility was 364 
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high. These results were explained by a sequential sampling model which assumes that observers 365 
are unaware of stimulus volatility and therefore, unlike an “omniscient” model, adopt a common 366 
choice threshold across trial types. In the Supplementary Information, we show, using empirical 367 
and computational analyses, that this model cannot explain our results (Fig. S3). For example, the 368 
model predicts faster RTs on high-variability than low-variability trials, a prediction which is at 369 
odds with our observation of slower RTs on high-variability trials. 370 

Noise blindness cannot be explained by subsampling371 

We have proposed that stimulus variability impairs performance because of noise inherent 372 
to cognitive integration of variable or discordant pieces of information. An alternative explanation 373 
of the performance cost for high stimulus variability is that participants based their responses on a 374 
subset of gratings rather than the full array. Under this subsampling account, choice accuracy for 375 
high-variability stimuli is lower because of a larger mismatch between the average orientation of 376 
the full array and the average orientation of the sampled subset. Here we provide several lines of 377 
evidence against the subsampling account (see details in Supplementary Information). 378 

We first examined performance under different set-sizes in Experiment 6 (n = 20) where 379 
the stimulus array was made up of either four or eight gratings (average orientations and orientation 380 
variability were equated across set-sizes). We reasoned that, if participants did indeed engage in 381 
subsampling, then performance should be higher for four than eight gratings. Because of the 382 
matched average tilt in the array, sampling four items would impair performance in the high-v 383 
condition for an eight-item array but not for a four-item array. However, we found no effect of set-384 
size on choice accuracy (F(1,20) = 0.006, p > 0.9; Fig. S4A); the effects of contrast (F(1,20) = 385 
40.9, p < .001) and variability (F(1,20) = 30.50, p < .001) were comparable to those observed in 386 
our previous experiments.  387 

We next simulated performance for eight-grating arrays under a subsampling agent which 388 
did not have integration noise but instead sampled a subset of the items (1-8 items, Fig. S4B). The 389 
observed difference in participants’ performance between the baseline and the high-v conditions 390 
could be explained by assuming an agent that sampled about four items out of eight. However, this 391 
account – because there is no integration noise – predicts that participants should have similar 392 
levels of performance for the baseline and the high-v conditions for four-item arrays, a prediction 393 
which is at odds with our data (Fig. S4A). If integration noise is introduced, then most, if not all, 394 
items would have to be sampled to account for the data. 395 

Finally, we fitted a computational model to participants’ choices in Experiments 1 to 3 396 
(eight-item arrays) in order to  directly estimate the number of items sampled by each participant. 397 
This modelling approach revealed that the majority participants (42 out of 60) sampled all eight 398 
items (Table S2). We note that subsampling, even if an auxiliary cause of integration noise, cannot 399 
without further assumptions (e.g. blindness to the performance cost) explain participants’ lack of 400 
sensitivity to the performance cost associated with high-variability stimuli.  401 

Discussion 402 

Here we propose a new explanation for the previously reported gap in optimality between 403 
perceptual and cognitive decisions. Using a novel paradigm, we show, within a single task, that 404 
humans are sensitive to noise present during sensory encoding, in keeping with previous perceptual 405 
studies (Ernst & Banks, 2002; Körding & Wolpert, 2004), but blind to noise arising when having 406 
to integrate variable or discordant pieces of information, a typical requirement in cognitive tasks. 407 
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This noise blindness gave rise to two common signatures of suboptimality often found in cognitive 408 
studies: base-rate neglect and overconfidence.  409 

We provided several lines of evidence for our hypothesis. When stimulus variability was 410 
high, participants were overconfident, as indicated by cue usage, subjective confidence reports as 411 
well as opt-in responses, even though they received trial-by-trial feedback, and even when stimulus 412 
variability was salient (Exp1-3), accurately categorised (Exp4) or constant across a block of trials 413 
(Exp5). These findings indicate that, while participants were able to track stimulus variability, they 414 
simply neglected the performance cost associated with high-variability stimuli. We also ruled out 415 
that such noise blindness was due to participants only sampling a subset of a stimulus array (Exp6). 416 
The best model of our data assumed that participants sampled all items and were blind to the 417 
additional noise inherent to cognitive integration of variable or discordant pieces of information. 418 

An extensive literature has considered the different types of noise which affect human 419 
choices (Beck, Ma, Pitkow, Latham, & Pouget, 2012; Hunt, 2014; Juslin & Olsson, 1997). Our 420 
classification is partially related to a previous distinction between noise which originates inside 421 
the brain, such as intrinsic stochasticity in sensory transduction (Thurstone, 1927), and noise which 422 
arises outside the brain, such as a probabilistic relationship between a cue and a reward (Brunswik, 423 
1956). Specifically, our account classifies noise according to when it arises during the information 424 
processing that precedes a choice. Encoding noise refers to noise accumulated up to the point at 425 
which a stimulus is encoded. As such, encoding noise includes both “external” noise (e.g., a weak 426 
correspondence between a retinal image in dim lighting and the object that caused the image) and 427 
“internal" noise (e.g., intrinsic stochasticity in sensory transduction). In comparison, integration 428 
noise strictly refers to internal noise which arises at later stages of information processing, such as 429 
when integrating variable or discordant pieces of information within a limited-capacity system. 430 
Under our account, any task that requires the combination of multiple pieces of evidence will be 431 
subject to integration noise, and the amount of integration noise will scale with the variability of 432 
the different pieces of information that must be combined. Choices may of course be affected by 433 
other types of noise than those considered here. For example, cognitive decisions may involve 434 
memories, sometimes distant in the past, and risk and ambiguity (Bach & Dolan, 2012; Payzan-435 
LeNestour & Bossaerts, 2011).  436 

Many psychophysical tasks confound encoding and integration noise. For instance, in a 437 
random dot-motion task, increasing motion coherence simultaneously increases encoding noise 438 
(as instantaneous evidence is less indicative of the correct category of motion) and integration 439 
noise (as the variability of evidence across time is higher and thus harder to integrate). Recent 440 
work has shown that noisy cognitive inference, related to our notion of integration noise, is a major 441 
driver of variability in choices (Drugowitsch, Wyart, Devauchelle, & Koechlin, 2016). Similarly, 442 
it has been shown that for complex inference problems, a mismatch between an agent’s internal 443 
model of a task and the true structure of a task provokes departures from optimality (Beck et al., 444 
2012). Here we extend these findings by introducing noise blindness as an additional driver of 445 
suboptimal cognitive inference. Specifically, the variability in choices caused by integration noise, 446 
or by imperfect inference, may not systematically bias choices away from the true choice. 447 
Blindness to these sources of choice variability, however, predicts systematic overconfidence, 448 
which may manifest itself as a lack of sensitivity to base-rate information, for example. In short, 449 
suboptimality can arise not only from having the “wrong” model of the task but also from having 450 
the “wrong” model of oneself. 451 
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We do not know why humans are blind to integration noise. One possibility is that basing 452 
decision strategies on all sources of noise would prolong deliberation and thus reduce reward rates, 453 
or that recognising one’s own cognitive deficiencies requires a much longer timeframe. However, 454 
a well-known cognitive illusion may help understand why blindness to one’s own cognitive 455 
deficiencies may not be catastrophic: even though failures to detect salient visual change suggests 456 
that cognitive processing is highly limited (Simons & Levin, 1997), humans enjoy rich, vivid 457 
visual experiences of cluttered natural scenes. Human information processing is sharply limited 458 
by capacity, but as agents we may not be fully aware of the extent of these limitation.459 
  460 
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Methods 473 

Participants 474 

One hundred and five healthy human participants with normal or corrected-to-normal 475 
vision were recruited to participate in six experiments (72 females, 8 left-handed, mean age ± SD: 476 
25.02 ± 4.25; Exp1: n = 20; Exp2: n = 20; Exp3: n = 20; Exp4: n = 24; Exp5: n = 24; Exp6: n = 477 
20). Participants were reimbursed for their time and could earn an additional performance-based 478 
bonus (see below). All participants provided written informed consent. The experiments were 479 
conducted in accordance with local ethical guidelines. 480 

 481 
Experimental paradigm 482 

All six experiments were based on the same psychophysical task. On each trial, participants 483 
had to judge whether the average orientation of a circular array of gratings (Gabor patches; see 484 
Fig. 1) was tilted clockwise (CW) or counter-clockwise (CCW) relative to horizontal. The average 485 
orientation of the gratings in each trial was randomly selected from a mixture of two Gaussian 486 
distributions (centred at 3º either side of the horizontal axis, respectively, and with 8º of standard 487 
deviation). We manipulated encoding noise and integration noise by varying two features of the 488 
array in a factorial way manner: the root mean square contrast (rmc) of the individual gratings, 489 
which affects the difficulty of encoding the stimulus array, and the variability of the orientations 490 
of the individual gratings (std), which affects the difficulty of integrating orientations across the 491 
stimulus array. The number of contrast and variability conditions varied between experiments: in 492 
Experiments 1-3, three contrast levels (rmc = {0, .16, .6}) and three variability levels (std = {0º, 493 
4º, 10º}); in Experiments 4-6, two contrast levels (rmc = {.15, .6}) and two variability levels (std 494 
= {0º, 10º}). The stimulus array was presented for 150 ms and was followed by a 3000 ms choice 495 
period. Participants indicated their choice by pressing the right (CW) or the left (CCW) arrow-key 496 
on a QWERTY keyboard. They received feedback about choice accuracy, before continuing to the 497 
next trial. If no response was registered within the choice period, the word “LATE” appeared at 498 
the centre of the screen, and the next trial was started. Experiments 1, 2 and 3 consisted of 1296 499 
trials, divided into 36 blocks of 36 trials each. Experiments 4, 5 and 6 consisted of 1200 trials, 500 
divided into 32 blocks of 40 trials each. 501 

In Experiments 1 and 2, participants were presented with a cue to the prior probability of 502 
each stimulus category. The cue was presented 700 ms before the onset of the stimulus array and 503 
remained on the screen until a response was registered. An “N” indicated that the two stimulus 504 
categories were equally likely, an “R” indicated a 75% probability of a CW stimulus and an “L” 505 
indicated a 75% probability of a CCW stimulus. Half of the blocks contained neutral trials (“N”) 506 
and the other half contained biased trials (“R” or “L”). The blocks were randomised across an 507 
experiment. In Experiment 2, after having made a choice, participants were required to indicate 508 
the probability that the choice is correct by moving a sliding marker along a scale (50% to 100% 509 
in increments of 1%). In Experiment 3, on half of the blocks, participants could opt out of making 510 
a choice and receive the same reward as for a correct choice with a 75% probability. There was no 511 
prior cue. In Experiment 4, after having made a choice, participants had to categorize (high vs. 512 
low) either the contrast or the variability of the stimulus array. Participants received trial-by-trial 513 
feedback about the categorisation judgment. The judgment types were counterbalanced across 514 
trials. In Experiment 5, for each block of trials, we fixed the contrast or the variability level while 515 
varying the other feature. In Experiment 6, on half of the blocks, the stimulus array consisted of 516 
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eight gratings and, on the other half of blocks, the stimulus array consisted of four gratings. Further 517 
experimental details are provided in the Supplementary Information. 518 

Statistical analyses 519 

All statistics are reported at the group level. We performed analyses of variance 520 
(ANOVAs) with participants as a random variable to test the effects of contrast and variability on 521 
choice accuracy, response times, cue usage, confidence (Exp2) and opt-in behaviour (Exp3). We 522 
performed most analyses of choice accuracy and confidence using neutral trials; analyses of cue 523 
usage were naturally based on biased trials. We used multiple linear regression and multiple 524 
logistic regression to isolate the effect of variability on confidence and opt-in responses, 525 
respectively. For the analyses in Fig. 5A, seven participants were excluded because of excessive 526 
opt-out responses, but result were almost identical when including them. All p-values lower than 527 
.001 are reported as “p < .001”, p-values higher or equal than .001 but lower than .01 are reported 528 
as “p < .01”,  p-values higher or equal to .01 but lower than .05 are reported as “p < .05”. All p-529 
values greater or equal to .05 are reported as higher than the closest lower decimal (e.g., a p-value 530 
of .175 would be reported as “p > 0.1”), with exception of p-values between .05 and .1 which are 531 
reported as “p > .05”. The degrees of freedom for the ANOVAs are specified using non-integer 532 
numbers when a Greenhouse-Geisser correction has been used to correct for violations of the 533 
sphericity assumption. 534 
 535 
Computational modelling 536 

We first describe the omniscient model who takes into account encoding and integration 537 
noise and can identify which condition a trial is drawn from (i.e. assigns a probability of 1 to the 538 
current condition on a given trial). We then describe the variability-mixer model, who takes into 539 
account integration noise but cannot distinguish the variability conditions (i.e. assigns equal 540 
probability to all variability conditions on a given trial), and the noise-blind model, who entirely 541 
neglects integration noise. For completeness, we ran six additional models which varied an agent’s 542 
awareness of encoding noise and/or ability to discriminate contrast conditions. We only discuss 543 
these models in the Supplementary Information as they had no support in the empirical data. 544 

We modelled – regardless of the model – an agent’s noisy estimate, 𝑥, of the true average 545 
orientation,	𝜇, as a random sample from a Gaussian distribution with mean 𝜇 and variance 𝜎&: 546 

𝑥 = 	𝜖(𝜇, 𝜎&) 547 
(eq. 1) 548 

where 𝜎 is the agent’s total level of noise (encoding plus integration noise) in an experimental 549 
condition (see below for noise estimation). 550 

We assumed that an omniscient agent’s internal model has, for each condition, a unique 551 
pair of category-conditioned probability density functions (PDFs) over sensory data, which reflect 552 
the total level of noise and the true probability distribution over average orientations (see Fig. 4C 553 
for an example). As such, an omniscient agent would have six pairs of PDFs in Experiments 1-3 554 
and four pairs of PDFs in Experiments 4-6. An omniscient agent uses the relevant pair of PDFs to 555 
compute the probability of the sensory data given a CW and a CCW category: 556 

𝑃𝐷𝐹/01&/345 = 	Ρ(𝑥|𝑐𝑎𝑡, 𝑐𝑜𝑛𝑑) 557 
(eq. 2) 558 
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where 𝑐𝑎𝑡 is the category and 𝑐𝑜𝑛𝑑 is the condition. We constructed the PDFs by convolving the 559 
true probability distribution over average orientations with a zero-centred Gaussian distribution 560 
with variance 𝜎& depending on a participant’s total noise in a condition. Note that the construction 561 
of these PDFs is specific to the model in question (see construction of “non-omniscient” PDFs 562 
below) and is the only source of variation in model predictions about choice and confidence. 563 

We assumed that an agent – regardless of the model – would compute the probability of 564 
each category using Bayes’ theorem:  565 

Ρ(𝑐𝑎𝑡|	𝑐𝑢𝑒, 𝑥, 𝑐𝑜𝑛𝑑) = 	
Ρ(𝑥|𝑐𝑎𝑡, 𝑐𝑜𝑛𝑑) ∙ 	p(𝑐𝑎𝑡|𝑐𝑢𝑒)	

(Ρ(𝑥|𝑐𝑎𝑡, 𝑐𝑜𝑛𝑑) ∙ 	p(𝑐𝑎𝑡) + Ρ(𝑥|𝑐𝑎𝑡0C1, 𝑐𝑜𝑛𝑑) ∙ 	p(𝑐𝑎𝑡0C1|𝑐𝑢𝑒))
 566 

(eq. 3) 567 

where Ρ(𝑥|𝑐𝑎𝑡, 𝑐𝑜𝑛𝑑) is computed using the relevant PDFs and p(𝑐𝑎𝑡) is the prior probability of 568 
the category in question as indicated by the prior cue. If the category in question is CW, then the 569 
alternative category, 𝑐𝑎𝑡0C1 is CCW, and vice versa. On neutral trials, the prior probability of each 570 
category is 50%. On biased trials, the prior probability of one category is 75% and the prior 571 
probability of the other category is 25%. The computation detailed in eq. 3 can be thought of as 572 
scaling the relevant PDFs by the prior probability of the respective category (see Fig. 4D for an 573 
example). 574 

Finally, we assumed that an agent – regardless of the model – makes a decision, 𝑑, by 575 
selecting the category with higher posterior support and computes confidence in this decision as:  576 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 	𝑝(𝑑 = 𝑐𝑎𝑡|	𝑐𝑢𝑒, 𝑥, 𝑐𝑜𝑛𝑑) 577 
(eq. 4) 578 

which in our task is directly given by the posterior probability of the chosen category. 579 

Because an omniscient agent takes into account encoding and integration noise and knows 580 
which experimental condition a trial is drawn from, she will (i) be appropriately influenced by the 581 
prior cue, (ii) accurately estimate the probability of having made a correct choice, and (iii) opt out 582 
of trials when she believes that she is less than 75% likely to be correct. We now describe two 583 
models which relax the “omniscient” assumptions. 584 

We first consider a variability-mixer agent who is sensitive to integration noise but cannot 585 
distinguish the different variability conditions. Therefore, when estimating the probability of the 586 
sensory data given a CW and a CCW category, the variability-mixer marginalizes its estimate over 587 
all possible variability conditions (equivalent to an omniscient agent whose PDFs have been mixed 588 
across variability conditions). As a result, when orientation variability is low, the PDFs are more 589 
overlapping than for the omniscient model. Conversely, when orientation variability is high, the 590 
PDFs are less overlapping than for the omniscient model. For these reasons, a variability-mixer 591 
model would display a mixture of under- and overconfidence. 592 

Finally, we consider a noise-blind agent who is entirely unaware of integration noise. Like 593 
in the case of the variability-mixer model, a noise-blind agent only has a pair of PDFs for each 594 
contrast level but, unlike in the case of a variability-mixer model, these PDFs only take into 595 
account encoding noise. As a result, when orientation variability is non-zero, the PDFs are less 596 
overlapping than under either of the two other models (Fig. 4E) and a noise-blind agent would 597 
therefore tend to hold stronger posterior beliefs (i.e. steeper curves for Fig.4F). Such stronger 598 
posterior beliefs will lead a noise-blind agent to (i) be less influenced by the prior cue than needed, 599 
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(ii) overestimate the probability of having made a correct choice, and (iii) not opt out of trials when 600 
being less than 75% likely to be correct. 601 

We note that the models make the same predictions about choice on neutral trials but are 602 
distinguishable when focusing on (i) biased trials and (ii) confidence and opt-in behaviour on both 603 
neutral and biased trials. Our modelling approach allowed us to calculate a choice probability for 604 
each trial under a given model. For model analyses requiring a categorical choice (e.g., logistic 605 
regression), we sampled choices according to these choice probabilities. 606 

Noise estimation 607 

We assumed that each experimental condition was affected by Gaussian noise with a specific 608 
standard deviation, 𝜎/345. We assumed that encoding noise depends upon the contrast of the array 609 
and that integration noise is proportional to the variability of orientations in the array. We estimated 610 
the total level of noise for each condition using four free parameters (three for Experiments 4-6). 611 
Two parameters characterised the level of encoding noise for each contrast level: one for low 612 
contrast (nClow) and one for high contrast (nChigh). The other two parameters (one for Experiments 613 
4-6) characterised the level of integration noise for each variability level: one for medium 614 
variability (nVmed, only for Experiments 1-3) and one for high variability (nVhigh). For a given 615 
condition, the total level of noise (the standard deviation of the Gaussian noise distribution), s/345, 616 
is thus given by: 617 

𝜎/345 = 	H(𝜀𝜎𝑐𝑜𝑛𝑑2 ) + (𝜄𝜎𝑐𝑜𝑛𝑑2 ) 618 
(eq. 5) 619 

where 𝜀𝜎/345 and 𝜄𝜎/345 specify the contribution of encoding noise and integration noise, 620 
respectively. For instance, for the low-contrast, high-variability condition would be given by 621 
substituting nClow for 𝜀𝜎/345 and nVhigh for 𝑖𝜎/345.  622 

We fitted the four noise estimators for each participant by maximizing the likelihood of the 623 
participant’s choice using neutral trials only (we used a genetic algorithm with a population size 624 
of 100 individuals and a maximum generation time of 1000 generations). We note that, because of 625 
our factorial design, we could separate the two sources of noise. We used the fitted parameters for 626 
each participant to construct the model PDFs described above. We stress that the noise estimation 627 
use choices on neutral trials only and that the model predictions pertain to independent features of 628 
the data: (i) confidence on neutral trial choices, (ii) choices (and choice probabilities) on biased 629 
trials, and (iii) probability of opting out. 630 

The mean ± SEM of the best fitting values for the four noise parameters (nClow, nChigh, nVmed 631 
and nVhigh) in units of degrees were: 10.10 ±1.51, 3.31 ± 0.39, 3.0 ± 0.78 and 6.8 ± 1.0, respectively. 632 
Following equation 5, the estimated total amounts of noise fitted for the three key conditions 633 
(baseline, low-c and high-v) were therefore: 3.31 ± 0.39, 10.1 ± 1.51 and   8.0 ± 1.0, respectively. 634 
There was a significant difference between the values for the baseline condition and those for the 635 
other two conditions (both p-values < 0.001), but no significant difference between the low-c and 636 
high-v conditions (p-value > 0.16).  637 
 638 
Psychometric fits 639 

We fitted psychometric curves to the average proportion of clockwise choices  using a four-640 
parameter logistic function:  641 
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𝑃 =	
𝐴M − 𝐴&

1 +	𝑒(PQPR)/5P + 𝐴& 642 

(eq. 6) 643 

where 𝑃 is the proportion of CW choices, 𝐴Mis the right asymptote, 𝐴& is the left asymptote, 𝑥T is 644 
the inflection point and 1/𝑑𝑥 is the steepness, and 𝑥 is the average stimulus orientation at which 645 
the proportion of CW choices is evaluated. We computed the proportion of clockwise choices 646 
within average-orientation bins (i.e. six quantiles over the average orientation relative to 647 
horizontal). The psychometric curves shown in Fig. 2B are only used for illustration. 648 

Bias index 649 

We used Signal Detection Theory (Macmillan & Creelman, 2004; Stanislaw & Todorov, 650 
1999) to calculate the decision criteria, c, separately for trials on which the prior cue favoured CW 651 
and trials on which the prior favoured CCW. The decision criterion provides a signed estimate of 652 
the degree to which the prior cue biases a participants’ choices independently of their sensitivity 653 
to average orientation. We computed the criterion as, 𝑐 = 	−0.5[𝛷QM(𝐻𝑅) + 𝛷QM(𝐹𝐴𝑅)], where 654 
𝛷QM represents the inverse of the normal cumulative density function, and HR and FAR represent 655 
the hit rate (i.e. the proportion of CW trials where participants responded CW) and false alarm rate 656 
(i.e. the proportion of CCW trials where participants responded CW), respectively. We then used 657 
the difference between c when cued CW (cCW) and c when cued CCW (cCCW) as our measure of 658 
cue usage: bias index = cCW-cCCW. Higher values indicate greater cue usage. We computed a bias 659 
index for each participant and each experimental condition.  660 
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Supplementary Information 756 
 757 
Experimental details 758 

In all experiments, participants had to judge the average orientation of an array of gratings 759 
as clockwise (CW) or counter-clockwise (CCW) from horizontal. We first describe trial events, 760 
trial timings and stimulus construction for Experiment 1 and then explain the additional steps taken 761 
for Experiments 2-6. 762 

In Experiment 1, a fixation dot first appeared at the centre of the screen for 300 ms to 763 
announce the start of a trial. The fixation dot was replaced by a cue which appeared 700 ms before 764 
the stimulus array and which remained on the screen until a response was registered. The cue 765 
determined the prior probability of each stimulus category (“L”: prior probability of CCW is 75%; 766 
“N”: CCW and CW equally likely; “R”: prior probability of CW is 75%). The stimulus array was 767 
shown for 150 ms and was followed by an up-to 3000 ms long response window. Participants 768 
responded by pressing the left (CCW) or right (CW) arrow-key on a QWERTY keyboard using 769 
their right hand. Categorical feedback about choice accuracy (“CORRECT” or “WRONG”) 770 
appeared once a response had been registered and remained on the screen for 500 ms, before the 771 
onset of the next trial. If no response was registered within the response period, the word “LATE” 772 
appeared at the centre of the screen for 3000 ms, and the next trial was automatically started. 773 

The stimulus was composed of eight gratings displayed within a circular array. We 774 
manipulated two features of the stimulus array in a factorial manner: the contrast of the gratings 775 
and the variability of the gratings’ orientation. 776 

The centre of each grating was located at a distance of ~4.3 degrees of visual angle (400 777 
pixels) from the centre of the screen. Each grating was a Gabor patch constructed using the 778 
following parameter values: diameter of ~1.07 degrees of visual angle (100 pixels); spatial 779 
frequency of ~5 cycles per degree of visual angle (0.05 cycles per pixel); random phase. All 780 
gratings had the same root mean square contrast (rmc, henceforth contrast). The contrast of a trial 781 
was either 0 (no signal), .15 (low contrast) or .60 (high contrast). The latter two contrast levels 782 
may not affect orientation discrimination on their own (Mareschal & Shapley, 2004). However, 783 
we added low-level random noise to the gratings (Wyart, Nobre, & Summerfield, 2012). For each 784 
grating, we convolved a unique patch of white noise with a two-dimensional zero-mean Gaussian 785 
with a standard deviation of ~0.21 degrees of visual angle (20 pixels). The amplitude of the noise 786 
was 10% of the maximum possible. We then added the noise to the grating. Finally, we convolved 787 
the grating with a 2-dimensional Gaussian envelope peaking at the centre of the grating and 788 
decaying with a standard deviation of ~0.21 degrees of visual angle (20 pixels).  789 

The average orientation of gratings on a trial (henceforth trial mean) was randomly drawn 790 
from a Gaussian distribution with a mean of -/+ 3º and a standard deviation of 8º. The variability 791 
in the orientations of gratings on a trial (henceforth variability) was randomly drawn from a 792 
Gaussian distribution with a mean 0º and a standard deviation of either 0º (zero variability), 4º 793 
(medium variability) or 10º (high variability). To ensure the trial mean remained unchanged after 794 
the variability manipulation, we subtracted the mean deviation from 0 from the gratings’ 795 
orientations. Together, these steps allowed us to independently manipulate trial mean, contrast and 796 
variability. We emphasise that feedback was determined by the average orientation of the gratings 797 
presented and not by the distribution from which they were drawn.  798 
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The experiment consisted of 1296 trials, distributed into 36 blocks of 36 trials each. On half 799 
of the blocks, the prior cue was “N” (neutral trials). On the other half of blocks, the cue varied 800 
between “L” or “R” in a trial-by-trial manner (biased trials). Block order was randomised across 801 
an experiment and across participants. 802 

 In Experiment 2, we introduced an explicit measure of confidence. Participants indicated 803 
their choice by pressing “Z” (CCW) or “X” (CW) using their left hand. After having made a choice, 804 
participants had to indicate the probability that the choice is correct. Participants indicated their 805 
confidence by sliding a marker along a vertical scale (50% to 100% in increments of 1%) using a 806 
standard computer mouse with their right hand. The probability associated with the marker’s 807 
current position was updated in real-time and shown at the centre of the screen. Participants 808 
confirmed their response by clicking the left button of the mouse. There was no time limit for the 809 
confidence judgment. Feedback about choice accuracy appeared 300 ms after a response had been 810 
confirmed. Trial numbers, block types and structure were the same as for Experiment 1. 811 

In Experiment 3, we introduced an implicit measure of confidence. On half of the blocks, 812 
participants could choose to opt out of making a choice and receive the same reward as a correct 813 
choice with a 75% probability. To remind participants about the choice options on a trial, the words 814 
“LEFT” (CCW) and “RIGHT” (CW) appeared to the left and the right of the fixation cross after 815 
the stimulus disappeared and, when the opt-out option was available, the words “OPT OUT” 816 
appeared below the fixation cross. The opt-out option was selected by pressing the downwards 817 
arrow key. For feedback, “SUCCESS” was shown after a correct choice and a rewarded opt-out 818 
response, whereas “FAILURE” was shown after an incorrect choice and an unrewarded opt-out 819 
response.  The experiment consisted of 1296 trials, distributed into 36 blocks of 36 trials each. On 820 
half of the blocks, the opt-out option was not available. On the other half of the blocks, the opt-out 821 
option was available. Block order was randomised across an experiment and across participants. 822 
There was no prior cue. 823 

In Experiment 4, we asked participants to categorise either the contrast (rmc = {.15, .60}) 824 
or the variability (std = {0º, 10º}) of the stimulus array. In particular, after having made a choice 825 
(by pressing the “X” and “Z” buttons using their left hand, with the chosen category highlighted 826 
in bold), participants were then required to judge whether the contrast of the stimulus array was 827 
high or low or whether the variability of the stimulus array was high or low. The relevant stimulus 828 
dimension for the second judgment (indicating by displaying “CONTRAST” or “VARIABILITY 829 
at the centre of the screen), was determined randomly and was only revealed after an orientation 830 
discrimination had been made. Participants made the second judgment by pressing the left (low) 831 
or the right (high) arrow key (the options “LOW” and “HIGH” appeared equidistantly to the left 832 
and the right of the fixation point). Once participants had made their response, they received 833 
feedback about the accuracy of each judgment, indicated by changing the colours of the selected 834 
options to red (incorrect) or green (correct). The experiment consisted of 1200 trials, distributed 835 
into 32 blocks of 40 trials each. On half of the blocks, the prior cue was “N” (neutral trials). On 836 
the other half of blocks, the cue varied between “L” or “R” in a trial-by-trial manner (biased trials). 837 
Block order was randomised across an experiment and across participants. 838 

In Experiment 5, we fixed either contrast or variability across blocks of trials. Specifically, 839 
within a block, one dimension was fixed (low or high), while the other dimension varied randomly 840 
(low or high). For instance, in one condition, contrast would be fixed at low while variability varied 841 
between high and low across the trials within the block. As in Experiment 4, there were only two 842 
levels of contrast and two levels of variability. There were thus eight blocks for each trial type. On 843 
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half of the blocks for a trial type, the prior cue was “N” (neutral trials). On the other half of blocks 844 
for a trial type, the prior cue varied between “L” or “R” in a trial-by-trial manner (biased trials). 845 
The experiment consisted of 1200 trials, distributed into 32 blocks of 40 trials each. Block order 846 
was randomised across an experiment and across participants. 847 

In Experiment 6, we varied the set-size of the stimulus array. In particular, the stimulus 848 
array was composed of either four or eight gratings. As in Experiments 4 and 5, there were only 849 
two levels of contrast and two levels of variability. For arrays with only four gratings, the location 850 
of the gratings was fixed within a block but randomised across blocks, by sampling a random set 851 
of four contiguous locations from the full array with eight gratings. The set-size was varied in a 852 
trial-by-trial manner. Half of the trials had a set-size of four gratings and the other half of trials 853 
had a set-size of eight gratings. We scaled the variance of the distribution of orientation 854 
variabilities for the four-item set size to ensure that the observed standard deviation of orientations 855 
within a set-size was equated for the four-item and eight-item case. Without this step, the observed 856 
variance of the four-item set size would be systematically lower than for the eight-item set-size. 857 
The experiment consisted of 1200 trials, distributed into 32 blocks of 40 trials each. On half of the 858 
blocks, the prior cue was “N” (neutral trials). On the other half of blocks, the cue varied between 859 
“L” or “R” in a trial-by-trial manner (biased trials). Block order was randomised across an 860 
experiment and across participants. 861 

All participants were reimbursed for their participation and had the opportunity to earn an 862 
additional performance-based bonus. In all experiments except Experiment 2, participants received 863 
a flat rate of £10 and could earn an additional £1 for every 2% increase in choice accuracy relative 864 
to 60%. In Experiment 2, participants received a flat rate of £5 and could earn an additional bonus 865 
depending on the accuracy of their confidence judgments. We submitted participant’ responses to 866 
a strictly proper scoring rule under which it was in participants’ best interest to make as many 867 
correct decisions as possible and to estimate the probability that their choice is correct as accurately 868 
as possible (Sonnemans & Theo Offerman, 2001). The average bonus accrued was ~£12. 869 

Participants received a 10-minute introduction to their corresponding task, including the 870 
stimulus, sources of choice difficulty, prior cue and prior probabilities, response contingencies, 871 
and the rules behind the performance-based bonus. Participants also completed a short practice 872 
session (two blocks) of the task before starting the experiment proper.  873 

Category-conditioned probability density functions for an omniscient agent 874 

We assumed that an omniscient agent’s internal model has, for each experimental 875 
condition, a unique pair of category-conditioned probability density functions (PDFs) over sensory 876 
data. An example of a full set of PDFs are shown in Fig. S1. Note that the PDFs look more skewed 877 
in conditions with low noise (top-left in Fig. S1) as they will more closely resemble the true 878 
distribution of average orientations (Fig. 4A). 879 
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 880 
Fig. S1. Category-conditioned probability density functions. Four pairs of PDFs, one for each of the 881 
four conditions in Experiment 4-6 (but six pairs of PDFs for Experiments 1-3). Top-left: high-contrast and 882 
low-variability trials (lowest noise). Top-right: high-contrast and high-variability trials (intermediate noise). 883 
Bottom-left: low-contrast and low-variability trials (intermediate noise). Bottom-right: low-contrast and 884 
high-variability trials (highest noise). The white dots on the x-axes denote an agent’s current sensory data 885 
(same across panels). The blue and red dots indicate the probability density that the sensory data came from 886 
a CW or a CCW category, respectively. 887 

Comparison of computational models  888 

All models considered share the same generative (true) model of how sensory data is 889 
generated but differ in their internal model of this process. In particular, they differed with respect 890 
to (i) an agent’s ability to identify which condition a trial is drawn from and (ii) an agent’s 891 
sensitivity to the different sources of noise in play. These differences give rise to different 892 
inferences and thereby responses. We compared a total of nine candidate models of our data. In 893 
Table S1, we provide the model names (column 1), quantitative comparison against the noise-894 
blind model which was  the best-fitting model (column 2), and details about model assumptions 895 
(columns 3-9). Note that the number of unique pairs of category-conditioned PDFs depends on the 896 
experiment (the first number is for Exp1-3; the number in brackets is for Exp4-6). For 897 
completeness, we considered models which intuitively seemed unlikely (e.g., the Full Mixer model 898 
who cannot tell at all discriminate experimental conditions), or are not grounded on optimality 899 
(e.g. the models that operate with the average noise across conditions). 900 

 901 
Table S1. Model assumptions and model comparison. Model comparison was based on the difference in 902 
average BIC across participants (Exp1-3) relative to the noise-blind model. 903 

Model Name

Average 
BIC 

difference 
with best 

model

Number of 
unique 
pairs of 
PDFs

Is blind to 
Encoding 

Noise?

Knows the 
contrast 
condition 
of each 
trial?

Is blind to 
Integration 

Noise?

Knows the 
variability 
condition 
of each 
trial?

Operates 
with the 
average 

Encoding 
Noise?

Operates 
with the 
average 

Integration 
Noise?

Omniscient -32.98 6 (4) no yes no yes no no
Noise Blind 0.00 2 (2) no yes yes irrelevant no no

Variability Mixer -20.41 2 (2) no yes no no no no
Contrast Mixer -60.39 3 (2) no no no yes no no

Full Mixer -58.57 1 (1) no no no no no no
Average Variability -47.28 2 (2) no yes no no no yes

Average Contrast -116.93 3 (2) no no no yes yes no
 Full Average -134.76 1 (1) no no no no yes yes

Contrast Blind -9.79 3 (2) yes irrelevant no yes no no
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Overconfidence in choices 904 

A main difference between the variability-mixer and the noise-blind models is the 905 
predicted pattern  of overconfidence (i.e. mean confidence minus mean accuracy) across the key 906 
conditions of our factorial design. The variability-mixer model predicts a hard-easy effect, with 907 
overconfidence for the high-variability condition and underconfidence for the baseline condition. 908 
By comparison, while the noise-blind model also predicts overconfidence for the high-variability 909 
condition, it predicts good calibration for the baseline condition. Indeed, as expected under the 910 
noise-blind model, participants were overconfident in the high-variability condition but well-911 
calibrated in the baseline condition (Fig S2). 912 

 913 

 914 
Fig. S2. Noise-blind model accounts for empirical pattern of overconfidence. Participants (left) are 915 
well-calibrated in the baseline condition but overconfident in the other conditions. The variability-mixer 916 
model (middle) shows under-confidence in the baseline condition but overconfidence in the high-variability 917 
condition. The noise-blind model shows good calibration in the baseline condition and overconfidence in 918 
the high-variability condition. Near-zero values indicate good calibration and non-zero values indicate bad 919 
calibration. Negative values indicate under-confidence and positive values indicate overconfidence. Data 920 
is from neutral trials of Experiment 2 and represented as group men ± SEM. 921 

Sequential sampling model 922 

To test the sequential sampling account of suboptimal behaviour proposed by Zylberberg and 923 
colleagues (Zylberberg et al., 2016), we fitted a Drift Diffusion Model (DDM) to the data from 924 
Experiments 1-2. The DDM models two-choice decision-making as a process of accumulating 925 
noisy evidence over time with a certain speed, or drift-rate, until one of two choice thresholds is 926 
crossed and the associated response is executed. We assumed that the choice thresholds were fixed 927 
across experimental conditions as in the study by Zylberberg and colleagues. In addition, we 928 
assumed that lower contrast led to a lower mean of the drift-rate and that higher variability led to 929 
higher variance of the drift-rate. The base drift-rate was proportional to the absolute difference 930 
between the average orientation and horizontal. We implemented these mechanisms using three 931 
parameters. The first parameter depends on the contrast level and scales the drift-rate. The second 932 
parameter specifies the baseline variance of the drift-rate. Finally, the third parameter depends on 933 
the variability level and scales the baseline variance of the drift-rate. To find the best parameters 934 
for each participant, we minimized the sum of squared errors between empirical and predicted 935 
choice accuracy across experimental conditions (we used a genetic algorithm with a population 936 
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size of 1000 individuals and a maximum generation time of 1000 generations). Comparison 937 
between empirical data and model predictions are shown in Fig. S3 using a similar analyses as 938 
Zylberberg and colleagues (2016). In short, the model can predict the observed choice accuracy 939 
for the different conditions (Fig. S3A), but it predicts a pattern of response times with respect to 940 
stimulus variability opposite to what we observed (Fig. S3B). As a sanity check, we show that 941 
higher evidence strength (i.e. absolute deviation of the average orientation from the category 942 
boundary) indeed increases choice accuracy and fastens response times (Fig. S3C-F).  943 

 944 

Fig. S3. Common choice threshold in a sequential sampling model cannot explain our data. (A) Choice 945 
accuracy for participants (blue bars) and DDMs (red lines) is lower when contrast is low (compare pale 946 
blue and dark blue bars) and when variability is high (negative slopes as condition changes from zero-v to 947 
high-v). (B) Response times for participants and DDMs show opposite effects for increases in variability 948 
(positive slopes for participants but negative ones for DDMs). (C) Participants’ choice accuracy for 949 
different levels of evidence strength (blue: low variability, red: high variability; faint colours: low contrast; 950 
dark colours:  high contrast). Note that the two critical conditions, high-variability and high-contrast trials 951 
(dark red curve) and low-contrast and zero-variability trials (faint blue curve), have similar slopes. (D) 952 
Participants’ confidence for different levels of evidence strength (same colour scheme as in panel c). (E) 953 
Participants’ response times for different levels of evidence strength (same colour scheme as in panel c). 954 
(F) Collapsing response times across participants for high-contrast and zero-variability trials (blue) and 955 
high-contrast and high-variability trials (red) demonstrate that high variability is associated with slower 956 
response times (i.e. red distribution has a longer tail). Data is from neutral trials of Experiments 1-2 and 957 
represented as group men ± SEM. For panels C-E, evidence strength is divided into quantile bins of roughly 958 
one degree of width starting at zero. 959 

 960 

0.5

1

0.2

0.8

ze
ro

v
med

 v
hig

h v
ze

ro 
v
med

 v
hig

h v
ze

ro 
v
med

 v
hig

h v

Pr
op

or
tio

n 
co

rre
ct

A B

R
es

po
ns

e 
Ti

m
es

ze
ro 

v
med

 v
hig

h v

0 3
0

3

0.5

1

60

100

0.4

0.8

Pr
op

or
tio

n 
co

rre
ct

E

C

F

 C
on

fid
en

ce

Low HighMed

Evidence Strength
Low HighMed

Evidence Strength

Low HighMed

Evidence Strength

R
es

po
ns

e 
Ti

m
es

D

D
en

si
ty

 

Response Time (s)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/268045doi: bioRxiv preprint 

https://doi.org/10.1101/268045


 

 31 

Subsampling  961 

In our experiments, we observed a consistent decrease in performance for trials with high 962 
stimulus variability. We attributed this decrease to integration noise – an increased difficulty for 963 
integrating variable or disparate pieces of information – which can explain both decreased choice 964 
accuracy and increased response times for high-variability stimuli. An alternative explanation for 965 
the decrease in accuracy for high-variability stimuli is, however, that participants only based their 966 
judgments on a subset of the items in a stimulus array. Under this subsampling account, the 967 
decrease in accuracy is due to a larger mismatch between the actual average orientation of the full 968 
array and the average orientation of the sampled subset. Here we describe why subsampling is an 969 
unlikely explanation for the decrease in accuracy for high variability trials, and why subsampling 970 
cannot explain noise blindness. 971 

First, we found no effect of set-size on accuracy in Experiment 6 (Fig. S4A) which was 972 
designed to show a difference in performance between set-sizes if participants were indeed 973 
subsampling. More specifically, in this experiment, the distribution of average orientations was 974 
the same for both set-sizes. Therefore, if participants sampled all items, then there would be no 975 
mismatch and thus no difference in performance between the two set-sizes, and the decrease in 976 
performance between the baseline and high-v conditions cannot be explained by subsampling. If, 977 
on the other hand, subsampling did occur, it would have a bigger effect on performance on trials 978 
where the stimulus arrays are composed of eight-item than on trials with four items. For instance, 979 
if participants could sample four items, then there would be no difference in performance between 980 
the baseline and the high-v conditions for four-item arrays (because there would be no mismatch), 981 
but there would be a difference for eight-item arrays (because half of the items would have been 982 
ignored). Experimentally, we found that the decrease in performance between the baseline and the 983 
high-v conditions was consistent across set-sizes and comparable to that found in the previous 984 
experiments (Fig. S4A). We note that another prediction for Experiment 6 is that accuracy should 985 
be higher on eight-item than four-item trials because encoding noise could be averaged out over 986 
more items. However, the data does not support this prediction. One possibility is that there is a 987 
trade-off between the number of items that are encoded and the quality with which they are 988 
encoded (Van den Berg, Shin, Chou, George, & Ma, 2012) – a trade-off which may overshadow 989 
the expected boost in performance from averaging out encoding noise. 990 

Fig. S4. Noise blind and not subsampling. (A) Participants in Experiment 6 achieved similar levels of 991 
performance when required to integrate four items (blue bars) and eight items (red line). (B) Choice 992 
accuracy for participants (grey shade) and a subsampling model (yellow shade). The subsampling model, 993 
which has no integration noise and therefore perfectly averages the sampled gratings, would need to sample 994 
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about four gratings before reaching the same level of choice accuracy as participants. (A-B) Data is 995 
represented as group mean ± SEM. 996 

Second, we performed a set of simulations for a subsampling agent without integration 997 
noise where we varied the number of items sampled (Fig. S4B). As such, the simulations were 998 
carried out assuming that, for arrays made up of eight gratings, the decrease in accuracy between 999 
the baseline and high-v conditions was entirely driven by subsampling. While sampling four-items 1000 
could in principle explain the decrease in accuracy between the baseline and high-v conditions for 1001 
eight-item arrays, the same number of sampled items would represent the complete stimulus for 1002 
arrays of four-item arrays and no expected decrease in performance should be found for high-v 1003 
compared to baseline trials.  1004 

Third, we fitted a subsampling model to participants’ data (only neutral trials) to directly 1005 
quantify the number of items sampled by each participant (n = 60; Exp1-3). The model had three 1006 
free parameters. The first parameter controls the noise added to each item of the array in the 1007 
baseline condition. The second parameter controls the extra amount of noise added to each item in 1008 
trials where the contrast is low (to capture the extent of encoding noise). Finally, the third 1009 
parameter controls the number of gratings, k, that were sampled from a stimulus array; k is an 1010 
integer value between one (the minimum number of items that can be sampled) and eight (the total 1011 
amount of items that can be sampled). We fitted the parameters by maximising the likelihood of 1012 
participants’ choices using a genetic algorithm with a population size of 100 individuals and a 1013 
maximum generation time of 1000 generations. Note that this subsampler account does not have 1014 
integration noise and any reduction in accuracy for high-variability stimuli would have to be due 1015 
to subsampling. Even then, the fitted k-parameter was eight for most participants (Table S2).  1016 

Table S2. Estimated number of items, k,  sampled by participants assuming absence of integration noise. 1017 

In summary, subsampling is unlikely to explain the observed reduction in accuracy for 1018 
trials with high stimulus variability, and provides no explanation for the slower responses observed 1019 
by participants or for the apparent blindness to the performance cost associated with high stimulus 1020 
variability. We therefore argue that integration noise provides the best account of the reduction in 1021 
accuracy and the delay in responses observed for trials with high stimulus variability, and that 1022 
blindness to this noise is the most parsimonious explanation of the overconfidence, lack of usage 1023 
of the opt-out option and lack of influence of the prior cue observed for trials with high stimulus 1024 
variability. 1025 

Response times 1026 

In many tasks, response times provide experimenters with further information about the 1027 
computational processes that lead to a decision, with response times varying with the 1) difficulty 1028 
of a decision as well as 2) the confidence with which it was made.  1029 

First, difficult decisions require more deliberation, and responds times therefore tend to be 1030 
slower for harder stimuli. In our task, response times were indeed slower for the low-c and the 1031 
high-v conditions compared to the baseline condition (baseline<low-c: t(39) = 2.6, p < .05; 1032 
baseline<high-v: t(39) = 6.15, p < .001; see Fig. S5). However, response times were even slower 1033 
for the high-v compared to the low-c condition (low-c<high-v: t(39) = 4.0, p < .001), despite equal 1034 

Best fitting k 1 2 3 4 5 6 7 8
Number of participants 1 2 0 2 4 5 4 42
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levels of choice accuracy in the two conditions. Analysis of the full data set (ANOVA) confirmed 1035 
that response times increased with variability (main effect of variability: F(1.5,29.0) = 28.55, p < 1036 
.001), whereas response times did not vary directly with contrast (main effect of contrast: F(1,39) 1037 
= 0.09, p > .75), only through an interaction with variability (F(1.8,72.7) = 13.06, p < .001). 1038 
Overall, our argument that integration noise results from an increased difficulty for integrating 1039 
variable or discordant pieces of information is supported by the slower response times observed 1040 
for conditions with high stimulus variability. 1041 

Second, there are two different ways of thinking about the relationship between confidence 1042 
to response times. On one hand, we – the experimenters – can use response times as a proxy for 1043 
participants’ confidence. However, this relationship may not be straightforward; quick responses 1044 
could reflect either rapid guesses or high certainty, and slow responses could reflect thoughtful 1045 
deliberation or high uncertainty (Pleskac & Busemeyer, 2010). On the other hand, participants 1046 
may themselves use the time it took them to make a decision as a cue to how likely their decision 1047 
is to be correct. By recording both response times and confidence judgments, we could investigate 1048 
the contribution of response times to confidence over and above relevant stimulus features 1049 
(average orientation, contrast and variability). The incentive-compatible scoring procedure applied 1050 
to participants’ responses  meant that participants, to maximise reward, should  make as many 1051 
correct decisions as possible and estimate the probability that a choice is correct as accurately as 1052 
possible. As demonstrated by the trial-by-trial analysis of confidence presented in Fig. 3B, slower 1053 
response times were indeed associated with a decrease in confidence (see Fig. 3B).  In other words, 1054 
participants utilised response times as a cue to confidence. However, the analysis also shows that, 1055 
because there were additional influences on confidence (e.g., average orientation and variability). 1056 
response time is a poor proxy for participants’ confidence. 1057 

Fig. S5. Response times for critical conditions. Response times were fastest for the baseline condition, 1058 
and slowest for the high-v condition. Data is from neutral trials (Exp1-2) and represented as group mean ± 1059 
SEM. 1060 

Accuracy gain 1061 

 In our task, participants had an opportunity to compensate for poor performance when the 1062 
informative prior cue (Exp1-2) or an opt-out option(Exp4) was available. Under the noise-1063 
blindness account, such an accuracy gain on ‘extra-information’ trials compared to neutral trials 1064 
should be higher for the low-c than the high-v condition, unless participants employed other 1065 
strategies which allowed them to compensate for the errors associated with stimulus variability 1066 
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(e.g., by deliberating for longer at the expense of slower responses). To test these predictions, we 1067 
computed the difference in choice accuracy between ‘extra-information’ and neutral trials: 1068 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_0`4 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦aP1b0_`4d3be01`34 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦4af1b0C. In line with our hypothesis, 1069 
accuracy gains (Fig. S6) were higher on high-c than high-v trials for participants and the noise-1070 
blind model, but not for the omniscient and the variability-mixer models. 1071 

 1072 

Fig. S6. Accuracy gain for critical conditions. Accuracy gain is measured as the difference in choice 1073 
accuracy between ‘extra-information’ and neutral trials (with positive values meaning higher accuracy for 1074 
‘extra-information’ trials). From left to right, the panels show the accuracy gain for participants, the 1075 
omniscient model, the noise-blind model, and the variability-mixer model, respectively. Data is from Exp1-1076 
3 and represented as group mean ± SEM. 1077 
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